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Abstract. In this brief paper, we address the medical problem of human obesity predic-
tion from genomic data. Genomic datasets may contain a huge number of features and
they often have to be analyzed within the realm of Big Data technologies. As a medi-
cal problem, obesity prediction would welcome interpretables outcomes. Therefore, the
analyst would benefit from appraches in which the problem of very high data dimen-
sionality could be eased as much as possible. Feature selection can be an essential part
of such approaches. In this context, though, traditional machine learning methods may
struggle. Here, we propose a pipeline to address this problem using partitioning strate-
gies: both vertical, by dividing the data based on gender, and horizontal, by splitting
each of the analyzed chromosomes into 5,000-instances subsets. For each, Minimum
Redundancy and Maximum Relevance feature selection is used to find rankings of the
single nucleotide polymorphisms most relevant for classification in the medical dataset.

1 Introduction
The pervasive use of networked computer systems in medical and clinical environ-

ments has made medical research an increasingly data-dependent discipline. This brings
to the fore many challenges related to operational data management and knowledge ex-
traction from data [?].

This paper addresses the medical problem of human obesity prediction from genomic
data. Genomic datasets (in general and in the particular case of this study) may contain
a huge number (even millions) of features. Not only that, but also, more often than not,
showing very low ratios of instances to features. This has two immediate consequences:
first, that the data require Big Data technologies for their management and analysis and,
second, that traditional machine learning (ML) methods for data analysis and knowledge
extraction may struggle in a low instances-to-features ratios scenario [?].

As a medical problem, obesity prediction would welcome interpretable outcomes
that can be acted upon in an operational manner, even if for purely research-related
puroposes. Therefore, the analyst would benefit from approaches in which the problem
of large data dimensionality could be eased as much as possible. Feature selection (FS)
for dimensionality reduction (DR) can be an essential part of such approaches and it is
the strategy that we propose in our study.

Apache Spark is a distributed in-memory Big Data system with the potential to over-
come these bottlenecks. Our analyses, though, show that Apache Spark is unable to
cope with our dataset containing ≈ 0.74 million features. Here, as an alternative, we
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propose a pipeline to address this problem using partitioning strategies: both vertical,
by dividing the data based on gender, and horizontal, by splitting each of the analyzed
chromosomes into 5,000-instances subsets. For each subset, Minimum Redundancy and
Maximum Relevance (mRMR) FS is then used to find rankings of the most relevant
single nucleotide polymorphisms (SNPs) in a medical dataset.

The remaining of the paper is structured as follows: first we describe the FS approach
followed in the study. We then briefly describe the analyzed data and the pipeline used
for their tractable analysis. This is followed by the reporting of the experimental results
and some summary conclusions.

2 Methods: Feature Selection
FS can be described as a process of automatic tagging of subsets of features as rele-

vant for model construction. FS is by itself useful, but it mostly acts as a filter, muting
out features that are not useful for the purpose of analysis. As commented in [?], FS
“has shown its effectiveness in many applications, but the unique characteristics of big
data present challenges”. Usually, real-world datasets come with a sizeable amount
of irrelevant and redundant features. FS also helps data analysis by decreasing mem-
ory storage requirements and computational cost, while avoiding information loss in as
much as possible [?].

FS methods can be used for identifying and removing from data those unwanted,
irrelevant and redundant variants that do not contribute to the accuracy of a model, or
may in fact decrease the accuracy of the model. Redundant features are adscribed to
the category of irrelevant ones. Each feature is to some extent relevant and cannot be
discarded manually, but redundancy implies the co-presence of another feature with
similar peformance, and the model’s learning performance will not be compromised by
removing one of them [?].

According to Guyon and Elisseeff [?], the most important objectives of FS are:

• to reduce overfitting and improves the model performance in sense of prediction,

• to provide faster and cost effective models,

• to achieve an easy interpretation of the model by domain users using only a small
subset of data.

Although FS techniques are very handy in large-scale datasets and are widely used,
there are also a few aspects that require being careful about in the process. The ad-
vantages of FS techniques come at a certain price, because the search for a subset of
relevant features introduces an additional layer of complexity in the modeling task. In-
stead of just optimizing the parameters of the model for the full feature subset, we now
need to find the optimal model parameters for the optimal feature subset, as there is no
guarantee that the optimal parameters for the full feature set are equally optimal for the
optimal feature subset [?, ?, ?, ?].

From a ML point of view, the selection of biomarkers in our medical context can be
stated as a FS problem for a classification task, where we have the objective of finding
a reasonably small set of features (biomarkers) that is capable of best explaining the
difference between the disease and the control samples [?].

From a biological point of view, Haury et al. explain that applying FS to biolog-
ical case/control datasets allows to investigate the genes selected in the signature and
evaluate the relationship to biological processes involved in the disease [?].

2.1 Minimum-Redundancy-Maximum-Relevance (mRMR)
mRMR was first developed by Peng et al. [?] and it is considered as one of the

most powerful filter methods. It is based on mutual information and selects features
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according to the maximum statistical dependency to the class label. Selecting a small but
meaningful subset out of several thousands or millions of biomarkers is a most relevant
task, not only for achieving the most accurate classification of biomedical data, but
also for enabling biomedical interpretability. The mRMR algorithm was developed and
intended to deal with the classification of DNA microarray data, which is a challenging
task when faced with a huge number of features (SNPs in this case) paired with a limited
number of observations. In their study, Peng et al. stated that selected genes via mRMR
provide a more balanced coverage of the space and capture broader characteristics of
phenotypes [?].

The mRMR algorithm ranks the importance of the features based on their relevance
to the class. As the name suggests, the main goal is to achieve the maximum relevancy
between the features X and the class C, using mutual information (MI).

I(A,B) =
∑
b∈B

∑
a∈A

P (a, b)log

(
P (a, b)

P (a)P (b)

)
(1)

In the above Eq.??, I represents the mutual information between the features a and
b, which can be easily derived by calculating the marginal probabilities P(a) and P(b),
and the joint probability between both features P(a,b) [?].

The maximum relevance can be determined by Eq.?? [?],

maxD(X,C), D =

(
1

|X|

) ∑
Xi∈X

I(Xi;C) (2)

Since the redundancy is a major issue in this feature selection task, specially when
targeting the maximum relevancy criterion for large datasets, we can minimize the re-
dundancy according to the following Eq.??, as suggested in [?].

minR(X), R =

(
1

|X|2

) ∑
Xi,Xj∈X

I(Xi;Xj) (3)

Finally, the combination of both Eq.?? and Eq.?? helps deriving the desired output
i.e. mRMR in Eq.??, where S is the selected set of features [?].

maxXi /∈S[I(Xi, C)−
(

1

|S|

) ∑
Xj∈S

I(Xj;Xi)] (4)

3 Materials: Experimental Dataset
The analyzed dataset comprises genomic data from a series of patients. The base

dataset consists of 22 chromosomes, whereas chromosome 23 is related to sex and is
not considered. A total of 4,988 patients and 736,990 SNPs were available.

4 Proposed Data Analysis Pipeline
Our proposed data analysis pipeline is based on a complex data pre-processing stage

that includes data partitioning, data transposition, feature selection, data merging and
building the classifier. First, the data are partitioned horizontally (by rows) and vertically
(by columns) into subsets of 5,000 features and based on gender, respectively, and a data
preparation strategy is applied to each partition. Second, we merge the results from all
22 chromosomes and obtain a final model based on top relevant features which influence
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Figure 1: Data pipeline.

the obesity in males and females. A high level view of the proposed pipeline architecture
can be seen in Fig. ??.

The first stage of data preparation consists on dividing the data into horizontal and
vertical partitions. This partitioning enabled us to run the job in the Apache Spark clus-
ter available for data handling. The partitioning solution that was initially implemented
in Apache Spark involved writing the partitioned data in HDFS (a Java-based file system
for data storage). The Apache Spark version 2.0 generated exceptions that were han-
dled by turning to the use of PLINK (a widely used application for analyzing genotypic
data that can be considered the de facto standard in the field) and Linux commands in-
stead, for partitioning the data first into gender-specific subsets and, second, into subsets
containing 5,000 features. This solution was found to be fast and efficient.

Subsequently, data of each partition were transposed for each chromosome CHi for
males and females separately. This stage was necessary due to the required format struc-
ture of the data (SNPs as variables and patients as samples), so that the FS procedure
could be applied. Note that in the original structure of the provided data, patients were
described in columns and SNPs in rows.

Finally, FS was applied to each partition of the chromosome CHi for males and fe-
males separately; the selected features found to be the most relevant as obesity predic-
tors were merged; and the classifiers were built by splitting the data into training (70%)
and test (30%) sets. Through the mRMR filter method [?, ?], the top 20 features were
selected according to their ranking, for each partition of the data. In summary, from all
22 chromosomes, both for males and females, only 3,040 SNPs variants were selected;
that is, a mere 0.41% of the original total amount of SNPs available for analysis.

Approximately, 140 features were selected from each chromosome and learning
models were built individually, evaluating their accuracy. The final step of the pro-
posed data pipeline involves finding common features that are available in both male
and female datasets, ranking them according to the mRMR FS score.

5 Results
The experiments were performed on a YARN machine with 3 executers, 27GB RAM

and 7 CPUs. The performance of mRMR was extremely slow for 5,000 features using



5

Table 1: Combined performance, as measured by AUC, with all 22 chromosomes.

Sampling (Classifier) Gender Test AUC CV AUC
Weight (LR) Male 0.971 0.962
Weight (LR) Female 0.965 0.948

No Sampling (LR) Male 0.963 0.941
No Sampling (LR) Female 0.925 0.923

Down-sampling (RF) Male 0.782 0.784
Down-sampling (RF) Female 0.632 0.678

No Sampling (RF) Male 0.500 0.501
No Sampling (RF) Female 0.500 0.500

the maximum resources. It took several days to process all the partitions from all 22
chromosomes for both genders.

A Random Forest (RF) classifier was first used, in a 5-Fold Cross Validation pro-
cedure used to find the best parameters of the model and increase efficiency. Unfortu-
nately, the preliminary accuracy results were poor. After analyzing its implementation
in Spark ML, we found that it could not properly handle imbalanced binary class dis-
tributions. To overcome this problem, a down-sampling technique was used to reduce
the number of cases in the majority class. Alternatively, Spark can manage the weights
with imbalanced binary classification using a Logistic Regression (LR) model, that was
also used as classifier.

Finally, we merged the top selected 0.41% of SNPs from all chromosomes, combin-
ing them in a single dataset. During the evaluation of each chromosome, we found that
LR performed quite well in the binary classification problem. We also observed that
not using sampling or weighting in the LR method did not have any significant negative
impact in performance as measured by the the Area Under the ROC Curve AUC, al-
though the weighting in the LR-Weights model slightly increased the AUC. The results
for all 22 chromosomes combined are shown in Tab. ?? and common SNPs found in
both males and females are listed in Tab. ??.

6 Conclusions
Interpretability is paramount in medical applications of ML in general, but it is par-

ticularly difficult when the medical problem, obesity prediction in the case of this study,
is defined according to genomic data. This setting requires the use of Big Data tools and
technologies as we nned to extract knowledge from thousands of individuals described
through millions of features (SNPs in this study). Systems still lack flexibility for bioin-
formatics data described through millions of features in a distributed manner and not
just millions of records.

We have proposed a data analysis pipeline design using data partitioning for Big
Data, which has solved feasibility issues in an Apache Spark 2.0 framework, allowing
us to run jobs using the available resources. We reckon that running these tasks with
maximized resources according to the proposed pipeline would definitely lead to a good
computational performance.

Through feature engineering and FS-based DR, we have managed to reduce from
the original bulk of 736,990 SNPs to an extremely lean 3,040 SNP selection, while
providing a quite accurate obesity prediction (0.965 AUC for females and 0.971 AUC
for males). This result, with specific SNP selections related to specific chromosomes,
is the first and necessary step for guaranteeing the interpretability of any biomedical
research oriented towards explaining human obesity from this type of genomic data.
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Table 2: Common SNPs from Males and Females.

SR No. SNP Chromosome
1 2:4259627:C:T 2
2 2:224060700:G:A 2
3 2:233158545:C:T 2
4 3:125050868:T:C 3
5 4:130008848:T:C 4
6 6:30127079:T:C 6
7 6:32975283:G:T 6
8 6:30233192:T:C 6
9 6:28865417:T:C 6
10 7:1932780:G:C 7
11 8:30430742:T:C 8
12 8:133210054:T:C 8
13 8:143486205:G:A 8
14 9:119600196:T:C 9
15 11:91411734:A:G 11
16 13:67193281:C:T 13
17 13:101857816:G:A 13
18 14:57747325:C:T 14
19 14:92758540:G:C 14
20 15:96771641:T:G 15
21 16:7403274:T:G 16
22 19:11096293:G:A 19
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