
AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

Climatic and social factors behind the Spanish 

Mediterranean flood event chronologies from 

documentary sources (14th–20th centuries) 

Mariano Barriendos1,* 
mbarriendos@ub.edu, Salvador Gil-Guirado2, David Pino3,4, Jordi Tuset5; 

Alfredo Pérez-Morales6, Armando Alberola7, Joan Costa1, Josep Carles Balasch8, Xavier 
Castelltort8, Jordi Mazón3, Josep Lluis Ruiz-Bellet8 

 
1
Department of History and Archaeology, University of Barcelona, Montalegre 6, 08001 Barcelona, Spain 

2
Interuniversity Institute of Geography, University of Alicante, P.O. Box 99, 03080 Alicante, Spain 

3
Department of Physics, Universitat Politècnica de Catalunya·BarcelonaTech, Esteve Terrades 5, 08860 

Castelldefels, Spain 
4
Institute of Space Studies of Catalonia (CTE-UPC), Gran Capità 2-4, 08034 Barcelona, Spain 

5
Fluvial Dynamics Research Group, University of Lleida, Rovira Roure 191, 25198 Lleida, Spain  

6
Department of Geography, University of Murcia, Campus de la Merced, 30001 Murcia, Spain 

7
Department of Medieval History, Modern History and Historiographic Sciences and Techniques, Facultad de 

Filosofía y Letras, University of Alicante, P.O Box 99, 03080 Alicante, Spain  
8
Department of Environment and Soil Sciences, University of Lleida, Rovira Roure 191, 25198 Lleida, Spain 

 
*
Corresponding author. 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

Abstract 
The Spanish Mediterranean river basin provides a good background for studying floods from 
documentary and bibliographical sources within the specialty of historical climatology. This 

study region’s long history of human occupation and climatic conditions together determine a 
high risk of flooding. As a result, there exists an enormous amount of documentary heritage 

containing flood information. However, the heterogeneity of documentary sources and 
different approaches to classifying floods through historical documents can generate some 
biases and uncertainties about the quantity and quality of the available data.  

For this reason, this paper proposes a methodology for reconstructing historical floods based 
on cross-referencing documentary sources. This approach, together with additional archival 

work, has allowed us to increase the number of flood series for the Spanish Mediterranean 
coast by 17% and has generated a surprising increase of 233% in the number of flood cases 
detected. 

The data obtained have allowed us to analyze the variability of floods and their relationship 
with climatic and social factors from the fourteenth century to the present. Different climatic 

oscillations related to the Little Ice Age are detected between the 14th and 19th centuries. 
Additionally, we detected a strong influence of the defense infrastructures and urban growth, 
which explain the recent flood trends. However, the difficulty in analyzing the influence of 

social factors on long-term flood behavior invites us to reflect on the need for further work for 
emphasizing these issues. 

 
Keywords: Climatic Variability; Documentary Sources; Floods; Little Ice Age; 
Vulnerability; Western Mediterranean Basin 
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1. Introduction 
 
 Hydrometeorological extreme events have historically been a concern in the 

Mediterranean basin. Specifically, persistent and torrential rainfall produces severe events in 
fluvial areas, including overfloods that highly impact natural and social ambits. These floods 

have a structural character in the Mediterranean climate, which includes large drought periods 
combined with torrential rainfall episodes and convective events. This occurs due to the 
convergence of air masses and sea-air interactions, as well as local factors such as complex 

orography (Roberts et al., 2011).  
Natural climate variability manifests itself with great sensitivity and a large frequency 

of extreme events. Human beings have coped with these conditions in a continuous effort to 
secure water resources while reducing exposure and vulnerability. Preserved testimonies over 
a long period of time allow reconstructing and analyzing the natural behaviors while 

establishing the forcing factors that have influences at different spatio-temporal scales 
(Roberts et al., 2011). 

Regarding torrential rainfall and the associated floods, humans are becoming 
increasingly exposed and vulnerable, which in turn generates the perception of an increasing 
impact from these types of events (Toreti et al., 2010). Floods have produced a large impact 

on the Mediterranean area over the last decades. According to the Emergency Events 
Database (CRED, 2009) for the years between 1950 and 2009, 19 countries in the 

Mediterranean basin recorded 395 severe extreme events, producing losses estimated at 64 
billion dollars, 9904 deaths and affecting around 12 million people who required help because 
they were injured, homeless or their basic services were affected (Toreti et al., 2010). 

 Consequently, historical flood reconstructions have two objectives: first, to define 
flood climatic variability in order to establish the factors that influence the spatiotemporal 

distribution and magnitude; and, second, to understand the socio-economic processes that 
interact with the frequency and severity of the floods. When both objectives achieve optimal 
results, they could establish the precise influence of climate change on extreme events. 

 Different sources of information contribute to this effort, and paleoclimatic specialties 
have been developed to study proxies related to sediments (i.e., Gregory et al., 1995; Schulte 

et al., 2019), biology (i.e., Díez-Herrero et al., 2013a; Ruiz-Villanueva et al., 2013; Díez-
Herrero et al., 2013b) or to history. This last approach is also defined as historical hydrology, 
and it reconstructs flood events by using dense and reliable handwritten historical 

documentary backgrounds to include the largest quantitative data available (Brázdil et al., 
2006; Wetter et al., 2011). 

 Historical hydrology allows detecting and reconstructing flood events with high 
temporal resolution and precise dating. Developing large databases enables the analysis of 
climatic variability, low frequency climatic patterns, and their interactions with the rainfall 

regime (i.e., Glaser et al., 2010; Glaser, 2012; Macdonald and Sangster, 2017). The 
quantitative component of the information also allows for hydraulic reconstruction of 

historical events by obtaining maximum peak flows, flood areas and other parameters 
(Thorndycraft et al., 2006; Ruiz-Bellet et al., 2015). 
 Over the last decades, historical hydrology has become increasingly important due to 

the uncertain influence of global warming on the occurrence and severity of extreme 
hydrometeorological events. For instance, torrential precipitation during the period 1950–

2006 represented 60% of the total precipitation in the Mediterranean area, without any 
significant positive tendency (Toreti et al., 2010). Climatic projections (Barrera-Escoda and 
Cunillera, 2011) for Catalonia (NE Spain) indicate a decrease of up to 30% of the total annual 

precipitation while a 30% increase is seen for the number of days with torrential precipitation 
(>100 mm day-1). 
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 Consequently, additional knowledge of past flood events is needed to evaluate present 
variability and future tendencies before being able to establish sustainable management of 
impacts. By studying historical flood events using series of the longest available temporal 

length, the ability to manage future risk is improved, particularly when we consider the 
present uncertainty and difficulties in defining consistent links between climate change and 

flood frequency patterns (Brázdil et al., 2006; Füssel, 2012; Salinas et al., 2016). 
 The main objective of the present work is largely to increase our knowledge of the 
floods in the Spanish Mediterranean area by improving two different research aspects:  

 Confirmation of the low frequency patterns already shown in previous works 
(Barriendos and Martin-Vide, 1998; Barriendos and Rodrigo, 2006).   

 Ascertaining whether the larger amount of information qualifies these previous results 
or gives new patterns.  

In this work, we do not deal directly with the causes producing floods on a climatic scale. 
Different works have already studied this point and obtained results that are not clearly 
defined due to the complexity of the interactions and scarce number of analyzed events.  

On the other hand, we include recent socio-economic factors in the analysis in order to 
understand the different patterns of the floods when comparing them with the historical pre-

industrial period. Detecting and quantifying these patterns will allow for better adaptive 
strategies for facing climatic and social changes. 
 Forest and bushes are adapted to the water stress and long drought periods, thus 

presenting great biodiversity in accordance with the local climates caused by the orography. 
Human presence has occupied the territory since the Roman period, with extensive rainfed 

agriculture and intensive irrigation in some low-lying areas. Since then, the traditional cereal 
crops, vineyards and olive trees have hardly changed in the interior and mid-mountain areas. 
On the other hand, the coastal areas evolved rapidly over the 20th century due to the 

abandonment of agriculture and the growth of a strong population based on industrial 
activities, services and tourism activities. Meanwhile, the mountainous regions during the 

same period saw the disappearance of traditional agricultural activities, strong depopulation, 
and spontaneous reforestation processes. 
 The occupation of the territory has led to processes of evident interaction with the 

river systems in the low and river mouth areas: deforestation, regulation of river basins, 
occupation of floodplains, the intersection and modification of riverbeds, and even lost 

memories regarding the location of the torrents, or ephemeral river courses.  
 The existing basins have very different dimensions, so the rivers have very different 
characteristics, from large river courses to ephemeral rivers (ramblas, torrentes, rieres, 

barrancos, arroyos, depending on the different local denominations) that only flow when a 
flood event occurs or during a very wet period. The human presence has a long history with 

different activities in the channels and water resources: irrigation (dams, canals), energy 
production (hydraulic mills), urban supply (dams, wells, pipelines) and the growth of urban 
areas that have undergone interventions to prevent flooding (large reservoirs, protection dams, 

secondary riverbeds, water tanks against storms, drainage networks, etc.). 
 

 

2. Material and methods 
 

2.1 Study area 

 

The study area is the eastern part of the Iberian Peninsula, where the rivers flow into the 
Mediterranean Sea (see Fig. 1, Table 1) and the lithological, edaphological and orographic 
characteristics are complex and heterogeneous. This region’s Mediterranean climate presents 
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some variances between the different areas, although some common characteristics exist: 
large drought periods and torrential precipitation with great spatial and temporal irregularity. 
Annual mean temperature varies from north to south, from 15.4oC (Girona) to 19.5oC 

(Murcia). Total annual precipitation decreases from north to south: 1000/1200 mm (Pyrenees 
Mts. headwaters), 700/750 mm (Girona, La Seu d'Urgell), 450/550 mm (Barcelona, 

Valencia), and 200/300 mm (Almería, Murcia). 
 

2.2 Compilation, indexing and classification of the information 

  
Historical flood compilation followed the methodology proposed by Barriendos and Martin-

Vide (1998) and Brázdil et al. (1999) to obtain chronologies for interpreting low frequency 
flood patterns. The increase in the amount of available information allows for multi-proxy 
reconstructions of the meteorological and hydrological processes related to floods 

(Thorndycraft et al., 2006; Ruiz-Bellet et al., 2015; Pino et al., 2016; Balasch et al., 2019), 
and  methodological improvements for indexing and classifying flood cases. For instance, 

different sources used in the compilation can be cross-checked by following these sources’ 
temporal threads of the same cases. This traceability principle provides not only details over 
time for the different sources but also the changes that can appear. In this way, we were able 

to develop a flood category that consisted of false cases generated at different moments due to 
errors in transcription, translation or interpretation. Obviously, this category has been 

excluded from the analysis and the reliability of our information is consequently improved 
(Barriendos et al., 2014). 
 We also enhanced the historical flood cataloging systems. Traditional works focused 

on specific locations, cities or points of particular exposure and vulnerability while 
reconstructing cases to generate chronologies of varying lengths, depending on the 
availability of the sources. Nowadays, the indexing procedure includes and organizes all 

detected data from any origin, because the density of information and variety of details 
produces more consistent and reliable results for meteorological and hydrological 

reconstructions. 
In the present work, we update the  chronologies already published in contributions 

from the past 12 years of research projects (among others, EC MILLENNIUM IP 017008-2, 

HAR2009-11928, HAR2013-44972-P, PREDIFLOOD, and MEDIFLOOD), PhD research 
projects (Gil-Guirado, 2013; García-Torres, 2015), the bibliographies of co-authors (Alberola, 

2010; Alberola, 2017; Balasch et al., 2019; García-Torres, 2016; Pérez-Morales et al., 2018) 
and unpublished original works on elaborating new chronologies. 
 In selecting the data for the present work, we took a classical approach and arrived at 

2467 flood cases for 18 chronological series. The available catalogue consists of 4244 cases 
for Catalonia (NE Spain) alone, and a similar quantity exists for the rest of the Spanish 

Mediterranean coast. In the near future, the chronologies will not cover specific places, but 
separate chronologies for each flood event will include all the available information on 
different places and river basins. 

The classification system of three categories was proposed in previous works on the 
studied area and for other European basins (Barriendos and Martin-Vide, 1998; Wetter et al. 

2011; see Table 2): 
1. Ordinary (ORD) floods that consist of simple flow increases are not considered here 

because of the large number of cases included in this category. The first step of 

analysis suggests focusing efforts on more severe events. Additionally, documentary 
sources are not temporarily homogeneous in registering this type of case and they only 

progressively appear during the 20th century. 
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2. Extraordinary (EXT) floods: Fluvial Floods. Water level clearly overflowing the river 
bank. Moderate damage in towns. Disturbances in quotidian activities from the 
presence of water in urban and rural areas. 

3. Catastrophic (CAT) floods: Fluvial Floods. Water level greatly overflows the river 
bank. Very severe damage. Permanent infrastructures (bridges, walls, mills, buildings, 

and dams) are partially or completely destroyed. Strong impacts require much time for 
reconstructions. 

 

 The obtained series are normalized with their respective standard deviations in order to 
evaluate their anomalies and create regional clusters. 

 
 

2.3 Sources of information 

 

The information collected for the present work concerns river systems that are still in the 
natural regime or where diverse structural interventions have been implemented. For each 

basin, the social contexts and historical evolution have also been studied in order to 
understand the different situations. In this way, the natural climatic variability is correctly 
assessed in terms of the seasonal distribution of events, their interannual variability, and their 

frequency. It is also possible to assess the contribution of the human factor in the frequency 
and severity of flood events, either in terms of their proliferation or their decrease. 

 The information sources we used also fulfill the criterion of providing the greatest 
possible diversity; and they are based mainly on primary and secondary sources (Barriendos 
et al., 2014, p. 11). The primary sources comprise administrative documentation from local 

authorities and reports in the general press, both of which are contemporary with the facts. 
Secondary sources are mostly local historiography. These printed sources are in turn based on 

primary sources, so their reliability is acceptable. Finally, we also consulted tertiary sources 
that were based on secondary sources. Their reliability is low and the amount of detailed 
information is low. These are usually reports or information catalogs created by public 

institutions, and they are very far from the original documentary sources. 
 The origin of the information is sufficiently homogeneous to offer reliability and 

consistency for generating flood timelines. The same types of sources are used in the different 
chronologies, regardless of the size of the population. For example, the administrative 
documentary sources from which most of the original information originates are generated 

under the same criteria of content and formality as for any population. 
 The locations where the information is generated also show considerable homogeneity 

over time. The documentary sources themselves almost always generate information about 
floods in urban areas and basic infrastructures; thus, their evolution over time is minimal. The 
physical conditions of the river sections where the information is generated experience limited 

evolution, considering that a good part of the chronologies begin between the 14th and 16th 
centuries. Of course, the demographic evolution and interventions in the river system vary 

greatly, and these factors point toward possible future research on discriminating between 
natural and anthropic processes, as well as their interactions with each other. 
 

2.4 Chronological series 

 
The results obtained in successive works are shown in Table 3. The table proves not only that 

the documentary and bibliographic sources contain a large amount of information, but also 
that the potential for future research is evident. Our intensification of the research has led to 
three key improvements that justify this update: 
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a) The number of floods increases from 1060 to 2467 (232.7%). 
b) The number of available series has increased from 23 to 27 (17.4%), a modest 

quantitative improvement but one that requires significant material effort. 
c) A new classification has been created for flood cases that – after cross-checking – we 

have detected to be errors or false cases. 12 spurious floods have been found, and they 
account for 1.13% of the cases in the previous chronology. These cases are counted 
but are obviously isolated and excluded from analysis in the present work. 

 
 When comparing the initial chronologies (Barriendos and Rodrigo, 2006) with the 

present work (see Table 4), the flood cases increase from 1422 to 2874 for the whole of 
Spanish basins, 202.1%.  
 18 flood series have been selected (see Table 5 and Fig. 1) from 36o to 41o N, and 

from 2o49' E to 4o25' W. The locations where the series are obtained are situated at the mid-
course or close to the mouths of the respective rivers, with the exception of two towns 

(Caravaca and La Seu) that are closer to the headwaters at an altitude of above 600 m. 
Compared to previous works, 14 series have been substantially improved; 2 series maintain 
the same results; and 2 series are new (Ebro River in Zaragoza, Argos River in Caravaca). 

 The chronologies cover the so-called Little Ice Age and the current warming episode. 
Half of the series begin in the 14th century (9/18), and most of them are already available 

from the 17th century (14/18). The final part of the series shows some differences. The 
hydraulic infrastructures have modified the overflow processes in some of the locations and 
recent information is consequently not very useful. However, the problems linked to increased 

exposure over the most recent decades (Pérez-Morales, et al., 2018) necessitate that future 
research should focus on studying new processes such as “in situ” floods or pluvial floods 
generated by a densified urban landscape and its associated infrastructures. Overall, the series 

of floods cover 715 years, from 1301 to 2016. 
 

2.5 Methodological aspects 

 
Studying the flood chronologies of specific locations in recent years has offered a reasonable 

capacity for identifying patterns of climatic variability as well as for identifying different 
external forcing factors. However, the path of improvement in developing this methodological 

approach appears to be coming to an end. The impossibility of developing new and improved 
elements of analysis underscores the need for a new methodological approach. 
  The main limitation lies in obtaining information from specific locations where the 

fluvial system operates in a wide area with many intervening elements and factors. If the 
available information is also dispersed throughout the river basin, it seems to be more useful 

to collect all the available information for reconstructing a complete event. It is no longer just 
a matter of recording floods and specific overflows, but also of compiling testimonies that 
allow us to know the precipitation patterns that cause the fluvial response, as well as the 

conditions of precipitation, the increase in flows, and the saturation of the soil in an 
antecedent period, as suggested by previous research (Wetter et al., 2011). The 

methodological approaches and work criteria were previously proposed (Barriendos et al., 
2014), and we are now working along these lines to create a large database for the Spanish 
Mediterranean coast. The variety and quality of results that can be obtained will allow new 

developments in hydrological and hydraulic reconstruction, as has been established in other 
European areas (Elleder et al., 2012) and in the study area itself (Thorndycraft et al., 2006; 

Balasch et al., 2019). 
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3. Results. Temporal analysis 
 
3.1 Local results 

 
The study of flood series within a local framework provides information on general climate 

variability as well as various local-scale behaviors. The orography and drainage network of 
the fluvial systems affect the frequency and magnitude of the flood episodes. Human factors 
also affect these localisms, since the location of urban centers generates different degrees of 

exposure and vulnerability to flooding, according to different historical contexts. 
 On the other hand, these local-scale factors can occur intermittently over time at 

limited and irregular durations, thus generating behaviors that require very detailed 
investigation. Some examples may be changes in the configuration of riverbeds or land uses 
that alter surface hydrology, hydraulic infrastructures with disparate results, highly exposed 

constructions, and vulnerable activities. 
 The purpose of this paper is not to arrive at a detailed analysis of the circumstances for 

each reconstructed series of floods. Therefore, the following sections report on a regional 
scale analysis. However, it can be useful to observe local series at the methodological level in 
order to detect any technical, natural or social events that may cause spurious biases, 

tendencies or behaviors.  
 The results for each location (Figs. 2-6) describe very long durations of behavior over 

time and with reasonable homogeneity. Most series of catastrophic floods show patterned 
behavior without trends or with the values out of range. Extraordinary floods present a 
different behavior. Until the middle of the 19th century, the fluctuations are similar to those of 

catastrophic floods. From the 19th century, some series show a positive trend that becomes 
permanent during the 20th century. Other series record that process as more accentuated and 

centered within the 20th century. 
 

3.2 Climatic variability patterns 

  

Relying on the geographical extension covered by the series of reconstructed floods, we 
propose a regionalization that includes between 2 and 5 series in order to more consistently 

characterize the climatic variability patterns that have occurred in recent centuries: 
 

 Northern rivers (4): Ter / Onyar, Besòs, Llobregat and Francolí. 

 Ephemeral coastal rivers (4): Capaspre, Sobirans, Cirera, Rieras de Barcelona. 

 Segre-Ebro system (5): Segre in La Seu d'Urgell, Balaguer and Lleida. Ebro in 
Zaragoza and Tortosa. 

 Central rivers (2): Turia, Júcar. 

 Southern rivers (3): Segura, Argos, Guadalmedina. 

 
The averaged results allow avoiding local scale incidents and to highlight behaviors that are 
linked most to general climatic variability. 

 

3.2.1 Northern rivers 
The behavior of catastrophic floods shows close to average values during long periods of the 

series, such as during the 15th and first half of the 16th centuries, the mid-17th century to the 
mid-18th, and the entire 20th century (Fig. 7). However, there appear three oscillations of 40-
60 years of outstanding duration. During the 14th century, behavior of pronounced frequency 

is observed, but the lack of sufficient information does not allow us to go further. The most 
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obvious oscillations occur in the periods 1570–1620, 1760–1800 and 1840–1880. These are 
known behaviors (Barriendos et al., 1998; Llasat et al., 2005; Barrera-Escoda et al., 2006) 
that, despite the strong increase in registered cases, maintain their presence. The three 

oscillations have a similar magnitude, except for the intermediate one that is somewhat lower. 
In all cases, these oscillations are shown with two subpeaks. 

 Extraordinary floods have a totally different behavior (Fig. 7). Their values remain 
below the average, with a slight increase until the mid-18th century. From that moment on, a 
short but severe sequence of oscillations occurs with an increasing tendency. 

 

3.2.2 Ephemeral coastal rivers 
The small rivers near the coast, with a non-permanent flow, present a behavior almost 

identical to the permanent rivers (Fig. 7). The dimensions and configuration of the basin do 
not seem to influence the processes that affect the frequency and severity of the atmospheric 
events that cause the floods. These are river courses without regulation and that interact 

heavily with permanently populated areas. 
Catastrophic floods for these rivers have a greater number of oscillations with different 

magnitudes and durations than those of northern rivers (Fig. 7). The most severe totally 
coincide with the three that were already detected in the series for northern rivers. 

Regarding the extraordinary floods (Fig. 7), their behavior is similar to that of the 

northern rivers; but they started later, at the end of the 19th century, and their tendency is very 
marked and of great magnitude. 

  

3.2.3 Segre-Ebro system 
The catastrophic floods of this system present numerous oscillations (Fig. 7). The three Little 
Ice Age oscillations in the previous regions appear in the same way. Two smaller oscillations 

are now added to the mid-16th century and the mid-15th century. Also, two relevant 
oscillations occur at the beginning and end of the 14th century, which may correspond to the 

initial part of the Little Ice Age. These oscillations are perceptible despite the limited 
information available for the 14th century: 42 floods, which represent 1.85% of the total 
analyzed floods. 

A remarkable period of calm and normality appears from the mid-17th century to the 
mid-18th century, and another in the 20th century, which is probably linked to the 

construction of reservoirs. 
The extraordinary floods show very moderate behavior between the 14th and 18th 

centuries, although with multiple brief anomalies (Fig. 7). During the late 18th and mid-19th 

century, it is remarkable that duration and magnitude occur simultaneously for both type of 
floods (extraordinary and catastrophic). The frequency of these floods is already relatively 

high during the 20th century, as is the case in the regions already analyzed. 
 

3.2.4 Central rivers 
The catastrophic floods of the Turia and Júcar rivers (Fig. 7) show a unique integration of 

previously known aspects in the northern series and those of the Segre-Ebro system. Until the 
16th century, frequent low intensity oscillations are observed. The three oscillations already 

observed appear with similar durations and magnitudes. Perhaps that of 1570-1620 is longer, 
with one main peak at the beginning and two secondary ones until 1640. 

The novelty is the appearance of a fourth oscillation with similar characteristics during 

the second half of the 17th century. At first glance, it can be understood that the driving 
factors present in the northern series also exist in this area, in addition to other different 

atmospheric processes, related to meridional dynamics of the atmospheric circulation, 
affecting the flood regime of the area. 
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The extraordinary floods in this region (Fig. 7) present more peaks of frequency than 
other regions. Their quantity is similar to that of catastrophic floods, so it can be considered 
that the Turia and Júcar are rivers that show a greater hydrometeorological variability with 

respect to the northern ones. Its temporal distribution until the mid-16th century is similar to 
that of other cases. However, three very notable oscillations accompany those recorded for 

catastrophic floods: one that is almost synchronous between the 16th and 17th centuries; 
another during the second half of the 18th century, during which catastrophic floods occur; 
and a third in the mid-19th century, which coincides with the catastrophic floods. During the 

20th century, they tend to decrease, although a certain positive upturn has occurred in recent 
years. 

 

3.2.5 Southern rivers 
The catastrophic floods in this region (Fig. 7) present a frequency pattern very different from 
that of the previously described regions. No obvious oscillations are perceived, but a 

succession of moderate oscillations are regularly distributed over time: in the mid-15th 
century, the first half of the 16th century, the first half of the 17th century, the second half of 

the 17th century, and the end of the 19th century. Contrary to the other regions, catastrophic 
floods are also relatively frequent during the 20th century. 
The extraordinary floods (Fig. 7) show very moderate behavior except during an oscillation in 

the second half of the 15th century and another in the second half of the 19th century. The 
current trend towards a strong increase in this type of flooding is similar to that detected in a 

large part of the studied regions. 
 

3.3 Population increase and flood trends 

 

A key issue for societies adapting to flood risk is centered on the relationships between 
increased exposure, increased vulnerability and trends over time, specifically in terms of the 

frequency and intensity of floods (Jongman et al., 2015). This relationship is giving rise to an 
intense scientific debate on the need to normalize the impact of floods (Barredo, 2009). The 
final goal of these studies is focused on knowing to what extent the variability of floods is 

caused by climate variability or by changes in the social systems (Paprotny et al., 2018). In 
the Iberian Peninsula, the normalised flood impacts over the period 1970-2010 eliminates the 

positive trend on flood damages over time, indicating a general decrease on flood hazards, 
whereas exposure and vulnerability increased the reported flood looses (Benito and Machado, 
2012). 

In order to approach this problem, we have related flood rates to population rates over 
time, to which end we have obtained annual population series (from 1857 to the present) for 

the 18 studied locations. The population data come from the National Population Censuses of 
1857, 1860, 1877, 1887, 1897, 1900, 1910, 1920, 1930, 1940, 1950, 1960, 1970, 1981, 1991, 
2001, 2011, and also from the Municipal Register of Inhabitants of 2016. All the data have 

been obtained from the official reference source of the Spanish State: The Statistical National 
Institute (INE, 2018). The length of the periods between two censuses is variable, so we have 

calculated the annual average population increase (decrease) between two censuses in order to 
assign annual population values for each location. Finally, for each year of the intercensal 
period we add (subtract) as many annual increases (decreases) as years that have passed 

between the first census and the target year. This procedure results in some average values for 
population increases of 709% in all the locations. In this way, the population has gone from 

681,449 inhabitants in 1875 to 4,829,137 inhabitants in 2016. The population increase range 
varies between the minimum in Tortosa (135%) to the maximum in Sant Adrià del Besòs 
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(10,993%). These differences can be explained by different economic dynamics in three 
groups of locations:  

a) Small cities far from the coast that, unlike the other locations, were not integrated into 

the dynamics of the urban boom prior to the economic crisis of 2008 and the explosion 
of "Sun and Beach" tourism (La Seu d'Urgell, Balaguer, Alzira, Tortosa and 

Caravaca).  
b) Inland cities that constitute either their regional capital (Murcia and Zaragoza) or 

provincial capital (Girona and Lleida), by which highly concentrated services, trade 

flows and financial flows fueled high socioeconomic dynamism and urban 
development over recent decades.  

c) Coastal areas constitute a group that includes regional capitals (Barcelona and 
Valencia), provincial capitals (Tarragona and Malaga), purely tourist municipalities 
(Calella and Arenys de Mar), and the metropolitan area of Barcelona (Mataró, El Prat 

and Sant Adrià), all of which are very distinct from one another. In the case of the 
coastal capital cities, their status underlies a concentration of services and capital 

flows that fueled the dynamism of coastal tourism having grown to maximum levels 
since the nineteen-sixties.  
The differences between groups are clearly reflected in population growth. While the 

Group A cities grew by 212% between 1857 and 2016, the Group B cities grew by 716% and 
Group C by 779%.  

However, assigning exposure data (population) and contrasting it with the long-term 
flood series presents some problems: the population data are scattered and heterogeneous; the 
climate and flood variability presents a non-linear spatiotemporal variability pattern; finally, 

the structural flood risk mitigation measures (dams, bypass channels, storm water retention 
reservoirs, etc.) have undoubtedly contributed to changing the natural hydrological behavior 
of rivers (López-Martínez et al., 2017). 

Taking these considerations into account, we analyze the data obtained. The first 
conclusion reached is that at the time when a flood occurs, the affected population is higher 

than in the past (Fig. 8). In some towns such as Mataró, Barcelona, Sant Adrià and Málaga, 
this fact is especially evident. In other words, there has been a significant increase in the 
population affected by floods. This increase is greater in the metropolitan area of Barcelona 

and other major urban centers that have experienced more recent tourist development, such as 
Malaga. 

Nevertheless, the increase in the average of the population affected by each event does 
not necessarily imply that there is a growing temporary trend in the population affected by 
floods, because the population can increase at the same time as the frequency of floods is 

reduced. To analyze this fact, we have conducted a temporal trend analysis for both the 
frequency of floods and for the affected population. In both cases, we have considered data 

from 1857 onwards. Each locality and each flood intensity level have been analyzed (see 
Table 6) and, depending on the area considered, the results show increases or decreases in the 
temporal trend of the floods. These increases and decreases are due partially to, respectively, 

the presence and absence of adaptation strategies against flood risk. In general, four types of 
locations are detected, depending on the flood trends from 1857 to the present: 

1. Inland cities where there has been an increase in the frequency of floods and/or the 
population affected by floods (Girona and La Seu de Urgell). This situation reveals 
that the pertinent adaptation measures have not been carried out, which is even more 

serious insofar as the affected population in these cities has increased at a lower 
intensity than for the whole area. 
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2. Inland cities where the situation remains unchanged (Balaguer and Lleida) or 
improved (Caravaca). This situation may reveal a correct adaptation strategy to floods, 
with an added benefit of lower growth in the exposed population.  

3. Coastal cities where there has been an increase both in frequency and in the population 
affected by floods (Malaga, Tarragona, Mataró, Calella and Arenys de Mar). This 

situation indicates that the development implicit in the economic model based on 
housing construction and coastal tourism has not been accompanied by a strategy for 
mitigating the danger of flooding. 

4. Cities along the banks of large rivers in areas with strong investment in structural 
measures against floods, which have thus managed to control or reduce the frequency 

and the population affected by floods (Zaragoza and Tortosa in the Ebro River basin, 
Murcia in the Segura River basin, El Prat in the Llobregat River basin, Valencia in the 
Turia River basin, and finally Alzira in the Jucar River basin). These cities have been 

able to develop their economic and demographic models without increasing the risk of 
flooding for their population. 

 
 
Additionally, some situations cannot be added to any of the above patterns. On the one 

hand, we have the town of Sant Adrià, which is integrated into the city of Barcelona’s 
demographic dynamics and, despite its high demographic and urban dynamism, the flood 

situation remains stable. In Barcelona on the other hand, the affected population and 
frequency of extraordinary floods have increased, but the frequency of catastrophic floods has 
decreased. The case of Barcelona is paradigmatic because it is the main city in the study area 

and the one that is the best example of demographic and urban growth. In spite of this, its 
growth process correlates with investment in defense infrastructures which has allowed for a 
reduction in the frequency of catastrophic floods. The case of Sant Adrià is even clearer in 

this respect, as investments in flood defense measures have allowed this city with the highest 
population growth in the study area to keep the flood risk stable.  

Regarding the frequency of floods, the situation is positive in that catastrophic floods 
have not increased anywhere. In fact, this type of flood has even decreased in some places 
(Barcelona, Alzira, Caravaca and Tortosa). However, extraordinary floods present a totally 

different evolution, as they increase in 40% of the locations analyzed (Barcelona and Málaga 
are the largest cities where this increase occurs). Since extraordinary floods constitute the 

majority of the reconstructed floods, the trend in total frequency of floods also increases in 
some of these locations. In this respect, floods are becoming more frequent in the northeast of 
Catalonia and in the city of Málaga. 

If we consider the population affected by floods, these same patterns are detected. However, 
what is more worrying is that new places are detected where the situation is worse. In this 

regard, only three places experience a decrease in the population affected by catastrophic 
floods (Alzira, Caravaca and Tortosa). The locations where the population affected by 
extraordinary floods increases coincide with the locations where the frequency of 

extraordinary floods increases, but adding La Seu d'Urgell. In Barcelona, as in Málaga, 
Girona, Calella, Arenys de Mar and Mataró, there has been an increase in the population 

affected by floods. In general, the whole study area has seen an increase in the population 
affected by extraordinary floods.  

It is worth highlighting the case of the city of Valencia, where flood protection 

measures have reduced the extraordinary floods both in terms of both frequency and affected 
population. Similarly, in other cities where higher structural flood risk mitigation measures 

have been implemented, the trends are stable or negative (as in the cases of Alzira in the Jucar 
River and Tortosa in the Ebro River). 
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4. Discussion 
 

The reconstructed chronologies show identifiable and interpretable behaviors, giving the 
impression that historical flood evidences can be compared to natural proxy-data, such as 

those obtained in lakes, rivers and more recently dendrogeomorphological sediments 
(Romero-Viana et al., 2011; Nieto-Moreno et al., 2013; Barreiro-Lostres, et al., 2014; 
Ballesteros-Cánovas et al., 2015; Corella et al., 2016; Schulte et al., 2019). 

 

4.1. Flood temporal patterns 

 

The compilation of flood series in very long periods allows us to observe patterns of climatic 
behavior in a hydrometeorological point of view. The results obtained in the present work 

show the characteristics of the two different types of floods (catastrophic and extraordinary), 
as well as their variations over time (Fig. 9). 
 In all the regional series and in the final summary, the catastrophic floods seem to 

demonstrate behavior linked to the climatic variability and expressed by patterns of 
atmospheric circulation that favor torrential and persistent rain events, which altogether are 

necessary for the fluvial overflows in the Mediterranean basin. There are different oscillations 
corresponding to the climatic conditions during the Little Ice Age (Oliva et al., 2018). The 
most severe, with indexes of ≥ 0.15 in the 31-year-old Gaussian filter are: 

 
a) 1324-1328 (5-year duration) 
b) 1580-1620 (41 years) 

c) 1774-1793 (20 years) 
d) 1843-1877 (35 years) 

 
The beginning and the end of the series of catastrophic floods deserve some attention. During 
the first years, the series shows a brief but abrupt oscillation with values of ≥ 0.15 in the 

aforementioned index between the years 1324 and 1328. This may be the beginning of the 
Little Ice Age climatic episode in the study area. Even though the documentary sources for 

that time are scarce and the exposed populations near the rivers were of too modest in size to 
register these events in any appreciable fashion, the oscillation is evident and of considerable 
magnitude. 

 The other three climatic oscillations that are observed in the Little Ice Age present 
similar magnitudes. Those of 1580-1620 and 1843-1877 are of a similar duration but their 

behavior is also identical: a simple increase in the frequency of floods. However, the 
oscillation of 1774-1793 is shorter, with a less intense increase in flood frequency, and it is 
quite singular in that it coincides with a strong increase in droughts, as if responding to some 

unique anomaly in the Little Ice Age (Barriendos et al., 2003). Its temporal distribution also 
indicates its singularity: between oscillations a), b) and d), there are 253 and 224 years of 

separation. Oscillation c) is asymmetric, with 155 and 51 years of distance from the previous 
and subsequent oscillations. 
 The recent period corresponding to the 20th century shows a decreasing trend with 

respect to the end of the Little Ice Age. This behavior can be due to two factors that are not 
incompatible with each other: a) a reduction in the frequency of extreme hydrometeorological 

events related to a new climatic episode after the Little Ice Age; b) growing human 
interventions of large hydraulic infraestructures that reduce the risk of catastrophic floods, 
either by eliminating them completely or by transforming them into extraordinary floods or 

ordinary floods. Accurately assessing the contribution of one factor or another would require 
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a detailed investigation of each reconstructed local series. Given the fact that some locations 
have infrastructures and others are still in a natural regime, we can presume that this would be 
a complex investigation due to interactions between the natural and human dimensions. 

In summary, this type of flooding has a natural behavior and no recent trends that can be 
linked to human-induced climate change, an aspect that would coincide with other results at a 

more general scale (Brázdil et al., 2006). 
 Extraordinary floods present a long period of synchronicity with catastrophic floods. 
Their behavior is consistent with the most severe floods. Even the three oscillations of the 

16th-19th centuries are also recorded with minimal but positive deviations in the case of 
extraordinary floods. 

 However, one fact also contributes to changing the behavior of extraordinary floods 
throughout the 20th century: at the end of the Little Ice Age, the recorded high frequencies do 
not decrease but instead maintain high values while even increasing. In the whole series of 

more than 700 years, this is the first and only time that this behavior is observed. The 
divergence of trends between catastrophic and extraordinary floods occurs exactly in 1904. 

This can be considered a new phase in the flood regime on the Spanish Mediterranean coast. 
 The general interpretation of the results allows us to identify a very obvious driving 
force: the hydrometeorological atmospheric processes that cause torrential and persistent 

rains. On the other hand, the following two general factors cause substantial changes and 
trends in the frequency of flood events. 1) Natural climate variability affects the occurrence of 

catastrophic floods in oscillations of 20 to 40 years with very severe effects, leaving long 
periods of low activity. A similar pattern is shown in the extraordinary floods, but the 
occurrence of large oscillations is not evident. 2) Human activities also affect the frequency of 

floods. It seems that actively constructing dams and dykes reduced catastrophic floods in the 
recent period throughout the 20th century. This may be ascribed to directly eliminating 
catastrophic events, but it can also be interpreted that this type of event was simply transferred 

to unpopulated areas, which would explain the increase in extraordinary flood events in such 
a way that the social impact would result in a reduction in the severity of the events. 

 However, population growth and the coastal urban boom that began in the 1960s have 
led to a statistically significant increase in extraordinary floods from the mid-19th century to 
the present. In this case, the trends are pronounced during the 20th century and present in the 

coastal areas, probably influenced by the role of tourism in urbanistic growing process 
initiated in the 1960s (Pérez-Morales et al., 2018). However, the greater or lesser urban and 

demographic growth of the analyzed cities does not reflect a perfect correlation with the 
greater or lesser growth of floods. In this respect, the lower vulnerability of cities (López-
Martínez, et al., 2017) and, above all, investments in flood defense infrastructures play a 

determining role in explaining the reduction and stabilization of floods in the analyzed 
locations. A large part of these advances in flood defense were produced thanks to strong 

investment programs and legislative changes promoted in the nineteen-eighties (Olcina-
Cantos, et al., 2016). In any case, defense infrastructures certainly do not ensure total defense 
against floods (Castillo-Rodríguez, et al., 2016; Olcina-Cantos, et al., 2016), especially when 

observations of the study area indicate that this type of measure generates a false sense of 
security, which in turn can lead to increased exposure and vulnerability in the medium term 

(Saurí-Pujol et al., 2001).  
 Additionally, there are other factors that may explain the recent changes observed. In 
light of an evident increase in exposure and vulnerability to floods, climate change may also 

intervene with an increase in heavy precipitation events (Höppe and Grimm, 2009; Coumou 
and Rahmstorf, 2012). This aspect cannot be delved into here because it is not included in the 

objectives of the work, but the results point toward the possibility of its existence and 
incidence. Large events with severe multiple overflows are no longer so frequent, but faster 
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and more intense local precipitation multiplies the presence of events at a limited scale and of 
low severity. However, its low destructive capacity is compensated by high frequency and a 
growing tendency towards the future. 

  

4.2 On the reasons that explain the temporal variability of the floods 

 

The compilation and descriptive analysis presented here is far from able to ascertain the 
factors and processes that lead climatic variability to affect anomalies in the study area’s flood 
frequency. Nevertheless, some comparisons can be made to establish future work hypotheses. 

 First of all, of particular interest is the coincidence between the abovementioned 
oscillations that increase frequency of floods and increase of length of the alpine glaciers 

during the Little Ice Age. This synchrony appeared in previous works (Barriendos and 
Martin-Vide, 1998, Llasat et al., 2005). Looking at successive studies conducted in great 
chronological detail on the glaciers of the Swiss Alps, we find brief moments of glacial 

growth precisely when the frequency of catastrophic floods increases on the Spanish 
Mediterranean coast (Holzhauser and Zumbühl, 1996; Pfister, 1988; Zumbühl, 1980; 

Zumbühl and Holzhauser, 1988). This cannot be coincidental and deserves a more detailed 
future investigation into the evident interactions of atmospheric circulation patterns. 
 The most recent research on variability patterns in atmospheric circulation focuses on 

the Atlantic Multidecadal Variability Index (Wang et al., 2017, p.513). Combining its results 
with future research may relate this index to certain regional climate processes. At the 

moment, it can be observed that the index’s cold phases and events coincide with the high 
frequency of flood oscillations on the Mediterranean coast. These cold conditions would 
explain the growth of alpine glaciers and the increase in torrential rainfall in the 

Mediterranean, because when cold air comes into contact with the humid superficial air 
produced by this inner sea’s high water temperatures, it is inevitable that torrential rainfall 

events could occur at almost any moment in the year. In fact, 75-80% of the severe 
precipitation events are typical Mediterranean processes (local convective activity and 
Mediterranean cyclogenesis), which are caused or even aggravated by the presence of high 

cold air and humid air at the surface, while only 20-25% are caused by fronts with an Atlantic 
origin (Millán, 2014). 

 The factor that causes the most uncertainty is global warming induced by anthropic 
climate change. The climatic projections present an increase in temperature associated with 
increases in torrential rains over Northern Europe and in drought sequences across Southern 

Europe with strong decrease of yearly total precipitation (c. 30% of reduction). In despite of 
this precipitation reduction, in Southern Europe there will be an increase in torrential 

precipitation (Barrera-Escoda and Cunillera, 2011). In fact, this increase is detected in the 
series of floods in northern Europe. Others have also stated that the trends between floods and 
climate change do not present consistent correlations. The signs are present but the causal 

relationship remains to be confirmed. The challenge is complex, because when dealing with 
atmospheric and superficial phenomena in the study of interactions between natural and social 

processes, it is necessary to consider multiple aspects that are difficult to identify, much less 
ascertain their contributions (Füssel, 2012). 
 

5. Conclusions 
 

Historical hydrology is a suitable methodology for detecting and analyzing flood events over 
long periods of time. The level of knowledge is still very low, due to lack of massive access to 
historical archives. If one wants to conduct a detailed study on the uncertainty of river system 
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behaviors, substantial efforts must be made toward collecting original information that is 
more comprehensive and of better quality. 
 We have presented 18 flood series in different locations along the Spanish 

Mediterranean coast, all of them covering a period of 715 years. Following previous works, 
the floods analyzed here are catastrophic and extraordinary, depending on the damage they 

caused.  
 The most severe floods are known as catastrophic, and they show oscillations of 40–60 
years during the Little Ice Age. These coincide with cold phases, which disappear during the 

subsequent period. It remains to be investigated the extent to which the current situation is 
related to a naturally occurring low frequency of floods or to effective human interventions 

for reducing the risk of flooding. 
 There is a certain difference in the behavior of catastrophic floods in the series of 
northern versus southern floods. The northern ones seem to be linked to an atmospheric 

dynamic of cold episodes, which is consistent with the synchronous pulses of advancing 
Alpine glaciers. These oscillations are not perceived so clearly in the southern series and, 

instead, oscillations appear with a different temporality. 
This complexity is due to the Western Mediterranean being located in a transition zone where 
there is a predominance of air mass circulation. An investigation in greater detail may be 

relevant for better understanding future atmospheric dynamics scenarios if climate change 
conditions increase. 

 The influence on both minor and extraordinary floods by human activity in river 
basins clearly appears from the end of the 19th century. Oscillations no longer appear over 
time, but a permanent positive trend is evident. This is especially intense in the series of 

coastal locations, where there is greater demographic growth and tourism activity. Future 
research can delve into how extensively these human activities are related to extraordinary 
floods. 

 In analyzing the adaptive response of societies to floods over the last 150 years, the 
study area highlights some noteworthy issues. On the one hand, the large infrastructural 

defense structures against floods have caused a decrease in the risk of flooding in some 
locations, which materializes as decreases in both the number of events and the affected 
population. On the other hand, a disturbing rise in the frequency of extraordinary floods has 

occurred in coastal locations since the mid-19th century to the present. This increase becomes 
magnified if we consider the population exposed to flooding. In other words, there has been a 

notable increase in the population affected by extraordinary floods. Without proper planning, 
the scenario for coastal populations will be difficult when adapting to the risk of flooding. 
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Table 1. Basic characteristics of the analyzed rivers in the historical flood series  

River (north to south) Length 

(km) 

Catchment 

area (km
2
) 

Water source area 

Altitude (m.a.s.l.) 

Mean annual 

runoff (m
3
s

-1
) 

Ter 208 2960 Pyrenees. 2910 13.9 

Riera de Capaspre* <10 <100 Coastal Hills. 421 -- 

Riera de Sobirans* <10 <100 Coastal Hills. 552 -- 

Riera de Cirera* <10 <100 Coastal Hills. 405 -- 

Besòs 17 1023 Pre-Coastal Hills. 1394 4.3 

Rieres de Barcelona* <10 <100 Coastal Hills. 550 -- 

Llobregat 157 4925 Pre-Pyrenees. 2500 20.8 

Francolí 85 857 Pre-Coastal Hills. 412 1.2 

Ebro 911 85001 Cantabrian Mts. c. 1000 493.8 

Segre, tributary Ebro R. 265 12880 Pyrenees. 3143 100.2 

Turia 280 6394 Iberian Mts. 1830 10.0 

Júcar  498 21579 Universales Mts. 1700 29.2 

Segura 325 19525 Segura Mts. 2000 1.0 

Argos, tributary Segura R. 42 506 Pre-Coastal Hills. 900 0.5 

Guadalmedina 25 180 Camarolos Mts. 1500 1.0 

 

*Uadi: Non-permanent river (Improved from Barriendos  and Rodrigo, 2006). 
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Table 2. Classification categories of the flood cases. 
Category Barriendos et al. (1998) Wetter et al. (2011) 

1 ORD: Ordinary Me: Minor event 
2 EXT: Extraordinary Se: Severe event 

3 CAT: Catastrophic Ce: Catastrophic 
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Table 3. Evolution of data availability for historical floods in Catalonia and Spanish Mediterranean Basin 
REFERENCE AREA DATA 

SERIES 

TOTAL FLOODS 

Barriendos et al. (1998, p. 477) Spanish Med. Basin 9 207 

Llasat et al. (2005, p. 36) Catalonia (NE Spain) 8 477 

Barriendos et al. (2006, p. 768) Spanish Med. Basin 23 1060 

Barrera-Escoda et al. (2015, p. 468) Catalonia (NE Spain) 12 899 

Present work Spanish Med. Basin 27 2467 
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Table 4. Data availability for historical flood chronologies. Comparison between previous work (Barriendos and 

Rodrigo, 2006) and present work. The location for the Mediterranean Consistent Long Series is available in 

Figure 1. 
 Barriendos and Rodrigo 

(2006) 

Present work 

RIVER LOCATION ORD EXT CAT TOT ERR ORD EXT CAT TOT 

MEDITERRANEAN Consistent Long Series 

1. Ter Girona 0 95 22 117 3 53 109 25 190 

2. Besòs Sant Adrià 0 4 37 41 0 24 22 36 82 

3. Uadis* Barcelona 0 43 40 83 0 122 76 44 242 

4. Llobregat El Prat 0 84 25 109 4 73 94 20 191 

5. Francolí Tarragona 0 1 14 15 0 3 11 19 33 

6. Ebro Tortosa 0 23 17 40 0 51 46 20 117 

7. Ebro Zaragoza - - - -- 0 11 26 18 55 

8. Turia Valencia 0 19 34 53 0 40 43 53 136 

9. Júcar Alcira 0 0 35 35 0 3 51 37 91 

10. Segura Murcia 0 53 39 92 0 273 143 47 463 

11. Argos Caravaca - - - -- 0 46 65 12 123 
12. Guadalmedina Málaga 0 36 14 50 0 78 74 34 186 

13. Segre La Seu 0 3 24 27 0 2 15 21 38 

14. Segre Balaguer 0 5 15 20 0 4 8 15 27 

15. Segre Lleida 0 13 25 38 3 25 37 34 99 

16. Capaspre Calella 0 26 15 41 0 0 26 15 41 

17. Sobirans Arenys 0 36 36 72 0 0 40 33 73 

18. Cirera Mataró 0 61 36 97 0 2 57 38 97 

 Subtotal 0 502 428 930 10 810 943 521 2284 
MEDITERRANEAN Short/Scattered Series 

Ter/Ritort confl. Camprodon - - - -- 2 4 6 9 21 

Ter/Fresser confl. Ripoll - - - -- 0 9 9 11 29 

Riera de Pineda* Pineda 0 6 7 13 0 0 5 9 14 

Riera Vallalta* Sant Pol 0 15 9 24 0 0 8 17 25 

Riera Buscarons* Canet 0 15 10 25 0 0 15 10 25 

Riera 

d'Argentona* 

Argentona 0 7 4 11 0 0 7 4 11 

Riera de Cabrils* Vilassar 0 10 6 16 0 0 10 7 17 

Riera de Premià* Premià 0 14 9 23 0 0 14 9 23 

Riera d'Alella* Alella 0 12 6 18 0 0 9 9 18 

 Subtotal 0 79 51 130 2 13 83 85 183 
 

MEDITERRANEAN 

BASIN 

0 581 479 1060 12 823 1026 606 2467 

 

ATLANTIC + Balearic Islands Long Series 

Duero Zamora 0 14 11 25 0 7 14 11 32 

Guadalquivir Sevilla 0 73 30 103 0 0 74 30 104 

Guadiana Badajoz - - - -- 0 0 0 15 15 

Nervión Bilbao 0 20 16 36 0 7 20 16 43 

Pisuerga Valladolid 0 20 11 31 0 0 20 11 31 

Sa Riera Palma 0 24 12 36 0 15 24 12 51 

Tajo Toledo 0 92 23 115 0 0 92 23 115 

Tormes Salamanca 0 9 7 16 0 0 9 7 16 

ATLANTIC BASIN** 0 252 110 362 0 29 253 125 407 
 

TOTAL SPAIN 1422 flood cases 2874 flood cases 
ORD refers to the number of Level 1 floods (Ordinary floods); EXT refers to the number of Level 2 floods 

(Extraordinary floods); CAT refers to the number of Level 3 floods (Catastrophic floods); Finally ERR refers to 

the number of wrongful floods detected. 

(*) Coastal non-permanent rivers 
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(**) Atlantic Basin + Balearic Islands Long Series   
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Table 5. Basic characteristics of locations of historical flood chronologies. 

Nr. RIVER TOWN LOCATION ALT. 

(m.a.s.l.) 

First 

Year 

(CE) 

Last 

Year 

(CE) 

Duration 

(Years) 

Status 

1 Ter Girona 41
o
 59 N-02

o
 49 E 68 m 1322 1996 675 Improved 

2 Besòs Sant 

Adrià 

41
o
 25 N-02

o
 13 E 4 m 1402 2014 613 Improved 

3 Uadis Barcelona 41
o
 23 N-02

o
 10 E 15 m 1389 2002 614 Improved 

4 Llobregat El Prat 41
o
 19 N-02

o
 05 E 4 m 1369 1996 628 Improved 

5 Francolí Tarragona 41
o
 06 N-01

o
 14 E 2 m 1597 1994 398 Improved 

6 Ebro Tortosa 40
o
 48 N-00

o
 31 E 8 m 1301 2015 715 Improved 

7 Ebro Zaragoza 41
o
 39 N-00

o
 52 

W 

203 m 1301 2003 703 New 

8 Turia Valencia 39
o
 28 N-00

o
 22 

W 

12 m 1321 2010 690 Improved 

9 Júcar Alcira 39
o
 09 N-00

o
 26 

W 

20 m 1320 2010 691 Improved 

10 Segura Murcia 37
o
 58 N-01

o
 07 

W 

42 m 1301 2016 716 Improved 

11 Argos Caravaca 38
o
 06 N-01

o
 51 

W 

625 m 1591 2016 426 New 

12 Guadalmedina Málaga 36
o
 42 N-04

o
 25 

W 

5 m 1544 2016 473 Improved 

13 Segre La Seu 42
o
 21 N-01

o
 27 E 673 m 1453 1997 545 Improved 

14 Segre Balaguer 41
o
 47 N-00

o
 48 E 215 m 1617 2016 400 Improved 

15 Segre Lleida 41
o
 36 N-00

o
 37 E 148 m 1306 1993 688 Improved 

16 Capaspre Calella 41
o
 36 N-02

o
 39 E 4 m 1755 1999 245 No 

change 

17 Sobirans Arenys 41
o
 34 N-02

o
 33 E 5 m 1687 2002 316 Improved 

18 Cirera Mataró 41
o
 32 N-02

o
 26 E 22 m 1737 1999 263 No 

change 

*Location of the flood series is available in Figure 1. 
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Table 6. Trends in floods and population affected by floods since 1857. To calculate trends, we have 
used Hirsch and Slack (1984) nonparametric test, which is based on Mann-Kendall range. The trial 
version of XLSTAT software (Addinsoft, 2018) was used to calculate it. The Mann-Kendall test 
provides a level of statistical significance (p-value). The threshold of significance chosen was 95%, 
which indicates that p-values above 0.05 should lead to rejecting the hypothesis of a trend in the series 
(symbol = and yellow cell). When the p-value is less than 0.05, the trend can be positive (symbol + 
and red cell) or negative (symbol - and green cell). 
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CAT Floods = = = = = - = = - = - = = = = = = - - 

EXT Floods + + + + = + = + = - = = + = = = = = = 

Total floods + + + + = = = = = - = = + = = = = - = 

Affected Population by CAT 

Floods 
= = = = = = = = - = - = = = = = = - = 

Affected population by EXT 

Floods 
+ + + + = + = + = - = = + + = = = = + 

Total affected population by 

floods 
+ + + + = + = = = - = = + = = = = - + 
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1 Ter River 2 Besòs River 3 Local Uadis (Barcelona) 

4 Llobregat River 5 Francolí River 6 Ebro River (Tortosa) 

7 Ebro River (Zaragoza) 8 Turia River 9 Júcar River 

10 Segura River 11 Argos River 12 Guadalmedina River 

13 Segre River (La Seu d´Urgell) 14 Segre River (Balaguer) 15 Segre River (Lleida) 

16 Capaspre Local Uadi 17 Sobirans Local Uadi 18 Cirera Local Uadi 

Figure 1. Location of historical flood chronologies. Additional information about basins and 

flood chronologies in Tables 2, 4 and 5. 
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Figure 2.  
Historical Flood Chronology. Northern Rivers. 

a) Catastrophic Floods b) Extraordinary Floods 
Thin line: 13 y. Filter Thick line: 31 y. Filter  
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Figure 3.  
Historical Flood Chronology. Ephemeral Coastal Rivers 

a) Catastrophic Floods b) Extraordinary Floods 
Thin line: 13 y. Filter Thick line: 31 y. Filter  
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Figure 4.  
Historical Flood Chronology. Segre/Ebro Rivers 
a) Catastrophic Floods b) Extraordinary Floods 

Thin line: 13 y. Filter Thick line: 31 y. Filter  
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Figure 5.  
Historical Flood Chronology. Central Rivers 

a) Catastrophic Floods b) Extraordinary Floods 
Thin line: 13 y. Filter Thick line: 31 y. Filter  
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Figure 6.  
Historical Flood Chronology. Southern Rivers 

a) Catastrophic Floods b) Extraordinary Floods 
Thin line: 13 y. Filter Thick line: 31 y. Filter 
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Figure 7. Flood Chronology Synthesis (31y. Gaussian filter).  
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Figure 8. Spatiotemporal variability of floods and population affected by the floods since 

1857. The blue bars show the annual frequency of extraordinary floods, the violet bars show 
the annual frequency of catastrophic floods. The solid line represents the evolution of the 
annual population. Black dots and red triangles report the population affected by, 

respectively, extraordinary and catastrophic floods. Finally, gray areas report periods with 
flood data gaps. 
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Figure 9. Summary of all flood chronologies. 31y. Gaussian filter. 
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Highlights 
 The study of floods from documentary and bibliographical sources within the specialty of 

historical climatology has a good background in Spanish rivers of Western Mediterranean Basin.  

 Geographical and climatic context of Western Mediterranean Basin is complex and diverse, 
making difficult the research and analysis of natural hazards. In contrast, historical documentary 
sources provide relatively homogeneous, continuous, consistent and reliable information to 
establish chronologies of events that easily exceed 500 years.  

 Since 2013, PREDIFLOOD Spanish project, continued after 2016 by MEDIFLOOD Spanish project, 
have improved and updated the available information using new cataloging and classifying 
methodologies. All types of events and locations can be analyzed, from small basins with non -
permanent flows to large river systems. 

 Results of this new methodological approach offer important improvement of data availability, 
arriving to 27 flood series and 2647 flood cases for Spanish Mediterranean Basin.  

 First approach to this general information has two basic objectives. First, the characterization of 
climatic variability in the Western Mediterranean Basin focused on extreme hydrometeorological 
events. Different climatic oscillations are detected between 14th and 19th centuries, related to 
Little Ice Age. Second, the perception of incidence of social factors in flood frequency and 
severity, defining impact of large hydraulic infrastructures, demographical and urbanistic 
growing. 
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