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Abstract  

The Acoustic Emission (AE) phenomenon has been used as a powerful tool with the purpose to either detect, 

locate or assess damage for a wide range of applications. Derived from its monitoring, one major current 

challenge on the analysis of the acquired signal is the proper identification and separation of each AE event. 

Current advanced methods for detecting events are primarily focused on identifying with high accuracy the 

beginning of the AE wave; however, the detection of the conclusion has been disregarded in the literature. For 

an automatic continuous detection of events within a data stream, this lack of accuracy for the conclusion of 

the events generates errors in two critical aspects. In one hand, it deteriorates the accuracy of the measurement 

of the events duration, truncating the span of the event, which is undesirable in evaluation applications; and in 

the other hand, it causes false detections. In this work, an accurate and computationally efficient AE activity 

detector is presented, using a framework inspired by the area of speech processing, and which provides the 

required indicators to accurately detect the onset and the end of an AE event. This is achieved by means of a 

threshold approach that instead of directly operates with the transduced voltage signal it does so over the 

Short-Term Energy and the Short-Term Zero-Crossing Rate measures of the signal. The STE-ZCR method is 

developed for an application related to the continuous monitoring of a single AE channel derived from the 

characterization of metallic components by means of a uniaxial tensile test. Additionally, two experimental 

test-benches are implemented with the aim to quantify the accuracy and the quality of event detection of the 

presented method. Finally, the obtained results are compared with four different techniques, representing the 

current state of the art related to AE activity detection. 
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1. Introduction 

Due to high demanding specifications on safety and reliability demanded by the transportation sector, the 

design and manufacturing of metallic components and particularly for this end, the accurate mechanical 

characterization of these materials, represents a critical aspect in which a great deal of technical and scientific 

efforts have become essential [1,2]. In this regard, one of the most used methods is the tensile test [3,4], in 

which some important mechanical properties as the Young’s modulus, the Poisson’s ratio and the yield 

strength point are measured. One of the outcomes of the assay is the strain experienced by the specimen, 

typically measured by means of strain gauges and extensometers. Nowadays, in order to complement the 

accuracy delivered by these devices, efforts have been made in order to implement additional instrumentation 

to the test. Such is the case of video extensometer systems, allowing a forensic analysis based on image 

processing; nevertheless this approach presents two main restrictions, first, the frame digitization period which 

usually is in the range of unit of milliseconds, and second, the limitation to the surface monitoring which 

implies a significant loss of information about the internal material dislocations [5]. An alternative mechanical 



descriptor considered to be added to the test [6], is the analysis of the Acoustic Emission (AE) phenomenon. 

Which is the manifestation of transient elastic waves in a material, produced by irreversible changes in its 

crystalline structure. This has been exploited as a potent mean to assist in the detection, location or evaluation 

of damage. 

For the AE as an assessing damage tool, the processing chain is usually composed by the transduction and 

acquisition of the phenomenon and in the separation and analysis of each captured AE wave. Particularly, for 

the separation stage of AE events, due to the inherent features of the phenomenon, the resulting waveform 

from the acquired signal implies a very challenging task in which to be able to perform a proper identification 

and separation of each AE event; this mainly caused by exhibiting a highly varying background noise, a large 

difference of amplitudes between events, and a randomness on the incidence and lifespan of these AE events. 

Traditionally, the detection work is carried out by the comparison with the acquired electrical signal against a 

predefined voltage threshold level, in which whenever the electrical signal rises above of this fixed level, it is 

said that an AE event has been detected. This method, implemented in the early days of using AE as a damage 

detection tool, emerged due to the then-contemporary lack of available digital hardware capable to process the 

payload from the large data stream required for a proper digital treatment of the practically baseband signal 

[7]. Nowadays, after the advent of digital platforms and given its relative efficiency and ease of 

implementation, nearly all the established standards for AE [8,9], as well as the commercially available 

instrumentation and in consequence the majority of the fieldwork, have inherited this voltage thresholding 

design paradigm as the default method for detecting AE activity. Nevertheless, this method does not directly 

deal with the abovementioned particularities of the acquired waveform, yielding to inaccuracies on the onset 

and endpoint determinations related to the AE events; and as in consequence, eventually causing a degradation 

of the information obtained from the process of assessing. 

Efforts have been made in order to overcome the aforementioned limitations of the classical thresholding 

approach, where methodologically, most of the developed methods carry out a transformation of the raw 

electrical signal into a Characteristic Function (CF) with the aim of emphasizing the presence of AE events, 

thus enabling a more efficient detection work. Based on non-parametric signal processing methods, the Time-

Frequency distribution analysis represents a more accurate tool for detecting the temporal onset of the AE 

waves; currently most of the efforts are focused on the use of the Wavelet Transform (WT) [10–14], due to 

improving the resolution of the energy localization of the AE event in the Time-Frequency plane and in 

consequence having a better accuracy for the onset determination of the AE wave. Most of these advanced 

techniques find their inspiration into the Geophysics discipline due to the similar production between 

phenomena, such is the case of the Short-Term Average to Long-Term Average ratio (STA/LTA) [15], 

developed for determining earthquake events while maintaining a low count of false-positive alarms. The most 

revised technique in the AE area, is the Akaike Information Criterion (AIC) [16], that models the time series 

data at the beginning of the AE raw signal under a low order autoregressive scheme, with the aim of achieving 

an estimation of two locally stationary parametric components of the framed original signal, noise and AE 

activity, hence allowing the identification of the AE onset. 

Despite of advanced methods clearly represent superior alternatives to the classic thresholding technique, 

traditionally they have evolved in light of applications for locating AE sources, where a highly accurate onset 

detection is critical, so consequently, issues related to the endpoint determination have been disregarded. 

Methodologically, this imply that instead of considering some intrinsic feature related the phenomenon, all 

the AE activity detection methods only make use of the combination of a threshold level along with a fixed 

timer in order to determine the conclusion of the AE event. Nevertheless, due to the stochastic manifestation 

of said events, this methodology leads to inaccuracies on the measurement of the endpoint determination, and 



in consequence, directly affecting to the quality of detection of all methods, i.e., the amount of properly 

detected AE events on a survey [17]; being a critical aspect for damage assessing applications. 

A last matter to considering is that due to the high data rates required to process the AE phenomenon, these 

advanced methods are computationally expensive, so usually they are implemented under an offline 

framework, i.e., first capturing the data from the survey to later separating the AE events. Although some 

efforts have been made in order to implement hardware architectures that can operate under an online approach 

[18–20], there are still required strategies that can lead to faster and efficient implementations, this particularly 

necessary for long surveys. 

Evidently, Acoustic Emission is not the only discipline related to the Signal Detection Theory (SDT). 

Particularly in the speech processing discipline, SDT finds its application on the Voice Activity Detection 

(VAD) stage [21,22]; where a randomly present speech activity from a highly noisy digitized signal aims to 

be extracted in order to reduce the payload from the subsequent stages given a particular application, e.g., 

voice telecommunications, artificial intelligence, hearing aids among others. One of the best-established 

automatic VAD for the speech processing area is the technique developed by Rabiner and Sambur [23]. This 

parameter-based VAD was originally designed with the objective to accurately detect the beginning and the 

end of an utterance, while preserving an efficient and straightforward processing scheme as well as being 

robust against varying background noise. This was achieved with the use of two indicators of the signal: the 

Zero-Crossing Rate and the Short-Term Energy. Additionally, the algorithm was intrinsically capable of 

suitably executing in any realistic acoustic environment in which the Signal-to-Noise Ratio (SNR) was in the 

order of 30dB. Despite of the dissimilar origins between Acoustic Emission and Speech phenomena, and 

consequently the technical requirements in order to be processed, e.g., instrumentation, bandwidth of 8kHz 

vs. 1MHz, etc.; behaviors on their waveforms share similar characteristics, such is the case of a high variance 

on the occurrence of activity, rapid varying background noise and significant dynamic range. 

In this work, an AE activity detector inspired by the voice activity detector developed by Rabiner and Sambur 

[23] is presented. The AE detector is revised for an application related to the recording of a single channel 

from a continuous monitoring, derived of the characterization of a metallic component by means of an axial 

tensile test, where the AE waves derived from this assay typically exhibit large amplitude differences between 

events, stochastic occurrence and duration, and highly varying mechanical background noise due to 

cumulative reflections.  

In order to evaluate the performance of the presented STE-ZCR method, two experimental setups are arranged: 

a) a collection of Hsu-Nielsen sources with aim to quantifying the accuracy of the onset and endpoint 

determinations as well as for assessing the robustness of the method with regard to induced background noise. 

b) The continuous detection of AE events from an AE data stream obtained from a standardized tensile test in 

order to quantify the quality of detection of this method. Additionally, with the aim to establishing a common 

benchmark of comparison with some of the advanced detection techniques currently available in the literature, 

the results of the presented method are compared with: a) A classical threshold technique enhanced by means 

of the Instantaneous Amplitude [24], b) A typical STA/LTA detector [25], c) A two-step AIC picker [26], d) 

An a CWT-Otsu detector over a binary image mapping [14] which alike c) uses a modified Allen’s Formula 

as CF for the threshold-based early detection. 

Contribution of this work is to providing an automatic AE event detector for a continuous data stream, which 

excels the detection capabilities, i.e., the onset and endpoint measures, as well as the detection quality of events 

with regard to the existing methods present in current literature. Novelties of this work include the use of the 

Short-time analysis, which offers an accurate, noise resilient and computationally efficient framework with 

aim to detecting AE events. In addition, and instead of using the traditional combination of a threshold level 



and a fixed timer, the implementation of an indicator extracted from the waveform of the signal with the aim 

to determining the conclusion of an AE event 

This paper is organized as follows: In Section 2 the proposed STE-ZCR detection method is introduced. 

Section 3 describes the two experimental setups with the aim of benchmarking the method and comparing its 

performance with the current advanced methods from literature. In Section 4, results are presented and 

discussed. Finally, in Section 5 conclusions are provided. 

2. Methodology: AE Activity Detector 

The idea behind of the Short-Time or Short-Term Analysis (ST-ANLYS) relies on the stationarity of time 

series, with the aim to creating a new sequence that can represent some varying feature of the original signal. 

This can be achieved based on the fact that some signals such is the case of an AE signal, intrinsically will not 

show stationary behavior, that is, during their durations there will not be clear tendency of repeatability, e.g., 

statistical mean and covariance. However, when the signal is enough and equally time-frame segmented, it 

will show a relative slow variation for some property between segments, so these time segments, usually 

known as analysis frames, will relate the analysis of the signal regarding a fixed size time window.  

An activity detector exploits this artificial induced stationarity by identifying the relatively higher energy and 

lesser number of zero crossings associated to a phenomenon under development. Despite of the inherent 

uncertainties induced by the short-term analysis, it has proven to be an efficient tool with the aim of identifying 

the regions of activity of a signal. 

For this work, the STE-ZCR method (see Fig. 1), firstly is composed of the generation of two characteristic 

functions derived from the short-term analysis of the Energy and the Zero Crossing Rate regarding to the 

acquired AE signal; and secondly, by the detection of AE events performed by a dedicated algorithm taking 

as inputs these pair of characteristic functions. 
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Fig. 1. Block diagram for the STE-ZCR method, composed by two main stages: 1) Production of two CF by means of the ST-ANLYS framework, and the 

2) Activity detection algorithm aimed to searching for the onset and endpoint by means of the STE and the ZCR respectively. For each detected AE event, 

outcome of the method consists of a pair of indexes that mark the temporal start and end sampling points with regard to the data stream. 

 

 

 

 



2.1 Stage 1. Characteristic Functions Generation: Short Time Analysis Framework 

 

2.1.1 Short-Time Energy 

As is known, the energy E of a discrete-time signal of length L from a point of view of signal processing can 

be expressed as ∑ |𝑥(𝑚)|2𝐿
𝑚=0 . For this framework, the short-time energy of the signal is defined as: 

𝐸𝑛̂ = ∑ |𝑥(𝑚)|2

𝑛̂

𝑚=𝑛̂−𝑁+1

𝑤(𝑛̂ − 𝑚) (1) 

 

where 𝑤(𝑛̂ − 𝑚) is a window function of N width, centered at sample 𝑛̂, and where 𝑛̂ in turn indicates the 

overlapping factor between windows through the relation 𝑛̂ = 𝑘𝑇, with 𝑘 = 0, 1, …, and 𝑇 < 𝑁 ≤ 𝐿.  

For this AE activity detection application, and since values of 𝐸𝑛̂ for an AE wave are considerably greater 

than noise floor energy, the association of 𝐸𝑛̂ lies in provide a measure for separating the presence of AE 

waves from idle activity on the studied sequence. It is important to note that under this approach, there are 

three different parameters to configure for the short time analysis of the energy: 

a) Window function. Since the characteristic function derived from the short-time analysis will strongly 

depend on the choice of the selected window, and since the objective is to highlight a feature of interest of the 

evaluated signal, windows must meet some requirements e.g., smoothness, non-negative terms, compact 

support, square integrable resultant products. For activity detection related applications, by properly 

concentrate the energy of the signal in the time domain and meet the aforementioned requirements, typically 

used windows belongs to the raised cosine families e.g. Hamming, Hanning, Blackman, etc.  

 

b) Window length. Ideal response of the characteristic function is to depicting the feature of interest at a rate 

time comparable of the original signal. Short-term analysis will inherently portray uncertainties on the 

temporal relocations of the analyzed feature due to a mistaken selection of the length, i.e., small lengths will 

not reveal signal stationarity, medium lengths will lose rapid transients, and large lengths will suppress the 

dynamic of the signal. Consequently, selection of the length of the window will entirely rely on the related 

application, making it necessary to considering the tradeoffs on the responsiveness of the analysis. For the 

case of the AE phenomenon, despite that duration of the events randomly behaves from nanoseconds up to 

hundreds of milliseconds, representative AE lifespans are in the order of the microseconds. Thus, for AE 

related applications, windows of duration in tens of microseconds should be a balanced selection that meet the 

abovementioned criteria. Nonetheless, in order to characterize the expected AE waves, it is highly desirable 

to perform a prior calibration based on the properties of the studied material by means of artificial Hsu-Nielsen 

sources. 

 

c) Window overlapping factor. To reveal stationarity, short-term analysis requires sliding the configured 

window over the signal of interest. Although, with the objective of reducing the computation load, the 

overlapping of data frames is typically implemented, in the case of applications where temporal accuracy is 

critical when revealing stationarity, as is the case of the AE, it is highly recommended to avoid overlapping, 

i.e., by performing the direct convolution of the window function and the AE signal. 

 

 

2.1.2 Short-Time Zero Crossing Rate 

The zero-crossing point for an alternating electrical signal is the instantaneous time value when voltage equals 

to zero. Since the point of view of the discrete-time signal processing, a zero-crossing point occurs where two 



adjacent sampling points on the sequence have different mathematical signs, i.e., showing opposite polarities. 

This feature, represents a straightforward approximation for measuring the noisiness, as well as to coarsely 

infer the dominant frequency and spectral centroids of signals; and it has been extensively used for different 

disciplines with the aim to discerning between activity conditions [27–29]. 

In the case of AE signals, once an AE wave reaches the sensor, pressure will be exerted over the surface of 

this, producing in turn a rapid rise on the transduced amplitude levels; and consequently, while the AE wave 

exists, decreasing the speed of the alternation of the electrical signal over the zero-volt axis. With the objective 

to identify the presence of AE events, this trend change of the signal can be exploited by correlating the high-

speed zero crossing rate with the absence of AE waves, and the low-speed zero crossings regarding to the 

existence of AE events. 

For an AE signal, in this work, the rate count of zero-crossings per frame is described as: 

𝑍𝑛̂ =
1

2𝑁
∑ |𝑠𝑔𝑛(𝑥[𝑚]) − 𝑠𝑔𝑛(𝑥[𝑚 − 1])|

𝑛̂

𝑚=𝑛̂−𝑁+1

𝑤(𝑛̂ − 𝑚) (2) 

 

where 𝑤(𝑛̂ − 𝑚) is the chosen window function, 𝑁 is the length of said window, and also indicating the 

overlapping factor between windows through the relation 𝑛̂ = 𝑘𝑇, with 𝑘 = 0, 1, …, and 𝑇 < 𝑁 ≤ 𝐿. Finally, 

𝑠𝑔𝑛 denotes the signum operator defined as:  

𝑠𝑔𝑛(𝑥[𝑛]) = {
1, 𝑥[𝑛] ≥ 0

−1, 𝑥[𝑛] < 0
 (3) 

 

Still, is possible to express the ZCR normalized for an interval of 𝑀-samples, whence ZCR becomes: 

 

𝑍𝑀 = 𝑀𝑍𝑛̂ (4) 

 

where for an interval of 𝜏 seconds and sampling frequency 𝐹𝑠 of the acquired AE data, the number of samples 

of 𝑀 are: 

 

𝑀 = 𝜏𝐹𝑠 (5) 

 

Finally, as in the case of the STE, the ZCR characteristic function is also based on the short-time analysis; 

therefore, in order to obtain a proper description, it is also necessary to make the same considerations about 

type, length and overlapping of the window with regard to the properties of the studied material. Furthermore, 

it is highly advisable for a STE-ZCR framework to use identical windows for the generation of both functions. 

 

 

2.2 Stage 2. AE detection algorithm 

Once that both characteristic functions, STE and ZCR are obtained, the second stage of the STE-ZCR method 

consists of finding the pairs onset-endpoint regarding to the AE events on the signal. For this, based on the 

fact where the waveform derived from an AE event will exhibit higher energy and lesser ZCR count, it is 

possible to set up the basis to implement an algorithm that can detect AE events on a straightforward but yet 

efficient scheme (see Fig. 2). 

 

The algorithm makes use of two different fixed threshold values for its operation, the Identification Threshold 

Upper (ITU) that works on the STE signal in order to detect new AE events and the Identification Zero 

Crossing Threshold (IZCT) that works on the ZCR with the aim to determining the endpoint for a detected 



AE event. Thus, a previous characterization of the instrumentation with regard to the surveyed material is 

highly recommended to characterize the background noise level and the amplitude of the electrical waveform 

of the monitored AE channel, in order to carry out a proper calibration of said threshold parameters. In addition 

to the characteristic functions generated by means of the short-term analysis, the algorithm makes use of the 

derivative of the STE with the aim to refine the onset determination of the AE event. Finally, with the purpose 

to enhance the quality detection, a basic adaptive threshold scheme is implemented by continuously taking 

measurements of background noise and adjusting the threshold levels between search iterations.  
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Fig. 2. Flowchart for the activity detection algorithm composed of three main steps: 1) Preliminary calculation of background noise for an idle state of the 

signal, 2) Search job for the onset and endpoint of a hit, 3) Threshold level adaptation regarding to the updated background noise. Reader is also referred to 

Fig. 3 for a visual instance of the characteristic functions and threshold levels used by the algorithm. 

The search work begins by estimating the early background noise level related to the STE, for a small segment 

of the sequence belonging to the beginning, since it is assumed that there is not exists any AE event yet. This 

noise estimation is achieved by means of the sum of the arithmetic mean 𝑥̅𝑆𝑇𝐸 and the α-weighted factor for 

the standard deviation 𝜎𝑆𝑇𝐸 of the STE signal, where this α factor can be estimated along with the previous 

calibration for the thresholds, if a heavy background noise is expected the value for this weighting value must 

be incremented. In order to perform the first threshold adaptation, the early background noise level is added 

to the preset Identification Threshold Upper (ITU), expressed in levels of energy (v2.s) 𝐼𝑇𝑈𝑎𝑑𝑗𝑢𝑠𝑡 = 𝐼𝑇𝑈 +

(𝑥̅𝑆𝑇𝐸 + 𝛼 ∗ 𝜎𝑆𝑇𝐸). 

For the calculation of the ZCR early background noise level, same calculations performed in the STE case, 

are carried out over the same segment length belonging to the ZCR. Thus, the resulting adjusted Identification 

Zero Crossing Threshold will be: 𝐼𝑍𝐶𝑅𝑇𝑎𝑑𝑗𝑢𝑠𝑡 = 𝐼𝑍𝐶𝑅𝑇 + (𝑥̅𝑍𝐶𝑅 + 𝛼 ∗ 𝜎𝑍𝐶𝑅), expressed in form of the 

normalized ZCR, for a length window of 𝑀 samples (𝑍𝐶𝑅̂). Additionally, for this parameter, with the purpose 

to use a simpler threshold presetting, it is also possible to process the IZCT threshold value like a percentage 

of the computed early background noise level. Next step consists of finding the first sample 𝑛𝑃𝑟𝑜𝑣−𝑜𝑛𝑠𝑒𝑡 in the 

STE sequence where: 𝑆𝑇𝐸[𝑛] ≥ 𝐼𝑇𝑈𝑎𝑑𝑗𝑢𝑠𝑡; this 𝑆𝑇𝐸[𝑛𝑜𝑛𝑠𝑒𝑡] sample will be the provisional onset hit.  



The last task for this first stage comprises of the refinement of the onset detection of the hit by means of the 

first derivative of the STE sequence, namely 𝑆𝑇𝐸̇ . The purpose on the use of this signal is to take advantage 

of the sensitivity to the energetic change that the STE provides, by finding the first occurrence of the energetic 

variation of the captured AE phenomenon. Thus, it is possible to assume that in this sample the arrival of p-

waves is manifested. For this, it is carried out a backward search from the corresponding 𝑆𝑇𝐸̇  sample of the 

provisional onset hit sample until finding the 𝑛𝑡𝑟𝑢𝑒−𝑂𝑛𝑠𝑒𝑡 sample where 𝑆𝑇𝐸̇ [𝑛𝑡𝑟𝑢𝑒−𝑜𝑛𝑠𝑒𝑡] ≤ 0. This sample 

is indexed as the true onset hit detection, and it will be the first outcome of the search job. 

The first task for the second stage in the algorithm consists of finding the core of the hit. Since in this region 

most of the AE wave energy is concentrated, it is necessary to delimit it accurately with the aim to aiding to 

find the duration of the hit. For this step, the first subtask requires to finding the provisional end of the core of 

the hit 𝑛𝑝𝑟𝑜𝑣𝐸𝑜𝐶, this can be picked up readily by locating the first sample from the provisional onset hit sample 

where 𝑆𝑇𝐸[𝑛] < 𝐼𝑇𝑈.  

Next, for the search work of the end of the core of the hit, it is required to find the maximum value 𝑆𝑇𝐸𝑚𝑎𝑥−𝑐𝑜𝑟𝑒 

regarding to the provisional core of the hit, i.e., the range between STE[provisional onset hit] and 

STE[provisional end of the core of the hit], to then readjust the Identification Lower Threshold (ITL) expressed 

in levels of energy (v2.s). With the aim to achieving an accurate readjust for this threshold level, it is necessary 

to establishing a model that aids to properly determine the behavior of the amplitude distribution level for the 

processed AE events. 

Mathematically, the realization of the AE phenomenon is conceived as a non-stationary stochastic signal 

[30,31]. Still, after being transduced by a sensor, the resulting AE waveforms are traditionally treated as radio 

pulses in exponential decaying. Accordingly, a widely used waveform model [32–38], considers to the 

electrical AE signals as underdamped sinusoidal functions of the form: 

𝐴𝐸𝑠𝑖𝑔𝑛𝑎𝑙(𝑡) = {
𝐴 𝑒𝑥𝑝 (

−𝑡 − 𝑇

γ
) 𝑠𝑖𝑛 2𝜋𝜐0(𝑡 − 𝑇) , 𝑡 ≥ 𝑇

0, 𝑡 < 𝑇

 (6) 

 

where 𝐴 is the amplitude and 𝑇 is the arrival time of the AE wave; γ and 𝜐0 the decay constant and the resonant 

frequencies belonging to the sensor.  

Thus, it is possible to modelling the envelope 𝑒(𝑡) regarding to the AE wave [39,40], after reaching a 

maximum value 𝐾 at time 𝑇𝑒, as an exponential decay function: 

𝑒(𝑡) = 𝐾𝑒−𝜐0𝑡 , 𝑡 ≥ 𝑇𝑒 (7) 

being 𝑣0 the decay constant belonging to sensor. 

It is evident that this simple model can be further enhanced, still, for the application of this work, it is only 

necessary to identify that the STE corresponding to an AE wave behaves as an impulse response function 

regarding to a linear-time-invariant dynamical system of first order. As is well known, the time constant 𝜏, 

which characterizes the response of this system and its bandwidth for a system like in Eq. 7, it is located at the 

instant of time 𝑡𝜏 where 𝑒(𝑡𝜏) equals to 36.8% of its maximum value. Therefore, taking advantage of this fact, 

it is possible to assume that the core of an AE wave will expire when the STE characteristic function, equals 

to the 36.8% of its maximum reached value. Hence, the value for the Identification Lower Threshold will be 

adjusted to 𝐼𝑇𝐿 = 0.368𝑆𝑇𝐸𝑚𝑎𝑥−𝑐𝑜𝑟𝑒 with the aim to then perform a forward search from 𝑆𝑇𝐸[𝑛𝑚𝑎𝑥−𝑐𝑜𝑟𝑒] 

until find the 𝑛𝜏 sample where 𝑆𝑇𝐸[𝑛]  ≤ 𝐼𝑇𝐿.  



This 𝑛𝜏 sample will be the end of the core of the hit. While it is true that after the end of the core of the hit 

most of the energy of the AE wave is nearly vanished, the region between this STE endpoint detection and the 

one that will be determined through the ZCR, still will comprise a relevant content of energy. Thus, the joint 

use of these pair of characteristic functions will provide a more robust and precise approach for determining 

the end of the lifespan of the AE wave. For this, a simple search forward over the ZCR sequence will be 

performed from the end of the core of the hit 𝑛𝜏 sample, until finding the 𝑛𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡 sample where the ZCR 

sequence be greater than the Identification Zero Crossing Threshold, i.e.,  𝑍𝐶𝑅[𝑛]  ≥ 𝐼𝑍𝐶𝑇𝑎𝑑𝑗𝑢𝑠𝑡. This sample 

will be indexed as the true endpoint of the hit. With these two indexes, true onset hit detection and true 

endpoint of the hit as outcome of the algorithm, it concludes the work for the second stage of the algorithm 

and the third and last stage of this can be executed, by searching a new AE event over the STE sequence, and 

using the last adjusted value of the Identification Threshold Upper from the true endpoint of the hit sample. 

Once detected, a refinement of the onset task by means of the STE derivative will be performed.  

Next, an update of noise levels regarding to their corresponding characteristic functions will be performed 

from the last true endpoint of the hit to the new true onset hit detection, to then readjusting of the Identification 

Threshold Upper and Identification Zero Crossing Threshold values. Still, with the purpose of avoid the 

overlapping of AE events, if a new event were detected before the true endpoint of the hit sample by means 

of the Zero Crossing Rate function, the true endpoint of the hit must be readjusted to one sample before of the 

true onset hit detection. Finally, the second stage of the algorithm will be performed again and the described 

iteration is repeated until all events of the sequence under analysis are detected. 

In Fig. 3, it is shown the operative stages related to the STE-ZCR AE detection technique, using two different 

AE events and their corresponding durations determined by the AE activity detector indicated by green shaded 

areas (Fig. 3a).  

For the onset detection work, in Fig. 3b it can be observed the Short-time Energy characteristic function (blue-

steel area under the curve), the preset threshold level (horizontal dotted black line), the signal segment for the 

early background noise calculation (yellow shaded area), the first adjusted Identification Threshold Upper 

(horizontal dotted yellow line) and the sample of activation for the first AE event (first vertical solid yellow 

line), the signal segment for the second background noise calculation (lilac shaded area), the second adjusted 

Identification Threshold Upper (horizontal dotted lilac line), the sample of activation for the second AE event 

(vertical solid lilac line),  the Identification Lower Threshold (horizontal dotted white line) for each AE event, 

as well as the segment for the end of the core search job (red shaded areas). Finally, as outcome for this stage 

it is shown the core of the hit (gray shaded areas). 

For the refinement work related to the onset detection, in Fig. 3c it is depicted the backward search job carried 

out over the derivative function of the STE (blue solid curve), which starts from the beginning of core of the 

hit (vertical dash-dotted black line) until finding a value equal or lesser than zero (vertical solid green lines). 

Finally, in Fig. 3d it is represented the endpoint determination work by means of the Short-time Zero Crossing 

Rate characteristic function (blue solid curve), it can also be observed the segment for the early background 

noise calculation (yellow shaded area), the samples of activation end of the core of the hit (vertical dotted red 

lines), the first adjusted Identification Zero Crossing Threshold (horizontal dotted yellow line), the signal 

segment for the second background noise calculation (lilac shaded area), the second adjusted Identification 

Zero Crossing Threshold (horizontal dotted lilac line), as well as the endpoint determination samples (vertical 

solid green lines) as outcome for this final stage of the search algorithm. 



 

Fig. 3.  Depiction of the STE-ZCR detection method for a 5ms data-frame containing two AE events. a) AE events and their respective automatic duration 

determinations (green areas) as final outcome. b) Onset detection work by means of the STE characteristic function. c) Onset refinement with the STE 

derivative. e) Endpoint determination using the ZCR characteristic function. 

 

3. Experimental procedures 

Following the experimental procedures presented in the literature, two experimental scenarios were arranged 

with the aim to quantifying the competency of the proposed STE-ZCR method in front of a comparative 

common framework with regard to some of the most significant methods for detection of AE events from 

literature.  

First experimental scenario is prepared to quantifying the precision of the measures regarding to the onset, 

endpoint and lifespan determinations. For this, a collection of one-hundred different AE waves derived from 

a standardized Hsu-Nielsen test is processed and their corresponding detection absolute errors are calculated. 

Then, with the purpose of evaluating the operating robustness in front of noise, each AE synthetic wave of the 

dataset is tainted with three different levels of Additive White Gaussian Noise (AWGN), and their 

corresponding detection absolute errors once more are calculated. Additionally, in order to evaluate the 

computing throughput of the presented method, the processing time of each analyzed AE event is measured. 

a) 

b) 

c) 

d) 



The second test-bench involves to measuring the quality of detection by means of the accuracy, precision, 

sensitivity, f1-score, false-discovery rate and false-negative rate statistical indicators. For this, a data frame 

derived from a tensile test of a metallic component containing an ample variety in duration, amplitude and 

incidence of AE waves is processed, and the amount of properly detected AE events is totaled. The required 

processing time with regard to the data frame is also calculated, as well as the absolute errors of the onset, 

endpoint and lifespan detections of the corresponding true-positive events.  

For both experimental scenarios, one sensor (Physical Acoustics WSα, 100-1000 kHz) was attached to the 

surface of each corresponding metallic component, using a silicon-based couplant agent. The resulting 

electrical signals were amplified by a Mistras preamplifier 2/4/6 with a bandwidth of 10-2500 kHz and using 

a gain of 20dB.  The amplified electrical signals, were recorded under a free-running sampling scheme, using 

a CSE4444 digitizer of the GaGe manufacturer, with a sampling frequency of 5MHz for the Hsu-Nielsen data 

and 10MHz for the tensile test data, for both scenarios a resolution of 16-bit depth is used. All the raw signals 

are band-pass filtered in a frequency band of 10-2200 kHz, by means of a FIR equiripple implementation. 

Preliminary to performing the corresponding test-benches, the onset and endpoint times of each AE-wave that 

will be processed, are manually picked supported by means of time-voltage plots as well as by a time-

frequency distribution of high resolution [41].  

Test benches as well as the considered methods are implemented using software scripts executed by 

MATLAB® R2018a in a PC with a CPU Intel Core i7-6800k (3.4GHz) and 64GB of DDR-2400 RAM. 

For the state of the art methods used in the experimental scenarios, the most fitting calibration parameters in 

regard to the test-bench are done following the recommendations of related literature [26,42–46] as well as 

the current standards [8,9,47–51].  

3.1 Hsu-Nielsen data test-bench 

 

For the Pencil-Lead Breakage (PLB) test-bench, and for each of the one-hundred realizations, a graphite lead 

of ⌀ 0.5mm, 2.5mm tip-length and applying a contact angle to the surface of the metal sheet specimen of 60° 

is used. In addition, a distance of 12cm between source and sensor is preserved (see Fig. 4). 
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Fig. 4. Setup for the standardized Hsu-Nielsen test-bench over a Press-Hardening 1500 steel plate specimen. (a) Photograph of the AE sensor, the guide-ring 

tube used to generate the artificial sources and the steel plate (stood over a foam base). (b) Schematic diagram indicating the dimensions of the specimen and 

the locations of the source and sensor. 

 

a) b) 

Hsu-Nielsen source AE sensor 



For a frequency range of up to 1MHz, the average phase velocity for the extensional mode is of 5194m/s and 

for the group velocity case is about of 4471m/s. In Fig. 5, it is shown the characterization of the used sheet 

specimen by means of its dispersion relation of the fundamental Lamb wave modes (obtained using the 

Wavescope software [52]). With this information, and considering the operative frequency of the used 

sensor, the source-sensor layout shown in Fig. 4 and assuming an ideal isotropy in the material, it is possible 

to neglect the effect of the change of velocity for this experiment. 

 

  

Fig. 5. Fundamental dispersion curves of the Press-Hardening 1500 steel sheet with a thickness of 2mm, Young’s modulus of 211GPa, density of 7850kg/m3, 

Poisson’s ratio of 0.3 and shear modulus of 83GPa. (a) Phase velocities. (b) Group velocities. 

 

For repeatability purposes, each synthetic AE wave is edited so its peak value is centered on 5ms and the 

signal be extended during 40ms more, as a result, each AE wave from the data set collection will exhibit an 

average lifespan of 20.86 ± 1.16ms. A typical waveform obtained from this process is shown on in Fig. 6. 

 

 

Fig. 6. Typical AE waveform event analyzed in the synthetic data test-bench. (a) Time-Voltage representation. (b) Synchrosqueezed wavelet transform, by 

means of an analytic Morlet wavelet, and used to assist in the manual determination of the beginning and conclusion related to AE events. Green and red 

lines in figures indicate the manually picked onset and endpoint locations respectively. 

a) b) 

a) 

b) 



3.1.1 Operational robustness in front of background noise 

Second objective for this test-bench consists of evaluating the operational robustness of the STE-ZCR method 

in front of background noise. For this, since each AE wave from the data set collection exhibits an average 

Signal-to-Noise Ratio (SNR) of 27.1 ± 1.15dB, their corresponding SNR is decreased by means of AWG noise 

in three different rounds of analysis of 20, 15 and 10 dB respectively (see Fig 7). Then, the relative errors for 

the onset, endpoint and lifespans are newly calculated for each round, as well as the consumed processing 

times. 
 

 

Fig. 7. Example of an AE wave used for the evaluation of operational robustness against noise, and onset and endpoint locations (green and red lines 

respectively). In the test, a synthetic AE signal (gray) is tainted by AWGN in order to obtain three different signals with levels of SNR of: (a) 20dB (lilac), 

(b) 15dB (yellow), (c) 10dB (red). Images of the right column show a 1ms zoom of the corresponding data frame for the wave onset. 

 

  

3.2 Uniaxial tensile test 

The objective for the second test-bench is to quantify the quality of event detection by means of statistical 

indicators in front of field data. For this, a tensile test of a metallic component is carried out (see Fig. 8). 
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Fig. 8. Setup for the tensile test-bench over a Ferrite-Pearlite annealing steel sheet specimen (load rate of 1mm/min). (a) Photograph of the used 

instrumentation and test machine. (b) Schematic diagram indicating the dimensions of the metallic specimen and the locations of the sensors. 
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Although a pair of identical sensors were attached during the assay, for this test-bench, only the signal of the 

main sensor will be analyzed. For this experimental scenario, by considering the operative frequencies range 

of the sensor and its location over the specimen (see Fig 8.), and if it is assumed an ideal isotropy in the 

material, for the characteristic average extensional mode wave velocities of ~5104m/s for the phase and 

~4348m/s for the group (see Fig. 9), it is possible to neglect the effect of the change of velocity for this 

experiment. 
 

  

Fig. 9. Fundamental dispersion curves of the Ferrite-Pearlite annealing steel sheet with a thickness of 2mm used in the experimental scenario, with Young’s 

modulus of 205GPa, density of 7850kg/m3, Poisson’s ratio of 0.3 and shear modulus of 83GPa. a) Phase velocities. b) Group velocities. 

 

The AE signal produced by the tensile test was collected; and for the experimental scenario a frame length of 

500ms containing 380-AE events is used as the input for each detection method (see Fig. 10). For each AE 

event, the onset and endpoint locations are manually picked supported by the frame waveform and its 

corresponding time-frequency distribution. 

 
 

Fig. 10. (a) Signal frame used for the field data test-bench. (b) Zoom of 40ms of the signal frame, showing the ample variety on the incidence, lifespan and 

amplitudes of the AE waves present in the test-bench (manual onset picks indicated by the vertical yellow lines). 

 

a) b) 

a) 

b) 



Following the methodology presented in [53], which is aimed to searching for acoustic waves in metallic 

components by means of the synchrosqueezed wavelet transform, for the case of the onset waves, the 

procedure for discriminating the presence of AE in the data-frame consisted of identifying the instant of time 

when the bi-dimensional manifold created by means of the energy contour mapping regarding to the original 

data-frame portrayed by the high-resolution SSWT became firstly closed by connecting all the modal 

frequencies of the signal of interest. Regarding to the endpoint determination, the detected AE events are 

considered finished when the energy corresponding regarding to the aforementioned manifold is vanished. 

 

Fig. 11, depicts this procedure for five different AE events using a representative 1ms data-frame derived from 

the studied experiment showed in Fig. 10, which are located at 178.94-179.05, 179.25-179.27, 179.29-179.33, 

179.34-179.38 and 179.40-179.49. In this instance it is show that by means of the high-resolution TFR, it is 

possible to easily discern between true AE events, and mechanical noises generated during the experiments 

and reflections generated due to energetic AE waves. Such is the case of the transient noises present at 179.2, 

179.6 and 179.8ms, which in temporal domain could be associated with an AE source at the frequency domain 

they do not present any characteristic frequency content related to the AE phenomenon. Similarly, for 

reflections of events one and five located at 179.1 and 179.5ms respectively, it can be seen that despite of 

showing spectral content of representative AE frequencies, they are formed after the previous AE was 

vanished, thus, they can be discarded as true AE events. 

 

Finally, for the case of the events two, three and four, which in the temporal domain could be easily discarded 

by presenting low energetic content, this particularly true for the fourth event by showing even less voltage 

amplitude than transient noise presented at 179.6ms; they energetic distributions in the TFR clearly show 

formant representative energies related to the AE phenomenon, thus, making possible to validate they nature 

as true AE events. 
 

 

 
 

Fig. 11. Instance of 1ms containing five AE events derived from the tensile test, used to depicting the methodology for discarding the presence of AE events 

from noise and reflections. (a) Time-voltage representation. (b) High-resolution synchrosqueezing wavelet transform mapping. 

 

 

 

 



4. Results and discussion 

The competency of the STE-ZCR method is analyzed in front of two different experimental scenarios. 

Additionally, its performance is compared against four different representative AE detection techniques: (a) a 

classical threshold detector enhanced by means of the Instantaneous Amplitude envelope [24], (b) a STA/LTA 

detector [25], (c) a two-step Akaike Information Criterion picker [26], (d) and an Otsu detector working over 

a binary map image based on the Continuous Wavelet Transform [14], which as the AIC picker, it uses the 

same waveform derived from the Allen’s Formula as characteristic function for the threshold-based early 

coarse detection. 

 

4.1 Hsu-Nielsen data test-bench. Accuracy of the onset and endpoint determinations 

 

As aforementioned, the objective for this test-bench is firstly to quantifying the accuracy of the measurement 

for the onset, endpoint and lifespans by means of the absolute error of each measure, and secondly to evaluate 

the operational robustness of detection in front of background noise. 

For the calibration of the STE-ZCR method with regard to the corresponding temporal window analysis (type, 

length and overlapping factor), after a series of exhaustive trials, it was determined that one of the window 

functions that accomplished higher accuracy results was the Hamming implementation, in general those 

belonging to the raised cosine family. For the window overlapping factor, at expense of increasing the 

computational load, the best accuracy was achieved by maintaining the window overlapping to one sample, 

i.e., by directly convolving the instantaneous energy and the window function. Finally, the choice of the 

duration values of the window time, the threshold levels and the weighting factor for the noise analysis will 

be entirely determined by a prior calibration of the employed instrumentation as well as by the mechanical 

properties of the material. The calibration values of the comparative methods (see Table 1), was carried out 

following the recommendations of the related literature [26,42–46] as well as the current standards [8,9,47–

51] of the AE discipline. 

Table 1 

Calibration parameters values used for each method for the Hsu-Nielsen test-bench. 

Parameter 
Method 

IA STA LTA AIC CWT Otsu STE ZCR 

Fixed threshold level 3e-3 5e-4 2e-1 2e-1 2e-4 

Hit Definition Time [µs] 1e3  100 100  

Hit Lockout Time [µs] 10e3  10e3 10e3  

Threshold de-trigger  9e-5    

STA window time [µs]  75    

LTA window time [µs]  1e6    

Pre-event time [µs]  15    

Post-event time [µs]  10e3    

Weighting-R constant   4 4  

End delay time window 1 [µs]   25 25  

End delay time window 2 [µs]   10   

Start delay time window 1 [µs]    1.5e3  

Start delay time window 2 [µs]   100   

CWT scales    101  

Grayscale image bit-depth    16  

Median filter pixel neighbors    50  

STA length [µs]     20 

STA window     Hamming 

Overlapping window samples     1 

ZCR threshold [%]     70 

α-weighting STD noise     4 

Early noise analysis [µs]     2e3 



In Fig. 12 an instance of the manual onset pick procedure for an AE event is depicted. This is carried out by 

identifying the time instant when the bi-dimensional manifold created by means of the contour mapping of the 

SSWT becomes closed by connecting all the modal frequencies of the signal. 

 

  

Fig. 12. Time-voltage and Time-Frequency representations corresponding to the onset of the synthetic AE wave showed in Fig. 6. (a) Data frame of 1ms 

displaying the onset location at 4.4084ms (vertical orange line) of the AE wave, and showing the energetic activity of the modal frequencies after the signal 

arrival in the TFR. (b) Zoom of 100µs of the data frame depicting the appearance in the TFR of the most energetic continuous ridge located at 263.12kHz, 

indicating the onset of the AE wave.  
 

 

In Fig. 13 and Fig. 14, the resulting onset and endpoint automatic procedures for each method are depicted, 

using in all cases the same AE signal corresponding to Fig. 6. 
 

For the onset determination, in Fig. 12 can be observed that due to the significant difference between the 

amplitudes of the primary wave (4.4 - 4.9ms) and the secondary wave (from 4.9ms on) regarding to the AE 

artificial source, all methods deal with a challenging signal in order to accurately determine the onset time. 

This condition forces to lower down the threshold level as minimum as possible for the IA and the STA/LTA 

methods at expense of increasing the chances to false-positive detections due to noise floor.  

For the AIC and CWT-Otsu methods, since they perform an onset refinement detection procedure, they allow 

to maintain a higher threshold level for the early threshold detection with the aim to avoiding false-positive 

detections. Similarly, the STE-ZCR method through the onset refinement measure by means of the derivative 

of the STE, also allows to maintaining a higher threshold level in order to avoiding false-positive detections. 

 

 

a) b) 



 
 

  

 

 

   

Fig. 13. Automatic onset detection procedure of the AE wave, corresponding to the methods: (a) Instantaneous amplitude, (b) STA/STL, (c) two-step AIC, 

(d) CWT-Otsu (early detection), (e) CWT-Otsu (detection refinement), (f) Short-Time Energy (early detection), (g) Short-Time Energy derivative (detection 

refinement). The onset absolute error corresponding to each method is calculated with regard to the manual True onset pick of the AE wave located at 

4.4084ms for this instance (vertical green solid line), and the corresponding automatic onset pick (vertical lilac solid line) that each of the methods identifies.   
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Fig. 14. Manual endpoint pick located at 22.6973ms for this instance (vertical green solid line), and identified when the bi-dimensional manifold created by 

means of the most energetic ridges of the SSWT is vanished, (a) Time-Voltage, (b) Time-Frequency. Automatic endpoint detection procedures of the AE 

wave corresponding to the methods: (c) Instantaneous amplitude, (d) STA/STL, (e) two-step AIC, (f) CWT-Otsu, (g) Short-Time Energy (early endpoint 

detection) and (g) Zero-Crossing Rate (detection refinement). The endpoint absolute error corresponding to each method is calculated with regard to the true 

endpoint of the AE wave.  

d) 

b) e) 

c) f) 

a) 

g) 

h) 



For the endpoint detection case, in Fig. 14 (h) it is shown that by means the Zero-Crossing-Rate procedure 

although in order to be operative still makes use of a threshold value parameter, this characteristic function 

provides a reliable indicator in order to determine the conclusion of the signal. In contrast, Fig. 14 also shows 

that the other methods by making use of a combination of a threshold level along with preset fixed timer, 

preserve significant inaccuracies in the estimation of the end of the AE event. 

In Table 2 it is shown the accuracy of the onset, endpoint and lifespan that each of the analyzed methods did 

quantified by means of the absolute error from the outcomes of the analyzed methods with regard to the 

manually picked instants of time. In Table 2, it is also showed the accuracy results for the operational 

robustness in front of three induced levels of background noise on the dataset. Finally, the average required 

consumed time in order to process an AE event belonging to the dataset is also displayed. 

Table 2 

Absolute error and standard deviation of the onset, endpoint and lifespan detections in regard with the Hsu-Nielsen test-bench. 

Method Onset error (µS) Endpoint error (µs) Lifespan error (µs) Processing time (s) 

IA (original signal) -21.83 ± 8.26 2454 ± 1120 2476 ± 1120 2.53 ± 0.34 

IA (SNR 20dB) 4271 ± 110.3 -20683 ± 1211 -24955 ± 1197 19.30 ± 2.32 

IA (SNR 15dB) 4271 ± 110.4 -20504 ± 1273 -24776 ± 1263 22.94 ± 1.03 

IA (SNR 10dB) 4271 ± 110.4 -20104 ± 1275 -24376 ± 1268 25.98 ± 1.59 

STA/LTA (original signal) -19.82 ± 7.92 3828 ± 1159 3848 ± 1161 1.56 ± 0.12 

STA/LTA (SNR 20dB) 27.22 ± 185.44 3875 ± 1071 3848 ± 1161 1.58 ± 0.34 

STA/LTA (SNR 15dB) 4256 ± 110.88 8104 ± 1174 3848 ± 1161 1.56 ± 0.11 

STA/LTA (SNR 10dB) 4272 ± 110.39 8131 ± 1195 3902 ± 1197 1.60 ± 0.09 

AIC (original signal) -13.34 ± 7.00 16338 ± 1045 16352 ± 1045 2.98 ± 0.14 

AIC (SNR 20dB) -515.18 ± 7.31 18825 ± 1126 19340 ± 1126 3.09 ± 0.16 

AIC (SNR 15dB) -517.02 ± 6.96 18661 ± 1100 19178 ± 1100 3.24 ± 0.21 

AIC (SNR 10dB) 2121 ± 2066 21959 ± 3108 19838 ± 1152 6.60 ± 9.92 

CWT-Otsu (original signal) -1.19 ± 97.88 17795 ± 1047 17796 ± 1039 1.57 ± 0.12 

CWT-Otsu (SNR 20dB) 369.29 ± 582.2 18881 ± 1119 18447 ± 1301 1.67 ± 0.14 

CWT-Otsu (SNR 15dB) 320.00 ± 647.9 18656 ± 1092 18336 ± 1309 1.85 ± 0.17 

CWT-Otsu (SNR 10dB) 2425 ± 1892 21632 ± 3274 19207 ± 1763 4.52 ± 1.55 

STE-ZCR (original signal) 3.29 ± 13.40 -0.63 ± 1797 3.31 ± 1800 0.013 ± 0.001 

STE-ZCR (SNR 20dB) -29.36 ± 12.13 9560 ± 2142 9589 ± 2145 0.029 ± 0.009 

STE-ZCR (SNR 15dB) -22.90 ± 193.7 11510 ± 4459 11533 ± 4467 0.027 ± 0.011 

STE-ZCR (SNR 10dB) 236.5 ± 873.66 12986 ± 5788 12749 ± 5263 0.024 ± 0.009 

 

For the onset detection measure, results indicate that all methods perform relatively well, accomplishing errors 

less than 20µs. However, the CWT-Otsu is the method that achieves the higher accuracy, obtaining an average 

error of only 1.19µs; still, at expense of displaying the largest dispersion error of the considered methods. For 

the STE-ZCR case, it reaches the second-best result, and also can be observed that the STE-ZCR method tends 

to detect the AE event before of its arrival, contrasting with the rest of the methods which are likely to 

determine the onset time after the actual start of the event. 

For the endpoint detection case, results reveal that none of the comparative methods achieves a reliable 

measurement, yielding to absolute errors between two and four orders of magnitude with regard to the onset 

detection procedure. As observed in Fig. 14, this lack of accuracy owes that all methods make use of the 



combination of threshold levels along with preset fixed timers (i.e., HDT, HLT, etc.), without considering the 

actual behavior of the signal. As consequence, these inaccuracies for the endpoint detection directly lead to 

errors to the lifespan determination. Contrarily, and despite of producing the result with higher dispersion and 

still depending on a calibration parameter, the STE-ZCR method achieves the best accuracy by considering 

an intrinsic indicator of the waveform.  

For results regarding to the average consumed time to process each AE event, it can be observed that the most 

expensive technique corresponds to the two-step AIC, since it involves the refinement of the onset measure in 

two sequential instances, and having to modelling the signal in two occasions as consequence. For the IA 

technique, despite of performing the most basic approach of the considered methods, it achieved the second 

poorest performance on the test-bench, owing to that the searching-and-resetting scheme required to determine 

the endpoint time over a CF that exhibits a pronounced amount of rippling, is computationally expensive. The 

most balanced options are displayed by the STA/LTA and the CWT-Otsu methods, by reducing about to half 

of the required processing time with regarding to AIC and IA techniques. Still, for the case of the STE-ZCR 

method, since its operation is carried out on a very straightforward fashion, results show that its performance 

greatly excels to the current methods of the state of the art, achieving a reduction about of 99% of time 

regarding to the considered methods. 

Finally, for the results corresponding to the operational robustness in front of induced AWG background noise, 

it was showed that the less resilient method corresponds to the IA technique, by saturating both measurements; 

i.e., by leading the onset detection to the start of the data frame and lagging the endpoint determination to the 

end of the data-frame at the first evaluation of added noise. Additionally, it also can be noticed that the required 

processing time did considerably increased when a greater amount of rippling was presented for its 

corresponding CF, due to higher levels of noise. For the STA/LTA method, by operating with a secondary 

threshold, which is aimed to determine the end of the AE event, their endpoint measurements showed some 

regularity during rounds of noise evaluations; additionally, the STA/LTA method proved to be the most 

resilient for the first evaluation of added noise due to the robustness delivered by its characteristic function, 

furthermore, the required processing time was sustained for all evaluations; however, by showing saturation 

the onset measurement failed for the 15 and 10dB ratios. The performance achieved by AIC technique in the 

onset determination, revealed some regularity for the 20 and 15dB ratios, nevertheless, this measurement failed 

for the 10dB ratio evaluation; for the endpoint measure case, by only depending on the threshold-timer scheme 

and by maintaining a high threshold level value for the test-bench, the obtained results were closed to those 

generated when the original signal was evaluated; however, they still showed considerable error amount; it 

also can be observed that while as the signal contained a greater presence of AWG noise the task of modelling 

the AE signal became more difficult for the AIC technique, and consequently impacting on the required 

processing time. Performance related to the onset determination achieved by the CWT-Otsu method, was the 

one that showed the closest coherence regarding to the AE phenomenon development, i.e., by properly 

detecting the arrival of the secondary waves for the 20 and 15dB ratios, nevertheless, accuracy was lost for 

the 10dB ratio; for the endpoint measure, by implementing the same scheme of the AIC in order to determine 

the conclusion of an AE event, results are equivalent to the aforementioned technique; for the analysis of the 

average consumed time per AE event, the technique showed a tolerable time consumption when analyzing 

three levels of induced AWGN relating to the original signal obtained results. For the case of the STE-ZCR 

method, due to implementing a threshold adjustment procedure based on the early estimation of noise floor, 

the technique proved to be the most resilient alternative for the onset detection measure in comparison with 

the considered methods, by considerably reducing the amount of error as well as never saturating the 

detections; for the endpoint determination and despite of having been heavily biased by the induced AWGN, 

the measured based on the ZCR characteristic function showed coherence as regards to the AE phenomenon 

development; finally, concerning to the required average processing time, the STE-ZCR method proved to be 



the most efficient alternative by practically maintaining unaltered the performance metrics obtained by 

analyzing the original signal. 

4.2 Uniaxial tensile test. Quality of detection statistical indicators 

Objective for this second test-bench is to quantify the quality of event detection over a data frame collected 

from a standardized tensile test, which contains a substantial diversity of continuous AE events. Contrasting 

to the artificial AE events produced by the Hsu-Nielsen procedure, real AE waves typically will exhibit smaller 

amplitudes and shorter durations, of course depending on the stage of damage of the specimen under 

evaluation. Therefore, for the calibration used for this test-bench (see Table 3), the time-driven parameters as 

well as the threshold levels have been reduced in order to increase the sensitivity of the considered techniques, 

regarding to temporal and amplitude detection capabilities.  

Table 3 

Calibration parameters values used for each method for the field data test-bench. 

Parameter 
Method 

IA STA LTA AIC CWT Otsu STE ZCR 

Fixed threshold level 2.25e-3 4e-3 6e-3 6e-3 55e-6 

Hit Definition Time [µs] 100  100 100  

Hit Lockout Time [µs] 15  15 15  

Threshold de-trigger  3e-3    

STA window time [µs]  25    

LTA window time [µs]  10e3    

Pre-event time [µs]  1    

Post-event time [µs]  0.5    

Weighting-R constant   4 4  

End delay time window 1 [µs]   10 10  

End delay time window 2 [µs]   5   

Start delay time window 1 [µs]    75  

Start delay time window 2 [µs]   20   

CWT scales    101  

Grayscale image bit-depth    16  

Median filter pixel neighbors    50  

STA duration [µs]     15 

STA window     Hamming 

Overlapping window samples     1 

ZCR threshold [%]     80 

α-weighting STD noise     1 

Early noise analysis [µs]     5 

 

Once that all methods have processed the field data frame of 500ms length, the quality of event detection is 

quantified in two steps. Firstly, by counting the total number of detected events against the true temporal 

locations referring to the total amount of 380 AE events present in the data frame. And secondly, by classifying 

the properly detected events (true-positive), missed events (false-negative) and the mistakenly detected events 

(false-positive), that each method concludes (see Table 4). 

Table 4 

Classification of the identified events regarding to 380 AE waves present in the data frame.  

 
Method 

IA STA/LTA AIC CWT-Otsu STE-ZCR 

Total detections 373 380 372 372 367 

True-positive 322 324 299 299 338 

False-negative 58 56 81 81 42 

False-positive 51 56 73 73 29 



For this field data test-bench, and from the total number of true-positive detected events, the absolute error for 

the onset, endpoint and lifespan are also calculated (see Table 5). 

Table 5 

Absolute error and standard deviation of the onset, endpoint and lifespan detections regarding to the field data test-bench. 

Method Onset error (µs) Endpoint error (µs) Lifespan error (µs) 

IA -9.69 ± 7.56 38.39 ± 101.27 48.09 ± 102.13 

STA/LTA -2.49 ± 8.63 12.07 ± 83.65 14.56 ± 84.85 

AIC -6.15 ± 10.44 19.57 ± 543.74 50.4 ± 692.6 

CWT-Otsu 2.53 ± 29.45 -92.36 ± 97.4 89.82 ± 97.74 

STE-ZCR 4.62 ± 53.79 -4.42 ± 114.15 -9.05 ± 102.04 

 

From Table 5, it can be observed that in comparison with the Hsu-Nielsen test-bench, error is reduced and 

better aligned with the results obtained for the first round of operative robustness (SNR 20dB); this, due to 

having to deal with less challenging AE events by showing less pronounced s-waves. For the onset detection, 

all methods performed with sustained accuracy by achieving an average error lesser than 10µs in all cases. 

 

In this experimental scenario, the STE-ZCR method also accomplished the best endpoint determinations and 

in consequence the best lifespan measures, assuring that most of the detected events are completely detected, 

this particularly critical in case of subsequent assessing analysis.  

 

From results of Table 4, it also can be observed that despite that in average, all methods nearly detect 99% of 

the detection objective, i.e., 380-hits; none of them reaches more than 85% of true-positive detections. In 

consequence, given the quality with which these detections are performed, the reliability of the methods is not 

guaranteed. In Fig. 15, it is shown the detection outcomes of all considered methods, using the representative 

five AE events afore showed in Fig. 11. 

 

As it can be observed in Fig. 15, none of the analyzed methods achieves the required detections without errors. 

Such is the case of the Instantaneous Amplitude method, which after the first event detection it splices four 

AE events as if it was a single one, this error owes to the use of the threshold level along with the fixed Hit 

Definition Timer for the endpoint detection corresponding to the second event. For the STA/LTA method, its 

characteristic function helps to depicting with higher accuracy the dynamic of the AE phenomenon and 

therefore to detecting more events; nevertheless, by implementing the same procedure of a threshold level and 

a fixed timer, it splices the second and third event as a single detection; finally, the STA/LTA method also 

executes a false-positive detection corresponding to the reflection of the last AE wave.  

 

In this instance, it is also clear that AIC and CWT-Otsu methods mandatorily require a precise early onset 

estimation with the aim to achieving a consistent onset automatic refinement, since after properly detecting 

the first AE event, the less energetic events are discarded, i.e., the second, third and fourth events; this by 

detecting the fifth AE event as the start of the wave, and in consequence leading to three false-negative 

detections. Finally, the STE-ZCR method despite of also executing the same false-positive detection as the 

STA/LTA technique (located at 179.6ms), it can be observed that besides of achieving the most accurate 

lifespan measures, it is the only method that accomplishes the detection of all existing AE events.  

 

 

 

 

 



 

 

 

 

 
 

 

 

Fig. 15. Comparison of AE events automatically detected by the considered methods for an instance of 1ms (derived from the uniaxial tensile test). (a) 

Instantaneous Amplitude, (b) STA/LTA, (c) AIC, (d) CWT-Otsu and (d) STE-ZCR proposed technique. 

 

 

Finally, in this test-bench is quantified the quality of event detection of the considered methods. For this, by 

means of the number of classified AE events from Table 4, a set of statistical indicators are calculated.  

 

These are: (a) accuracy (the ratio of true-positive events to all detected and not detected events), (b) precision 

(the ratio of true-positive events to the amount of true and false-positive events), (c) sensitivity (the ratio of 

true positive events to the sum of true-positive and false-negative detections), (d) F1-score (the harmonic 

average between precision and sensitivity), (e) false discovery rate (the ratio of false-positive detections to all 

detected events), (f) false-negative rate (the ratio of false-negative detections to the sum of false-negative and 

true-positive events), see Table 6. 

 

 
 

 

a) 

b) 
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Table 6 

Statistical metrics corresponding to the quality for event detection concerning to the data field test-bench. 

 
Method 

IA STA/LTA AIC CWT Otsu STE ZCR 

Accuracy (%) 74.71 74.31 66.00 66.00 82.64 

Precision (%) 86.33 85.26 80.38 80.38 92.10 

Sensitivity (%) 84.74 85.26 78.68 78.68 88.95 

F1 score (%) 85.52 85.26 79.52 79.52 90.50 

False discovery rate (%) 13.67 14.74 19.62 19.62 7.90 

False negative rate (%) 15.26 14.74 21.32 21.32 11.05 

Processing time (sec.) 220.49 33.54 608.56 182.92 19.6 

 

For this test-bench, Table 6 shows that the comparative methods perform with reasonable confidence by 

achieving an average accuracy of 70% of the required detections, also can be noticed that this accuracy score 

is consistently aligned with the endpoint determination. In general terms, all methods achieved better results 

in the precision score than in the accuracy score, this due to the presence in the dataset of larger true AE events 

with regard to false events in form of high-energy reflections and mechanical noises. For the sensitivity score, 

all methods slightly diminished their performances regarding to the precision metric, this, due to slightly being 

prone to generating false-negative detections, mostly of them derived from spliced detections. 

For the case of the STE-ZCR method, it exceled to the rest of the considered techniques about 12% for the 

accuracy metric, 10% for the precision metric, 7% for the sensitivity metric, 8% for the F1-score, 10% for the 

false discovery rate and 7% for the false negative rate. This improvement clearly owes to performing the 

endpoint determination with higher accuracy. Finally, it can also be observed that in comparison with the 

considered methods, the STE-ZCR technique reduces the required processing time about 45-97% in order to 

process the data frame. 

 

5. Conclusions 

An Acoustic Emission activity detector, which allows an automatic and continuous detection of AE events, 

was developed using time domain features obtained from the waveform of the signal of interest. The proposed 

methodology was realized by revisiting a well-established signal processing technique from the speech 

processing area, and adapting it to the requirements of the AE phenomenon. 

Two experimental scenarios were arranged with the aim to quantifying the performance of the proposed 

method, and with the aim to analyzing three critical aspects related to the AE event detection: the onset and 

endpoint accuracies, as well the quality for detecting said events. 

Firstly, for the experimental scenario using artificial Hsu-Nielsen sources, in the case of the onset detection 

measure, the proposed STE-ZCR method improved the accuracy with regard to the IA method by diminishing 

the error of the measures by 85%, 83% for the STA/LTA and 75% for the AIC method. For the case of the 

CWT-Otsu technique, and despite of producing larger average error, the STE-ZCR method improved the 

respective dispersion error by 86%. 

For the endpoint detection measure, by implementing an indicator derived from the waveform of the AE signal, 

the STE-ZCR method surpassed the accuracy of the comparative techniques in about four and five orders of 

magnitude, which also contributed to achieving the lowest error for the lifespan measure. 



Lastly in this Hsu-Nielsen test, due to implementing an adaptive threshold scheme, the STE-ZCR proved to 

be the most resilient method under noisy scenarios by never saturated the measurements. 

Secondly, for the field-data derived from the uniaxial test, besides of having verified that the obtained results 

for the onset and endpoint measures of the considered methods are consistent with the obtained for the Hsu-

Nielsen test, it was studied the quality with which the AE events are detected. 

Results showed that for a data-frame of 500ms, containing 380 AE events of different durations, amplitudes 

and manifesting randomly, the STE-ZCR was the method that achieved the highest amount of true-positive 

detections and the lowest amount of false identifications, both positive and negative. Quantitatively the STE-

ZCR method excelled to the rest of the considered techniques in average about 12% for the accuracy, 10% for 

the precision and 7% for the sensitivity; while simultaneously reduced in average around of 10% and 7% the 

false discovery and the false negative rate cases respectively. Once again, this improvement responds to the 

fact of implementing a dedicated indicator with aim to detecting the end of the AE events. 

Furthermore, by implementing a straightforward processing scheme, the proposed STE-ZCR method was the 

one that achieved the best processing times for both experimental scenarios, by reducing the required search 

times from one up to three orders of magnitude regarding to the compared techniques. 

It must be noted that despite that the STE-ZCR AE activity detector was developed for applications related to 

the characterization of metallic components, by only requiring the waveform of the AE phenomenon to 

operate, its use for another AE applications and materials could be feasible. 

Finally, its straightforward scheme and the diminished consumption times, suggests a possible and efficient 

hardware implementation for online monitoring applications. Moreover, with the aim of reducing the payload 

required to transmit or store the large data streams demanded by the AE phenomenon, by achieving an 

adequate identification and separation of the events, it could be possible to subsequently only working with 

the detected events instead of the entire data stream. 
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