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Abstract

This work proposes novel hyperparameter-free losses

for single view 3D reconstruction with morphable models

(3DMM). We dispense with the hyperparameters used in

other works by exploiting geometry, so that the shape of

the object and the camera pose are jointly optimized in a

sole term expression. This simplification reduces the op-

timization time and its complexity. Moreover, we propose

a novel implicit regularization technique based on random

virtual projections that does not require additional 2D or

3D annotations. Our experiments suggest that minimizing

a shape reprojection error together with the proposed im-

plicit regularization is especially suitable for applications

that require precise alignment between geometry and image

spaces, such as augmented reality. We evaluate our losses

on a large scale dataset with 3D ground truth and publish

our implementations to facilitate reproducibility and public

benchmarking in this field.

1. Introduction

Inferring the geometry of objects from a single or multi-

ple images is a well-studied problem by the computer vision

community. Recently, the capacity of deep neural networks

[10] to obtain hierarchical representations of the images and

to encode prior knowledge has been applied to 3D recon-

struction in order to learn the implicit mapping between im-

ages and geometry [7, 30].

Nevertheless, employing deep neural networks to solve

3D related problems implies some specific issues that need

to be addressed. One of the main drawbacks is the 3D data

representation. The trivial generalization from 2D images

to 3D space are the 3D voxel grids. This representation,

which is simple and allows the use of 3D convolutions,

does an inefficient use of the target space when trying to re-

construct surfaces. Moreover, state of the art methods that

Figure 1: Overview of our random projections approach for

implicit 3D shape regularization.

use this representation mostly work at resolutions around

128x128x128 voxels [7, 30], which are too small for most of

the applications. 3D meshes [15, 29] are a more convenient

representation because they efficiently model surfaces and

can be easily textured and animated for computer graphics

applications. However, 3D meshes are defined in a non-

Euclidean space, where the usual deep learning operations

like convolutions are not defined. Geometric deep learning

[3] is nowadays a hot research area to bring basic operations

to non-Euclidean domains like graphs and manifolds, which

is the case of 3D meshes. Finally, 3D Morphable Models

(3DMM) [2] are used for category-specific problems to re-

duce the dimensionality of plausible solutions and lead to

more robust and likely predictions.

Another challenge when working on 3D reconstruction

using deep learning is the lack of labelled data. In tasks like

image recognition, there exist large annotated datasets with

millions of images [8]. Unfortunately, the data is not as

abundant in 3D as it is in 2D and, consequently, researchers

have walked around this limitation with different strategies.



Defining losses in the image domain [27, 23] is a com-

mon approach since it provides flexibility to use different

kinds of 2D annotations like sparse sets of keypoints, fore-

ground masks or pixel intensities. A second strategy is the

use of synthetic data [22, 23, 24] since it provides perfect

3D ground truth. Unfortunately, those systems trained with

synthetic data tend to suffer from poor generalization due

to the distribution gap between the training and the testing

distributions.

Finally, subject to the 3D data representation and the

availability of labels, several works have proposed differ-

ent losses to learn their models from [7, 30, 15, 29, 27, 23].

These losses usually present a number of terms related by

weighting hyperparameters that need to be tuned for an ef-

fective optimization. However, estimating these parameters

for each reconstruction dataset is a hard and computation-

ally expensive task that presents high chances of achieving

sub-optimal results.

In this work, we propose and study a set of novel losses

without hyperparameters for learning model-based monoc-

ular reconstruction from real or synthetic data. The main

contributions of our work are:

• A benchmark of three novel hyperparameter-free

losses for learning monocular reconstruction, which

have the benefit of decreasing the time and the com-

plexity of the optimization process. We perform an ex-

tensive evaluation on an internal large scale 3D dataset

and on two public datasets, MICC [1] and FaceWare-

house [4].

• A novel regularization technique based on random pro-

jections that does not require additional 3D or 2D an-

notations. This allows us to define the Multiview Re-

projection Loss (MRL), which is specially suited for

those applications that demand a fine-grained align-

ment between the 3D geometry and the image, such

as augmented reality, shape from shading and facial

reenactment.

• An open implementation1 of the losses and the 3D an-

notations used to evaluate the results on MICC [1] and

FaceWarehouse [4] datasets to facilitate reproducibil-

ity and future benchmarkings.

2. State of the art

Since AlexNet [21] succeeded in training a convolutional

neural network (CNN) for large scale image recognition,

multiple computer vision tasks have been tackled with deep

neural networks [10]. Among them, 3D reconstruction has

also benefited from their learned representations, obtaining

important performance gains with respect to hand-crafted

1https://github.com/hyperparams-free/

hyperparams-free-3D-losses

classic techniques. In general, two big groups of learning-

based 3D reconstruction methods can be differentiated by

the fact of using or not a 3D morphable model (3DMM),

which we will refer as model-based and model-free ap-

proaches respectively.

2.1. Model-free approaches

Methods that do not include a 3DMM in their core

[30, 12, 29, 13, 16, 15], also called model-free, are usually

oriented to solve generic problems, such as reconstructing

objects with different shapes, and are highly conditioned by

the 3D representation they use.

For instance, methods based on 3D voxel grids [30, 12,

13] tend to use binary cross entropy as objective to optimize

their architecture. Eventually, 3D voxel grid geometries

can be projected into the image plane to construct super-

vision signals defined in the image domain, such as depth

errors [16] or binary masks errors [30]. Despite their flex-

ibility, 3D voxel grid methods are very inefficient at rep-

resenting surfaces, and hierarchical models are required to

achieve denser representations [12]. Although they have

been mostly assessed in synthetic datasets [6], 3D voxel

grid methods have also obtained state of the art results in

real applications [13].

Meshes are a common alternative to 3D voxel grids since

they are more efficient at surface modelling and have more

potential applications. Recent works [15, 29] suggest that

state of the art results can be achieved by minimizing the

Chamfer Loss while regularizing the surface through the

Laplace-Beltrami operator and other geometric elements

such as normals [29]. In addition, a family of novel and rele-

vant operators that have been successfully applied to 3D re-

construction with meshes [29] are the Graph Convolutional

Networks (GCN) [3], which generalize the convolution op-

erator to non-Euclidean domains.

2.2. Model-based approaches

Model-free methods, specially the mesh based ap-

proaches, need to be heavily regularized by using geomet-

ric operators in order to obtain plausible 3D reconstructions

and, despite their flexibility, are difficult to train. Model-

based approaches offer a simpler solution to regularize sur-

faces by modeling them as a linear combination of a set of

basis [2]. Thus, the learning problem is simplified to esti-

mate a vector of weights to linearly combine the basis of the

model.

Due to the lack of 3D data, some works have driven their

experiments towards the evaluation of models trained on

synthetic data [22] [23]. Yet obtaining successful results, it-

erative error feedback (IEF) [5] is usually required for good

generalization, which unfortunately implies multiple passes

through the network. To speed up the IEF, [14] performs

this process in the latent space. Since using synthetic data



provides perfect labels, the losses are designed to explicitly

model the error between predictions and ground truth model

parameters.

On the other hand, some methods overcome the scarcity

of 3D data by defining losses directly in the image domain

[27, 26, 23]. This avoids using IEF since the data is trained

and tested in the same distributions. However, annotations

on the image domain are required [31] or differentiable ren-

derers [17] are necessary to construct self-supervised losses

using the raw pixel values [27]. In this case, strong regular-

ization is needed on the predicted model weights to ensure

the likelihood of the predicted 3D shapes.

Regularization is a common ingredient in most of the

methods used for learning 3D reconstruction. It is usu-

ally added as a weighted combination of terms in the

loss, either geometric operators for meshes, or norms of

the predicted shape model parameters for model-based ap-

proaches. These terms provide the model with stability but,

at the same time, add complexity to the loss and conse-

quently to the optimization. In [14], an adversarial regular-

ization is proposed in order to penalize predicted samples

that fall out of the target distribution. This statistical ap-

proach is more generic and simpler than using a weighted

combination of terms.

Our work follows the direction of [14] with the objective

of finding more generic and simpler losses to learn model-

based monocular reconstruction that ease the optimization

of the architectures. In contrast to them, we propose dif-

ferent losses based on geometry, instead of statistics, that

fuse the data terms and the regularization terms into a sin-

gle term objective held by the geometry of the problem. As

a result, we can dispense with all the hyperparameters.

3. Hyperparameter-free losses

In this section we introduce three novel hyperparameter-

free losses for learning model-based monocular reconstruc-

tion. We start by describing the main elements of the prob-

lem. Then, we show how the different terms of the losses

can be fused into a sole term expression using geometry,

which we call Geometric Alignment Loss (GAL). Driven by

the fact that a lot of applications require precise alignment

between the 3D geometry and the image, we reformulate

the GAL loss to minimize the reprojection error, creating

the Single View Reprojection Loss (SRL). Finally, we show

how the SRL loss can be implicitly regularized through ran-

dom projections, proposing the last loss called Multiview

Reprojection Loss (MRL).

3.1. Problem statement

The problem we address can be defined as finding the

unknown mappings from an input image I to a 3D shape

x ∈ R
3N , N being the number of points, and to the cam-

era pose c = [R|t] expressed as a 3x4 matrix, R being the

rotation of the camera and t = (tx, ty, tz) ∈ R
3 the spatial

translation of the camera. We model R as a unit quater-

nion q = (q0, q1, q2, q3) ∈ H1 to avoid the Gimbal lock

effect, which is the loss of one degree of freedom in a three-

dimensional mechanism.

The mappings to be learned can be represented by four

functions: E , X , Q and T . The former function E is

intended to extract relevant features from I and the rest

to map these features to x, q and t respectively, so that

x̂ = X (E(I)), q̂ = Q(E(I)) and t̂ = T (E(I)) are the

predictions of the learnt model.

Most of the current methods based on deep neural net-

works [28, 22, 23, 27, 26] learn the mapping functions E , X ,

Q and T by linearly combining different loss terms. Each

of these terms is responsible for controlling a property of

the reconstruction, and its contribution to the final loss is

adjusted by a weighting hyperparameter that must be tuned.

In general, these loss terms can be divided in data terms and

regularization terms [27].

Data terms are the ones that guide the network predic-

tions, x̂, q̂ and t̂, towards matching the ground truth labels

x, q and t during training:

Ldata = Lx̂ + αLq̂ + βLt̂. (1)

As noted in [18], the relation between the hyperparame-

ters α and β varies substantially depending on the problem

and, consequently, the choice of these hyperparameters has

a severe impact for the camera pose estimation.

On the other hand, regularization controls the predicted

3D shape x̂ in terms of geometric and semantic likelihoods.

In this sense, it is common to use a 3DMM, which allows

to represent the predicted geometry in a lower dimensional

space. More precisely, it expresses x̂ as:

x̂ = m+Φidα̂id, (2)

where m represents the mean of the 3DMM, and Φid and

α̂id are the identity basis and the predicted identity param-

eters respectively.

In order to obtain plausible shapes, α̂id needs to have a

small norm. Consequently, those methods that do not have

access to 3D ground truth or that define their losses entirely

in the image domain [27] must include an extra regulariza-

tion term in their loss that force this condition during train-

ing:

Lreg = γ||α̂id||
2

2
. (3)

A typical hyperparameter-dependent loss would simply

sum the data and regularization terms:

L = Ldata + Lreg. (4)



Figure 2: Schemes of the presented hyperparameter-free losses. From top to bottom: Transformations applied to the ground

truth and the predictions for computing each loss. From left to right: LGAL (a), LSRL (b) and LMRL (c). The dashed lines

represent projections from 3D to the image plane.

In general, methods that learn monocular reconstruction

define their losses following the described multiterm strat-

egy, which require an estimate of the weighting hyperpa-

rameters α and β for each specific dataset, a hard and ex-

pensive process that might lead to suboptimal results.

From now on, we assume that the 3D shape can be ex-

pressed using a 3DMM as in Equation 2, and that real or

synthetic 3D ground truth is available.

3.2. Using geometry to avoid the hyperparameters

In this section, we propose a simple but effective refor-

mulation of the standard multiterm losses (Equation 1) that

unifies the errors produced by x̂, q̂ and t̂ into a single term

expression. We call this formulation Geometric Alignment

Loss (GAL) and it is defined as follows:

LGAL = ||[R(q)|t]xH − [R(q̂)|t̂]x̂H ||1, (5)

R(q) being the rotation matrix induced by the quaternion q,

and xH the 3D shape in homogeneous coordinates.

Essentially, LGAL uses the rotation and the translation

of the camera pose to align the ground truth shape and the

predicted shape in the 3D space, and then compute point

to point distances. This process is illustrated in Figure 2

a). From our experiments, we find ℓ1 norm to behave the

best in terms of stability and accuracy. Note that the surface

of the loss is well defined, since the use of a 3DMM con-

strains the position and the orientation of the predicted 3D

shape, avoiding possible ambiguities in the product between

[R(q̂)|t̂] and x̂H .

3.3. Reprojection error as objective

Obtaining an accurate shape and camera pose is, by def-

inition, the goal of single view 3D reconstruction. How-

ever, a number of applications such as texture generation,

face reenactment, augmented reality and shape from shad-

ing based geometry refinement, specially demand a precise

alignment between the predicted geometry x̂ and the input

image I. Although it might result unintuitive, small errors

in the camera rotation and the camera translation, do not

necessarily imply low reprojection errors, since they can

compensate or aggregate each other.

Despite GAL already avoids the use of hyperparameters,

we would like to obtain a unique term formulation that not

only optimizes shape and pose simultaneously, but that it

also achieves the lowest possible reprojection error for those

applications that require fine-grained alignment between 2D

and 3D spaces.

We get inspiration from [18], where the camera pose is

estimated by minimizing the reprojection error, and we in-

troduce the predicted geometry to define the Single View

Reprojection Loss (SRL), which is illustrated in Figure 2

b):

LSRL = ||P(q, t)(xH)− P(q̂, t̂)(x̂H)||1, (6)

where P projects any 3D shape y to the 2D image plane,

obtaining y
2D defined by:



Figure 3: Effect of training with SRL. While the reprojec-

tion error is minimized, the 3D shape is not plausible.

y
2D =

(

u′/w′

v′/w′

)

, (7)

with

(

u′v′w′
)T

= K[R(q)|t]yH , (8)

K being the calibration matrix.

By using the SRL loss, one can simultaneously learn

shape and pose by minimizing the reprojection error. Un-

fortunately, as commented in Section 3.1, optimizing 3D

shape and pose by projecting into a single image plane is

not possible without regularization. As it can be observed in

Figure 3, the network learns to generate flattened shapes x̂

in the profile views, which produce minimum reprojection

error but do not belong to the distribution of geometrically

plausible 3D faces.

3.4. Implicit regularization via random projections

A trivial solution to regularize the predictions of x̂ and

avoid the flattened shapes produced by SRL would be to

add an extra term, ||α̂id||
2

2
, to Equation 6 in order to keep

the norm of α̂id small. This would introduce an extra hy-

perparameter that we would like to avoid.

Instead, we propose to implicitly regularize the learn-

ing process of x̂ by projecting it to multiple random image

planes. The error produced by q̂ and t̂ is introduced as an

isometric transform D that distorts the predicted geometry

x̂ in position and orientation. Then, we define the Multiview

Reprojection Loss (MRL) as:

LMRL =
V
∑

v=1

||P(qv, tv)(xH)− P(qv, tv)(D(x̂H))||1,

(9)

where qv and tv represent the camera pose of a random

view. The isometric transform D is defined as the rela-

tive pose between the predicted camera pose and the ground

truth camera pose expressed as 4x4 matrices:

D(x̂H) = [R(q)|t] · [R(q̂)|t̂]−1x̂H . (10)

The MRL allows to simultaneously learn the 3D shape

and the camera pose without explicit regularization of x̂

and, at the same time, achieves minimum reprojection er-

rors. We illustrate it in Figure 2 c).

4. Experiments

We evaluate the losses presented in Section 3 in terms of

accuracy, robustness, efficiency and generalization. In or-

der to isolate at maximum the effects of each loss, we use

the same architecture and the same training data to optimize

all the models, as well as the same testing data for evalua-

tion. The only difference between configurations is the loss

function used during training.

4.1. Dataset

One of the main challenges for learning 3D reconstruc-

tion models is the scarcity of 3D annotations. Strategies

to overcome this issue range from using synthetic data

[22, 23, 11] to fitting 3DMM to images [31, 9]. However,

the 3D ground truth produced by these strategies is subject

to inaccuracies in the input data distribution caused by the

renderers or in the target geometry caused by the fittings

of the 3DMM. To the best of our knowledge, there are not

publicly available datasets with real images and accurate 3D

ground truth large enough for the training and evaluation of

single view 3D reconstruction models.

In order to be as rigorous as possible, we built a large

scale 3D dataset with real images and accurate 3D ground

truth. Concretely, we scan a total of 6528 individuals from

different gender, age and ethnicity. From each subject, we

acquire the facial geometry without expressions using the

Structure Sensor scanner from Occipital. We also obtain

multiple RGB images and their respective camera poses

from multiple views. All the scenes are normalized so

that the heads are aligned towards a reference 3D template,

which is centered at �0 and facing towards -ẑ. We separate

the subjects in three subgroups, train, validation and test,

using approximately the 70%, 10% and 20% of the data re-

spectively. Table 1 shows the numerical details of the data

partitions used for training, validation and testing, and Fig-

ure 4 the camera angle distributions. For data augmentation

purposes, each scan and its respective images and camera

poses are fully symmetrized.

Finally, in order to create the 3DMM, we register the 3D

reference template to the 3D scans from the training set us-

ing a Non-Rigid ICP algorithm. Then, Procrustes analysis



Figure 4: Camera angles distributions.

Average

Split # subjects # images views/subject

Train 4543 20349 4.4

Validation 675 2976 4.4

Test 1310 6347 4.8

Table 1: Dataset details for training, validation and testing.

is performed using all the registered models, and Principal

Component Analysis (PCA) is applied to extract the identity

bases Φid and the associated eigenvalues Λ.

This dataset provides us with enough data to train and

evaluate deep architectures with the necessary precision to

extract solid conclusions from our experiments.

4.2. Implementation details

We select a standard architecture to predict the first 100

identity parameters α̂id of the 3DMM, the camera rota-

tion as a unit quaternion q̂ = (q̂0, q̂1, q̂2, q̂3), and the

spatial camera translation t̂ = (t̂x, t̂y, t̂z). Similarly to

[22, 27, 26, 23] we choose a convolutional neural network

as encoder E based on VGG-16 [25] to extract image fea-

tures, and three multilayer perceptrons (MLP), S, Q and T ,

with 1 hidden layer of 256 units, that are added on top of

E to regress α̂id, q̂ and t̂ respectively. Since the set of 3D

rotations is represented by quaternions of norm 1, we add a

normalization layer to the quaternion branch, being the fi-

nal mapping Q̄ = Q/||Q||2. Moreover, we add a frozen

linear layer on top of S to directly predict the 3D geome-

try x̂ from α̂id as shown in Equation 2, obtaining the final

mapping X = m+ΦidS .

Given an input image I, the three outputs of our model

can be expressed as: x̂ = X (S(E(I))), q̂ = Q(E(I))
and t̂ = T (E(I)). For better initial conditions, we ini-

tialize the layers S, Q and T in order to predict α̂id = �0,

q̂ = [1, 0, 0, 0] and t̂ = [0, 0,−60], values that project the

mean 3D shape to the center of the image. Unless differ-

ently specified, all the models have been trained until con-

vergence using Adam [20] with a learning rate of 10−4 and

batch size of 32 samples on a NVIDIA RTX 2080 Ti.

4.3. Metrics

We use different metrics to quantify the prediction errors

of the 3D shape, the camera translation, the camera rotation

and the reprojected shapes. Here, we rapidly formalize how

these errors are computed for each subject as well as the

units:

• Shape 3D error (mm):
∑Np

n=1
||xn − x̂n||2/Np

• Camera translation error (cm): ||t− t̂||2

• Camera rotation error (degrees): acos(2q · q̂)∆180/π

• Reprojection error (pixels):
∑Np

n=1
||P(q, t)(xnH)− P(q̂, t̂)(x̂nH)||2/Np,

where Np is the number of points in the 3D shape and xn ∈
R

3 is the nth point of the 3D shape.

4.4. Quantitative evaluation

In this section we compare the performance of the mul-

titerm losses against the hyperparameter-free ones. To be-

gin with, we implement the multiterm loss described in the

state of the art work [23], since it also uses 3D annotations

but synthetically generated:

LCoarse = ||x− x̂||2
2
+ α||[q, t]− [q̂, t̂]||2

2
, (11)

where [·, ·] is the concatenation operator. Note that the only

difference with respect to [23] is that we are assuming a

pinhole camera model instead of a weak perspective model.

The LCoarse does not balance the errors produced by q̂

and t̂. For completeness, as [18] shows the importance of

having two weighted terms for q̂ and t̂, we also implement

and evaluate the following multiterm expression:

LXQT = ||x− x̂||2
2
+ β||q − q̂||2

2
+ γ||t− t̂||2

2
, (12)

which can be understood as the combination of the Geomet-

ric Mean Squared Error (GMSE) defined in [22] and used

for learning the geometry, and the cost defined in [19] and

used for learning the camera pose.

The best models trained with LCoarse and LXQT are ob-

tained after a Bayesian optimization to estimate the learning

rate and α and {β, γ}, respectively. To find the search space

bounds, we estimate the α, β and γ values that compensate

the difference of scale with the term ||x − x̂||2
2

as in [23],

obtaining αscale, βscale and γscale. Then, the lower and

the upper bounds of the search space are defined by an or-

der of magnitude below and an order of magnitude above

the estimated values: αopt ∈ (0.1αscale, 10αscale), βopt ∈
(0.1βscale, 10βscale) and γopt ∈ (0.1γscale, 10γscale). Re-

garding the learning rate, we define the search interval as

(10−5, 10−3). We also limit the Bayesian optimization

search to 20 experiments.



On the other hand, we train three more models using

the proposed hyperparameter-free losses, LGAL, LSRL and

LMRL, with the learning rate fixed to 10−4. In this case,

the training is performed a single time.

Table 2 shows the quantitative results obtained after

training the models and evaluating them on our dataset.

As it can be observed, hyperparameter-free losses allow a

much faster optimization process while obtaining compa-

rable accuracies. Moreover, the SRL and the MRL obtain

much lower reprojection errors than the optimized multi-

term losses, but only MRL is capable to achieve a good

balance between the reprojection error and the 3D shape

error due to the implicit regularization. On the other hand,

the optimized multiterm models obtain slightly better re-

sults (tenths of a millimeter) in terms of 3D shape accuracy

and in terms of camera pose estimation with respect GAL

and MRL.

4.5. Robustness against large poses

It is also interesting to observe how the models trained

with the different losses behave depending on the camera

angle, which we plot in Figure 5. This fact is tightly related

with the abundance of data shown in Figure 4. The multi-

term losses and GAL generalize better than SRL and MRL

to predict the 3D shape for large posses, where the informa-

tion is poorer, but fail to achieve stable reprojection errors.

On the opposite side, SRL and MRL provide much more

robust predictions in terms of reprojection error, but only

MRL achieves a reasonable stability in terms of 3D shape.

4.6. Random projections in MRL

Using multiple random views allows the MRL to regu-

larize the predictions of the 3D shape. Figure 6 shows that

the variations in the shape 3D error are smaller than a tenth

of millimeter and therefore can be considered negligible.

On the other hand, the computational cost grows linearly

with the number of views. From these results, we conclude

that using V = 2 is sufficient to train accurate and stable

models.

4.7. Generalization to other datasets.

In order to measure how each loss contributes to the gen-

eralization, we evaluate the five models from Section 4.4 on

the MICC [1] and the FaceWarehouse [4] datasets. Since

our training set only contains faces with neutral expressions,

we perform inference on the subset of images from each

MICC and FaceWarehouse without expressions. Moreover,

on MICC we select the most frontal frame for each sub-

ject in order to match the ground truth geometry as much

as possible. Once the 3D shape is predicted, it is aligned

towards the 3D ground truth using manually annotated 3D

landmarks and performing Iterative Closest Point (ICP), as

in [28]. We publish the selected frames and the manually

Figure 5: Shape 3D errors (top) and reprojection errors (bot-

tom) depending on camera angles.

Figure 6: Effect of the number of views on the models

trained using MRL.

annotated 3D landmarks in the provided repository to allow

reproducibility.

As it can be observed in Table 3, multiterm losses ob-

tain similar shape 3D errors to the ones reported in Table

2 and Figure 5. However, the gap in performance between

the multiterm losses and the hyperparameter-free losses has

been reduced in MICC and FaceWarehouse, specially for

GAL and MRL. This suggests that GAL and MRL gen-



Repro- Shape Camera Camera

Loss jection 3D translation rotation Time/epoch Epochs Trainings Total time

(pixels) (mm) (cm) (degrees) (minutes) (days)

Coarse [23] 11.1 2.3 3.0 3.0 6.8 120 20 11.3

XQT 11.6 2.5 3.3 3.1 6.9 120 20 11.5

GAL 17.1 2.8 3.0 3.1 9.2 120 1 0.8

SRL 3.3 9.0 12.6 51.7 9.3 500 1 3.2

MRL (2 views) 4.3 3.0 4.2 4.3 14.9 120 1 1.2

Table 2: Performance comparison of the models trained with the different losses. Top: multiterm losses with optimal

parameters found using Bayesian optimization. Bottom: Hyperparameter-free losses trained a single time.

Figure 7: Qualitative evaluation of the shape 3D errors on

cases from MICC and FaceWarehouse.

eralize better to unseen data distributions than the multi-

term losses. Figure 7 provides qualitative evidences that

the shape 3D errors are similar, specially within the models

trained with Coarse, XQT, GAL and MRL losses.

5. Conclusions

We have introduced three novel hyperparameter-free

losses for model-based monocular reconstruction. Our ex-

periments suggest that, by using these losses instead of the

MICC [1] FaceWarehouse [4]

Coarse [23] 2.2 2.2

XQT 2.3 2.2

GAL 2.2 2.2

SRL 2.9 2.8

MRL 2.2 2.3

Table 3: Shape 3D error in millimeters computed on MICC

and FaceWarehouse datasets.

multiterm ones, the complexity and the time spent on opti-

mizing the models is considerably reduced while achieving

comparable accuracy, robustness and generalization.

The SRL performs the best at minimizing the reprojec-

tion error but the lack of regularization produces unstable

3D shape predictions, specially for large poses. The GAL

loss is more stable in terms of shape 3D error against large

posses, similarly to the multiterm approaches, and it allows

to rapidly obtain competitive models. In contrast, the MRL

is a bit more slow than GAL but it shows much more sta-

bility in the reprojection error, making it suitable for appli-

cations that require fine-grained alignment between image

and geometry such as augmented reality.

Considering these advantages, we conclude that both

GAL and MRL are great alternatives to the multiterm losses

for learning model-based monocular reconstruction.
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