
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. X, NO. Y, MAY. 2019 1

SODALITE: SDN Wireless Backhauling for
Dense 4G/5G Small Cell Networks

August Betzler, Daniel Camps-Mur, Eduard Garcia-Villegas, Ilker Demirkol, and Joan Josep Aleixendri

Abstract—Dense deployments of Small Cells are key to fulfill
the capacity requirements of future 5G networks. However, two
roadblocks to the adoption of Small Cells are i) the limited avail-
ability and the cost of sites with wired backhaul resources, and ii)
the complexity to manage a dense deployment of wireless back-
haul nodes. Towards these challenges we propose SODALITE, a
novel system that applies Software Defined Networking (SDN) to
a wireless backhaul network. We present how SODALITE can be
integrated to 3GPP’s 4G and 5G architectures, and show the fea-
sibility of SODALITE through LTE network testbed experiments.
We substantiate the scalability of SODALITE through stochastic
studies using real-life traffic traces from an LTE network and
discuss the effects of cell densification and 5G system architecture
on these studies. Further, a reliable backhauling solution for
wireless links is introduced in SODALITE through SDN-enabled
mechanisms that are capable of reconfiguring the data plane
upon a link failure detection. Its reliability is shown through
experiments on a LTE network testbed, and studied thoroughly
via rigorous simulations and network emulator evaluations. As
a result, we claim that SODALITE is a promising carrier-grade
system to manage a wireless Small Cell backhaul.

Index Terms—4G/5G Small Cells, wireless backhaul, SDN, fast
re-route.

I. INTRODUCTION

ADDRESSING the expected increase in mobile data de-
mand is one of the main challenges of the mobile indus-

try. The innovations needed to provide the required capacity
are being developed as part of the future 5G, and complement-
ing macro-cell sites with massive deployment of indoor and
outdoor (street-level) Small Cells (SCs) is considered as the
most promising approach to increase area capacity.

The main challenge of this architecture is the scarcity of
backhaul resources. In particular, fiber deployment is unavail-
able in many SC sites and it is costly, making wireless SC
backhauling solutions essential. Fig. 1 depicts an example
dense SC deployment in an urban scenario with SCs installed
in lamp-posts, macro-cell sites at rooftop level, and a wireless
backhaul connecting SCs. However, due to the lossy and time-
variant nature of wireless links, a resilient backhauling solution
is necessary. Current deployments assume an over-provisioned
backhaul; however, in future dense SC deployments, the wire-
less backhaul is likely to become the bottleneck, if it relays
traffic from multiple SCs, or if spectrum is shared between
access and backhaul. As illustrated in Fig. 1, the wireless
backhaul segment will connect SCs to fiber attachment points,
typically located at the macro-cell site, or in a street cabinet.
Hence, in practice we expect a relatively small wireless
backhaul segment (< 5 hops as in [1]), whereby a given SC
could be connected to more than one fiber attachment point.

Several technologies can constitute the wireless back-
haul [2], such as: i) unlicensed mmWave based on

A. Betzler (august.betzler@i2cat.net), D. Camps-Mur, and JJ. Aleixendri
are with the i2CAT Foundation. E. Garcia-Villegas, and I. Demirkol are with
Universitat Politecnica de Catalunya, all in Barcelona, Spain.

Macro site

Core

Network

Core

Network

Small CellWireless

Backhaul switch

Wired

transport unit

Sm

Fig. 1. Wireless backhaul physical layout.

IEEE 802.11ad/ay, which provides multi Gbps data rates
at 50 meters, but requires Line of Sight (LoS), ii) lightly
licensed E-Band links providing similar capacities but with
longer ranges, iii) Sub-6 GHz technologies, which, if based
on IEEE 802.11ac, can provide hundreds of Mbps per-link
without LoS [3], and even higher rates with IEEE 802.11ax
[4], iv) proprietary point to multi-point solutions operating at
micro-wave frequencies, and v) a hybrid combination of those.

Further key requirements in the wireless SC backhaul are
flexibility and programmability, where an operator should
be able to re-configure the data plane, e.g., if new SCs
are installed, or switched off to reduce energy consumption.
Operators should also be able to enforce per-user policies in
the wireless backhaul in case of congestion, and the control
plane should quickly re-route traffic in case of link failures.

In this paper we present SODALITE, a system to implement
traffic engineering in the wireless SC backhaul, that addresses
the aforementioned requirements. SODALITE is built on Soft-
ware Defined Networking (SDN) technology to achieve the
flexibility requirement. Its architecture defines clear interfaces
to integrate with the 4G and 5G network architectures de-
fined by 3GPP. Thanks to an SDN-based control of backhaul
nodes, SODALITE supports the definition of per-user/per-
application/per-slice policies in the wireless transport segment.
The presented SODALITE architecture is implemented and
validated in an LTE network testbed using standard open-
source solutions such as Openflow (OF), showing its feasibil-
ity. Further, we validate the scalability of SODALITE through
stochastic evaluations using traffic traces obtained from an
operational LTE network. The projection of this scalability
study to future 5G networks is also presented.

The unreliable nature of the wireless links is another chal-
lenge of a wireless SC backhaul. To achieve a reliable solution
in such environments, SODALITE defines a hybrid SDN
control plane, which combines a centralized computation of
main and backup paths at the SDN controller, and a distributed
agent embedded in the SODALITE nodes to provide fast path
recovery. Two novel path allocation policies are evaluated

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. X, NO. Y, MAY. 2019 2

in terms of capacity and reliability using an event based
simulator. In addition, accurate recovery delays are evaluated
using a network emulator and a real LTE testbed. We rely on
4G devices to perform our evaluation for practical reasons, but
claim that our results are applicable to 5G.

To the best of our knowledge, SODALITE is the first SDN-
based wireless backhauling solution in the literature that: i)
is tightly integrated to 4G and 5G networks, ii) is validated
through real cellular network testbed experiments, and iii) has
its scalability proven using real network traces. Hence, we
posit that SODALITE is the first carrier-grade SDN-based
wireless backhauling solution, which promises to tackle the
small cell densification challenges.

The rest of this paper is organized as follows. Section II
positions the contributions of SODALITE with respect to
the related work. Section III describes the SODALITE archi-
tecture. Section IV describes the centralized path allocation
algorithms, and the distributed agent for fast path recovery.
Section V provides the scalability analysis. Section VI pro-
vides an experimental evaluation of SODALITE’s forwarding
and path recovery policies. Finally, VII concludes the paper.

II. RELATED WORK

Our work intersects with previous works in the areas of: i)
SC transport architecture, ii) SDN forwarding in multi-channel
mesh networks, and iii) fast recovery in wireless networks.

SC transport network architectures. The authors in [5]
present a high level architecture for 5G ultra dense SC
networks, and elaborate on the use of various wireless tech-
nologies in the fronthaul. The authors in [6] and [7] propose,
respectively, high level interfaces between a transport con-
troller and the 4G network to optimize resource allocation, and
between RAN and transport for access-backhaul coordination.
In [8], authors suggest to add GPRS Tunneling Protocol
(GTP) match/action capabilities to OF, although the focus is
to virtualize the data plane of a mobile gateway, and not the
implications of the GTP tunnels on the transport network.
In addition, the authors in [9] propose a low delay in-band
scheme to backhaul the X2 interface between LTE SCs, which
given its limited bandwidth is not applicable to the scenarios
addressed in this paper. SODALITE advances the state of the
art by defining in detail an interface between a transport SDN
controller and the control plane of a 4G or 5G network, and
by studying the scalability of such interface, in terms of rules
maintained in each node and signaling overhead, using real
traces obtained from an operational network.

SDN forwarding in multi-channel mesh networks. Applica-
tion of SDN in multi-hop wireless networks has been studied
in existing literature. For example, in [10], authors propose a
hybrid architecture comprising an OLSR daemon configuring a
control network and a centralized OF solution to configure the
data plane, while demonstrating a simple gateway balancing
policy. Work in [11] shows the separation of control and
data planes for an in-band control plane. In [12], authors
demonstrate the feasibility of using SDN switches in multi-
hop networks of constrained devices, while demonstrating
two different forwarding policies. The main contribution of
SODALITE in this area is the definition of two novel policies

that, unlike previous works, allocate primary and backup paths
for each backhaul flow, and dynamically optimize forwarding
according to measurements reported by backhaul nodes.

Fast link recovery. Solutions for failure recovery in wireless
mesh networks have been approached using distributed pro-
tocols. In SDN, fast local re-reroute is a recognized problem
that is often addressed with local fast failover groups, available
since OF 1.3, coupled with Bidirectional Forwarding Detection
(BFD). Fast failover group tables act as a local agent, asso-
ciating main and backup actions to a given match. BFD is a
keep-alive protocol that periodically checks link availability
and triggers the reconfiguration of the failover group table
when a link is broken. These schemes have been validated in
wired networks [13] and in a mm-wave wireless backhaul [14].
Our main contribution in this domain is a custom distributed
recovery agent that avoids the overhead and detection delays
introduced by BFD-like solutions, by instrumenting the MAC
layer to detect link failures.

III. SODALITE SYSTEM MODEL

In this section we introduce SODALITE’s design. We focus
our explanation on 5G, since it is the most complex case, but
notice that our design is backwards compatible to 4G.

A. A primer on 5G Architecture

5G introduces architectural changes both in the data and
control planes with respect to 4G. In the data plane, a 5G base
station is called gNB, and is composed of one Centralized
Unit (CU) and one or more Distributed Units (DUs). The
functionality split between CU and DU is set below the Packet
Data Convergence Protocol (PDCP) layer. Thus, IP flows are
transmitted from the core network to the CU, where the PDCP
is hosted, and the CU decides the most appropriate DU to
transmit each packet. The F1 interface is defined between CU
and DU, and is implemented using per-UE GTP tunnels. Like
in 4G, there is also an interface between CUs to facilitate
handover, interference coordination or dual-connectivity. This
interface is called Xn and is also based on GTP. Connecting the
gNB and the core network, there is a single type of data plane
element, namely the User Plane Function (UPF), which can be
instantiated at multiple locations. The UPF controls the flow
of packets, i.e. PDU session, between the gNB and the core
network. The interface between the gNB and the UPF is called
N3 and is again based on per-UE GTP tunnels. The left part of
Fig. 2 depicts an example 5G data plane. It is worth noting that
all interfaces between data-plane elements are based on GTP,
and one GTP tunnel is maintained for each unidirectional PDU
session instantiated by a UE. Finally, we envision two possible
scenarios to deploy SCs in 5G: i) the physical SCs embedding
both CU and DU, thus interfacing with the core network via
N3, or ii) having the CU instantiated in some edge computing
facility, e.g. on a macro-cell site, coordinating through the F1
interface a cluster of SCs with only DU functionalities.

The 5G control plane adopts a micro-service architecture,
where control plane functions are software-based instances
that offer services to each other. In this paper we refer only
to the relevant functions of Access and Mobility Manage-
ment Function (AMF) and the Session Management Function

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. X, NO. Y, MAY. 2019 3

(SMF). The AMF tracks the position of the UE, relocates
data-plane tunnels upon handover, and supports authentication
functions. The AMF communicates with the gNB through the
N2 interface. The SMF is in charge of managing the flow of
packets between the gNB and the core network for each PDU
session, and interacts with the UPF through the N4 interface.
These control plane functions are illustrated in the right part of
Fig. 2. The interested reader is referred to [15] for a detailed
description of the 5G control plane.

Another aspect of 5G, relevant to the analysis of signaling
conducted in Section V-B, is the new Radio Resource Control
(RRC) Inactive State Inactive state, added to 4G’s RRC Idle
and Connected states. In 4G, a UE can be in RRC Connected,
where end to end bearers are established between the UE and
the core network, or in RRC Idle, with no established bearers
and with the core network being able to locate the UE only in
terms of tracking areas. Whenever a new session starts, the UE
transitions from RRC Idle to RRC Connected, which entails
a fair amount of signaling. In order to reduce this signaling,
5G has introduced the RRC Inactive state, which behaves like
RRC Idle to the eyes of the UE, and like RRC Connected for
the core network, i.e. N3 GTP tunnels are established. Thus,
in RRC Inactive, the RAN -more specifically, the CU of an
anchor gNB- tracks the location of the UE in terms of RAN-
based Notification Areas (RNAs). A UE in RRC Connected
can transition either to RRC Idle or to RRC Inactive, but
once in RRC Idle it can only transition to RRC Connected
[16]. When the UE transitions to RRC Connected from RRC
Inactive, the CU in the serving gNB may retrieve the UE
context from the CU in the last serving gNB and, if needed,
request a N3 path switch to the AMF. If an RRC Inactive
UE moves only between DUs controlled by the same CU,
then no N3 path update is necessary, but a new F1 session is
established between the new DU and the CU.

B. SODALITE system model

Fig. 2 illustrates the SODALITE model, where 5G SCs
are connected to SODALITE nodes that provide wireless
transport connectivity. SODALITE can be used to wirelessly
backhaul the F1 interface, connecting DUs to a centralized
CU, or the N3 interface, connecting SCs implementing DU
and CU to UPFs. SODALITE nodes are grouped in control
plane areas, and there is a logically centralized SODALITE
controller in charge of performing traffic engineering for each
area. In particular, the controller programs SODALITE nodes
to allocate backhaul paths between SCs and gateways, where
gateways provide connectivity between a control plane area
and the rest of the transport network. Control plane areas in
SODALITE are designed based on the geography of a given
SC deployment. In practice, a SODALITE area is expected to
have a reduced number of hops (e.g. < 5), and to incorporate
more than one gateway . Physically, the SODALITE controller
is a software function that can run in the core but, ideally, it
would be placed in an edge location, closer to the wireless
nodes. Note that the SODALITE control areas are transparent
to the RAN network, i.e. gNBs connected to SODALITE
nodes in different control plane areas can still establish Xn
interfaces for handover and interference coordination. The

Transport Network

SWBH

AMF

UPF

SODALITE CTRL

SODALITE CTRL

SODALITE CTRL

SDN

interface

Internet

Data

Center

SWBH: SODALITE Wireless Backhaul

SODALITE gateway

UE

Small Cell (gNB)
SODALITE control

plane area

SODALITE node

SMF

UPF

Data Network

UPF UPF N4

N2

N9

UE

N3

CONTROL PLANEDATA PLANE

Rest of

5G Core

N11

N6

gNB-CUgNB-CU

gNB-DU

gNB-DUF1

gNB-DU

F1

Xn

gNB-DU

F1

MN2BH

interfaceN3

Fig. 2. SODALITE system model.

interested reader is referred to [17] for a detailed discussion
of an SDN hierarchical and multi-area control plane that can
be applied to a large-scale SODALITE deployment.

Central to the SODALITE architecture is the definition of
a backhaul flow. In SODALITE, the controller defines flows
using the Tunnel End Point ID (TEID) included in the GTP
header. As seen in the previous section, GTP is the common
tunneling protocol used between 5G data plane entities, and
one GTP tunnel is maintained for each PDU session; thus,
SODALITE also supports 4G networks, where GTP is used
to establish S1 bearers between SCs and the core. Note that
this differs completely from the behavior of current backhaul
networks, where all the traffic from a given base station
is aggregated in a single backhaul path. The main benefit
provided by SODALITE is thus that an operator is now able to
implement in the wireless backhaul, per-subscriber, looking at
the GTP TEID, or per-application policies, again by correlating
the output of a DPI1 engine in the core network with the GTP
TEID. Examples of such policies include forwarding traffic
from prioritized subscribers (or applications) through low
delay paths, or allocating flows to the proper wireless transport
technologies (e.g., mmWave or Sub-6) according to different
delay/bandwidth requirements. SDN is key to dynamically
enforce policies in the wireless backhaul and, together with
the fine-grained policing enabled by SODALITE, it enables
slicing in 5G transport networks.

Fig. 2 depicts two novel interfaces defined in SODALITE:
an SDN interface between the SODALITE controller and
SODALITE nodes, and an interface between the Mobile
Network and the SODALITE controller (MN2BH interface).

C. SDN Interface
The interface between the SODALITE controller and the

SDN agent in the SODALITE nodes is based on Openflow
(OF) [18], with the custom extensions described next. First,
the port statistics reported by OF are extended with param-
eters specific to the wireless technology being used by the
SODALITE nodes. Without loss of generality, we assume

1Deep Packet Inspection (DPI) can be used to identify the applications
carried within a PDU Session/LTE bearer.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. X, NO. Y, MAY. 2019 4

TABLE I
OVERVIEW OF THE OF STATISTICS REPORTED BY SODALITE NODES

Statistic Explanation

Wireless Port Statistics:

Channel Number Operational channel of a wireless interface
Channel Usage Occupancy of a wireless channel (0 ≤ u ≤ 1)
Signal Strength Peer RSSI value measured by the wireless port
Tx/Rx Bitrate Physical data rate used over a certain link
Tx/Rx Bytes Bytes transmitted/received through this port
Tx/Rx Packets Packets transmitted/received through this port

Flow Statistics:

Tx/Rx Bytes Bytes transmitted/received via a flow
Tx/Rx Packets Packets transmitted/received by a flow

hereafter that SODALITE nodes and gateways embed multiple
IEEE 802.11 interfaces, and implement the SDN architecture
presented in [19]. In this way, each potential destination
reachable through a wireless interface is exposed through a
different virtual interface connected to the OF agent. In this
architecture, wireless-specific parameters reported by the OF
port statistics are defined in Table I.

In order to provide per-subscriber/application awareness,
OF is extended to support an additional match type based
on the GTP TEID. Thus, a SODALITE controller can define
unidirectional flows in the wireless backhaul identifying the
corresponding sessions in the Xn, F1 and N3 interfaces for
5G, or in the S1 interface in a 4G network.

D. Mobile Network to Backhaul Interface (MN2BH)

In order to optimize resources in the various network ele-
ments (DU, CU, UPF), the UE context and the corresponding
data connections in the Xn, F1 and N3 interfaces are main-
tained when the UE is in RRC Connected state, and partially
released when the UE is in RRC Idle or RRC Inactive. The
fundamental idea behind SODALITE is to instantiate/release
per-UE backhaul flows in the wireless transport following
instantiation/release of (per-UE) F1 or N3 connections. Con-
sequently, an interface is required between the SODALITE
controller and the 5G/4G Mobile Network, which is aware of
the RRC state of each UE. We refer to this interface as the
Mobile Network to Backhaul (MN2BH) interface.

In 5G, when the UE transitions from RRC Idle to RRC
Connected, the SMF is the entity in charge of establishing the
corresponding N3 connection. Thus, the SODALITE controller
interfaces with the SMF. However, if the UE transitions from
RRC Inactive to RRC Connected, the RAN (CU in serving
gNB) is in charge of reestablishing the F1 interface. Hence,
in an implementation where CU and DU are separated and
SODALITE is used as wireless transport for the F1 interface,
the SODALITE controller needs to interface with the CUs of
a given area. In 4G, the Mobility Management Entity (MME)
is in charge of establishing and releasing the S1 bearer when
the UE transitions between RRC Connected and RRC Idle.
Therefore, in 4G, the SODALITE controller would interface
with the MME. A complete definition of all these interfaces is
out of the scope of this paper. However, as a matter of example,
we describe next the MN2BH interface between a SODALITE
controller and the SMF for the case where SCs implement

collocated CU and DU functions and SODALITE is used as
wireless transport for the N3 interface. Similar interfaces can
be easily derived from the provided example.

Fig. 3 provides an example description of some of the
procedures executed over the MN2BH interface, which is
divided in three phases. First, the UE transitions from RRC
Idle to RRC Connected upon the arrival of an uplink packet.
The gNB notifies the AMF that the UE is in RRC Connected,
and then the AMF initiates an authentication procedure with
the UE. Once the UE is authenticated, the AMF starts a
PDU session modification with the appropriate SMF. The
SMF communicates the TEID used for the uplink part of the
N3 interface (N3-UPF-TEID), and the involved gNB to the
SODALITE controller. With this information, the SODALITE
controller runs its path allocation engine and programs the
newly computed path in the affected SODALITE nodes (c.f.
Fig. 2). Then, the controller notifies the SMF that the transport
path for the uplink N3 interface is up, after which the SMF
responds to the PDU session request from the AMF, and the
AMF notifies the gNB about the uplink GTP TEID.

After the uplink path is established (phase 2 in Fig. 3),
the gNB assigns a TEID for the downlink path (N3-gNB-
TEID) and notifies the AMF. Consequently, the AMF initiates
a PDU session modification with the SMF. The SMF notifies
the SODALITE controller, which proceeds to instantiate a
downlink path. The UPF is assumed to have connectivity
to all the gateways through the transport network. Once the
downlink transport path is available, the SMF notifies the
UPF and traffic begins to flow in the downlink direction. To
minimize the call setup delay, a SODALITE controller could
proactively pre-compute paths between gNBs and gateways in
its control area, as explained later in Section IV-A.

In the third phase of Fig. 3, the inactivity timeout in the gNB
triggers a transition to RRC Idle, for which the gNB requests
the AMF to release the UE context, thus saving resources. The
gNB then releases the radio resources and the UE transitions
to RRC Idle. Following, the AMF requests the SMF to end
the PDU session. The SMF notifies the SODALITE controller,
and the downlink (N3-gNB-TEID) and uplink (N3-UPF-TEID)
backhaul flows associated to that UE are released.

In scenarios using SODALITE as wireless transport for the
F1 interface, a similar procedure would be established between
the gNB CU and the SODALITE controller when the UE
transitions between RRC Connected and RRC Inactive/Idle.

E. Impact of Transport Security on SODALITE

In 4G, and presumably also in 5G, IPsec can be used to
encrypt communications between the gNB (SCs in our case),
and an IPsec gateway in the core network. With IPsec, the
GTP header is encrypted and, hence, SODALITE nodes would
have no access to the GTP TEID, as required in the proposed
architecture. However, SODALITE nodes support encryption
at layer 2, rendering IPsec unnecessary within the SODALITE
control area. IPsec may still be used between the area gateways
and the core network if the remaining portion of the network
is deemed insecure. We posit that operating SODALITE very
close to the edge of the network, and given the performance

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. X, NO. Y, MAY. 2019 5

��������	

���

�����������	��
����

��������	�
���

	��	�����������
����������
��

	���

���������������������

�� ��
		�����

�� ��
		�����

���

	��

 ��
����
��� ��������	
������

�� �
���

�� �
���

��������

�

�

�

��
�
��� ����

!����"��#�
"�$�	�

	��

����� ��
�
���������

��%�&��'!������������"�����

	

�(�"�""

	��"��#�
"�$�	�

����� ���)�
*+�,��%����!-�.�� ��/

�����"�����

	

�����������	�
����
����

����� ���)�
* "����"" ,.*0��/

����� ��
�
����������

����������%����!

���������.�� ���!

����� ��
�
���������

�(�"�""

	�$
�
)
���

	

!'1��������������������

����� !��)�
* "����"" ,.*0��/

����� !��)�
*+�,.�� ���!-�.�� ��/

�����"�����

	

�����������	�
���
����

����� ��
�
����������

��������	
	�� �
�
��
�

�����������	�� �������

�
�
�
 �������
��

�� �
���

����
	��2�������"����34

������� ��������

����� ��
�
���������

�(�"�""

	�$
�
)
���

	

����� ��
�
����������

!��4���5!��)�
*"+,.��5��%6���!/

�����������

�� �
���

Fig. 3. Exemplary operation of the MN2BH interface when a UE moves from RRC Idle to RRC Connected and viceversa. Highlighted in purple are the
message flows between the SODALITE controller and the SMF.

provided by current Network Processing Units (NPUs), per-
node encryption is feasible.

IV. SODALITE HYBRID FORWARDING POLICIES

To deliver a carrier-grade service, SODALITE’s SDN archi-
tecture is composed of two sub-systems. First, a centralized
proactive computation of per-flow main and backup paths.
Second, a fast recovery agent in the SODALITE nodes that
quickly reconfigures forwarding upon detecting a link failure.
Next, we describe these sub-systems and the mechanisms used
to identify link failures and trigger the fast recovery agent.

A. Centralized Computation of Main and Backup Paths
The left part of Fig. 4 illustrates the physical architecture

of a SODALITE control area, where we can see SODALITE
nodes having one or more physical radio interfaces (phy. ifc).
Each physical radio interface of a SODALITE node is point
to multi-point (P2MP) in nature, and operates on a predefined
channel. Over each physical radio interface, a set of virtual
point to point (P2P) interfaces are instantiated representing
each peer node physically reachable through the interface (de-
noted as virt. ifc in Fig. 4). The wireless interface virtualization
approach used in SODALITE is described in detail in [19], and
ensures that as long as there is physical connectivity between
two nodes, a corresponding virtual interface will be attached
to the local SDN agent. The local SDN agent is in charge of
packet forwarding in the data plane, and is programmed by the
SODALITE area controller. The middle part of Fig. 4 describes
the logical network model maintained by the controller, which
corresponds to the physical network on the left.

Automatic network topology discovery is enabled using
traditional OF mechanisms. Consequently, the controller main-
tains a set N = {n1, ...,nN } of nodes in the network, and

�
�

� �

�

�

�

�

�����	
��

������� ������

������

������

��
��

�

��������

	�
������

Fig. 4. Physical network with SDN architecture showing detail for one
SODALITE node (left). Network model in the SODALITE controller (mid-
dle). Interference matrix (right)

a set L = {l1, ..., lM } of unidirectional links between nodes.
Table II depicts the state that the controller maintains for
each link, which is periodically updated through OF port
statistics (c.f. Section III-C). Based on the discovered topology,
the SODALITE controller derives an interference matrix,
I = {iq,m ∈ {0,1} | 1 ≤ q,m ≤ M} depicted on the right
hand side of Fig. 4 , capturing potential interference between
backhaul links. For the case of sub-6 GHz radios, which is
the main case studied in this paper, iq,m = 1 if the links share
the same channel, i.e. chq = chm, and the origin nodes of the
two links are the same, or are one hop away in the network.

The main goal of the SODALITE controller is to compute,
for each transport flow, a main and a backup path connecting
the gNB (or eNB) where the UE is associated, to a gateway
in the SODALITE control area (recall that flows are defined
as unidirectional). Transport flows are computed whenever a
UE transitions to RRC Connected (c.f. Section III-D), and
they are updated when congestion is detected in the network
(more details provided later). For each flow, the SODALITE
controller uses the metric µPx to evaluate the potential effect

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. X, NO. Y, MAY. 2019 6

TABLE II
STATE KEPT BY THE SODALITE CONTROLLER FOR EACH LINK IN L

Parameter Description

r EWMA of physical data rate (bps)
ρ EWMA of carried traffic (bps)

MTU MTU size of the radio interface
ch Configured channel in the radio interface
no Origin (transmitting) node for this link
nr Remote (receiving) node for this link
ho Origin (transmitting) physical interface for this link
hr Remote (receiving) physical interface for this link
u EWMA of utilization level sensed by ho (0 ≤ u ≤ 1)
F Set of flows currently being forwarded through this link

of selecting a main path Px on the overall state of the wireless
backhaul, and the metric δ(Px,Py) that measures the similarity
between paths Px , Py , in order to select the best backup paths.

The vector µ = {u1, ...,uM | 0 ≤ ui ≤ 1} captures the
network state in terms of link utilization, where ui is the
utilization of li ∈ L (c.f. Table II). Note that µ is periodically
updated by the OF statistics received from SODALITE nodes.
The vector µ is an internal representation of the network
state in the SODALITE controller that allows the controller
to analyze how different path allocations would impact the
network state. Adopting this approach allows SODALITE to
design path allocation algorithms that are reactive in nature,
i.e. they continually measure the network state and update the
computed paths accordingly. To understand how a potential
path allocation for a new flow affects µ, we first define a path
as a vector P = {p1, ..., pM | pi ∈ {0,1}}, where pi = 1 if li
belongs to the path. Considering that a new flow f with traffic
load of ρ f bps needs to be allocated, it is possible to compute
the level of utilization introduced by this flow when traversing
link li as ∆ f (li) =

ρ f

MTUi
(
MTUi+POH

ri
+ AOH). POH and AOH are

respectively the per-packet header overhead, measured in bits,
and the channel access related overhead, measured in seconds,
and ri is the average physical data rate used in li; information
already available at the controller (c.f. Table II). Consequently,
the SODALITE controller estimates the link utilization in the
wireless backhaul if f is allocated through path Px as

µPx = µ + I ×
(
Px ◦ ∆ f (L)

)
, (1)

where ∆ f (L) = {∆ f (l1), . . . ,∆ f (lM)} and ◦ is the Hadamard
product (i.e., element-wise product) for two vectors. Hence,
the SODALITE controller can use the metric µPx to compare
the impact of allocating different main paths to a given flow.

Having defined a metric to compare the impact of main
paths, we now define the metric used by the controller to
evaluate different potential backup paths Py given a main
path Px . Intuitively, in order to increase reliability we should
choose backup paths to be as disjoint as possible from the main
path. Note that backup paths in SODALITE are proactively
set up to allow for a quick reaction to failure, but the use of
a backup path is only transient, because after the controller
discovers through regular topology updates that a link has
failed, an overall path re-allocation can be performed as we
will discuss later. We denote δ(Px,Py) to be the measure of

similarity between paths Px and Py and define it as

δ(Px,Py) = λ
|ho(Px) ∩ ho(Py)|

|ho(Px)|
+ (1− λ)

|no(Px) ∩ no(Py)|

|no(Px)|
,

(2)
where ho(Pj) and no(Pj) are, respectively, the set of trans-
mitting physical radio interfaces and the set of transmitting
nodes of the links traversed by Pj (c.f. Table II). Note that,
in general, 0 ≤ δ(Px,Py) ≤ 1, and δ(Px,Py) = 1 when Py

contains all nodes and interfaces found in Px . Conversely, if
the two paths use completely disjoint sets of radio interfaces
and nodes, δ(Px,Py) = 0. The constant λ allows to trade off
the importance of being disjoint in terms of radio interfaces or
nodes, which is related to the failure probability of each com-
ponent. Based on those two metrics, we define two different
policies for path allocation.

Sequential Policy: in this policy, the main and backup paths
are allocated sequentially. Given a set of K possible paths
between two nodes, the controller first allocates the main path
as the path that minimizes the maximum link utilization in
the network. Then, the controller searches the remaining set
of K − 1 paths and allocates as backup path the path that
minimizes δ(Px,Py). Formally, the two paths are found as

Pmain = arg min
Px ∈K

max(µPx), (3a)

Pbackup = arg min
Py ∈K\{Pmain }

δPmain,Py). (3b)

The sequential policy minimizes the network utilization
incurred by the main path, at the cost of selecting sub-
optimal backup paths. To have more flexibility in addressing
the trade-off between the performance of the main path, and
the reliability of the backup path we introduce the joint policy.

Joint Policy: A joint allocation of the main and backup paths
is considered through a multi-objective optimization problem
controlled by a weight parameter 0 ≤ γ ≤ 1 as follows

(Pmain, Pbackup) = arg min
(x,y)

(γmax(µPx)

+(1 − γ)δ(Px,Py)), (4)

where Px ∈ K and Py ∈ K \ {Px}.
In order to find the optimal allocation for the sequential

and the joint policies, the set of acyclic paths between the
source and destination nodes should be considered. However,
the number of simple paths between two nodes grows ex-
ponentially with the size of the network, which renders this
approach impractical. For example, the number of simple paths
between two vertices for a complete graph of n nodes is
K = (n− 2)!+

∑n−2
j=1

(n−2
j

) j!
n−j−1 . In addition, once the set of K

paths is computed, the sequential policy has a complexity of
O(2K) and the joint policy of O(K2).

To speed up the computation of the candidate K paths we
propose the following heuristic. Given a source-destination
tuple, the SODALITE controller computes a set of K-shortest
paths using the WCETT metric [20]. This metric weighs two
factors, the sum of the Expected Transmission Time (ETT)
of the links across the path, and a factor that penalizes using
multiple links in the same channel. Hence, the WCETT metric
results in a reduced set of paths that are good in terms of

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. X, NO. Y, MAY. 2019 7

minimizing congestion, i.e. max(µPx). Alternative heuristics
to pre-select the candidate K paths could be considered if
per-application policies are in place, for example allowing
only shorter paths in K if delay constrained applications are
considered. In Section VI, we evaluate the effect of this
heuristic on the two defined policies.

Finally, we provide a few remarks on the situations that
trigger a new path allocation in the SODALITE controller.
The first situation is when the controller is notified by the
mobile network that a new PDU session with a given GTP
TEID is being provisioned (c.f. Section III-D), which triggers
the configuration of transport flows for the uplink (UL) and
downlink (DL) directions. Given an initial flow setup, the
controller needs to make an assumption on the traffic load
of the flow to be allocated ρ f , for which SODALITE uses the
average of the other flows currently being transmitted through
the network. Note, though, that the load injected by each flow
into the network varies over time, which can result in some
link being congested, i.e. the utilization level of a link exceeds
a pre-configured threshold ui > uTHR. The controller detects
these congestion events through periodic OF port statistics.
Upon detecting a congestion event , the controller applies a
flow reallocation policy to mitigate the congestion event. The
heuristic implemented in SODALITE is described as follows.

On a congested link li , the controller finds the set of
flows F = { f1, ..., fF } traversing link li (c.f. Table II), sorts
them in decreasing order of load (i.e. according to ρ fj),
and loops through F trying to sequentially reallocate each
fj ∈ F until an allocation is found where the congestion
situation is removed, i.e. max(µ) < uTHR. To reallocate a
flow, including main and backup paths, the controller first
removes from µ the effect of the current path Px traversed
by fj , i.e. µ0 = µ − I ×

(
Px ◦ ∆ fj (L)

)
, and then re-runs the

procedure described above according to the policy being used.
The interested reader is referred to [12] that describes the
conditions that may trigger a new backhaul path computation,
albeit for a simplified policy that does not support allocation
of backup paths.

B. Distributed Fast Path Recovery via Fast Local Link Reroute
(FLRR) Agent

In addition to the SDN agent in charge of packet forwarding,
SODALITE nodes embed a second agent in charge of fast
path recovery in case of link failure. This agent is henceforth
referred to as the Fast Local Link Reroute (FLRR) agent.

After a main and backup path have been determined, the
controller assigns one of these five logical roles to the nodes
along the paths: common nodes, switch nodes, intermediate
nodes, next-to-merge (NTM) nodes, and destination nodes.
The roles are assigned as follows:

1) A node where the main and backup paths branch-off is
defined to be a switch node.

2) A node which is the origin of a link common to the
main and backup paths is identified as common node.

3) Nodes originating only a main path link that connect
to a common or switch node, i.e. where the main and
backup path merge, are defined to be NTM nodes.

Switch

Node

Inter.

Node

Inter.

Node

0

0

1

1

NTM

Node

Dest.

Node

Inter.

Node

0

1

Comm.

Node

Fig. 5. Example topology with roles assigned by the controller depending
on their position on main and backup paths, along with the different FLRR
rules.

4) Nodes that originate links exclusively for the main or
the backup path, but are not NTM nodes, are identified
as intermediate nodes.

5) The node were the main/backup paths terminate is
identified as destination node.

Once the roles have been assigned to the nodes on the main
and backup paths, the controller proceeds with the installation
of FLRR-specific rules in the SDN agent of each node involved
in both paths. There exist four different rules in FLRR: i)
forwarding rules, present in all FLRR nodes, ii) regress rules,
present only in intermediate nodes of the main path, iii)
crankback rules, pushed locally by the FLRR agent on nodes
that either detect a link break or an active regress rule, as
explained later, and iv) switch rules, present only in switch
nodes. Each of these rules performs matching on two fields:
the GTP TEID and the input port wherein the data packet
entered the SDN agent. While the GTP TEID is the key
identifier for different end-to-end data flows, the input port is
necessary for FLRR to take autonomous recovery decisions.

Forwarding rules are used for the main and backup paths,
pointing towards a path’s destination, i.e., the gateway or entry
nodes for up- and down-streams, respectively. Forwarding
rules match on the input port through which packets enter
the switch from the previous hop and they output the packets
via the port that connects with the next hop in the path. Note
that at a destination node a forwarding rule hands the traffic
over to a local output port, e.g. the physical interface that
connects with the SC or the wired network. Crankback rules
are of temporary nature: once the FLRR agent of a node on
the main path detects a link break on its originating link, it
replaces the forwarding rule with a crankback rule. It defines
the crankback rule by updating the output port of a forwarding
rule to be the same as the input port. This reverts the traffic
direction and makes packets return to the previous hop.

On the way back, either a regress rule or a switch rule
intercepts the regressing traffic, depending on whether the
previous hop is an intermediate or a switch node, respectively.
A regress rule forwards regressing traffic (i.e. traffic that
traverses an intermediate node in opposite direction) back
towards the preceding node on the path. Once a regress rule
detects matching packets, the FLRR agent replaces the existing
forwarding rule for the same GTP TEID with a crankback
rule, which prevents forwarding new packets in the direction
of the broken link. When regressing traffic hits a node with a

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. X, NO. Y, MAY. 2019 8

switch rule, the traffic is redirected towards the backup path to
reestablish communication. As soon as packets start matching
the switch rule on a node, the FLRR agent modifies the output
port of the original forwarding rule with the same GTP TEID
to point towards the backup path.

Fig. 5 shows an example topology that highlights the roles
along with the corresponding FLRR rules. Continuous lines
show proactively installed rules. Dashed lines indicate how
traffic would flow if a link break is detected on the main path,
whereas the dotted lines indicate crankback rules that replace
the original forwarding rules. Note that an arbitrary topology
could include further common, intermediate, switch or NTM
nodes. In our implementation, the FLRR agent is a user space
program that monitors and configures the SDN agent.

C. Link Break Detection

The dynamics of link failures in wireless networks are
more complex than in wired networks. For example, a link
could temporarily fail due to congestion, an obstacle (mmWave
links), or an energy conserving module in the SDN controller
could decide to switch off a SODALITE node.

Traditionally, detection of broken links between adjacent
nodes use some sort of keep-alive protocol, whereby a link
failure is assumed after a given number of consecutive control
messages are lost. Thus, there is an inherent trade-off between
detection delay and signaling overhead. Maximizing the band-
width available to user plane transmissions is especially critical
in wireless backhaul networks, hence, SODALITE proposes a
cross-layer scheme to detect link breaks, where existing MAC
signaling is re-used for this purpose. The detailed description
that follows is based on IEEE 802.11 radios, but similar
principles could be applied to other radio technologies.

IEEE 802.11 radios periodically generate beacon frames
to facilitate tasks such as node discovery. SODALITE nodes
interpret the transmission of beacon frames from peer nodes
as keep-alive messages for the purpose of maintaining link
reliability information. If a certain number of consecutive
beacons are lost, or if they are received with RSSI below
a configured threshold, the radio notifies the FLRR agent
that the corresponding link is broken. Notice that the link
break detection time can be decreased by reducing the Beacon
Interval (BI), which, however, increases signaling overhead.
To resolve this trade-off, SODALITE also exploits another
signal from the MAC layer to trigger a link break detection.
If a packet transmitted from a node to its peer exceeds a
configured number of retransmissions, that link is consid-
ered broken and the FLRR agent is notified. The threshold
on the retransmission counter could be provisioned by the
SODALITE controller to the FLRR agent.

The proposed hybrid scheme addresses the trade-off be-
tween detection time and signaling overhead in the following
way. When there is no traffic flowing between two nodes, and
therefore quick detection is not critical, a link break is detected
through a consecutive number of missed beacons, which may
result in increased detection times if a large BI is used. On
the other hand, when traffic is flowing between two nodes
and link break detection time is critical to prevent packet loss,

an excessive number of retransmissions is the signal used to
quickly notify the FLRR agent about a link break.

V. SCALABILITY ANALYSIS

SODALITE introduces new signaling to set up and tear
down backhaul flows, and requires its nodes to maintain per-
session state. Therefore, in this section we study the scalability
properties of our architecture, based on network measurements
gathered from an operational LTE network consisting of 10
eNBs and 33 cells, during a period of 30 days. The possible
effect of cell densification or system architecture in 5G on the
scalability results are discussed in each subsection.
A. Dimensioning Flow Tables in the SODALITE Nodes

In the collected traces, an Active UE corresponds to a UE
having one Signaling Radio Bearer (SRB) and at least one
non-guaranteed bitrate Data Radio Bearer (DRB) successfully
configured. In our measurement campaign UEs have at most
one Best Effort DRB, which aggregates all Internet traffic.
Hence, we can use the number of active UEs in a cell to
estimate the number of SODALITE backhaul flows originating
from or ending at that cell. In practical deployments though,
UEs could also have a second DRB for VoLTE services, which
could be modelled adding a 2x factor to the results presented in
this section. To calculate the number of rules at a SODALITE
node, we consider the worst case of 3 rules per flow, which
corresponds to the switch nodes, as well as intermediate nodes
with 2 rules on the main path and 1 rule on the backup path.
Considering one UL and one DL flow for each active UE, for
n UEs being backhauled, 6n rules need to be maintained at
any SODALITE node traversed.

To dimension the number of rules maintained at peak traffic
hours, we first find the busy hour from our LTE traces, to then
generate an empirical CDF of the number of active UEs per
cell during the busy hour. We then derive numerically the CDF
of the number of rules that a SODALITE node would carry for
a given number of cells as follows. First, we generate randomly
the number of flows for each cell (by using the CDF of number
of active UE), then sum these numbers and multiply it by 6
to find the number of rules for these random samples. After
producing 100,000 tuples of random number of flows for all
cells, we generate the corresponding CDF for the number of
rules at a SODALITE node, which is shown in Fig. 6.

Dense urban 5G deployments are expected to aggregate
no more than 10 SCs through a wireless backhaul [1]; in
Fig. 6, we show an evaluation with up to 20 aggregated
cells. The CDF generated from the traces for the number
of rules per cell aligns with the 1 cell case, which validates
the numerical method used for the evaluations. For all the
considered cases, the SODALITE nodes are hence expected
to have less than 2K rules. This number is lower than the
hardware capacity of commodity switches, which typically
rely on Ternary Content Addressable Memory (TCAM) to
implement the flow tables, allowing 2K to 24K rules [21], and
can also be easily accommodated by software switches. These
results show that SODALITE can be implemented on current
LTE systems even dropping the assumption of one flow per
UE, and should scale to 5G deployments, without any capacity
issues.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. X, NO. Y, MAY. 2019 9

0 500 1000 1500 2000 2500
0

0.5

1

#of Rules

C
D

F
LTE trace CDF

1 cell aggr.

5 cell aggr.

10 cell aggr.

20 cell aggr.

Fig. 6. CDF of number of rules at a transport node carrying flows of a given
number of cell.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

1.5

2.0

2.5

3.0

3.5

0 2000 2500

P
o
n

S
ig

n
al

in
g
 t

h
ro

u
g
h
p

u
t

p
er

 c
el

l
[k

b
p

s]

500 1000 1500

 [#users within coverage of the cell]

Avg Sig 90% Sig 95% Sig

Avg Pon 90% Pon 95% Pon

Fig. 7. Signaling per cell and Pon for different combinations of Us , Ua

and Dh

B. Control Plane Overhead in SODALITE

In order to assess the amount of signaling traffic necessary
to keep an updated rule set in all the SODALITE nodes, we
first model each user as an ON-OFF state machine. From
the point of view of the backhaul control, a UE in ON state
represents multiple entries in the forwarding table of a set of
SODALITE nodes (cf. Section IV) while, for UEs in the OFF
state, no record is kept. Each transition between the two states
entails the generation of OF messages from the controller to
those SODALITE nodes participating in the forwarding of
the affected flows. Transitions from ON to OFF trigger the
signaling that will remove any reference to the inactive UE
from the flow tables, while OFF to ON transitions require the
creation of new entries to handle the new UE’s flows.

Therefore, knowing the transition rates between ON and
OFF states for an average user, along with the total number of
users present in a cell, we can provide a good estimation of the
amount of signaling generated in the proposed architecture.
According to this model, ON to OFF transitions for a UE
occur at an average rate β (i.e. the average time a UE’s flows
are active in the backhaul is 1/β). The average OFF to ON
transition rate is α (i.e. the average time in OFF state is 1/α).

As in the previous section, we consider the worst case where
an OFF→ON transition requires six new rules (size of OF
packet measured at IP layer is Lon ≈ 620B) to be forwarded to
all involved nodes, while an ON→OFF transition requires only
one message (Lof f ≈ 150B) to remove those rules. Therefore,
the average amount of backhaul signaling received by each
switch, for each cell aggregated on that switch’s path is

ρSig = Us (Pof f α Lon + Pon β Lof f), (5)

where Us represents the total number of ON-OFF machines
on each cell (i.e. number of subscribers covered by a cell),

Pon and Pof f are the steady state probabilities of finding the
user in ON and OFF states, respectively (see (6)).

Note that Us is not the number of simultaneously active UEs
per cell, here denoted as Ua. While Ua can be directly obtained
by analyzing the network traces (on average, Ua =11.8 during
the busy hour; 23.0 at CDF 95%), unfortunately, the real value
of Us is unknown. We will study values of Us between 200
and 2500 to later prove that the real value of Us has minimal
impact on (5). Following the ON-OFF model, Ua (the average
number of active UEs in a cell covering a population of Us

subscribers) is just Ua = UsPon, where

Pon = α/(α + β), Pof f = 1 − Pon. (6)

Also note that, for LTE and assuming static users, ON and
OFF states would directly map to RRC Connected and RRC
Idle, respectively. In 5G, the correspondence to connected,
idle and inactive states depends on the interface over which
SODALITE works (F1 or N3). Although our analysis applies
both to 4G and 5G, it is particularized to 4G given the nature of
our traces and the fact that it represents an upper bound (note
that 5G’s inactive state reduces the impact of UE transitions).

With mobility, an active UE performing a handover (involv-
ing a change in the backhaul path) represents an ON to OFF
transition for the transport nodes in the old path and an OFF
to ON transition for the nodes in the new path, even though
the UE remains in RRC Connected state during the whole
process. Hence, in order to obtain a value for α that includes
the effects of mobility, we measure the average rate at which
new DRBs are established in a cell during a busy hour (Dh),
since it includes both inactive users becoming active as well
as active users moving to that cell. Then, α = Dh/Us . The
only remaining unknown is β, which can easily be derived
using (6). Then, β = Dh(1/Ua − 1/Us).

With the values of Ua and Dh obtained from the traces,
and for a wide range of Us (from 200 to 2500), the average
active time at the link layer (1

β) varies only from 32 s to 45 s.
Note that, at transport or network layers, data sessions can last
for hundreds of seconds [22]. This divergence is due to two
factors: i) whenever there is an inter-packet gap of 12 s or
more [23], the RRC inactivity timer automatically moves the
UE to RRC Idle (or RRC Inactive in 5G), and ii) handovers
entail an ON to OFF transition in the old cell, even though
the user’s session is alive during the process.

Finally, following (5) we can compute the signaling traffic
generated by the controller and received by each SODALITE
node serving a particular cell. Fig. 7 shows the signaling
throughput per cell during a busy hour for three different cases:
i) Avg: Ua = 11.8, and Dh = 1320, ii) 90%: Ua = 22.8, and
Dh = 1800, and iii) 95%: Ua = 23.0, and Dh = 2000.

Note that Us has almost no impact on the resulting signaling
traffic per cell. This is because, for a given Ua, having a larger
population implies that those Us subscribers are active less
often (i.e. Pon decreases with Us , as shown in Fig. 7).

With these numbers, even not considering multiplexing
gains when multiple cells are aggregated, the signaling gener-
ated can be measured in tens of kbps. For example, a backhaul
path consisting of four hops aggregating 10 to 15 cells would
generate, about 85 kbps, on average, during the busy hour

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. X, NO. Y, MAY. 2019 10

(less than 180 kbps in 95% of the cases). Recall that this
analysis assumes a worst case, where all SODALITE nodes
require six rules per user and handovers require a complete
reconfiguration of the path (i.e. no common nodes between old
and new paths). These results clearly show that SODALITE’s
signaling is negligible compared to the 4G/5G user data rates.

VI. PERFORMANCE EVALUATION

In this section, we provide an experimental evaluation of
SODALITE. First, we evaluate the trade-offs incurred by the
path allocation policies introduced in Section IV-A. Then, we
study the delay introduced by SODALITE when detecting
a link failure and moving the traffic to the backup path.
Finally, we demonstrate the behavior of SODALITE in a fully
operational LTE network hosted in the NITOS testbed [24].
Given the similarities between 4G and 5G backhaul interfaces,
we posit that the derived conclusions also apply to 5G.

A. Evaluating SODALITE Path Allocation Policies

In order to evaluate the sequential and joint policies intro-
duced in Section IV-A, we consider network sizes between 6
and 14 nodes representing a SODALITE control area. For each
size, we randomly generate 10 different grid-like topologies,
based on a Small Cell urban deployment for a typical Euro-
pean city proposed in [25]. Random topologies are generated
in the following way. First, a random number of nodes is
deployed along a chain topology with an inter-site distance
of 100 meters (representing a main street). Then, additional
node chains, orthogonal to the main one (representing crossing
streets), are randomly added to the topology until the intended
size is reached. The SODALITE nodes in our evaluation are
dual-radio, with each radio operating on a different channel,
the coverage range is set to 90 meters. To derive the data-rate
available in each link we use the TGn channel model E defined
in [26], and the SNR to MCS mapping tables reported in [27]
for a 40 MHz channel, which results in a range of per-link
PHY data-rates between 13 Mbps and 260 Mbps. Two of the
nodes are randomly chosen to act as gateways. Each node in
the network is collocated with an eNB and exchanges UL and
DL traffic with one of the two gateways.

A custom made simulator is used to evaluate and compare
the performance of the sequential and joint policies in terms
of the number of admitted flows, which measures the amount
of resources taken by the main path, and the reliability of the
backup path. In addition, we compare our policies to policies
that choose their paths based on the WCETT and shortest
path metrics.To evaluate the impact of each policy on network
capacity, UE flows are randomly generated with a size between
1 Mbps and 5 Mbps, then a path allocation decision is taken
according to the policy under study, until the maximum net-
work utilization reaches a configured threshold (uTHR = 0.9).
The resulting number of admitted flows is reported in the upper
row of Fig. 8. To measure the reliability of the backup path,
we sequentially remove each physical interface belonging to
the main path, and increase a counter cnt if the backup path
does not contain that interface. Reliability is then computed as
cnt
Npi f

, where Npi f is the number of physical interfaces in the

main path. Reliability is depicted in the lower row of Fig. 8.
Reliability for WCETT and shortest path is not reported since
they do not support setting of backup paths.

Fig. 8 presents the results of the sequential policy (blue
line), the joint policy with γ = 0.8 (red), the joint policy with
γ = 0.2 (black), WCETT (dashed pink line), and the shortest
path policy (dashed cyan line), for the generated random
topologies. In addition, K = {10,20,100} are considered in
the study, to evaluate the effect of the K-shortest path heuristic
on the performance of the sequential and joint policies, which
does not impact in the WCETT and shortest path policies that
only consider one path for each flow. 95% confidence intervals
are overlaid along the obtained mean values.

Looking at Fig. 8 we can see that, the sequential and
the joint-0.8 policies significantly outperform the standard
WCETT and shortest path policies in terms of admitted flows.
This validates the network model used by the SODALITE
controller, and the criteria of minimizing worst-case conges-
tion when allocating flows. In addition, the effect of K on the
number of admitted flows is relatively small (only visible for
larger topologies), which validates the ability of the WCETT
K-shortest path heuristic to generate a set of candidate paths
with a reduced utilization. On the other hand, the joint-0.2
policy does not outperform WCETT and shortest path in
terms of admitted flows, and even performs slightly worse
when K > 10. The reason is that joint-0.2 prioritizes finding
disjoint main and backup paths, even if these undergo a higher
utilization; on the other hand, joint-0.2 improves reliability, as
compared to the sequential and joint-0.8 policies.

The performance of the reliability index is more dependent
on K , especially for the joint-0.2 policy. The reason is that,
with larger K , longer and potentially more disjoint backup
paths are included within the set of candidate paths. However,
longer backup paths may lead to a reduced performance until
the SDN controller realizes that the main path has been dis-
rupted and re-configures the network. We consider that K = 20
is a good compromise between computational complexity in
the SDN controller and the reliability performance trade-off
obtained under the different policies.

B. Benchmarking Link Failure Detection Time

We prototype SODALITE in Linux based devices, using
a software switch as SDN agent, and a custom user-space
program as FLRR agent. Then, we modify the mac80211
driver in Linux to implement the link break detection schemes
described in Section IV-C. To measure the delay required
by a SODALITE node to detect a link break, we configure
two wireless devices in the NITOS testbed, hereafter referred
to as node A and node B, configured in mesh mode. These
nodes are equipped with Qualcomm 802.11n wireless NICs,
our FLRR agents and custom mac80211 driver to support
wireless SDN [19]. Then, we proceed to shut down the radio
interface in node A and measure in node B the time at which
B detects the link break, tbreak , and the last time B confirmed
that the link with A was active, i.e. tlastOK . We evaluate
the two mechanisms for link break detection described in
Section IV-C, namely, missed beacons detection, and detection
of excessive number of retransmissions. Note that tlastOK is

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. X, NO. Y, MAY. 2019 11

4 6 8 10 12 14 16

Network Size

40

60

80

A
v
g

 N
u

m
 F

lo
w

s

K=10

4 6 8 10 12 14 16

Network Size

0.6

0.7

0.8

0.9

R
e

lia
b

ili
ty

(a) K = 10

4 6 8 10 12 14 16

Network Size

40

60

80

A
v
g

 N
u

m
 F

lo
w

s

K=20

4 6 8 10 12 14 16

Network Size

0.6

0.7

0.8

0.9

R
e

lia
b

ili
ty

(b) K = 20

4 6 8 10 12 14 16

Network Size

40

60

80

A
v
g

 N
u

m
 F

lo
w

s

K=100

Sequential

Joint =0.8

Joint =0.2

WCETT

SPD

4 6 8 10 12 14 16

Network Size

0.6

0.7

0.8

0.9

R
e

lia
b

ili
ty

(c) K = 100

Fig. 8. Number of accepted flows and reliability for sequential and joint path allocation policies in randomly generated topologies for different values of K .

Experiment

Label agent time notify time kernel time

51.2 50 0.043071 0.000006 0.121660

76.8 75 0.047283 0.000006 0.200784

102.4 100 0.044213 0.000006 0.246792

204.8 200 0.045441 0.000006 0.510612

FLRR Benchmark

Reaction time based on packet retries

average

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

50 75 100 200

R
e

a
c
ti
o

n
 T

im
e

 (
s
)

Beacon Interval (TUs / 1 TU=1024 µs)

kernel time

agent time

0.00

0.02

0.04

0.06

0.08

4 8 12 28

R
e

a
c
ti
o

n
 T

im
e

 (
s
)

Retry Threshold

kernel time

agent time

(a) Beacon (upper) and retry (lower) based detection with 95% confi-
dence intervals.

(b) Application recovery time: median, first and third quartiles
(lower/upper box limits) and minimum and maximum values (whiskers).

Fig. 9. Benchmarking SODALITE fast recovery.

computed differently in both schemes. With missed beacons,
tlastOK corresponds to the last time node B received a beacon
from node A, whereas in the case of retransmissions, tlastOK

corresponds to the last time when node B received an ac-
knowledgment from node A. The link break detection time is
measured as tdetection = tbreak − tlastOK . Hence, the results
reported in this section have to be understood as an upper
bound for the true link break detection time. In the beacon-
based detection experiments we fix the threshold of missed
beacon frames at 2, and do not transmit any traffic between
A and B during the experiments. In the retry-based detection
experiment we set up an iperf UDP transfer saturating the
wireless channel, and test different configurations regarding
the retry threshold. In order to provide statistically meaningful
results, each experiment is repeated 50 times and the average
is reported in Fig. 9a.

The upper part of Fig. 9a depicts the results of the beacon
based experiment for a BI varying between 50 ms and 200 ms.
The depicted link break detection time is broken into two com-
ponents: i) kernel time is the time required by the mac80211
kernel module in node B to detect that 2 beacons are missing
from node A, and ii) agent time is the time required by the
FLRR agent to process the notification from the kernel module.
As expected, we see in the upper part of Fig. 9a that kernel
time scales, on average, as 2.5×BI, where BI is the configured
beacon interval. The reason is that, in our implementation,
the kernel module in node B piggybacks on its own beacon

transmissions to check whether the time since the last beacon
received from a peer node has exceeded the configured thresh-
old, which results in a detection time tdetection = 2 × BI + φ,
where φ is the random phase between the beacon generation
times of nodes A and B. The lower part of Fig. 9a depicts the
same kernel and agent times for the retry-based experiment.
The tested configurations are obtained by varying the retry
limit to 4, 8, 12 and 28 retransmissions. After discarding
a packet, the radio module generates a report to the kernel
module, which then evaluates if the number of retransmissions
has exceeded the configured threshold. Looking at kernel time
in the lower part of Fig. 9a, we see that it only significantly
exceeds 10 ms due to retransmissions and contention backoffs
when the retry limit is configured at 28, due to the binary
exponential backoff used by IEEE 802.11, in which case,
kernel time is around 40 ms. Regarding agent time, it is always
around 30 ms in our experiments, which is a result of our
current implementation based on user-space scripts. Finally, it
is worth highlighting that no false positives were experienced
throughout the experiments. The results of these experiments
demonstrate that SODALITE nodes can provide resiliency in
a carrier-grade wireless backhaul network.

C. Evaluating SODALITE Impact on Application Delay
In this section, we study the impact of the FLRR agent

on the delay perceived by the application layer in case of
link failure. In particular, we compare the delays introduced
by FLRR with the ones experienced if a distributed protocol

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. X, NO. Y, MAY. 2019 12

1-5 6-10 11+

of installed FLRR rules

0

0.1

0.2

0.3

0.4

0.5

0.6
S

c
ri
p

t
e

x
e

c
u

ti
o

n
 t

im
e

 (
s
)

6 Nodes 8 Nodes 10 Nodes 12 Nodes 14 Nodes

Fig. 10. Average delay TR between detection of an active switch rule and
activation of the backup path for different number of nodes and installed
FLRR rules. Note that the amount of rules depends on the number of active
flows, which is limited by the size of the scenario: 11+ rules for 12 and 14
nodes, up to 7 rules in 8 node scenarios, and up to 5 rules in 6 node scenarios.

is used. For this purpose, we reuse the random topologies
introduced in Section VI-A, and build a virtual network
emulator using network namespaces [28] containing our full
implementation of SODALITE, including the SDN agent, the
FLRR agent and the controller. As a distributed protocol we
use OLSR, available in Linux as part of the package olsrd2.
In order to measure the impact of link failures on application
delay, in each random topology a ping application is launched
between each non-gateway node and its closest gateway with
an interval of 10 ms between packets. Then, we break one of
the links and measure the time gap caused by the link break,
until the flow of ICMP packets resumes. For each topology,
this process is repeated choosing a different link to break, until
a link break has been caused for all links of the topology.

Fig. 9b depicts the results of our experiment. The conver-
gence of OLSR heavily depends on its timers and, hence,
two different OLSR configurations are used. OLSR-1 uses
a Hello and Validity intervals of 0.5 s and 1.5 s, whereas
OLSR-2 uses 1 and 3 s, respectively. These two configurations
trade off convergence speed with signaling overhead, and are
based on the recommendations in [29]. We can see in Fig. 9b
how, for OLSR, the application outage time in case of link
failure, lies around 3 s and 6 s for the OLSR-1 and OLSR-
2 configurations, respectively, which is twice the Validity
interval. Instead, SODALITE delivers application outage times
of 2 s in the worst case, without the need of trading off the
signaling overhead and convergence, thanks to the fact that in
SODALITE backup paths are pre-provisioned.

It is worth highlighting that the delay experienced by FLRR
in this experiment was limited by the performance of the
server hosting the network emulation, and therefore we expect
significantly lower delays in practice, where FLRR agents run
each on a different hardware (node) rather than aggregated
on a single server. To validate that the server is artificially
increasing the outage delay for SODALITE, we measure the
delay TR between detecting a packet matching a switch rule,
and the reprogramming of the rule to redirect a traffic flow,
as the number of FLRR rules installed in a node grows.
In a practical setting, TR would not depend on the size of
the network. However, Fig. 10 depicts the average TR values
measured throughout the experiments, revealing that, due to
the performance limitations of the server when emulating all
nodes on a single machine, TR increases with the scenario

s0

s1

s5

s3

s2

s6

s4 s7Ch 1

eNodeB EPC

Remote

Host

UE

1

UE

2

Fig. 11. The network topology used in the NITOS testbed. Node s0 is the
entry point of the network and serves as connection to the eNB, whereas
nodes s2 and s7 are gateways towards the EPC.

size, even though the number of FLRR rules per node are the
same. Hence, in practice we expect application outage times
well below 1 second (6 Nodes in Fig. 9b).
D. E2E SODALITE Evaluation in the NITOS Testbed

In order to validate SODALITE in a realistic setting, espe-
cially the FLRR agent, we perform a set of experiments in the
LTE-enabled NITOS testbed [24]. The experiments show how
SODALITE applies forwarding policies to LTE traffic and uses
FLRR to react to different critical situations. The focus of our
experiments is on the S1 interface, which would be equivalent
to the F1 or N3 interfaces in a 5G network.

1) Experimental setup: The RF-isolated indoor testbed
in NITOS is equipped with a SC, an EPC, and different
nodes that can be used as SODALITE nodes or LTE-enabled
UEs. We configure eight of those nodes to form a wireless
backhaul. Each node in the backhaul is equipped with up to
two IEEE 802.11g/n interfaces, thus supporting simultaneous
communications on up to two channels. The topology used
for the experiments and the channel configuration are shown in
Fig. 11. The backhaul includes an entry node (s0) that connects
the eNB with the backhaul and two gateway nodes (s2, s7) that
connect the backhaul to the EPC.

The SDN controller managing the data plane of the backhaul
runs on a remote virtual machine connected to the backhaul
via a VPN instantiated on the gateway node s7. The sequential
policy is applied in the controller, with a channel occupancy
threshold uTHR = 0.6 (c.f. Section IV-A). As destination or
origin for the LTE traffic generated during the experiments,
we set up two nodes as LTE UEs and a node connected to
the wired backbone behind the EPC serves as destination or
origin of data for communications with the UEs.

As initial step of the experiment, we set up the LTE
connections of the two UEs. In this process, the control traffic
between the eNB and the EPC traverses our backhaul over
a pre-provisioned in-band control path. As soon as the UEs
establish their connection, each UE is assigned a unique GTP
TEID for its corresponding uplink and downlink flows.

With the knowledge of the GTP TEIDs for each of the UEs,
the SODALITE controller assigns main and backup paths for
the correspondent end-to-end flows. These paths start at the
entry node (s0) and go to any of the gateways (s2, s7) for
the uplink traffic and the opposite direction for the downlink
traffic. Following the sequential policy, the controller assigns
the main path for both uplink flows to the lower branch (s0-s1-
s2) and the backup paths over the upper branch (s0-s5-s6-s7).

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. X, NO. Y, MAY. 2019 13

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

Time (seconds)

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

s0−>s1

s0−>s5

s0−>s3

0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

Time (seconds)

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

Link Break Load Balancing

Link Break
Load Balancing

Fig. 12. Aggregate throughput transmitted over s0 towards neighbor nodes of
the backhaul over the course of the UDP (top) and TCP (bottom) experiments
with two (UDP) and one (TCP) flows, respectively.

The downlink flows are assigned to use the middle branch (s7-
s4-s3-s0) as main paths and the upper branch as backup paths,
respectively. To initially allocate the paths, a load of 1 Mbps
for each end-to-end flow is assumed.

2) UDP-based traffic experiment: As performance metrics,
we measure how the overall throughput evolves before, during,
and after the link break. Based on the initial setup described
earlier, the first experiment consists in launching two UDP-
based iperf data streams, one from each of the UEs, towards
the server located behind the EPC. The first flow (f1) is set to
1 Mbps, and the second flow (f2) to 3 Mbps. The sum of the
weight of the flows is intended to lie below the actual capacity
of the wireless links, being limited on the sender side by the
iperf application; both flows start at second 5. In the upper
part of Fig. 12, the aggregate traffic sent over the radio by s0,
the entry node of the uplink flows, is visualized. Initially, a
total of 4 Mbps is maintained over the lower branch (s0-s1-s2).

After 90 seconds, we interrupt the link between s1 and s2 by
shutting down the wireless transceiver on s2. The FLRR agent
detects the link break and redirects the flows, as described in
IV-B. The effects can be seen in the upper part of Fig. 12
as the measured load switches from the link s0-s1 to the link
s0-s5. The link break detection and traffic redirection over the
backup path takes less than 1 s. In this process, we observe
that the throughput during one iperf report interval of 1 s
drops slightly to 3.8 Mbps, after which the full throughput of
4 Mbps is reestablished, thus proving the minimal disruption
introduced by the FLRR agent.

At this point of the experiment, f1 and f2 both have switched
from the broken main path on the lower branch to the backup
path on the upper branch. The links on the backup path are
on the same channel and, as a result of both flows using the
same backup path, the channel occupancy increases drastically
up to 71%. This exceeds the maximum allowed channel load
threshold of 60% configured in the SODALITE controller and
triggers a new path computation. At second 130, the controller
decides to reallocate f1 over the middle branch of the topology,
separating the two end-to-end flows. The moment at which
the controller takes this decision depends on the periodicity
of the network status check, the actual bitrate of the links
in the network and the filtering algorithms applied by the

controller to avoid ping-pong effects. As a result, the peak
channel load observed over the upper branch is reduced to
54%, with only one active flow. Notice that f1 is not relocated
immediately, because a 15 second interval is used to collect
OF statistics and the controller applies filtering to the received
statistics to avoid ping-pong effects. Given that FLRR quickly
resolves a link break, a larger statistics polling interval is
considered appropriate to reduce signaling overhead. However,
these values can be configured more aggressively if a faster
overall optimization of the network is required.

3) TCP-based traffic experiment: The second experiment
is performed with the same base setup, but using a single
TCP Cubic flow launched from the first UE towards the
server behind the EPC. In this case, iperf does not limit the
throughput, which depends on the rate adaptation mechanisms
of TCP and on the variable bandwidth in the LTE link and the
wireless backhaul links. Following the sequential policy, the
controller allocates this flow on the lower branch and assigns
the backup path on the upper branch. The transmission lasts for
41 seconds, after which the link between s1 and s2 is manually
broken by shutting down the wireless transceiver of s2. As
shown in the lower part of Fig. 12, which plots the throughput
measured at the node s0, the FLRR agent reacts immediately
by redirecting the flow over the backup path (from s0-s1 to
s0-s5). The variations of throughput measured over the course
of the experiment are caused by fluctuations in the LTE link
and in the backhaul links. Note that the UDP experiment does
not show those fluctuations since the links were not saturated
(traffic limited on the application side). Since each of the
three hops on the backup path now is on the same radio
channel, the achievable end-to-end throughput is reduced as
the wireless transceivers of s0, s5, and s6 are competing for the
channel access. Further, since the channel load now exceeds
the maximum threshold of 60%, the SODALITE controller
reallocates the flow to the middle branch, via s3, on second
57. Like in the UDP-based experiment, the exact moment this
reallocation decision is taken may vary depending on when
the last network status check was performed and other internal
parameters of the controller.

The reallocation from the upper to the middle path happens
almost immediately, a small reduction of the throughput is
only observed during seconds 57 to 58. Immediately after that
we can see that the average throughput of the end-to-end flow
increases, as the links of the middle branch lie on separate
channels. However, shortly after, the newly allocated path also
suffers from time variation, which is however not due to the
backhaul but due to quality fluctuations in the LTE link.

VII. CONCLUSIONS

Innovative wireless backhaul technologies are required to
foster the adoption of massive deployments of SCs, which are
a key component of future 5G networks in dense scenarios.
In this paper, we have demonstrated SODALITE, a novel
system that follows the SDN architecture, and integrates
with 4G and 5G Mobile Networks in order to provide per-
subscriber/application policies in the wireless backhaul seg-
ment. SODALITE is composed of a centralized controller,
which derives per-session main and backup paths, and a

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. X, NO. Y, MAY. 2019 14

distributed agent acting locally on each node, which ensures
fast recovery in case of link failure. Through an extensive
experimental evaluation, we have benchmarked the perfor-
mance of SODALITE using randomly generated topologies,
and a testbed composed of an LTE network and eight wireless
backhaul nodes. Through mathematical analysis and using
traces from a mobile network operator, we also show the
scalability of SODALITE both in terms of its negligible
signaling overhead and the limited number of flow rules it
requires at the backhaul nodes. The thorough analysis of
SODALITE shows that it provides resiliency and fast reaction
times necessary for a carrier grade wireless backhaul network.
As future work we consider the study of enhanced path-
allocation policies that accomodate application priorities and
leverage traffic predictors to proactively alter backhaul paths.

Finally, although the system designed in this paper has been
based on devices using IEEE 802.11 interfaces, SODALITE
is amendable to other types of radio technologies, such as
mmWave. In addition, the FLRR scheme can be extended
to consider more than one backup path in case of multiple
failures. We consider this as part of our future work.

ACKNOWLEDGEMENTS

The authors thank Ferran Quer i Guerrero for his contribu-
tions. The research leading to these results has received fund-
ing from the European Union under grant agreements 762057
(H2020 5G-PICTURE), the Spanish Ministry of Economy
and Competitiveness (MINECO), through projects TEC2016-
76795-C6-2-R, RYC-2013-13029 and FEDER.

REFERENCES

[1] METIS-II: Mobile and wireless communications Enablers for Twenty-
twenty (2020) Information Society-II (H2020-ICT-2014-2), “D2.1. per-
formance evaluation framework,” 2016.

[2] Ericsson, “Microwave outlook, trends and needs in the microwave
industry,” 2016.

[3] Y. Zeng, P. H. Pathak, and P. Mohapatra, “A first look at 802.11ac
in action: Energy efficiency and interference characterization,” in 2014
IFIP Networking Conference, June 2014, pp. 1–9.

[4] M. S. Afaqui, E. Garcia-Villegas, and E. Lopez-Aguilera, “IEEE
802.11ax: Challenges and Requirements for Future High Efficiency
WiFi,” IEEE Wireless Comm., vol. 24, no. 3, pp. 130–137, June 2017.

[5] H. Zhang, Y. Dong et al., “Fronthauling for 5G LTE-U Ultra Dense
Cloud Small Cell Networks,” IEEE Wireless Comm., vol. 23, no. 6, pp.
48–53, Dec 2016.

[6] P. Rost, C. J. Bernardos et al., “Cloud technologies for flexible 5G radio
access networks,” IEEE Comm. Mag., vol. 52, no. 5, pp. 68–76, May
2014.

[7] E. Garcia-Villegas, D. Sesto-Castilla et al., “SENSEFUL: An SDN-
based joint access and backhaul coordination for Dense Wi-Fi Small
Cells,” in IWCMC 2017, June 2017, pp. 494–499.

[8] K. Pentikousis, Y. Wang, and W. Hu, “Mobileflow: Toward software-
defined mobile networks,” IEEE Comm. Mag., vol. 51, no. 7, pp. 44–53,
July 2013.

[9] R. Misra, A. Gudipati, and S. Katti, “QuickC: Practical Sub-millisecond
Transport for Small Cells,” in MobiCom 2016, 2016, pp. 109–121.

[10] A. Detti, C. Pisa et al., “Wireless Mesh Software Defined Networks
(wmSDN),” in WiMob 2013, Oct 2013, pp. 89–95.

[11] H. Huang, P. Li et al., “Software-defined wireless mesh networks:
architecture and traffic orchestration,” IEEE Network, vol. 29, no. 4,
pp. 24–30, July 2015.

[12] A. Betzler, F. Quer et al., “On the benefits of wireless SDN in networks
of constrained edge devices,” in EuCNC, June 2016, pp. 37–41.

[13] N. L. M. v. Adrichem, B. J. v. Asten, and F. A. Kuipers, “Fast Recovery
in Software-Defined Networks,” in EWSDN 2014, Sept 2014, pp. 61–66.

[14] J. Vestin and A. Kassler, “Resilient SDN based small cell backhaul
networks using mmWave bands,” in IEEE WoWMoM, 2016.

[15] 3GPP TS 23.501, “Technical Specification Group Services and Systems
Aspects; System Architecture for the 5G system; Stage 2,” 2018.

[16] 3GPP TS 38.331, “Radio Resource Control (RRC) protocol specification
(Rel. 15),” 2018.

[17] D. C. Mur, P. Flegkas et al., “5G-XHaul: Enabling Scalable Virtualiza-
tion for Future 5G Transport Networks,” in IUCC-CSS, 2016.

[18] Open Networking Foundation, “The OpenFlow Switch Specification.”
[Online]. Available: https://www.opennetworking.org

[19] A. Hurtado-Borrs, J. Pal-Sol et al., “SDN wireless backhauling for Small
Cells,” in IEEE ICC, June 2015, pp. 3897–3902.

[20] R. Draves, J. Padhye, and B. Zill, “Routing in Multi-radio, Multi-hop
Wireless Mesh Networks,” in MobiCom, 2004, pp. 114–128.

[21] B. Stephens, A. Cox et al., “PAST: Scalable Ethernet for Data Centers,”
in ACM CoNEXT, 2012, pp. 49–60.

[22] J. Yang, Y. Qiao et al., “Characterizing User Behavior in Mobile
Internet,” IEEE Tran. on Emerging Topics in Computing, vol. 3, no. 1,
pp. 95–106, March 2015.

[23] J. Huang, F. Qian et al., “A Close Examination of Performance and
Power Characteristics of 4G LTE Networks,” in MobiSys, 2012, pp.
225–238.

[24] K. Pechlivanidou, K. Katsalis et al., “NITOS testbed: A cloud based
wireless experimentation facility,” in ITC 2014, Sept 2014, pp. 1–6.

[25] I. Demirkol, D. Camps-Mur, and J. B. and, “5G Transport Network
Blueprint and Dimensioning for a Dense Urban Scenario,” in EuCNC,
2017.

[26] IEEE 802.11, “TGn Channel Models.” [On-
line]. Available: https://mentor.ieee.org/802.11/dcn/03/
11-03-0940-04-000n-tgn-channel-models.doc

[27] R. Patidar, S. Roy, and T. R. Henderson, “Technical report on validation
of error models for 802.11n,” University of Washington Seattle, Tech.
Rep., 05 2017.

[28] Various authors, “LXC.” [Online]. Available: https://linuxcontainers.org/
[29] C. Gomez, D. Garcia, and J. Paradells, “An OLSR parameter based study

of the performance of real ad-hoc network environments,” in European
Wireless 2005, April 2005, pp. 1–6.

August Betzler is a research engineer at i2CAT in
Barcelona, Spain. His research topics are SDN in wireless
and mobile networks. He contributes to the standardization
of new communication protocols for the Internet of Things
within IETF. In 2010 he received his Diplom degree in
computer science from the Technical University of Hamburg
and in 2015 his Ph.D. from the Universitat Politècnica de
Catalunya (UPC).

Daniel Camps-Mur currently leads the Mobile and Wire-
less Internet group at i2CAT. Previously, he was a senior
researcher at NEC Network Laboratories. In 2004 he re-
ceived a Masters degree and in 2012 a Ph.D. degree from
the UPC. His research interests include mobile networks,
SDN and communications protocols for the IoT.

Eduard Garcia-Villegas is an associate professor at the
UPC and member of the Wireless Networks Group (WNG).
He participates in the IEEE P802.11 WG and in the research
developed within the i2CAT Foundation. His research inter-
ests include IEEE 802.11, radio resource management in
wireless networks, and IoT enabling technologies. (sensor
networks, mesh, multi-hop ad-hoc networks, etc.).

Ilker Demirkol is a Ramon y Cajal Research Professor
in Dept. of Mining, Industrial and ICT Engineering at the
UPC. His research focus is on communication protocol de-
velopment and performance evaluation of wireless networks.
He received his BS, MS, and PhD degrees in Computer
Engineering from Bogazici University, Istanbul, Turkey.

Joan Josep Aleixendri is a research engineer at i2CAT in
Barcelona, Spain. His research topics are software defined
networking and wireless networks. In 2016 he received his
Bachelor degree in computer science from the UPC.

