
Digital Communications and Networks xxx (xxxx) xxx
Contents lists available at ScienceDirect

Digital Communications and Networks

journal homepage: www.keaipublishing.com/dcan
Self-healing and SDN: bridging the gap

Leonardo Ochoa-Aday *, Cristina Cervell�o-Pastor, Adriana Fern�andez-Fern�andez

Department of Network Engineering, Universitat Polit�ecnica de Catalunya (UPC), Esteve Terradas, 7, 08860, Castelldefels, Spain
A R T I C L E I N F O

Keywords:
Software-defined network
Autonomic network management
Protocol design
Fault tolerance
Network management
* Corresponding author.
E-mail addresses: leonardo.ochoa@entel.upc.edu

Fern�andez).

https://doi.org/10.1016/j.dcan.2019.08.008
Received 15 November 2018; Received in revised f
Available online xxxx
2352-8648/© 2019 Chongqing University of Posts a
NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Please cite this article as: L. Ochoa-Aday et a
10.1016/j.dcan.2019.08.008
A B S T R A C T

Achieving high programmability has become an essential aim of network research due to the ever-increasing
internet traffic. Software-Defined Network (SDN) is an emerging architecture aimed to address this need. How-
ever, maintaining accurate knowledge of the network after a failure is one of the largest challenges in the SDN.
Motivated by this reality, this paper focuses on the use of self-healing properties to boost the SDN robustness. This
approach, unlike traditional schemes, is not based on proactively configuring multiple (and memory-intensive)
backup paths in each switch or performing a reactive and time-consuming routing computation at the
controller level. Instead, the control paths are quickly recovered by local switch actions and subsequently opti-
mized by global controller knowledge. Obtained results show that the proposed approach recovers the control
topology effectively in terms of time and message load over a wide range of generated networks. Consequently,
scalability issues of traditional fault recovery strategies are avoided.
1. Introduction

The drastic increase of Internet services, such as video on demand, big
data, server virtualization and cloud services, is one of the trends driving
the network industry to change its traditional network architectures. To
meet the ever-increasing demands of new services, network operators
require emerging solutions to effectively manage their network resources
using more flexible and dynamic schemes.

In this context, Software-Defined Network (SDN) has emerged as a
promising approach for managing complex and heterogeneous network
infrastructures [1]. In essence, this new paradigm proposes decoupling
the control plane from the forwarding plane by centralizing intelligence,
state of the network and control functions in an entity called the
controller [2]. In spite of the logically centralized control in SDNs, the
control plane can be implemented using multiple physically-distributed
servers in order to mitigate the problems of scalability and reliability [3].

However, the widespread adoption of the SDN in heterogeneous and
failure-prone deployments (e.g., data centers, clouds, etc.), is putting
increasing pressure on the survivability strategies of the control plane to
guarantee the plane’s resilience at all times [4]. In fact, improving the
reliability of the SDN has been identified as one of the next crucial ob-
jectives for research and industry efforts, and this becomes more chal-
lenging when in-band implementations are also considered [5,6].
Moreover, an adequate solution should also address scalability concerns
(L. Ochoa-Aday), cristina@entel

orm 5 July 2019; Accepted 30 A

nd Telecommunications. Product

l., Self-healing and SDN: brid
and allow for rapid responses to network events and requirements that
can be met by eliminating the controller intervention in the failure re-
covery procedure. To address these issues, there has been growing in-
terest in combining autonomic principles of self-healing with the SDN to
develop resilient programmable networks.

In 2001, the concept of Autonomic Computing (AC) was introduced
by Paul Horn to the National Academy of Engineers at Harvard Univer-
sity [7]. This idea was inspired by the autonomic operation of the ner-
vous system in the human body, which is able to make independent
choices to modify its behavior in the face of different stimuli [8]. This
ability to make independent choices defines an autonomic entity and this
definition can be applied to multiple contexts.

In terms of computer networks, this paradigm has been translated
into the Autonomic Network Management (ANM) [9]. The main idea
underlying this proposal is the leveraging of self-management properties
(i.e., self-configuration, self-healing, self-optimization and
self-protection) in complex scenarios as heterogeneous network envi-
ronments [10]. The four aforementioned properties, referred to in the
existing literature as the “self-CHOP properties,” collectively define an
autonomic system and have been attracting growing attention from both
academia and industry.

The ANM aims to enable networks to work in a completely unsu-
pervised manner. In essence, autonomic networks should be capable of
adapting their behaviors dynamically to meet the specific, changing
.upc.edu (C. Cervell�o-Pastor), adriana.fernandez@entel.upc.edu (A. Fern�andez-

ugust 2019

ion and hosting by Elsevier B.V. This is an open access article under the CC BY-

ging the gap, Digital Communications and Networks, https://doi.org/

mailto:leonardo.ochoa@entel.upc.edu
mailto:cristina@entel.upc.edu
mailto:adriana.fernandez@entel.upc.edu
www.sciencedirect.com/science/journal/23528648
http://www.keaipublishing.com/dcan
https://doi.org/10.1016/j.dcan.2019.08.008
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.dcan.2019.08.008


L. Ochoa-Aday et al. Digital Communications and Networks xxx (xxxx) xxx
needs of individual users and high-level application goals [11]. More-
over, the ANM seeks to dramatically decrease the complexity and costs
associated with reliable deployments of network and communication
services [12,13].

The general framework defined in the ANM follows a similar logic as
the SDN architecture. The framework is composed of a set of managed
elements distributed in the network, which are centrally governed by an
autonomic manager [14]. The former group (i.e., managed elements) is
intended to serve as an interface with the system, while the latter (i.e.,
autonomic manager) manages the different operations of the compo-
nents. In essence, the autonomic manager is responsible for performing
the required adaptations in order to achieve a set of higher-level goals. To
accomplish this, a global view and knowledge regarding the managed
entities and their management operations are required by the centralized
entity.

Besides using its holistic knowledge, the autonomic manager needs to
perform four main tasks, namely, monitoring the managed entities,
analyzing their performance, planning appropriate management opera-
tions and executing them [15]. These functionalities, also known as the
Monitor, Analyze, Plan and Execute (MAPE) loop, are of paramount
importance to enhancing the network performance and obtaining solu-
tions to current or anticipated problems. Another approach to attain the
autonomic principles is to distribute these functionalities over the set of
managed components, which interact with each other to provide
convergent autonomic management, enabling the self-adaptation to the
environment changes.

In this way, the ANM enables autonomous real-time management of
network infrastructures and replaces traditional manual and semi-
automatic managing approaches, which are already costly and time-
consuming. Besides sharing a common objective, i.e., enabling real-
time programmable, self-adaptable and cost-effective networks and ser-
vices, the SDN and the ANM can complement each other to provide high-
level operator objectives, such as enhanced fault-tolerance, cyber-attack
mitigation and performance guarantees [16,17].

The aim of this work is, therefore, to provide an inherent fault-
recovery mechanism for the survivability of the control plane, while
maintaining an accurate global network view at the controller through
autonomic principles applied in self-healing SDN environments. Specif-
ically, we seek to exploit self-healing properties in order to reduce the
global time, as well as the number of control messages required to
recover the control plane connectivity from a network failure. To do so,
in this paper we shape the design of a novel Self-Healing Protocol (SHP)
to boost the control plane resilience in the SDN-managed environments
without overburdening the SDN controller. In this regard, we leverage
forwarding devices with autonomic attributes in order to recover the
network from failures in an autonomous and stable fashion by only
taking actions at the switch level.

The remainder of this paper is organized as follows: In Section 2 we
provide an overview of the self-healing property and failure management
reality in the SDN. After this, a brief description of some proposals in
existing literature related with fault management in the SDN is outlined
in Section 3. In Section 4, we define the considered architecture and
present the proposed framework. Then, in Section 5 we describe in detail
the autonomic fault recovery mechanism. The performance of the pro-
posed solution assessed using several evaluation metrics is analyzed in
Section 6 through experimental simulations using the Objective Modular
Network Testbed in Cþþ (OMNeTþþ). Finally, we draw some conclu-
sions in Section 7.

2. Self-healing SDN environments

As previously mentioned, self-healing is one of the four main prop-
erties conceived in the autonomic paradigm [18,19]. This term refers to
the capability of the network to restore its operations, independently and
without external intervention, when any failure occurs. Every system
with self-healing properties has the capability to discover, diagnose and
2

react to failures. The primary objective of integrating self-healing fea-
tures into any network operation is improving its reliability and main-
tainability. These quality attributes are traditionally heightened in
self-healing systems [20,21].

As failure management is a critical aspect for every network opera-
tion, substantial efforts have been devoted to the implementation of
different strategies. Traditional failure recovery strategies are classified
into two groups: restoration and protection [22]. The former strategy is
reactive and requires the online computation and dynamic installation of
alternate routes after the detection of a failure. In the protection strategy,
however, backup paths are pro-actively configured across the network.
Therefore, while the restoration scheme requires longer recovery time,
the protection approach imposes higher memory requirements and raises
scalability concerns.

The SDN provides flexibility to network systems and increases op-
portunities for innovation and development, but there is no guarantee
that these networks are robust [23]. In fact, implementing crucial func-
tions in SDN environments, such as failure resilience, is a highly complex
task, given that the controller intervention implies non-negligible delays
and signaling overheads (due to the propagation delay of failure notifi-
cations and reactive failure recovery countermeasures). Moreover, fail-
ures in the control plane will have a significant impact on the network
performance, since these failures may cause the problem that new flow
entries cannot be handled promptly. Therefore, failure resilience is
clearly one determinant requirement that must be addressed for the
successful adoption of SDN technology.

OpenFlow-based fault recovery approaches have been mainly focused
on restoring failed data paths by locally detouring individual flows
[24–26]. These mechanisms, also referred to as fast-failover techniques,
avoid the controller intervention during recovery, reducing the incurred
recovery time. Although local reactions to failures are faster than
path-based end-to-end reallocations, this scheme has some crucial
drawbacks. First, it can be used only if alternative path rules are available
at the node that detects the failure. Moreover, it requires instantiating
multiple alternate path rules for each flow entry on each link, which
implies an inefficient resource allocation and may be impractical in some
cases. Lastly, in large topologies, an extensive computation of a backup
alternative for each flow passing through each node may overload the
centralized controller and create a processing bottleneck.

A reliable and scalable mechanism to recover a link or node failure
has additional requirements in the context of in-band SDN. With in-band
control, an additional physical control network is not needed since the
control traffic is sent with the data traffic over the same infrastructure
[27]. In such scenarios, failures in the interconnection between for-
warding devices are likely to also affect the control plane. In fact, it is
highly possible that a failure in a link or node will disconnect several
switches from the controller, making the recovery task much more
complicated. Therefore, adequate solutions must not only try to recover
the control plane connectivity within the shortest possible time, but also
be able to achieve this even when the controller is unreachable.

In this work, the term “self-healing SDN environment” is used to refer
to a system that proactively monitors its service parameters and network
elements in different segments in order to recover from errors after a
failure has been detected [28]. In essence, it allows reactions to network
component (i.e., links or nodes) failures by reconfiguring traffic alloca-
tion in order to make use of the surviving network infrastructure able to
provide services. Moreover, based on the internal information about
appropriate metrics, the system can forecast future service failures and
propose preventative actions before the service fails. In this way, it is
possible to avoid any outage of essential services, such as the network
topology discovery.

3. Fault management in SDN: a literature review

In this section, we first discuss related works published in the area of
fault management in the SDN by improving the standard OpenFlow



L. Ochoa-Aday et al. Digital Communications and Networks xxx (xxxx) xxx
solution. Subsequently, we analyze some research efforts focusing on
leveraging self-healing frameworks in the SDN.
3.1. OpenFlow-based frameworks

Improving the robustness of the SDN has been identified as one of the
most important tasks to be addressed by research on the SDN [29].
However, it has thus far been one of the least researched topics.

Capone et al. [30,31] proposed a fast and reliable detour plan for
failure management in the SDN. Their framework relies on OpenState, an
OpenFlow extension that enables switches to perform match-action rules
depending on states triggered by packet-level events. In this way, the
control logic of the SDN controllers related to failure management is in
part offloaded onto the forwarding devices. Simulation results show the
suitability of this approach compared with a classic end-to-end path
protection scheme and with respect to an approach based on the Open-
Flow fast-failover mechanism [24]. However, in Ref. [30], the authors
use optimization models for the computation of backup paths, while [31]
requires an initial provisioning of a backup forwarding policy in every
switch. Our proposal, on the other hand, is based on local switch actions
to quickly recover the control paths, being more efficient and scalable.
Table 1
Comparison between the proposed approach and other state-of-the-art solutions.

Mechanism Main Features Recovery
strategy

[30,31] Protection schemes based on the use of
precomputed backup paths and the OpenState
extension to react to packet-level events and
extended with a probing scheme to establish if the
original failure has been resolved.

Protection

[32,33] Local detouring mechanisms that rely on flow
grouping and aggregation methods for failure
handling in OpenFlow networks while addressing
the issue of flow table space constraints for
preconfiguration of alternate paths.

Protection

[34] Failover scheme that uses preconfigured primary
and secondary paths computed by an OpenFlow
controller and set on every switch in terms of fast-
failover rules using per-link, BFD sessions to
quickly detect link failures.

Protection

[36] Active probing technique to detect and manage
failures in an OpenFlow based data center network
exploiting load balancing among equal cost
multiple paths without involving the controller in
order to avoid scalability issues and achieve faster
recovery.

Restoration

[37] Optimized self-healing SDN framework, which
includes a rapid recovery (RR) mechanism to
perform an immediate link recovery at the switch
level and an optimal alternate path computation
after recovering from a failure.

Restoration

[38] Fault management framework based on self-
healing for 5G networks to ensure the resiliency
and availability of end-to-end services in NFV-
based architectures that rely on centralized SDN
out-of-band and in-band networks.

Restoration

[39,40] Generic self-healing approach for centralized SDN
infrastructures that includes a Bayesian network-
based algorithm to detect disruptions on the
application plane, the control plane and the data
plane at run-time.

Restoration

[41] Self-healing protocol for automatic discovery and
maintenance of the network topology in the SDN
that integrates two enhanced features: layer two
topology discovery and autonomic fault recovery
in a unified mechanism.

Restoration

Current
paper

Self-healing mechanism that enables real-time
recovery of the control plane connectivity in SDN-
managed environments in the face of failures
without overburdening the controller performance
and suitable for SDN scenarios with in-band
control.

Restoration

3

Enhanced local detouring mechanisms, with flow grouping and ag-
gregation methods for rapid and lightweight failure handling in Open-
Flow networks, are also investigated in Refs. [32,33]. Based on the flow
grouping strategy, the authors proposed the Controller Independent
Proactive (CIP) and ontroller Dependent Proactive (CDP) recovery
schemes. Through the performance evaluation in Ref. [32], it was iden-
tified that the proposed recovery schemes achieve a 99% reduction in
flow storage for an alternate path setup using Virtual Local Area Network
(VLAN) tagging and reduce the failure recovery time up to 4 ms and
20 ms respectively, satisfying the 50 ms total failure recovery time
required in carrier networks. However, these approaches are tied to the
actual implementation of the optional fast-failover group feature of
OpenFlow, which limits their applicability.

Similarly, a fast (i.e., sub 50 ms) failover scheme was introduced in
Ref. [34]. This scheme relies on the link-failure detection by combining
the primary and backup paths configured by a central OpenFlow
controller. Moreover, the authors implemented a per-link failure detec-
tion using Bidirectional Forwarding Detection (BFD) [35], a protocol that
identifies failures by detecting packet loss in frequent streams of control
messages. Performance measurements in a hardware switch
OpenFlow-based testbed show that the recovery time of sub 50 ms can be
achieved by configuring the BFD transmit interval at 15 ms. The faster
recovery time of 3:3 ms is obtained after further decreasing the BFD in-
terval to 1 ms. The experimental evaluation confirms that the recovery
time achieved are independent of the path length and the network size.
Unlike our proposal, this solution also depends on the fast-failover group
support, which may vary across different switch implementations.

In Ref. [36], the authors studied the impact of network failures on the
deployment of load balancing mechanisms in data center networks based
on the OpenFlow protocol. They used an active probing method to detect
and manage failures, exploiting the load balancing among equal cost
multiple paths. By exploiting this technique, all of Top-of-Rack (ToR)
switches can perform local configuration modifications and act inde-
pendently of the central controller, avoiding the saturation and scal-
ability issues of the SDN controllers. However, the proposed strategy is
limited to tree-like topologies and is incompatible with environments
without a dedicated out-of-band control network.

Although the aforementioned proposals [30–34,36] have eliminated
the drawbacks of SDN controller interventions (in terms of packages
overhead and control latency) by taking actions at the switch level only,
these solutions are limited to recovering the system from failures and do
not consider the performance guarantees after restoring the network.

3.2. Self-healing frameworks

The widespread adoption of the SDN in heterogeneous and failure-
prone deployments (i.e., data centers and clouds) has raised a general
interest in providing the SDN with the self-healing paradigm [9,19,21].
In relation to this, some researchers have proposed novel frameworks to
improve the resiliency and predictability of SDNs.

Thorat et al. [37] proposed a self-healing SDN framework that opti-
mizes recovery by applying autonomic principles. The proposed frame-
work includes a Rapid Recovery (RR) mechanism on the switch level and
an Optimized Self-Healing (OSH) module on the control plane. After a
failure occurs, the RR mechanism must recover the network connectivity
as soon as possible to minimize service disruption time. Then, the OSH
module uses the network information to calculate new optimal paths.
Based on the analytical model proposed, the authors proved a reduction
in backup flow entries after a failure of 99% per switch. Although the RR
mechanism exploits the efficiency of link protection schemes, it requires
the OpenFlow group table feature to be implemented.

The vulnerabilities of the SDN and etwork Function Virtualization
(NFV) are also analyzed in Ref. [38] from a fault management perspec-
tive. The authors proposed a self-healing-based framework to ensure the
resiliency and availability of end-to-end services and resources in 5G
networks. This framework interacts with the three planes of the SDN (i.e.,



Fig. 1. Overall system architecture for the proposed solution.

L. Ochoa-Aday et al. Digital Communications and Networks xxx (xxxx) xxx
the application, control and data planes) by taking observations from the
network and launching recovery actions. The proposed self-healing
framework for SDN/NFV-based networks defines two types of actions,
namely, those that heal the SDN architecture and those that cooperate
with the NFV Infrastructure (NFVI) to avoid any service interruption (i.e.,
proactive actions). The authors translated part of the self-healing
framework into a specific SDN platform by proposing a diagnosis block
in the control plane. They proved that this module can detect any un-
availability of a multicast service as well as reactively resolve malfunc-
tions at several levels.

In Refs. [39,40], the same authors proposed a generic self-healing
approach based on Bayesian network models for a diagnosis block. In
Ref. [39], the authors developed an algorithm into a self-healing module
in a centralized SDN architecture. This infrastructure was emulated on
Mininet with POX as the SDN controller. To prove the functionality of the
proposed module in the presence of failures, the authors ran a video
streaming service delivery through the fixed network topology. Based on
this experiment, the authors claim that the self-healing module can
detect, diagnose and repair faults of different nature, such as physical
failures, streaming services, OpenFlow crashes and drops on any inter-
face [40]. As a result, if the streaming service behaves abnormally, the
module detects this, diagnoses the root cause and applies the corre-
sponding actions to reestablish the service.

Despite the potential benefits of the diagnosis block and self-healing
modules proposed in [38–40], non-negligible delays and signaling
overheads may be required, given that the diagnosis result must be sent
to the recovery block, where appropriate strategies to fix the failure are
determined. In order to provide a faster recovery, our proposal is based
on performing first local actions to reestablish the affected connectivity
followed by the subsequent optimization of control paths.

To the best of our knowledge, the closest work to our approach is
[41], where a similar distributed operation was briefly introduced to
support self-healing properties in the SDN. However, this related work
lacks of crucial features for protocol implementation such as message
types and dataframes structure. In addition to providing more details
about the protocol design, in the present work the recovered control tree
can be optimized in terms of delay by the SDN controllers, which have
complete knowledge of the network topology and state. Furthermore, a
4

deeper evaluation is performed to analyze the impact of the control
traffic on the network due to the self-healing mechanism and the number
of nodes involved in the recovery process.

A summary of the discussed recovery mechanisms is presented in
Table 1. Each row in the table refers to a different approach. Meanwhile,
each column refers to a particular feature: the proposal reference, the
description of main features or the employed failure recovery strategy.
This paper is also included at the end of the table.

In summary, we believe that there is still room for exploiting the use
of self-healing techniques to leverage the reliability and accuracy of the
centralized network view and control plane topology in the SDN. Our
proposal considers the integration of SDN with autonomic properties in
order to provide native fault recovery within the control plane. This is
achieved only by taking actions at the switch level, without over-
burdening the controller, and it is suitable for SDN scenarios with in-
band control.

4. Problem statement

Most of current research efforts in the fault management area have
been oriented towards proposing recovery mechanisms within the data
plane of SDNs. However, a resilient control plane is a critical feature for
current SDN deployments. This high-level goal is becoming extremely
important due to the growing prevalence of SDNs on large-scale and
heterogeneous networks, for which the in-band mode is more practical
and cost-efficient. Moreover, achieving robustness in the control plane
should not be limited to recovering the system from failures. It should
also ensure proper responsiveness regarding performance guarantees
(such as control paths delay) once the network is recovered. To that end,
exploiting the self-healing property of an ANM system, agreed upon as
the next generation of management [42], represents a very suitable
approach. Despite this, in our literature review we identified a lack of
proposals that integrate cognitive and autonomic management schemes
with SDNs.

The question of how much control intelligence should remain in SDN
switches remains an issue of ongoing debate [43]. Although our solution
embraces the idea of centralized network control decoupled from for-
warding devices, we envisage an autonomic SDN environment where



Fig. 2. Schematic diagram of an autonomous forwarding device.

Table 2
Functionalities performed by each entity in the autonomic framework.

Task Managed Components Autonomic Manager

Monitor Receive measurement data about
the state of neighboring links from
sensors residing on the devices.

Collects and consolidates the data
obtained from its managed
components at different locations.

Analyze Interpret collected data into a state
description according to the
incoming port statuses.

Isolates the failure from the wider
topology and anticipates further
implications using the system
knowledge.

Plan Interact with the neighboring
nodes through message exchange
to discover alternative control
paths.

Optimizes the hierarchical control
tree to enhance network
performance and achieve a set of
higher-level goals.

Execute Perform local control tree
adaptations in order to find an
immediate solution to the network
failure.

Installs new flow configuration
rules in the forwarding devices
along optimized control routes.

Fig. 3. General structure of SHP messages.

L. Ochoa-Aday et al. Digital Communications and Networks xxx (xxxx) xxx
distributed forwarding devices also contribute to providing services like
topology discovery and fault recovery.

4.1. Autonomous system architecture

By definition, autonomic networks are comprised of two major en-
tities: the managed components and the autonomic manager [9]. The
overall system architecture for the proposed solution is shown in Fig. 1.
Both elements are identified as follows:

� Managed components: These components are represented by the set of
forwarding devices that support the proposed SHP. Each managed
component includes sensors for monitoring the state of neighboring
links and effectors for modifying local parameters in its network.

� Autonomic manager: This manager is coupled within each SDN
controller, and it has centralized network knowledge and therefore
can better diagnose problems. This component is responsible for
making tactical decisions and optimizing network performance in
order to accomplish high-level objectives (e.g., inherent control plane
robustness and minimum-latency control paths).

4.2. Framework description

In order to solve the scalability issues of traditional autonomic sys-
tems and reduce the time required to recover the control plane in the
event of failures, in this approach, the managed components also perform
some of the MAPE functionalities. In essence, each forwarding device is
equipped with a SHP agent composed of several modules as illustrated in
Fig. 2.

The SHP agent allows the forwarding devices to monitor their port
interfaces, analyze the collected data and execute the required actions.
To do so, techniques like sketches aiming to effectively acquire infor-
mation about the traffic can be implemented in the forwarding plane
[44]. As a result, forwarding devices are capable of autonomously and
quickly resolving a link or node failure without the intervention of the
controller.

As the topology discovery mechanism is outside the scope of this
paper, the SHP inherits the topology discovery module proposed in
Ref. [45]. By using this module as a basis, both features (i.e., topology
discovery and fault recovery) are integrated into a unified approach for
discovering physical topology and providing autonomous fault recovery
in the control plane of programmable networks.

In accordance with [45], switches are classified into one of the three
possible roles, (i.e., leaf, v-leaf or core). Leaf nodes are the nodes in the
network that have only one neighbor. A node is v-leaf when it has more
than one neighbor but only one of them can provide a path to the SDN
controllers. The remaining switches are denoted as core nodes.

Likewise, ports have different states according to their positions in the
control tree formed by the topology discovery module. For the sake of
5

better understanding, the port states defined in Ref. [45] are described
below:

� A standby port is an active port in the node that is not used in the
control tree.

� A parent port is the upstream port in the control tree. Thus, each node
has only one parent port.

� A child port is a downstream port of the control tree.
� A pruned port is a child port that is attached to a leaf or v-leaf node.

A summary of the functionalities performed in the proposed solution
by both entities (i.e., managed components and autonomic manager) and
classified according to the MAPE tasks, is presented in Table 2.

5. Autonomic SHP

In order to restore the control plane connectivity and maintain an
accurate network view in the controller, the proposed fault recovery
mechanism is autonomously performed by the SHP components. In
particular, this proposal is conceived to provide a quick control plane
restoration by only taking local actions while notifying the controller
about the network disruption. The controller can then perform an opti-
mized route computation [46].

In this section, we first describe the data frame structure of each
message used by the SHP components. Afterward, a detailed description
of the protocol operations is provided, including the mathematical
formulation used in the control path optimization.
5.1. Data frames description

The SHP communications follow the frame encapsulation illustrated
in Fig. 3. Accordingly, data frames defined in this proposal use the same
header format, where different Protocol Data Unit (PDU) types are
included to identify the message.

The fields in this header structure are transmitted from left to right
and each tick mark represents a one-bit position in the frame. As illus-
trated in Fig. 3, the overall header size is 32 bits (i.e., 4 octets). The in-
formation contained in each field of the message header is further
explained below:



Fig. 4. TopoUpdate message format.

Fig. 5. ReplyUpdate message format.

L. Ochoa-Aday et al. Digital Communications and Networks xxx (xxxx) xxx
1. Proto type: Protocol type (8 bits). This field uses a specific hexadecimal
number to denote the protocol type so that any switch that supports
this protocol can easily identify SHP messages in the network.

2. PDU type: Packet Data Unit type (8 bits). This field specifies the type of
message in the payload. For example, type 0� 01 denotes a top-
oUpdate frame and type 0� 02 indicates a replyUpdate frame.

3. Message length: Message size (16 bits). This field indicates the message
end in the byte stream, starting from the first byte of the header.
5.1.1. topoUpdate
The topoUpdate message is used by the forwarding devices to

announce that a network failure is affecting the connectivity established
in the control plane. This message format was inspired by the use of Type-
Length-Value (TLV) structures for the exchange of local neighbor infor-
mation. TLV structures have been widely exploited by several existing
standardized protocols, such as Link Layer Discovery Protocol (LLDP)
[47], Intermediate System to Intermediate System (IS-IS) [48], Remote
Authentication Dial-In User Service (RADIUS) [49], among others.

A TLV structure is a generic representation of an attribute that can be
correctly parsed without requiring the parser to understand the attribute.
Based on this, we utilized TLV as an efficient method for transmitting
different kinds of topology data inside the message body. This encoding
6

offers a reasonable balance between compactness and flexibility, which
makes parsing faster and the data smaller. Moreover, using TLV for the
data structure makes the proposed protocol extendable. Additionally,
TLV elements can be placed in any order inside the message, which
provides great flexibility in the design of the protocol.

While the TLV type and length fields occupy the first two octets of the
TLV format, the value field may have a fixed or variable size. In addition,
it may include different types of information, containing either binary or
alpha-numeric data, which is specified using the associated subtype
identifiers (e.g., port component, Media Access Control (MAC) or
Internet Protocol (IP) address, interface name, locally assigned identi-
fiers, etc.).

In Fig. 4, we provide the topoUpdate message format. Besides the
header, this message carries two TLVs in the payload, namely, TLV node
Identifier (ID) and TLV node port ID. The former is used to identify the
node detecting the failure, while the latter specifies the involved port.
Complementary TLVs can also be defined to enable protocol extensions.

This recovery message is first sent when a node detects a network
failure in its parent port. This message is then forwarded through child
ports to the downstream nodes along the compromised control branches.
In addition, this message is also sent through the standby ports of each
affected node as possible alternatives to recover the control path to an
active SDN controller in the network. In this way, forwarding devices
announce the network failure and simultaneously try to recover the
control path toward an active SDN controller. By contrast, affected leaf
and v-leaf nodes do not receive such a message, since no alternate path
can be identified through them.

5.1.2. replyUpdate
When a forwarding device that has an active parent port receives a

topoUpdate, rather than forwarding it, the node discards this message
and responds with a replyUpdate. The data frame format of a replyUp-
date is shown in Fig. 5.

Algorithm 1. topoUpdate message forwarding
The replyUpdate message is critical in the process of recovering the
broken control plane connectivity since its functionality is twofold. The
presence of a payload in the replyUpdate message is optional, and its
inclusion depends on the function performed by the particular instance of
the message. If the payload is required, the information contained within
it is either directly encapsulated by the node detecting the failure or
taken from a previously received topoUpdate (i.e., TLV node ID and TLV
node port ID).



L. Ochoa-Aday et al. Digital Communications and Networks xxx (xxxx) xxx
First, this message is used to provide affected nodes with alternate
control paths, enabling the reestablishment of the control connectivity in
the hierarchical control tree. For this purpose, the replyUpdate message
only carries its header information, so as to perform quick restoration and
reduce the communication overhead. In particular, non-affected nodes,
which become aware of the network failure after receiving a topoUpdate
from a neighbor, send a short replyUpdate message to advertise them-
selves as possible points of recovery for the hierarchical control tree. In
the same way, affected nodes also forward the first replyUpdate they
receive across the disconnected branches, with the exception of their
pruned ports. Similar to the previous message, affected leaf and v-leaf
nodes do not receive this message because they are not able to provide a
different route to reach the SDN controllers. In this way, forwarding
additional messages to the nodes that cannot be used to recover the
control tree topology is avoided.

The second task performed by the replyUpdate message is related to
the notification of the network failure to the controllers. In this regard,
the nodes with their active control path receive a topoUpdate from a
neighbor, and also generate a second replyUpdate, which is sent through
their parent port to the corresponding SDN controllers. The replyUpdate
payload is reserved for this function, since in this case the information
identifying the network failure (received in the topoUpdate) is included
as part of the message. Therefore, the remainder of the nodes receiving
this extended replyUpdate (i.e., those upstream nodes along the control
path) also forward this message to the controller.

5.2. Mechanism operation

The forwarding devices initiate the proposed autonomic mechanism
through the SHP.When a network device detects a port failure (i.e., when
a neighbor’s connectivity fails), the managed component executes spe-
cific actions depending on the state of its disrupted port (i.e., parent,
child, pruned or standby).

Additionally, a new port state is defined in the SHP, called “recov-
ering”. This temporal port state identifies a forwarding port of an affected
node that is connected to some disrupted network element (node or link).
In particular, a disconnected node assigns the recovering state to those
ports that are either part of the affected control branch or are receiving a
topoUpdate from another affected neighbor.

Failures detected on standby, pruned or child ports are automatically
reported to the SDN controllers with no change to the upstream control
tree. To do this, the notification of the failure is sent through the estab-
lished control branch to the corresponding SDN controller using an
extended replyUpdate message. The failure is specified in this message,
as are the respective identifiers of the node and port detecting the fault.

However, if the failure is detected through a parent port, the affected
node must autonomously recover its control plane connectivity by
making local decisions with no SDN controller intervention. First, the
7

node informs its neighbors about the failure and forwards a topoUpdate
message with its own node ID and involved node port ID through all the
remaining ports except those that are pruned. Given their topological
nature, leaf and v-leaf nodes cannot provide an alternative control path to
the SDN controllers. Hence, unnecessary topoUpdate and replyUpdate
messages are not forwarded to them in the control tree. This feature is
critical to achieving a minimal communication overhead in the proposed
SHP. The remainder of the process after receiving a topoUpdate message
is described in Algorithm 1.

Algorithm 2. replyUpdate message forwarding
In essence, nodes receiving a topoUpdate message from their parent
ports (or those that already have their parent ports disconnected), set the
incoming port p, as well as all their child ports, to the recovering state
(line 3). In this way, the nodes identify themselves as affected (i.e., in
case the incoming port is the parent port) and mark the ports connected
to neighbors that also require an alternate path to controllers. In addition,
they propagate the received topoUpdate through all their ports, except
the pruned ones, in order to notify their neighbors about the failure and
identify a new path to the SDN controllers (line 5). The same sequence of
actions is also performed by the node that has initially detected the
failure from its parent port.

Nodes receiving a topoUpdate while their control paths are active
(lines 9 to 5) discard this packet and answer it by sending a short
replyUpdate to the affected neighbor. Next, these nodes notify the
controller about the failure by sending an extended replyUpdate with the
node and port identifiers received in the topoUpdate as a payload. It is
important to note that, although a node may receive the same top-
oUpdate several times from different neighbors, the controller is
informed only once about each particular failure.

As the announcement of the network failure is performed through the
topoUpdate forwarding process, alternative control paths are advertised
using the replyUpdate message. Algorithm 2 describes the steps after
receiving a replyUpdate.

Once a disconnected node receives a replyUpdate, the neighbor
sending this message becomes its point of recovery. This means that in
order to provide a quick recovery strategy, each affected node will join
with the neighbor from which it first receives the notification of an
alternate control route (i.e., a short replyUpdate). Thus, the incoming
port p is set to the parent state, indicating that node v has recovered its
connection to the controller through this port (line 3). Then, the received
replyUpdate is forwarded by all ports in the recovering state to notify
other affected neighbors about this new possibility of reaching the
controller (line 4). Afterward, these recovering ports are changed to the
standby state (line 5). Furthermore, an acknowledge message (ACK) is
sent by the affected node to its point of recovery in order to confirm this
new association (line 6). Accordingly, the neighbor node, acting as a



Fig. 6. Sample control tree topology with node failure.

L. Ochoa-Aday et al. Digital Communications and Networks xxx (xxxx) xxx
point of recovery, changes the port status from standby to child.
When a node receives a replyUpdate with the network failure speci-

fied in the payload (i.e., for fault notification purposes), the incoming
message is forwarded through the parent port to the controller (lines 7
and 8). Finally, although several replyUpdate messages can be sent to
disconnected nodes from different neighbors, only the first is selected,
meaning the replyUpdate messages received after the node is recovered
are discarded (line 10).

Taking an SDN topology with two controllers and eight switches as an
example, we can describe the basic operation of the SHP after a node
failure occurs in the network. Specifically, in Fig. 6, we redraw the
considered control tree topology, illustrating a sample disruption of the
core node N2. In the explanation of this example, we are assuming that
the closest active nodes to N6 and N7 are N5 and N3, respectively.

As shown in Fig. 6, when N2 fails, N6 and N7, which are connected to
the disrupted node through their parent ports, lose their paths to the SDN
controllers. Hence, both nodes send a topoUpdate message for all their
active ports in order to announce the network failure and identify new
control paths to the SDN controllers. Thus, two topoUpdate messages are
propagated between neighbors, indicating the disrupted port of N6 in
one and the disrupted port of N7 in the other.

When N6 receives the topoUpdate generated by N7, it changes the
state of the incoming port of this message from the standby state to the
recovering state. The same change is triggered in N7 after receiving the
topoUpdate corresponding to N6. Once N5 and N3 become aware of the
network disruption, they respond to the received topoUpdate packets,
sending back two short replyUpdate messages to N6 and N7. In addition,
each of these points of recovery (i.e., N5 and N3) notifies its controller
Fig. 7. Control topology recovered by SHP operation.

Fig. 8. Message flows fo

8

about the network disruption using replyUpdate messages. In this
instance, the replyUpdate messages are extended with the received TLVs
specifying the failures.

After receiving the first replyUpdate, the two affected nodes assign
the incoming ports to the parent state and forward these reply messages
using their recovering ports. After doing this, ports in the temporary
recovering state of both nodes are reset to the standby state. Additionally,
these nodes reply to their respective points of recovery with an
acknowledgment message. To avoid propagation loops, replyUpdate
messages exchanged between the considered nodes (i.e., N6 and N7) and
received after the control plane connection is recovered are discarded.
The recovered control tree that results after the completion of this pro-
cedure is illustrated in Fig. 7.

To more clearly illustrate this process, Fig. 8 shows the message
sequence for the proposed fault recovery mechanism when N6 detects
that its parent port is nonfunctional. For the sake of simplicity, the ex-
change of recovery messages between N6 and N7 is not included in this
figure.

As explained above, N6 sends one topoUpdate message containing its
node ID and the node port ID of the port connected to N2, which has
failed, to N5 and N7 simultaneously. This topoUpdate message is also
forwarded from N7 to N3. Instead of forwarding the topoUpdate, active
nodes that have their parent ports (i.e., N5 and N3) respond to this
request by sending back a short replyUpdate message. This replyUpdate
is sent through the path followed by the received topoUpdate message,
creating a newway for N6 to reach the SDN controllers. At the same time,
the received failure identifiers are sent by N5 to C1, using an extended
replyUpdate.

Upon receiving the first replyUpdate sent by N5, N6 changes the state
of the incoming port to the parent and automatically sends an
acknowledgment message to N5. Afterward, any subsequent replyUpdate
messages will be discarded (e.g., the one coming from N3 and forwarded
by N7). The ACK message is used by N6 to announce to N5 that they are
now joined in the recovered control tree topology. Hence, N5 should
update its port status.
5.2.1. Centralized optimization
As connectivity is recovered from the broken state by only taking

local actions, the network can be in a “good” but possibly degraded
global state. After the control plane connectivity is recovered and the
topology information of the SDN controllers is updated, the control paths
can be centrally optimized. To achieve this, the autonomic managers,
aware of the entire network view, may change the overlay control to-
pology in order to improve performance (e.g., by finding the control
paths with minimum delay).

In this regard, several optimization criteria may be considered in
order to meet the requirements of the supported network applications
and high-level objectives. In particular, due to the separation of network
control from the forwarding devices, it is critical to establish control
paths with minimum delay. To that end, minimizing propagation latency
in control paths is fundamental to being able to respond to events in real
time, and this has become one of the most significant design metrics for
r the proposed SHP.



Table 3
Network parameters of the topologies used in the simulations.

Topology Nodes Links Average Degree Diameter (ms)

Atlanta 15 22 2.93 3.1
Sun 27 51 3.78 3.7
Pioro 40 89 4.45 4.2

L. Ochoa-Aday et al. Digital Communications and Networks xxx (xxxx) xxx
the large-scale SDN.
The computation for minimizing propagation latency can be modeled

using an optimal Integer Linear Programming (ILP). Designed to run as a
network application on the SDN controller, this simple model computes a
loop-free topology with optimal-delay control paths based on the
network information previously collected by the controller. The goal is to
identify the tree with the lowest path-delay between each node and the
controller. Consequently, the topology information of the network could
be sent to the controller using the shortest control paths (in terms of
delay), allowing the topology data and statistic information of the for-
warding plane to reach the controller with the shortest path-delay
possible.

To describe the considered SDN, we model the network as a directed
graph G ¼ ðV;EÞ, where V is the set of nodes and E is the set of edges.
Each link (i;j) has its own associated non-negative delay di;j. We denote C
as the controller location in a specific node of the network graph and U as
the set of forwarding devices (i.e., U ¼ V \ C). The goal of this model is to
find the subset of control paths (PC) that form a minimum-delay tree
rooted in the SDN controller. To do this, the decision variable for the ILP
model is defined as follows:

pui;j: describes the selection of an edge (i; j) in the control path from a
node u 2 U to the controller.

pui;j ¼
�
1; if edge ði; jÞ is selected in the path;
0; otherwise:

Using this notation, the objective function can be defined as follows:

minimize
X
u2U

X
ði;jÞ2E

pui;j ⋅ di;j (1)

subject to:

X
j2N∣ði;jÞ2E

pui;j �
X

j2N∣ðj;iÞ2E
puj;i  ¼

8><
>: 

1 if i ¼ u;

�1 if i ¼ C;

0 otherwise;

8i 2 N;8u 2 U

(2)

Eq. (1) minimizes the delay in all control paths from each node to the
controller. This objective function ensures an optimal delay spanning tree
with the shortest control paths between each node and the SDN
controller. Flow conservation constraints in Eq. (2) require that the
control path of each node u 2 U is formed by the sequence of links at
which pui;j ¼ 1. The overall control path delay is the summation of the
corresponding selected link delays. Based on this simple formulation, we
are able to find the optimal delay set of control paths from each node to
the controller.

6. Evaluation and results discussion

In this section we first describe the simulation setup used to evaluate
the proposed recovery mechanism. Then, we discuss the different tests
conducted and results achieved in order to analyze the impact of the SHP
on several network parameters.
6.1. Simulation environment

To implement the proposed solution, we used the discrete event
simulator OMNeTþþ [50] because of its suitability for studying realistic
large-scale scenarios and because of the lack of suitable tools for
researching the SDN from a layer 2 perspective [51,52].

For the conducted simulations, we worked with three network graphs
representative of different scales from the available online dataset Sur-
vivable fixed telecommunication Network Design (SNDlib) [53]. Spe-
cifically, we selected Atlanta (15 nodes, 22 links), Sun (27 nodes, 51
9

links) and Pioro (40 nodes, 89 links). Other significant network param-
eters of these topologies are presented in Table 3.

In order to evaluate the performance of our solution across varying
connectivity degrees, we generated three family sets using these net-
works as seeds. Topologies that belong to each family set have been
constructed as scale-free networks using a power-law node degree dis-
tribution with the same degree exponent as that of the original network.
This was a result of using the static Barab�asi-Albert model [54] and
maintaining the original number of nodes and links. Each family size was
determined after restricting the margin of error of the indicated average
values to less than 6% in each simulation instance. In particular, each
topology set is composed of 500 generated networks. All simulation re-
sults include their respective 95% confidence intervals in the plots based
on Student-t distribution. For SDN controller placements, we selected the
most central nodes in each topology based on closeness centrality.

In our experimental simulations, we calculated the link propagation
delays of the original topologies as the time needed for light to travel
through the fiber. To do so, the distance between nodes was computed
based on the locations provided in Ref. [53]. Then, for each network
family, different link latencies were randomly generated, considering the
mean and standard deviation values of the original topology used as the
master. In addition to the propagation latency among devices, we also
considered the packet processing time within each node. Specifically, the
switch processing time was determined according to the sizes of mes-
sages as given in Ref. [55] for NetFPGA implementations.

6.1.1. BFD mechanism design
An essential element that is necessary to determine in our simulations

in order to accurately assess the performance of the proposed fault re-
covery mechanism is the required latency to detect a link failure. Given
that Ethernet is not designed with high requirements for failure detec-
tion, traditional techniques such as Loss of Signal (LoS) or layer 2
heartbeats cannot meet the 50 ms requirement of carrier-grade networks
[56]. Therefore, in our simulations we have used a protocol-agnostic
mechanism called BFD [35], for failure detection.

The goal of BFD is to provide low-overhead, short-duration detection
of failures in links or paths between two end-point systems. This mech-
anism operates on top of any data protocol (e.g., network layer, link
layer, tunnels, etc.) and is always executed in a unicast, point-to-point
mode [35]. We have configured BFD sessions to detect link failures
(between neighboring forwarding devices in the SDN) within the
required 50 ms.

In Eq. (3), we derived the (worst-case) failure detection time Tdetec

using the BFD method.

Tdetec ¼ðM þ 1Þ �Tinterv (3)

As shown in Eq. (3), the failure detection time of the BFD strongly
depends on the transmit interval Tinterv (i.e., the periodicity of the control
messages) and the detection time multiplierM. This parameter identifies
when a session end-point is considered unreachable in terms of lost
control packets. For the simulations, we utilized a multiplier of M ¼ 3 to
prevent small packet loss from triggering false positives.

Moreover, we focused on detecting link loss instead of path failures.
Thus, only one BFD session was set per switch interface. This approach
not only reduces detection time significantly but also decreases message
complexity and overhead in the network. In Eq. (4), we derived the
minimal transmit interval Tmin interv by implementing a BFD scheme that
detects link losses instead of path failures, as previously explained. Link



L. Ochoa-Aday et al. Digital Communications and Networks xxx (xxxx) xxx
monitoring exhibits great improvement compared to per-path moni-
toring in terms of the failure detection time. This method is also adopted
by Ref. [34].

Tmin interv ¼ 1:25 � β �TRound�Trip�TimeðRTTÞ (4)

The transmit interval time is lower bounded by the RTT of a link in
the network. On highly loaded links, this RTT measure can fluctuate
greatly and might result in false positives [57]. Therefore, the retrans-
mission interval of lost packets can be computed using β � TRTT , where β is
the variation of the inter-arrival time. For our simulations, we selected a
fixed and conservative value of β ¼ 2, as identified in Ref. [58]. In
addition, we validated the detection time measured in our experimental
simulations using the analytical model presented above.
6.2. Protocol performance

In this subsection, we present the performance evaluation of the SHP
solution for different key metrics and analyze the obtained results. Spe-
cifically, we assess the proposed SHP considering various metrics, such as
recovery time, number of generated packets and percentage of nodes
involved in the recovery process.

6.2.1. SHP control tree recovering
After a failure occurs in the network, the proposed mechanism at-

tempts to recover the connectivity of the hierarchical control tree. To
more clearly illustrate the operation of the SHP in the event of failures,
we begin this evaluation section by presenting a basic recovering
example using the Atlanta topology with a centralized controller (see
Fig. 9. Recovering of the contr

10
Fig. 9).
For this evaluation, we placed the controller in the node denoted as

N8, identified with a blue square. In Fig. 9(a), we first draw the hierar-
chical control tree originally created in this scenario, depicting the for-
warding devices in the network as black circles. We use solid blue lines to
represent the control paths established between the switches and the
SDN controller in the tree. The remaining network links, not included in
the control tree, are drawn using dotted black lines.

Next, in Fig. 9(b), we modify the previous graph to illustrate the
occurrence of a node failure. Explicitly, the node denoted as N6 and its
links are represented as partially transparent to identify this sample
disruption. Additionally, nodes that lose their control connection due to
the failure (i.e., nodes N4, N11 and N13), are depicted in a different
shape (hexagon) and color (gray). Concerning the edges, the set of
candidate links that can reestablish the affected control paths are iden-
tified using dashed gray lines. The exchange of topoUpdate and short
replyUpdate messages performed by SHP occurs over these links.

Fig. 9(c) and (d) depict the recovering solution adopted for each of
the two disconnected branches of the original control tree. In Fig. 9(c),
we can see that the recovered control path of node N4 now goes through
N5, which in this case is the only neighbor that sends a short replyUpdate
to N4 with the notification of an alternate control route. In Fig. 9(d),
however, we see that both nodes N11 and N13 receive the first
replyUpdate message from the same point of recovery, namely N14.
Therefore, two blue lines are drawn between these nodes to indicate the
establishment of these new control paths. Meanwhile, the interfaces
connecting the nodes N11 and N13 are now in the standby state.
ol tree in Atlanta topology.



Fig. 10. Fault recovery time in Atlanta.

L. Ochoa-Aday et al. Digital Communications and Networks xxx (xxxx) xxx
6.2.2. Recovery time
To assess the performance of the proposed SHP mechanism, we start

by analyzing the recovery time. We have defined the SHP recovery time
as the overall amount of time required to recover a disrupted control
path. To be more detailed, this metric measures the period elapsed from
the moment the failure occurs until the establishment of the new asso-
ciation between the disconnected node and one of its neighbors in the
recovered control tree. Therefore, the recovery time is composed of the
detection latency (obtained using the BFD strategy) and the time needed
to complete the required SHPmessage exchange (i.e., from the sending of
the first topoUpdate with the failure announcement to the reception of
the acknowledgment message by the node acting as a point of recovery).

In Fig. 10, Fig. 11 and Fig. 12, we analyze single failure assumption
for both links and nodes in the three selected topologies.

Note that a node failure corresponds to the occurrence of a multi-link
failure. For this more complex scenario, the reported latencies reveal the
entire period required to recover each of the individual link failures that
comprise the network event.

In addition, in our simulations, we only consider the failure of links
and nodes that do not affect the network connectivity, meaning the
resulting graph remains strongly connected. In this way, we ensure that
recovered control paths can always be established after the occurrence of
the network failure.

To get a better sense of the achieved recovery time, we also include a
Rerun approach in this analysis. This baseline approach refers to reap-
plying the topology discovery mechanism [45] after the SDN controllers
are spontaneously notified of the network failure from the nodes that
detect it. In this case, the recovery time is computed by considering the
detection time, the time required to inform the controllers about the
failure (using the corresponding shortest paths) and the discovery time.

As expected, in all cases, the recovery mechanism outperforms the
Rerun approach in terms of the required time to reestablish the con-
Fig. 11. Fault recov

11
nectivity of the hierarchical control tree. Specifically, for all the gener-
ated topologies, the fault recovery time is always below 20 μs for both
considered cases (i.e., link and node failures). Therefore, the suitability of
the recovery mechanism for application in carrier-grade networks, which
requires less than the 50 ms, is confirmed. In addition, this behavior is not
influenced by the increase of SDN controllers, validating the good scal-
ability of this proposal.

6.2.3. Recovery packets overhead
Next, we evaluate the impact of the proposed recovery strategy in

terms of generated packets for various sizes of multi-link failures. In this
analysis, we restrict the scope of the multiple failures to links connected
to the same node because simultaneous wider-scope link failures are
probably not realistic. In other words, we assume that simultaneous
failures of multiple links are due to a failure of a node with a given
connectivity degree. It should be noted that the failure of leaf and v-leaf
nodes (nodes with a single way of reaching the controllers) are not
included in this analysis since their control paths cannot be recovered.

Fig. 13 shows the average number of generated packets in comparison
to the baseline Rerun strategy for the three considered topologies and
varying the number of controllers. As previously mentioned, the degree
of the failed node indicates the number of affected links. The number of
packets reported in the plots represents the overall average of generated
messages considering the failure of each node with a given connectivity
degree for the 500 instances of a network.

From the results, it can be seen that under the SHP, smaller failures
require the propagation of fewer messages, but this metric increases as
the size of the failure (i.e., the number of affected links) increases. This
result is expected given the generation of topoUpdate and replyUpdate
messages defined by the SHP. In particular, under this strategy, the
affected nodes try to recover their control paths as quickly as possible,
and forward a topoUpdate message through each of their interfaces.
ery time in Sun.



Fig. 12. Fault recovery time in Pioro.

Fig. 13. Average number of generated packets for recovering multi-link failures.

L. Ochoa-Aday et al. Digital Communications and Networks xxx (xxxx) xxx
Likewise, a short replyUpdate message is also received by every port of
the affected node. Therefore, the degree of the failed node directly de-
termines the resulted packet overhead. We can also observe from the
figure that the increase in the number of generated packets corresponds
to the network size. This result is due to the propagation of extended
replyUpdate messages to notify the SDN controllers of the failure through
the shortest path, the length of which (in terms of the number of hops)
corresponds to the number of network nodes.

Furthermore, the same trend exists for different numbers of control-
lers. For small failures, the average number of messages is low and
approximately the same for all controller values (around 5.67 in Atlanta,
7.69 in Sun and 11.32 in Pioro). However, a slight decrease in the
number of generated packets can be observed as the number of con-
trollers increases, and this difference becomes more noticeable when
considering the failure of nodes at a higher degree. The reason for this is
12
the reduction in the number of extended replyUpdate messages that are
sent to announce the failure, as an increase in the number of controllers
reduces the distance between them and the network nodes. In other
words, when the number of controllers grows, fewer hops are likely
needed to connect them with the neighbors of the affected node, which
means that fewer replyUpdate messages are generated along these paths.

Inversely, under the Rerun strategy, the number of packets generated
in the network corresponds with the average number of the node’s
neighbors. Therefore, given the reduction in the number of switches with
higher connectivity degrees as a result of the considered node failure, the
number of packets required for rediscovering the topology is decreased.
We can see in this figure that, in all cases, the proposed recovery
mechanism significantly outperforms the default Rerun strategy in terms
of generated messages with percents of difference that are above 79%,
87% and 89%, respectively.



Fig. 14. Nodes involved in the SHP operation in Atlanta.

L. Ochoa-Aday et al. Digital Communications and Networks xxx (xxxx) xxx
6.2.4. Number of involved nodes
In this last evaluation, we analyze the number of nodes involved in

the operation of the proposed recovery mechanism. The term “involved
nodes” takes into account the set of nodes performing different roles in
the operation of SHP. Specifically, this set includes the disconnected
nodes, their unaffected neighbors (i.e., those that can act as points of
recovery since they have active parent ports) and the upstream nodes of
those neighbors related to the SDN controllers. We use this metric to
evaluate the impact of the SHP mechanism on the number of nodes with
an additional workload as a result of the autonomous operation of this
protocol.

Figs. 1415 and Fig. 16 show the number of involved nodes for
different numbers of controllers and varying degrees of the affected node.

In this case, the Rerun strategy is not included in the plots because the
operation of the topology discovery mechanism requires the implication
of the entire network, increasing the workload of every switch. In
Fig. 15. Nodes involved in th

13
contrast, the SHP reduces this impact by limiting the scope of the re-
covery functions to the neighborhood of nodes whose control plane
connectivity has failed.

As shown, in the majority of cases for a given number of controllers,
the number of switches involved in the recovery strategy increases while
the degree of the affected node grows. This behavior is expected given
that, in our approach, the neighbors of the disconnected node that still
have active control paths are responsible for restoring the control plane
connectivity.

Results also show that when the number of SDN controllers is
increased, the number of involved switches decreases for a given failed
node degree. As previously discussed, increasing the number of con-
trollers reduces the length of branches in the control tree. As a result, a
smaller number of nodes is required to send the failure notification to the
network controllers.

In summary, in all the cases depicted in Figs. 14, Figs. 15 and 16, the
e SHP operation in Sun.



Fig. 16. Nodes involved in the SHP operation in Pioro.

L. Ochoa-Aday et al. Digital Communications and Networks xxx (xxxx) xxx
average values of involved switches are always below 50% of the
network nodes. This result reveals a significant merit of the SHP per-
formance: it is able to achieve a fairly reasonable trade-off between
reducing the recovery time with autonomic principles and keeping a
minimal associated impact on the network devices in terms of the
increased workload.

7. Conclusion

To address the concern of the resilience of the SDN, in this paper, we
propose a self-healing mechanism that recovers the control plane con-
nectivity in SDN-managed environments without overburdening the
controller performance. The main idea underlying this proposal is to
enable the real-time recovery of control paths in the face of failures
without the intervention of a controller. To achieve this, we leverage the
self-healing attribute of the ANM paradigm to guarantee the survivability
of control connectivity as long as at least one SDN controller remains
reachable within the network. The benefits of adopting the SHP are
manifold. First, the mechanism uses the fewest possible number of
messages (i.e., it has minimal communication overhead) and each mes-
sage is small in size. Thus, it is easy to implement and yet efficient.
Second, network devices can autonomously and stably recover the
network from the “broken” states with no intervention of an SDN
controller. In this way, not only is the workload of the SDN controllers
minimized, the recovery time, packet loss probability and the memory
requirements of forwarding devices are also reduced. In addition, once
the connectivity is recovered throughout the control tree topology, the
SDN controllers can optimize the recovered control plane by evaluating
the requirements of the supported network applications. In addition, the
results obtained in the experimental simulation reflect the time efficiency
and scalability of the proposed solution across various key network
metrics. Specifically, the recovery of the control connectivity was assured
with the recovery time being below 20 μs for all the performed simula-
tions. This result confirms the suitability of the recovery mechanism for
application in carrier-grade networks, which require the recovery time to
be less than 50 ms.

Conflict of interest

The authors declare that there is no conflict of interest regarding the
publication of this article.
14
Acknowledgements

This work has been supported by the Ministerio de Economía y
Competitividad of the Spanish Government under project TEC2016-
76795-C6-1-R and AEI/FEDER, UE.

References

[1] S. Sezer, S. Scott-Hayward, P.K. Chouhan, B. Fraser, D. Lake, J. Finnegan,
N. Viljoen, M. Miller, N. Rao, Are we ready for sdn? implementation challenges for
software-defined networks, IEEE Commun. Mag. 51 (7) (2013) 36–43.

[2] J.H. Cox, J. Chung, S. Donovan, J. Ivey, R.J. Clark, G. Riley, H.L. Owen, Advancing
software-defined networks: a survey, IEEE Access 5 (2017) 25487–25526, https://
doi.org/10.1109/ACCESS.2017.2762291.

[3] L.H.J.W. Haibo Wang, Hongli Xu, X. Yang, Load-balancing routing in software
defined networks with multiple controllers, Comput. Network. 141 (2018) 82–91.

[4] L. Ochoa-Aday, C. Cervell�o-Pastor, A. Fern�andez-Fern�andez, Discovering the
network topology: an efficient approach for sdn, Adv. Distr. Comput. Artif. Intell. J.
5 (2) (2016) 101–108.

[5] S. Sharma, D. Staessens, D. Colle, M. Pickavet, P. Demeester, Automatic
bootstrapping of OpenFlow networks, in: Proc. Of the 19th IEEE Workshop on Local
& Metropolitan Area Networks (LANMAN), 2013, pp. 1–6. Brussels, Belgium.

[6] L. Schiff, S. Schmid, P. Kuznetsov, In-band synchronization for distributed sdn
control planes, Comput. Commun. Rev. 46 (1) (2016) 37–43.

[7] Autonomic Computing, in: IBM’s Perspective on the State of Information
Technology, White Paper, IBM Press, 2001. URL, https://www.bibsonomy.org/bib
tex/292d2eb8c354a1241e18416471572758c/neilernst.

[8] S. Dobson, S. Denazis, A. Fern�andez, D. Gaïti, E. Gelenbe, F. Massacci, P. Nixon,
F. Saffre, N. Schmidt, F. Zambonelli, A survey of autonomic communications, ACM
Trans. Autonom. Adapt. Syst. 1 (2) (2006) 223–259.

[9] Z. Movahedi, M. Ayari, R. Langar, G. Pujolle, A survey of autonomic network
architectures and evaluation criteria, IEEE Communications Surveys & Tutorials 14
(2) (2011) 464–490.

[10] N. Agoulmine, S. Balasubramaniam, D. Botvitch, J. Strassner, E. Lehtihet,
W. Donnelly, Challenges for autonomic network management, in: Proc. Of the First
IEEE International Workshop on Modelling Autonomic Communications
Environments, MACE, Dublin, Ireland, 2006, pp. 1–20.

[11] M.C. Huebscher, J.A. McCann, A survey of autonomic computing—degrees, models,
and applications, ACM Comput. Surv. 40 (3) (2008) 1–28.

[12] B. Jennings, S.V.D. Meer, S. Balasubramaniam, D. Botvich, M.O. Foghlu,
W. Donnelly, J. Strassner, Towards autonomic management of communications
networks, IEEE Commun. Mag. 45 (10) (2007) 112–121.

[13] R. Boutaba, J. Martin-Flatin, J. Hellerstein, R. Katz, G. Pavlou, C.-T. Lea, Recent
advances in autonomic communications (Guest Editorial), IEEE J. Sel. Area.
Commun. 28 (1) (2010) 1–3.

[14] W. Jiang, M. Strufe, H. Schotten, Autonomic network management for software-
defined and virtualized 5G systems, in: Proc. Of the 23th European Wireless
Conference, 2017, pp. 1–6. Dresden, Germany.

[15] N. Samaan, A. Karmouch, Towards autonomic network management: an analysis of
current and future research directions, IEEE Communications Surveys & Tutorials
11 (3) (2009) 22–36, https://doi.org/10.1109/SURV.2009.090303.

http://refhub.elsevier.com/S2352-8648(18)30282-7/sref1
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref1
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref1
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref1
https://doi.org/10.1109/ACCESS.2017.2762291
https://doi.org/10.1109/ACCESS.2017.2762291
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref3
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref3
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref3
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref4
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref4
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref4
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref4
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref4
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref4
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref4
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref5
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref5
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref5
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref5
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref6
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref6
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref6
https://www.bibsonomy.org/bibtex/292d2eb8c354a1241e18416471572758c/neilernst
https://www.bibsonomy.org/bibtex/292d2eb8c354a1241e18416471572758c/neilernst
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref8
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref8
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref8
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref8
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref8
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref9
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref9
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref9
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref9
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref9
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref10
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref10
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref10
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref10
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref10
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref11
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref11
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref11
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref11
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref12
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref12
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref12
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref12
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref13
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref13
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref13
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref13
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref14
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref14
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref14
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref14
https://doi.org/10.1109/SURV.2009.090303


L. Ochoa-Aday et al. Digital Communications and Networks xxx (xxxx) xxx
[16] S. Kuklinski, P. Chemouil, Network management challenges in software-defined
networks (Invited Paper), IEICE Trans. Commun. E97-B (1) (2014) 2–9.

[17] G. Poulios, K. Tsagkaris, P. Demestichas, A. Tall, Z. Altman, C. Destr�e, Autonomics
and SDN for self-organizing networks, in: Proc. Of the 11th International
Symposium on Wireless Communications Systems (ISWCS), 2014, pp. 830–835.
Barcelona, Spain.

[18] S. Neti, H.A. Muller, Quality criteria and an analysis framework for self-healing
systems, in: Proc. Of the International Workshop on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS’2007), 2007, pp. 1–10, https://
doi.org/10.1109/SEAMS.2007.15. Minneapolis, MN, USA.

[19] H. Psaier, S. Dustdar, A survey on self-healing systems: approaches and systems,
Computing 91 (1) (2011) 43–73, https://doi.org/10.1007/s00607-010-0107-y.

[20] D. Ghosh, R. Sharman, H. Raghav Rao, S. Upadhyaya, Self-healing systems – survey
and synthesis, Decis. Support Syst. 42 (4) (2007) 2164–2185, https://doi.org/
10.1016/j.dss.2006.06.011.

[21] I. Al-Oqily, S. Bani-Mohammad, B. Subaih, J.J. Alshaer, A survey for self-healing
architectures and algorithms, in: Proc. Of the International Multi-Conference on
Systems, Signals Devices (SSD’2012), Chemnitz, Germany, 2012, pp. 1–5, https://
doi.org/10.1109/SSD.2012.6198057.

[22] J.-P. Vasseur, M. Pickavet, P. Demeester, Network Recovery: Protection and
Restoration of Optical, SONET-SDH, IP, and MPLS, Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2004.

[23] P.C.d.R. Fonseca, E.S. Mota, A survey on fault management in software-defined
networks, IEEE Communications Surveys & Tutorials 19 (4) (2017) 2284–2321,
https://doi.org/10.1109/COMST.2017.2719862.

[24] Open Networking Foundation, OpenFlow Switch Specification v1.4.0, Technical
Specification, Oct. 2013. URL, https://www.opennetworking.org/.

[25] N.M. Sahri, K. Okamura, Fast failover mechanism for software defined networking:
OpenFlow based, in: Proc. Of the Ninth International Conference on Future Internet
Technologies (CFI’2014), Tokyo, Japan, 2014, https://doi.org/10.1145/
2619287.2619303, 16:1–16:2.

[26] Y. Lin, H. Teng, C. Hsu, C. Liao, Y. Lai, Fast failover and switchover for link failures
and congestion in software defined networks, in: Proc. Of the IEEE International
Conference on Communications (ICC’2016), Kuala Lumpur, Malaysia, 2016,
pp. 1–6, https://doi.org/10.1109/ICC.2016.7510886.

[27] S. Sharma, D. Staessens, D. Colle, M. Pickavet, P. Demeester, In-band control,
queuing, and failure recovery functionalities for Openflow, IEEE Network 30 (1)
(2016) 106–112, https://doi.org/10.1109/MNET.2016.7389839.

[28] E.G. Pereira, R. Pereira, A. Taleb-Bendiab, Performance evaluation for self-healing
distributed services and fault detection mechanisms, J. Comput. Syst. Sci. 72 (7)
(2006) 1172–1182, https://doi.org/10.1016/j.jcss.2005.12.008.

[29] S. Shin, Y. Song, T. Lee, S. Lee, J. Chung, P. Porras, V. Yegneswaran, J. Noh,
B.B. Kang, Rosemary: a robust, secure, and high-performance network operating
system, in: Proc. Of the ACM SIGSAC Conference on Computer and
Communications Security (CCS), Scottsdale, Arizona, USA, 2014, pp. 78–89,
https://doi.org/10.1145/2660267.2660353.

[30] A. Capone, C. Cascone, A.Q.T. Nguyen, B. Sans�o, Detour planning for fast and
reliable failure recovery in SDN with OpenState, in: Proc. Of the 11th International
Conference on the Design of Reliable Communication Networks (DRCN), 2015,
pp. 25–32. Kansas City, MO, USA.

[31] C. Cascone, L. Pollini, D. Sanvito, A. Capone, Traffic management applications for
stateful SDN data plane, in: Proc. Of the Fourth European Workshop on Software-
Defined Networks, 2015, pp. 85–90, https://doi.org/10.1109/EWSDN.2015.66.
Bilbao, Spain.

[32] P. Thorat, S. Jeon, H. Choo, Enhanced local detouring mechanisms for rapid and
lightweight failure recovery in openflow networks, Comput. Commun. 108 (2017)
78–93, https://doi.org/10.1016/j.comcom.2017.04.005.

[33] P. Thorat, S.M. Raza, D.S. Kim, H. Choo, Rapid recovery from link failures in
software-defined networks, J. Commun. Netw. 19 (6) (2017) 648–665, https://
doi.org/10.1109/JCN.2017.000105.

[34] N.L. M.v. Adrichem, B.J.v. Asten, F.A. Kuipers, Fast recovery in software-defined
networks, in: Proc. Of the 3rd European Workshop on, Software-Defined Networks,
Budapest, Hungary, 2014, pp. 61–66.

[35] D. Katz, D. Ward, in: Bidirectional Forwarding Detection (BFD), RFC 5880, RFC
Editor, June 2010. URL, http://www.ietf.org/rfc/rfc5880.txt.

[36] B. Raeisi, A. Giorgetti, Software-based fast failure recovery in load balanced SDN-
based datacenter networks, in: Proc. Of the 6th International Conference on
15
Information Communication and Management (ICICM), 2016, pp. 95–99, https://
doi.org/10.1109/INFOCOMAN.2016.7784222. Hatfield, UK.

[37] P. Thorat, S.M. Raza, D.T. Nguyen, G. Im, H. Choo, D.S. Kim, Optimized self-healing
framework for software defined networks, in: Proc. Of the 9th International
Conference on Ubiquitous Information Management and Communication (IMCOM),
Bali, Indonesia, 2015, https://doi.org/10.1145/2701126.2701235, 7:1–7:6.

[38] J.M. S�anchez, I.G.B. Yahia, N. Crespi, T.M. Rasheed, D. Siracusa, Softwarized 5g
Networks Resiliency with Self-Healing, CoRR Abs/1507.02951, URL, http://arxiv
.org/abs/1507.02951.

[39] J. M. S�anchez, I. G. B. Yahia, N. Crespi, POSTER: Self-healing mechanisms for
software-defined networks, CoRR abs/1507.02952. URL http://arxiv.org/abs/1
507.02952

[40] J.M. S�anchez, I.G.B. Yahia, N. Crespi, THESARD: on the road to resilience in
software-defined networking through self-diagnosis, in: Proc. Of the IEEE NetSoft
Conference and Workshops (NetSoft), 2016, pp. 351–352, https://doi.org/
10.1109/NETSOFT.2016.7502406. Seoul, South Korea.

[41] L. Ochoa-Aday, C. Cervell�o-Pastor, A. Fern�andez-Fern�andez, Self-healing topology
discovery protocol for software defined networks, IEEE Commun. Lett. 22 (5)
(2018) 1070–1073.

[42] ETSI, in: An Architectural Reference Model for Autonomic Networking, Cognitive
Networking and Self-Management, ETSI GS AFI 002 V1.1.1, Apr. 2013. URL, https
://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.02.01_60/gs_NFV002v010
201p.pdf.

[43] S. Khan, A. Gani, A.A. Wahab, M. Guizani, M.K. Khan, Topology discovery in
software defined networks: threats, taxonomy, and state-of-the-art, IEEE
Communications Surveys & Tutorials 19 (1) (2017) 303–324, https://doi.org/
10.1109/COMST.2016.2597193.

[44] X. Yu, H. Xu, D. Yao, H. Wang, L. Huang, CountMax: a lightweight and cooperative
sketch measurement for software-defined networks, IEEE/ACM Trans. Netw. 26 (6)
(2018) 2774–2786.

[45] L. Ochoa-Aday, C. Cervell�o-Pastor, A. Fern�andez-Fern�andez, eTDP: enhanced
topology discovery protocol for software-defined networks, IEEE Access 7 (2019)
23471–23487.

[46] A. Fern�andez-Fern�andez, C. Cervell�o-Pastor, L. Ochoa-Aday, Improved energy-
aware routing algorithm in software-defined networks, in: Proc. Of the 41st IEEE
Conference on Local Computer Networks, LCN, 2016, pp. 196–199.

[47] IEEE Standard for Local and Metropolitan Area Networks– Station and Media
Access Control Connectivity Discovery, Mar. 2016, https://doi.org/10.1109/
IEEESTD.2016.7433915.

[48] R. Callon, in: Use of OSI IS-IS for Routing in TCP/IP and Dual Environments, RFC
1195, RFC Editor, Dec. 1990. URL, http://www.rfc-editor.org/rfc/rfc1195.txt.

[49] A. DeKok, A. Lior, in: Remote Authentication Dial in User Service (RADIUS)
Protocol Extensions, RFC 6929, RFC Editor, Apr. 2013. URL, http://www.rfc-editor.
org/rfc/rfc6929.txt.

[50] OMNeTþþ – Discrete Event Simulator (version 5.4.1), (accessed on October 19,
2018). URL https://www.omnetpp.org/

[51] G. Anggono, T. Moors, A flow-level extension to OMNeTþþ for long simulations of
large networks, IEEE Commun. Lett. 21 (3) (2017) 496–499, https://doi.org/
10.1109/LCOMM.2016.2628356.

[52] A.W. Malik, K. Bilal, S.U. Malik, Z. Anwar, K. Aziz, D. Kliazovich, N. Ghani,
S.U. Khan, R. Buyya, CloudNetSimþþ: a GUI based framework for modeling and
simulation of data centers in OMNeTþþ, IEEE Transactions on Services Computing
10 (4) (2017) 506–519, https://doi.org/10.1109/TSC.2015.2496164.

[53] S. Orlowski, M. Pi�oro, A. Tomaszewski, R. Wess€aly, SNDlib 1.0-survivable network
design library, Networks 55 (3) (2010) 276–286, https://doi.org/10.1002/
net.20371.

[54] A.-L. Barab�asi, R. Albert, Emergence of scaling in random networks, Science 286
(5439) (1999) 509–512, https://doi.org/10.1126/science.286.5439.509.

[55] M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll, P. Tran-Gia, Modeling and
performance evaluation of an OpenFlow architecture, in: Proc. Of the 23rd
International Teletraffic Congress (ITC), 2011, pp. 1–7. San Francisco, CA, USA.

[56] S. Sharma, D. Staessens, D. Colle, M. Pickavet, P. Demeester, OpenFlow: meeting
carrier-grade recovery requirements, Comput. Commun. 36 (6) (2013) 656–665,
https://doi.org/10.1016/j.comcom.2012.09.011.

[57] V. Jacobson, Congestion avoidance and control, Comput. Commun. Rev. 18 (4)
(1988) 314–329, https://doi.org/10.1145/52325.52356.

[58] D. Clark, in: Window and Acknowledgement Strategy in TCP, RFC 813, RFC Editor,
July 1982. URL, http://www.rfc-editor.org/rfc/rfc813.txt.

http://refhub.elsevier.com/S2352-8648(18)30282-7/sref16
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref16
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref16
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref17
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref17
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref17
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref17
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref17
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref17
https://doi.org/10.1109/SEAMS.2007.15
https://doi.org/10.1109/SEAMS.2007.15
https://doi.org/10.1007/s00607-010-0107-y
https://doi.org/10.1016/j.dss.2006.06.011
https://doi.org/10.1016/j.dss.2006.06.011
https://doi.org/10.1109/SSD.2012.6198057
https://doi.org/10.1109/SSD.2012.6198057
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref22
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref22
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref22
https://doi.org/10.1109/COMST.2017.2719862
https://www.opennetworking.org/
https://doi.org/10.1145/2619287.2619303
https://doi.org/10.1145/2619287.2619303
https://doi.org/10.1109/ICC.2016.7510886
https://doi.org/10.1109/MNET.2016.7389839
https://doi.org/10.1016/j.jcss.2005.12.008
https://doi.org/10.1145/2660267.2660353
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref30
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref30
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref30
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref30
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref30
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref30
https://doi.org/10.1109/EWSDN.2015.66
https://doi.org/10.1016/j.comcom.2017.04.005
https://doi.org/10.1109/JCN.2017.000105
https://doi.org/10.1109/JCN.2017.000105
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref34
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref34
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref34
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref34
http://www.ietf.org/rfc/rfc5880.txt
https://doi.org/10.1109/INFOCOMAN.2016.7784222
https://doi.org/10.1109/INFOCOMAN.2016.7784222
https://doi.org/10.1145/2701126.2701235
http://arxiv.org/abs/1507.02951
http://arxiv.org/abs/1507.02951
http://arxiv.org/abs/1507.02952
http://arxiv.org/abs/1507.02952
https://doi.org/10.1109/NETSOFT.2016.7502406
https://doi.org/10.1109/NETSOFT.2016.7502406
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref41
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref41
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref41
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref41
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref41
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref41
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref41
https://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.02.01_60/gs_NFV002v010201p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.02.01_60/gs_NFV002v010201p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.02.01_60/gs_NFV002v010201p.pdf
https://doi.org/10.1109/COMST.2016.2597193
https://doi.org/10.1109/COMST.2016.2597193
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref44
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref44
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref44
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref44
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref45
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref45
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref45
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref45
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref45
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref45
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref45
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref46
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref46
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref46
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref46
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref46
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref46
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref46
https://doi.org/10.1109/IEEESTD.2016.7433915
https://doi.org/10.1109/IEEESTD.2016.7433915
http://www.rfc-editor.org/rfc/rfc1195.txt
http://www.rfc-editor.org/rfc/rfc6929.txt
http://www.rfc-editor.org/rfc/rfc6929.txt
https://www.omnetpp.org/
https://doi.org/10.1109/LCOMM.2016.2628356
https://doi.org/10.1109/LCOMM.2016.2628356
https://doi.org/10.1109/TSC.2015.2496164
https://doi.org/10.1002/net.20371
https://doi.org/10.1002/net.20371
https://doi.org/10.1126/science.286.5439.509
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref55
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref55
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref55
http://refhub.elsevier.com/S2352-8648(18)30282-7/sref55
https://doi.org/10.1016/j.comcom.2012.09.011
https://doi.org/10.1145/52325.52356
http://www.rfc-editor.org/rfc/rfc813.txt

	Self-healing and SDN: bridging the gap
	1. Introduction
	2. Self-healing SDN environments

	3. Fault management in SDN: a literature review
	3.1. OpenFlow-based frameworks
	3.2. Self-healing frameworks

	4. Problem statement
	4.1. Autonomous system architecture
	4.2. Framework description

	5. Autonomic SHP
	5.1. Data frames description
	5.1.1. topoUpdate
	5.1.2. replyUpdate

	5.2. Mechanism operation
	5.2.1. Centralized optimization


	6. Evaluation and results discussion
	6.1. Simulation environment
	6.1.1. BFD mechanism design

	6.2. Protocol performance
	6.2.1. SHP control tree recovering
	6.2.2. Recovery time
	6.2.3. Recovery packets overhead
	6.2.4. Number of involved nodes


	7. Conclusion
	Conflict of interest
	Acknowledgements
	References


