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Abstract: In 2010 Qi et al. [Opt. Lett. 35(3), 312 (2010)] demonstrated a random number
generator based on the drift of the phase of a laser due to spontaneous emission, The out-of-the-lab
implementation of this scheme presents two main drawbacks: it requires a long and highly
unbalanced interferometer to generate a random phase with uniform probability distribution,
or alternatively, a shorter and slightly unbalanced interferometer that notwithstanding requires
active stabilization and does not generate a uniform probability distribution without randomness
extraction. Here we demonstrate that making use of the random nature of the phase difference
between two independent laser sources and two coherent detectors we can overcome these
limitations. The two main advantages of the system demonstrated are: i) it generates a probability
distribution of quantum origin which is intrinsically uniform and thus in principle needs no
randomness extraction for obtaining a uniform distribution, and ii) the phase is measured with
telecom equipment routinely used for high capacity coherent optical communications. The speed
of random bit generation is determined by the photodetector bandwidth and the linewidth of the
lasers. As a by-product of our method, we have obtained images of how phase noise develops
with time in a laser. This provides a highly visual alternative way of measuring the coherence
time of a laser.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Random numbers are routinely needed in many branches of science and technology. They are
a key element in the development of secure communications channels, since random keys can
provide unbreakable encryption systems [1]. They are used in banking, which uses the RSA
algorithm that relies on the generation of random numbers [2]. They are important in gambling,
where excellent random number generators are needed to guarantee the fairness of used machines.
Governments are implementing technical standards on the usage of random number generators
[3]. In scientific applications, Random Number Generators are behind powerful simulation
methods such as Monte Carlo [4].
Random numbers are generated in many different ways. There are algorithms that generate

streams of numbers (Pseudo-Random Number generators, PRNGs) that, in spite of not being
truly random, can faithfully simulate true random sequences in many scenarios. There exist also
methods which are based on deterministic processes, but for which our ignorance of the many
variables involved make the possible outcomes random. This is the case of Random Number
Generators (RNGs) based on the behavior of chaotic systems [5], certain geological events such
as earthquakes, astronomical events, motion of computer mice, and interactions in social media
[6–8].
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Randomness sources based on the principles of quantum mechanics can provide true random-
ness which stems from fundamental physical phenomena [9]. In principle, the generated random
keys are intrinsically random, as opposed to other random number generators based on different
physical principles which might contain biases due to phenomena which are deterministic, yet
unknown to an experimenter. Due to this, there is a lot of interest in the generation of random
numbers based on the intrinsic and fundamental random character of quantum phenomena.

One particular phenomena that can be considered for Quantum Random Number Generation
(QRNG) is the temporal drift of the phase of any laser source. Spontaneous emission of radiation,
a quantum phenomena whose presence is inevitable in any lasing process, is responsible for such
a phase drift. To be truly of quantum origin, we should use lasers where the drift of the phase
comes from spontaneous emission and not from other sources of noise that can be termed as
technical noise, changes in the conditions of the lasing operation. Phase noise based QRNGs, in
combination with the use of pulsed lasers, have achieved speeds of the order of 43 Gbit/s [10].
These phase noise-based QRNGs have been a key element to close certain loopholes existing in
Bell’s inequalities tests [11].

In 2010, Qi et al. [12] demonstrated a phase noise based random number generator by passing
the signal of a laser by an unbalanced Mach-Zehnder interferometer. The idea behind this
experiment is interfering the laser signal at two different times so that the phase difference
between these two signals is known to evolve randomly. The experimental setup for this situation
is shown in Fig. 1(a).

x̂(φ)

Laser

Laser

Laser

Laser

Fig. 1. (a) Depiction of an experimental setup for a phase noise interference Quantum
Random Number generator, in which a laser interferes with itself at points where the phase
has changed. (b) Schematic of a balanced detector, in which a phase φ is introduced in one
of the lasers. A balanced detector with a phase delay φ can measure the quadrature x̂ (φ) of
the interfering field. (c) Schematic of the setup used for a balanced coherent detector QRNG,
which measures the quadratures of the interference between two lasers and thus obtains the
phase noise of such interference.

If τcoh is the coherence time of the laser, Tdet is the response time of the photodetectors, and
cTdelay is the path difference between the two arms of the interferometer, two conditions should
be fulfilled for Random Number Generation:

1. Tdelay � τcoh to guarantee that the phases of the signals traversing both arms of the
interferometer are uncorrelated and the random phase difference obeys a uniform probability
distribution.

2. Tdet � τcoh to ensure that we detect a fixed phase difference and we are not indeed
integrating over a temporally-changing phase difference.

These conditions pose limitations on experimental realizations of this QRNG, as time delays of
the order of τc imply very long path delays. Such delays are usually implemented using optical
fiber cables. As an example, a coherence time of 0.01 milliseconds (a linewidth of 100 kHz),
would require 3 additional kilometers of fiber in one of the arms of the interferometer.

The presence of long delays pose challenges due to the losses that fibres present, especially in
non-telecom wavelengths, as well as their difficulty for possible integration in chips. One way
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to circumvent this drawback is using a slightly unbalanced interferometer that would generate
a random phase with a non-uniform Gaussian-like probability distribution [12]. However, this
calls for randomness extraction for obtaining a uniform probability distribution and the active
stabilization of the interferometer that increases the technical difficulty of the implementation of
the system.

Here we put forward and demonstrate a scheme where the quantum origin of the phase noise
can be exploited for the generation of random number sequences without the need of using a
highly unbalanced interferometer with long delays or phase stabilization in a slightly unbalanced
interferometer. We use a second laser and measure the interference of the two laser sources with
a pair of coherent detectors (for homodyne detection) that measure the phase variation directly.
The method presented here builds up on works which have used the interference of two lasers to
create RNGs [13–15], but the measurement of two orthogonal quadratures readily exposes the
random behavior of the phase and requires a minimal amount of post-processing of the measured
signal, since the probability distribution that obeys the random phase is uniform if samples are
taken at intervals longer than the coherence time of the lasers.

Homodyne detection of optical signals is routinely done in optical communications laboratories
with the help of optical hybrids. In optical communications, one is interested in extracting the real
and imaginary part of a signal, which carries the information, with the help of a local oscillator
that acts as reference signal. For random number generation, we are interested in extracting the
phase difference between two signals.
In particular, we perform balanced coherent detection of two narrowband laser signals in the

telecom band generated with external cavity lasers. By using fast sampling of the signal, of the
order of ∼ 100 Msamples/s, we are able to characterize the random walk performed by their phase
difference, and determine their coherence times, i.e., the time over which the phases of the two
lasers can be considered constant. When using slow sampling, of the order of ∼ 100 kSamples/s,
we are able to generate random numbers which do not require any sort of randomness extraction
for obtaining a uniform probability distribution from a non-uniform one. We will show that
without randomness extraction we can pass almost all of the standard statistical tests aimed at
benchmarking RNGs. This is a feature that can be used for future, faster QRNGs, as we are able
to provide true randomness with keys that are fast enough to feed randomness extractors with
nonuniform distributions of quantum origin.

2. Theory

The source of randomness comes from the random phase difference between the signals coming
from two different lasers. To measure such phases we make both signals to interfere with the help
of balanced coherent detectors as shown in Figs. 1(b) and 1(c). These are optical arrangements
which involve the use of phase delays and beam splitters. The signal of interest comes from the
subtraction of the photocurrents measured by optical detectors at the two output ports of the
beam splitter. The use of two balanced detectors with different phase delays makes it possible
to recover the complex information of the interfering waves, in a configuration that is called a
coherent detector. QRNGs using coherent detectors and the interference of the vacuum field with
coherent fields have been described theoretically [16] and demonstrated experimentally [17].
Using a balanced detector with a phase delay φ, it is possible to measure the mean value

of the quadrature x̂ (φ) of the interference between two lasers with frequencies ω1/2 and
intensities I1/2. This gives rise to a Skellam probability distribution for the measurement of the
quadrature x̂ (φ) [16], which can be approximated as a normal probability distribution with mean
√

I1I2 cos (∆ωt + φ) and variance 2 (I1 + I2), where ∆ω = ω1 − ω2.
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As the phase changes in time due to spontaneous emission events occurring in the laser cavities,
the signal measured by a balanced detector with a phase delay φ can be written as:

〈x (φ)〉 ∝
√

I1I2 cos (∆ωt + ξ (t) + φ) . (1)

ξ (t) is a normally distributed phase with zero mean and a variance that becomes broader as time
progresses [14]:

var (ξ (t)) = 2t
(
1
τc,1
+

1
τc,2

)
=

t
τc

, (2)

where τc,1/2 are the coherence times of the input lasers, defined as the inverse of their linewidths.
Since ξ (t) can only take values on the range [−π, π], phases are wrapped around this range

and are distributed according to a von Mises distribution [18]:

P (ξ (t) = θ) =
1

2πI0(t/τc)
exp

[
τc

t
cos(θ)

]
. (3)

where I0 (x) is the zeroth-order modified Bessel function of the first kind [19].
If the values of the phase are digitalized, the probability distribution of the phase can be made

arbitrarily similar to a uniform distribution by measuring at times which are much longer than
the coherence time. In other words, one can generate a uniform probability distribution for
the random phase difference by decreasing the sampling rate at which the phase difference is
measured. In particular, the measured values will follow a probability distribution of the form:

pi =

∫ −π+i(δ+1)

−π+iδ
P (ξ (t) = θ) dθ (4)

where δ = 2π
2k , with k being the bit depth of the possible values in which θ can be discretized,

and i ∈
{
0, 2k − 1

}
. With t/τc > 2 and k = 8, the maximum difference between pi and ui, the

value of a uniform distribution, does not exceed 10−5, i.e., it would take on average 105 values to
observe a difference between the observed value and a uniform distribution, as shown in Fig. 2.

Fig. 2. Maximum difference between the discretized values of a von Mises distribution of
variance t/τc and a uniform distribution. Here, the discretization is performed in 28 values.

3. Experimental setup and results

We performed experiments with two external cavity lasers (HP 8168A and Agilent 8164A) with
central wavelengths around 1550nm, i.e., central frequencies around ν0 ≈ 193.4THz. Central
frequencies can typically vary 100 MHz per hour. In the experiments we measured typical central
frequency differences between lasers of ∼ 1GHz, maintaining a stable beating interference for
more than 20 hours. Both laser linewidths are approximately 100kHz, thus providing coherence
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times of τc ≈ 20µs. The laser powers are P = 0.1mW at the photodetector end, corresponding to
a mean photon flux numbers of Φ = (P/hν0) ≈ 7.8 × 1014 photons/s.

Signals coming from the two lasers are sent to an optical hybrid (Kylia COH28) which provides
the beam splitters and phase shifts that generate the two orthogonal quadrature readings of 〈x (φ)〉
with φ = 0, π/2. This optical hybrid reduces classical noise stemming from the fluctuation of the
path lengths and phase shifters, being practically athermal, with phase variations of less than
17.5mrad for a change of ambient temperature of 90◦C. Therefore we can safely neglect phase
variations due to the interferometers during the time of detection [14].

The light exiting the optical hybrid is then fed to two balanced detectors (Thorlabs PDB480C-
AC) with 1.6 GHz Bandwidth (Tdet = 625ps). With this response time, detectors are able to
measure ≈ 4.9× 105photons per sample, generating a voltage with an amplitude of approximately
280 mV. In contrast, when no lasers are input, the electrical classical noise read by the detectors
is normally distributed around 0 with a standard deviation of less than 7.5 mV. These values of
signal and electrical noise are comparable in magnitude to those reported in [14]. With such
values of photon numbers, high signal and low noise, it is possible to measure clean sinusoidal
signals for the quadratures I and Q when they are sampled at rates on the order of GHz, as
illustrated in Fig. 3(a). This is in contrast to experiments in which the vacuum field is one of
the signals considered, in which case the shot noise is the determinant origin of randomness
[16,17,20]. Finally, the readout is digitalized with an oscilloscope (Tektronix MSO 70804C) at
sample rates ranging from 156.25kSamples/s to 25GSamples/s.
With measurements in two complementary quadratures, i.e. by measuring I ≡ 〈x (0)〉 and

Q ≡ 〈x (π/2)〉, two signals whose amplitudes depend on the intensity fluctuations of both lasers, it
is possible have access to the complete phase dynamics of ξ (t) directly. I and Q follow probability
distributions which are correlated and complementary. Having an additional quadrature provides
additional information on the value of the phase in the unit circle instead of just one projection
onto the axis, which has been the customary technique for developing phase noise QRNGs which
utilize randomness extraction [10,14,21]. With this additional information, it is possible to retrieve
a distribution which can be made arbitrarily similar to a Uniform distribution stemming from
spontaneous emission. With the information provided by the signals I and Q and the unwrapping
of the phase, we can reconstruct the phase behavior of the laser interference, compensating the
classical drifts in intensity from both lasers:

Θ (t) := unwrap (arg (I + iQ)) = ∆ωt + ξ (t) . (5)

It is possible to eliminate the main, possibly classical frequency variation ∆ωt, to obtain a phase
variation which describes a random walk whose origin are the spontaneous emission kicks inside
of the laser cavities. This is done by differentiating, subtracting the offset, and integrating again,
i.e.:

ξ (t) =
∫ (

dΘ
dt
− ∆ω

)
dt. (6)

The random values are obtained by further differentiating this phase (dξ/dt), wrapping it to the
range ]−π, π] and discretizing the possible outcomes to 8 bits. With this processing technique it
is possible to recover the kicks in the phase distribution, following Eq. (3). The measurement of
such phase distributions is shown in Fig. 4. With this technique in the measured experimental
data, we are also able to recover directly the particular and different random trajectories of the
phase.
As predicted by Eq. (3) and shown in Fig. 4, random phases start becoming uniformly

distributed as time progresses. This can be seen on the histograms, which widen and flatten
as the time between successive measurements becomes larger and thus converge to uniform
distributions of uncorrelated data sets. The autocorrelation coefficient of a string of numbers Θ
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Fig. 3. Depiction of the processing methods used to measure the phase noise difference of
the lasers. (a) is measured at sample rates of 25 GSamples/s, whereas (b)-(e) are measured
at sample rates of 625 kSamples/s. (a) Presents an experimental measurement of the
components I (dashed) and Q (continuous) as they are read out. It is noticeable that these
two measurements are offset by π/2, and indeed they draw a circle when plotted against
one another, as can be seen in (b). (b) also shows a two-dimensional representation of the
measured electrical noise, normalized to the maximum amplitude of the quadrature signals.
Both I and Q are digitalized to 8 bits of depth, and are measured over several cycles, resulting
in a thicker unit circle. A phase random walk is obtained by following the method of Eqs. 5
and 6. (d) Normalized histogram of measurements of the quadrature signal I = 〈x̂ (0)〉 after
detection. Blue: arcsine distribution corresponding to the interference of the signals from
the lasers. Orange: electrical noise, which corresponds to a narrow (typical deviation of 7.5
mV) normal distribution. The signal I and noise are normalized to the maximum value of
the signal (285 mV). The standard deviation of the electrical noise accounts for less than 3
% of the measured signal amplitude. (e) Here we show the histogram of the different phase
kicks that are recovered from the phase random walk in (c).

for a lag d [22], defined as

KΘΘ (d) =
∑N−d

i=1 (Θi −mean (Θ)) (Θi+d −mean (Θ))
var(Θ)

, (7)

never exceeds 2 × 10−3, and the autocorrelation for up to 2.5 × 106 samples is shown in Fig. 5.
The autocorrelation for lag 0, which is by definition 1, is not shown. The measurement of this
autocorrelation coefficients is shown as measured directly from the experiment, without any
post-procesing apart from the one explained to retrieve the phase values. The autocorrelations
with d > 0 are normally distributed with a mean zero and a standard deviation of 3.87 × 10−4.

For random number generation, the measurements of I and Q are performed at 156.25
kSamples/s and digitalized at an 8-bit depth. Values of θ are saved as 8-bit values to reach a
random number generator speed of 1.25MBits/s. We have tested the generation of uniform random
numbers in a binary file of 21.21 Gbytes of data (≈ 237.3 bits), corresponding to 2.12 × 1010
measurements (as every measurement provides one byte) gathered in the experimental setup
shown in Fig. 1(d). We have used three statistical suites generated for the verification of
Random Number Generators: Robert G. Brown’s dieharder [23], United States’ National Institute
of Standards and Technology (NIST)’s Statistical Testing Suite [24], and Pierre L’Ecuyer’s
TestU01’s Alphabit testing battery, specifically designed for the testing of hardware Random
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Fig. 4. Histograms (with corresponding fits) and phase space trajectories (wrapped in the
phase space and unwrapped tail to tip) for three different sample rates, originating from
5 million point sample measurements on a balanced coherent detector sampled at (a,b,c)
7.81MSamples/s, (d,e,f) 500kSamples/s, and (g,h,i) 156.25kSamples/s. Only the first 300
points of each trajectory in the unit circle are shown, but 30 000 points are shown for
the unwrapped walks. The loss of correlation between successive kicks starts to become
noticeable once the sampling frequency is smaller than the laser linewidths, i.e., at about
200kHz. All histograms are fit with a von Mises distribution (Eq. (3)) with variance (a)
t/τc = 0.172, (d) t/τc = 1.78, and (g) t/τc = 7.50 × 105. (g) was additionally fit with a
uniform distribution, with a Goodness of fit Kolmogorov-Smirnov test p-value of 0.56.

Fig. 5. Autocorrelation coefficients when the phase is being measured at rates of 156.25
kSamples/s.
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Number Generators [25]. The random data sequence passes 304 out of the 311 random tests
applied to it, in particular dieharder passing 115 of the 117 evaluated tests, NIST passing 175 of
the 177 evaluated tests, and Alphabit passing 14 of the 17 evaluated tests. The results have been
grouped under the smallest p-value.

The results of the dieharder statistical tests are presented in Table 1. A possible application for
such a generator is the provision of true, quantum random data to feed the extraction of faster
generators. Faster sources could be achieved by larger laser bandwidths, but this is a problem to
be addressed in future work, as the wavelength stability of broader sources results in a loss of the
beating which allows us to recover the phase noise.

Table 1. Statistical test results.

4. Conclusions

We have demonstrated a quantum random number generator based on the extraction of the random
phase difference between two laser beams. The simplicity of the processing techniques used
and the availability and sturdiness of the components in telecom laboratories makes it easy to
produce trusted random numbers for cryptographic purposes.

At slow speeds with high photon numbers, the phase noise is the dominant contribution to the
random character of the interference of two lasers signals. The value of the phase is obtained
by measuring two quadratures of the electric field of the two interfering lasers with a coherent
detector. This randomness can be exploited to produce random numbers which do not require
randomness extraction to obtain a uniform probability distribution from a non-uniform one,
passing almost all of the standard statistical tests aimed at benchmarking Random Number
Generators. We achieved a value of the autocorrelation coefficient of the random sequence of
∼ 4 × 10−4. It thus provides a reliable source of true randomness that can be used for further
calibration of faster randomness extractors.

The speed of random number generation can be further improved by measuring the randomness
of the phase with broader sources, such as Distributed Feedback (DFB) lasers with a linewidth
of 100MHz linewidth. Other RNGs using two lasers [14] consider CW lasers with coherence
times of nearly τc ∼ 500 ps, which corresponds to a bandwidth of some ∼ 17 pm in wavelength.
The theoretical limit for random number generation speed (without considering randomness
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extraction and sources of classical noise) is thus ∼ 1/τc = 2 GHz. After randomness extraction
and using a higher sampling rate to ensure a uniform probability distribution and a low value of
the autocorrelation coefficient of the random sequence (∼ 8× 10−3), a random number generation
speed of 80 Mbit/s was achieved. In our particular case, although our generation speed only
achieves approximately 1.25 Mbit/s, we could increase the RNG speed by decreasing the power
of the laser, since it is well known that the bandwidth due to spontaneous emission is inversely
proportional to the power generated in the lasing process [26,27]. However, this increase in speed
might come at the expense of other considerations: the response time of photodetectors should
be faster, and some sources of classical noise as photodetector noise might become relevant.
Moreover, increasing the linewidths of the lasers and using more unstable sources might result in
drifts of the laser beating.
The usage of narrowband sources such as the ones considered in this paper are a drawback

to the speed of the key generation. However, it is important to remark that even though certain
applications might require high-speed random number generation, in excess of a few Gbit/s, this
is not a restrictive requisite in all possible applications. In important cases, the use of mature and
easily accessible technology, the robustness or even the availability of the components needed for
random number generation can be far more important considerations to take into account than
the RNG speed [7]. In particular, the speed of the Random Number Generator here presented
can be rapidly increased, but the laser sources used, although being very stable -thus allowing a
beat note to be maintained over several hours-, are also narrow in linewidth, allowing for long
coherence times. The lasers used are located on the regime where it is possible to observe how
the phase distribution uniformizes.
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