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CM-POINTS AND LATTICE COUNTING ON ARITHMETIC

COMPACT RIEMANN SURFACES

MONTSERRAT ALSINA AND DIMITRIOS CHATZAKOS

Abstract. Let X (D, 1) = Γ(D, 1)\H denote the Shimura curve of level N = 1 arising from an
indefinite quaternion algebra of fixed discriminant D. We study the discrete average of the error term
in the hyperbolic circle problem over Heegner points of discriminant d < 0 on X (D, 1) as d → −∞.

We prove that if |d| is sufficiently large compared to the radius r ≈ logX of the circle, we can improve

on the classical O(X2/3)-bound of Selberg. Our result extends the result of Petridis and Risager for
the modular surface to arithmetic compact Riemann surfaces.

1. Introduction

Let H denote the hyperbolic plane and ρ(z, w) the hyperbolic distance of two fixed points z, w ∈ H.
For Γ a cocompact or a general cofinite Fuchsian group, the hyperbolic lattice counting problem asks
to estimate the quantity

(1.1) N(X ; z, w) = #

{

γ ∈ Γ : ρ(z, γw) ≤ cosh−1

(

X

2

)}

,

as X → ∞. The study of this problem was initiated in [10]. Further, the asymptotic behaviour of
N(X ; z, w) was studied in [12, 13, 19, 20, 32, 37] using tools from the spectral theory of automorphic
forms in L2(Γ\H). Let ∆ be the Laplacian of the hyperbolic surface Γ\H and {uj}∞j=0 be an L2-
normalized sequence of eigenfunctions of −∆ (Maass forms) with eigenvalues {λj}∞j=0. We write λj =

sj(1 − sj) = 1/4 + t2j . The asymptotics of N(X ; z, w) can be deduced as an application of the spectral

theorem for L2(Γ\H) for appropriately chosen automorphic kernels (also called the pre-trace formula).
Selberg [37] first proved that, as X → ∞,

(1.2) N(X ; z, w) ∼ M(X ; z, w) :=
∑

1/2<sj≤1

√
π
Γ(sj − 1/2)

Γ(sj + 1)
uj(z)uj(w)X

sj

and

(1.3) E(X ; z, w) := N(X ; z, w)−M(X ; z, w) = O(X2/3).

For the error term E(X ; z, w) we have the conjecture

(1.4) E(X ; z, w) = Oǫ(X
1/2+ǫ)

for every ǫ > 0 [32, 35]. We refer to [7, 9, 17] for upper bounds on the second moments of the error
term and to [8, 35] for mean-value and Ω-results supporting this conjecture.

More information can be obtained for the error term when the group Γ is arithmetic. For Γ =
PSL2(Z), Petridis and Risager recently studied the average growth of E(X ; z, z) on compact subsets
of the modular surface Γ\H both in the local [33] and the discrete aspect [34]. To state their discrete
average result, for d < 0 a fundamental discriminant denote by Λd the set of CM (or Heegner) points
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2 MONTSERRAT ALSINA AND DIMITRIOS CHATZAKOS

of discriminant d and by h(d) the class number h(d) = #Λd. If f ≥ 0 is a smooth compactly supported
function on Γ\H, Duke’s equidistribution theorem states that

1

h(d)

∑

z∈Λd

f(z) → 1

vol(Γ\H)

∫

Γ\H

f(z)dµ(z),(1.5)

as d → −∞. Applying Duke’s theorem and their local average result for the error term over compact
subsets of the modular surface [33] they proved the following upper bound, which improves on average
on Selberg’s bound for |d| ≥ X11/2+ǫ.

Theorem 1.1 (Petridis-Risager [34]). Let f be a non-negative smooth compactly supported function on
the modular surface. Then, as X → ∞,

1

h(d)

∑

z∈Λd

f(z)E(X ; z, z) = Of,ǫ(X
7/12+ǫ +X4/5+ǫ|d|−4/165+ǫ).(1.6)

In this paper we study the discrete average of the error term E(X ; z, z) on the indefinite Shimura
curves X (D,N) = Γ(D,N)\H. Here Γ(D,N) is the cocompact discrete subgroup of SL2(R) of level N
arising from an indefinite quaternion algebra

H =

(

a, b

Q

)

of discriminant D := DH (see subsection 2.1). Let also ΛD,N,d denote the set of CM points on X (D,N)
of fundamental discriminant d < 0 (when non-empty) and h(D,N, d) = #ΛD,N,d the class number
counting the number of CM points on X (D,N). For simplicity reasons, for the rest of the paper we
restrict to level N = 1 and we fix the notation ΛD,d = ΛD,1,d and h(D, d) := h(D, 1, d). Applying
Duke’s equidistribution theorem for arihtmetic compact surfaces, we prove the following theorem.

Theorem 1.2. Let H be an indefinite quaternion algebra over Q of discriminant D and Γ(D, 1) the
arithmetic cocompact Fuchsian group of level 1 arising from H. Let f be a non-negative smooth function
on the Shimura curve X (D, 1) = Γ(D, 1)\H. Then

1

h(D, d)

∑

z∈ΛD,d

f(z)E(X ; z, z) = Of,D,ǫ(X
5/8+ǫ +X4/5+ǫ|d|−2/85+ǫ)(1.7)

as X → ∞.

Here, the limit is considered over d’s such that the class number is nonzero. As a corollary, our
result improves on Selberg’s bound for arithmetic compact surfaces when the discriminant satisfies

|d| ≥ X
34

5
+ǫ. For |d| ≥ X

119

16
+ǫ we get an upper bound O(X5/8+ǫ).

A main ingredient in the proof of Theorem 1.2 is the recent local average result of Biro [4] for general
Riemann surfaces of finite area. This is the first reason our upper bound is slightly weaker from that of
Theorem 1.1. A second reason is we have not tried to optimize the exponents in all the possible aspects,
for instance the bound (2.9) on average, as our main goal is to indicate how the method of [33] can be
combined with the spectral result of Biro [4] to deduce a bound for the discrete average of E(X ; z, z)
(see section 2 for more details). In section 2 we discuss the necessary background and the tools in the
proof of Theorem 1.2 (equidistribution and bounds for Weyl sums, Biro’s local average result, bounds
for inner products of eigenfunctions). We give the proof of our result in section 3.
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2. Background and auxillary results

In this section we summarize the necessary background about the arithmetic compact Riemann
surfaces X (D,N) and the spectral theory of automorphic forms on them.

2.1. Background on compact arithmetic groups. We refer to [23, p. 301], [24, p. 385] as a basic
reference for quaternionic groups and to [1] for a detailed study of their arithmetic theory. For a, b
square-free integers with a > 0 let

H =

(

a, b

Q

)

(2.1)

be the indefinite quaternion algebra over Q linearly generated by {1, ω,Ω, ωΩ}, where ω2 = a, Ω2 = b
and ωΩ + Ωω = 0. We say that H ramifies at p if Hp = H ⊗Q Qp is a division algebra. Let N(x)
denote the norm of x ∈ H . For R a maximal order of H , denote by R(n) the elements x ∈ R of norm
n. Denote also by φ the embedding that maps

x = x0 + x1ω + x2Ω+ x3ωΩ = ξ + ηΩ(2.2)

to

φ(x) =

(

ξ η
bη ξ

)

.(2.3)

Then, the group

ΓH := φ(R(1)) ⊂ SL2(R)(2.4)

is a Fuchsian group of the first kind, and the quotient ΓH\H is a Riemann surface. The discriminant
D = DH of the algebra is defined as the product of the ramified primes of H .

Now let D,N be natural numbers such that: i) D is a product of an even number of different primes
and, ii) N > 1 is a natural number with (D,N) = 1. If R = O(D,N) is an Eichler order of level N and
φ a monomorphism : H → M2(R), we denote the group ΓH associated to O(D,N) and φ by Γ(D,N).
We have

Γ(D,N) ⊂ SL2(Q(
√
a)).(2.5)

The theory of Shimura provides a canonical model X (D,N) for Γ(D,N)\H and a modular interpre-
tation. The canonical model X (D,N) is a projective curve defined over Q. The quotient Γ(D,N)\H
is noncompact if D = 1 (the nonramified case), and in this case we have X (1, N) = Γ0(N)\H. If
D > 1, then X (D,N) is a compact surface. As we mentioned in section 1, we restrict to the level one
case. The curves X (D, 1), for D > 1, can be viewed as the compact analogues of the modular surface
X (1, 1) = PSL2(Z)\H. The notion of CM points is now analogous to the case of the modular surface
(see [1, Def. 6.4]) and we use the crucial fact that the class number h(D, d) is always finite.

2.2. Hecke operators. When the group Γ is arithmetic, there exists a large commutative algebra
(Hecke algebra) of invariant, self-adjoint operators, the Hecke operators. They are defined by averaging
over the orbits R(1)\R(n): for every n ≥ 1, the n-th Hecke operator Tn : L2(X (D, 1)) → L2(X (D, 1))
is defined by

Tnf(z) =
∑

x∈R(1)\R(n)

f(φ(x)z).(2.6)

Since we are working in the level one case, for every n ≥ 1 the Hecke operator Tn is self-adjoint
and commutes with the Laplacian −∆. Hence, we can choose a basis of eigenfunctions uj which
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simultaneously diagonalizes the Hecke operators and −∆. Such an eigenfunction is called a Hecke-
Maass from. We always assume that uj are L2-normalized.

2.3. Remarks on the explicit Jacquet-Langlands correspondence. Jacquet and Langlands proved
that there exists a nice, bijective correspondence between the nontrivial automorphic forms on the
multiplicative group of a division quaternion algebra and certain cusp forms on GL(2). The explicit
Jacquet-Langlands correspondence was worked out by Hejhal [16], Koyama [24] (in view of an appli-
cation to the Prime geodesic theorem), Bolte and Johansson [6] and Strömbergsson [38], and is given
by the theta map (see [38]). It was further investigated by Risager [36], Arenas [2] and Blackman and
Lemurell [5].

We refer to the explicit Jacquet-Langlands correspondence in various places; it may be possible that
one can improve on some of our estimates by referring further to the explicit correspondence between
Γ(D, 1) and Γ0(D). First, following the method of Iwaniec and Sarnak it may be possible be to improve
bound (2.9) on average. Secondly, Nelson [31] used the theta correspondence to study the quantum
variance for cocompact groups. In principle, one may be able to use this to improve on Biro’s result for
Γ(D,N). However, Biro’s result is more spectral in nature than arithmetic whereas the explicit study
of the quantum variance in [31] is quite arithmetic.

2.4. Weyl’s law and sup-norm estimates. We will apply estimates for the growth of Maass forms
in the spectral limit. Weyl’s law describes the asymptotics of the number of Laplacian eigenvalues up
to a fixed height; more precisely for any cocompact Fuchsian group Γ we have the asymptotic

∑

λj≤T 2

1 ∼
∑

|tj |≤T

1 ∼ vol(Γ\H)

4π
T 2,(2.7)

see [22, Corollary 11.2]. The following estimate is the local version of Weyl’s law for L2(Γ\H).

Theorem 2.1 (Local Weyl’s law). For every z, as T → ∞,
∑

|tj |<T

|uj(z)|2 ∼ cT 2,

where the constant c = c(z) depends only on the number of elements of Γ fixing z.

See [35, Lemma 2.3] for a proof of this result. We emphasize that if z remains in a compact set of H
the constant c(z) remains uniformly bounded. Thus, for compact surfaces we trivially have the uniform
upper bound

∥

∥

∥

∥

∥

∥

∑

T≤|tj|≤2T

|uj(z)|2
∥

∥

∥

∥

∥

∥

∞

≪ T 2(2.8)

This follows also from Bessel’s inequality [22, Proposition 7.2] and the fact that the height function
yΓ(z) is uniformly bounded for Γ cocompact. On the other hand, for sup norm estimates of Hecke-Maass
forms uj(z) on compact arithmetic surfaces we have the following deep subconvexity bound of Iwaniec
and Sarnak [23]

‖uj(z)‖∞ ≪ |tj |5/12+ǫ(2.9)

as λj → ∞. Conjecturally, the sup-norm of the Maass-Hecke cusp form is expected to be bounded by
tǫj . Assuming that one would be able to control the dependence on D (i.e. on Γ) in all the O-estimates
for the local and the discrete average, it would be interesting to study the dependence of bound (1.7)
on D → ∞.
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2.5. The equidistribution of CM points, Weyl sums and bounds for associated L-functions.
Equidistribution of CM points has been extensively studied by various authors. Duke proved his cele-
brated result about Heegner points on the modular surface using estimates for the Fourier coefficients
of Maass forms (see also [27]). Michel [26] proved the equidistribution result on small Galois orbits for
the case of Shimura curves associated to definite quaternion algebras over Q and Harcos-Michel [15]
worked the indefinite case. Zhang [40] generalized the equidistribution result for CM points on Shimura
varieties.

Theorem 2.2. [11, Theorem 1], [27, Theorem 9] Let Γ = Γ(D,N) be the Fuchsian group as above and
let h(D,N, d) denote the number of CM points on X (D,N) of fundamental discriminant d < 0. Then,
for any compactly supported f on X (D,N) we have as d → −∞,

1

h(D,N, d)

∑

z∈Λd

f(z) → 1

vol(X (D,N))

∫

X (D,N)

f(z)dµ(z).(2.10)

That means the CM points equidistribute on the Riemann surface X (D,N) with respect to the hyperbolic
measure.

To understand the discrete average of the error term for the lattice counting problem we will apply
the pre-trace formula. This allows us to write the average of the error over the CM points in relation
to the average of Maass forms over the CM points, the so-called Weyl sums:

W (d, tj) :=
∑

z∈Λd

uj(z).

The effectivity in bound (2.10) is measured by estimates for the corresponding Weyl sums and the
explicit Jacquet-Langlands correspondence.

We can bound the sum W (d, tj) referring to a Waldspurger-Zhang type formula. We refer to [14,
Lecture 2], [15, Section 6], [27, Section 2] for extended comments on this formula. Here, we focus on a
bound on the d-aspect. By [15, Section 6] for |tj | → ∞ we deduce the bound

W (d, tj)

h(D, d)
≪ |tj |A|d|−

1

28 ,(2.11)

The class number satisfies the classical bound |d|1/2−ǫ ≪ h(D, d) ≪ |d|1/2+ǫ (see [1, Proposition 3.55,
Theorem 4.19]). TheWeyl sum is related to central values of Maass forms through a generalWaldspurger-
Zhang formula in [15, page 647]:

|W (d, tj)|2 = cd,uj

√

|d|L(uj × χd, 1/2)L(uj, 1/2)

L(Sym2 uj, 1)
(2.12)

where cd,uj
≪ (1 + |dtj |)ǫ. Convexity bounds for the L-factors imply A = 1/2 in (2.11). Further, we

can obtain the following estimate:

Proposition 2.3. For the Weyl sums we have the upper bound

∑

T≤tj≤2T

|W (d, tj)|2
h(D, d)2

≪ |d|− 1

6
+ǫT 2+ǫ.(2.13)

Using Ivić [21, page 455], Young [39, Theorem 1.1], Hoffstein-Lockhart [18, Theorem 0.1] and Jacquet-
Langlands correspondence, the estimate follows applying the Hölder inequality, see [34, Lemma 2.2].
The conjectural Lindelöf estimate

L(uj × χd, 1/2) ≪ (1 + |dtj |)ǫ

implies the exponent |d|− 1

2
+ǫ in (2.13).
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2.6. The local average of the error term for general cofinite groups. We now explain the main
idea relating the discrete average of the error term E(X ; z, z) over CM points with the local average
over a compact set. Roughly speaking, in the proof of the Theorem 1.2 we bound the discrete average
of the error over the CM points by two pieces:

1

h(D, d)

∑

z∈Λd

f(z)E(X ; z, z) ≪ Elocal(X) + E(X),(2.14)

where the Elocal is the average of the error over compact sets of Γ\H:

Elocal(X) :=

∫

Γ\H

f(z)E(X ; z, z)dµ(z).

To prove our result we need bounds for both summands of (2.14), which we have to treat them separately.
The tools we discussed in subsections 2.4 and 2.5 will be useful for dealing with the term E(X), but
the term Elocal(X) has to be controlled differently.

In the case of the modular group Γ = PSL2(Z), the local and discrete averages were studied seperately
in the independent works [33], [34]. The treatment of the local average uses the classical result of Luo-
Sarnak [25] for the Quantum Unique Ergodicity of Maass cusp forms on average and can be applied for
similar groups (arithmetic groups with cusps). Instead of using any strong arithmetic QUE information,
Biro recently proved the following local average for general surfaces of finite area using a modified Selberg
trace formula. For the case of compact arithmetic surfaces we apply his result.

Theorem 2.4. [4, Theorem 1.1] Let Γ be a cofinite Fuchsian group and let f be a non-negative smooth
compactly supported function on Γ\H. Then, as X → ∞, the local average of the error term satisfies
the bound

∫

Γ\H

f(z)E(X ; z, z)dµ(z) = Of,Γ,ǫ(X
5/8+ǫ).(2.15)

Biro was able to deduce his result by using his modification of the Selberg trace formula from [3]. In
this work, instead of estimating the integral of the automorphic kernel K(z, w) over the diagonal, Biro
worked with the integral of the automorphic kernel against some automorphic function u of eigenvalue
λ. On this way, he deduced an identity between the geometric and the spectral side, where in the
spectral side of the new trace formula he appeared the integrals

∫

Γ\H

|uj(z)|2u(z)dµ(z).

in the place of the usual L2-norms of uj appearing in Selberg’s formula. In the geometric side, he
appeared weighted orbital integrals in the place of regular orbital integrals for the elliptic and hyperbolic
terms (where the weight function depends on periods of u). The appearance of the period integrals of
u on the geometric side is the key ingredient that imply the improvement on the error term in (2.15).

2.7. Bounds for inner products of eigenfunctions. We refer to the following uniform upper bound
for the inner product of two eigenfunctions. The proof given in [34, Theorem 5.1] relies on bounds for
weight k eigenfunctions of Γ. Although it holds for a general cofinite group Γ, we state its simplified
version only for our special case of a cocompact group.

Proposition 2.5. For f a smooth function on the compact surface Γ\H, um, uk two Maass forms and
a > 0 we have the following bound:

〈f |um|2, uk〉 ≪a,f

(

1 + |tm|
1 + |tk|

)a

‖um‖∞‖um‖2‖uk‖2.(2.16)



HYPERBOLIC LATTICE COUNTING ON COMPACT SURFACES 7

3. Proof of the main theorem

3.1. Local average of a Maass form over CM points. Before proceeding to the proof of our main
result, we start with a proposition for the average of Maass forms multiplied with f over Heegner points.
Set

G(d, tj) =
1

h(D, d)

∑

z∈Λd

f(z)|uj(z)|2 −
1

vol(X (D, 1))

∫

X (D,1)

f(z)|uj(z)|2dµ(z).(3.1)

We have the following estimate.

Proposition 3.1. Let f be a smooth function on X (D, 1) and uj(z) a Maass form on X (D, 1) with
eigenvalue λj = 1/4 + t2j > 1/4. Then

G(d, tj) = Of,Γ,ǫ(‖uj‖∞|d|−1/12+ǫ|tj |1+ǫ).

Proof. Applying the spectral expansion to F (z) = f(z)|uj(z)|2 and averaging over the CM points we
conclude

G(d, tj) =
∑

λk≤1/4

〈F, uk〉
W (d, tk)

h(D, d)
+

∑

tk∈R−{0}

〈F, uk〉
W (d, tk)

h(D, d)
,

where 〈, 〉 denotes the Petersson inner product in L2(X (D, 1)). For a small eigenvalue λk ≤ 1/4 we have

W (d, tk) ≪Γ h(D, d) =⇒ 〈F, uk〉
W (d, tk)

h(D, d)
≪Γ ‖f‖∞.

We conclude the contribution of the small eigenvalues is Of,Γ(1). For the big eigenvalues λk ≥ 1/4,
Proposition 2.3 and Cauchy-Schwarz in the interval [T, 2T ] imply

∑

T≤tk≤2T

〈F, uk〉
W (d, tk)

h(D, d)
≪





∑

T≤tk≤2T

|〈F, uk〉|2




1/2

|d|− 1

12
+ǫ(1 + T )1+ǫ.(3.2)

Applying the estimate of Proposition 2.5 for the sum over tk ∈ [T, 2T ], since all Maass forms are
L2-normalized we get the left side of (3.3) is bounded by

≪a,f ‖uj‖∞ (1 + |tj |)a |d|−
1

12
+ǫ(1 + T )2−a+ǫ

for any a > 0. On the other hand, using Bessel’s inequality we get




∑

T≤tk≤2T

∣

∣〈f(z)|uj(z)|2, uk〉
∣

∣

2





1/2

≪ ‖f(z)|uj(z)|2‖2 ≪f ‖uj‖∞‖uj‖2 = ‖uj‖∞(3.3)

uniformly for any T . Balancing between the two expressions, for any A ≫ 1 sufficient large and fixed
we get

∑

tk∈R−{0}

〈F, uk〉
W (d, tk)

h(D, d)
≪f,Γ,ǫ ‖uj‖∞|d|− 1

12
+ǫ

(

A1+ǫ + (1 + |tj |)a A2−a+ǫ
)

.

Picking A ≍ t
a

a−1

j with a large enough we deduce the statement. �

3.2. Proof of Theorem 1.2. We can now give the proof of our theorem. By a standard argument, we
need to apply the pre-trace formula to suitable chosen kernels. We refer to [7, Section 2], [34, Section 6]
for more details on the calculations. For the proof we will refer to some standard estimates for the
Selberg/Harish-Chandra transforms of the characteristic kernel k(u) = χ[0,(X−2)/4](u) and smooth
approximations of k(u) (see Proposition 3.2).
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Proof. Define R = cosh−1(X/2), denote by u(z, w) the standard point-pair invariant function

u(z, w) =
|z − w|2

4ℑ(z)ℑ(w) ,(3.4)

and let k(u) be the kernel

k(u) = χ[0,(X−2)/4](u),(3.5)

where by χ[A,B](u) we denote the characteristic function of the interval [A,B]. Recall that ρ(z, w) ≤ R
if and only if 4u(z, w) ≤ X − 2, and thus it is straightforward to see that the automorphic kernel of
k(u) satisfies

N(X, z, z) = K(z, z) :=
∑

γ∈Γ

k(u(γz, z)).(3.6)

The first problem arising in the study of the hyperbolic counting problem is that k(u) is not an ad-
missible kernel for the pre-trace formula; this can be checked using the asymptotic behaviour of its
Selberg/Harish-Chandra transform h(t) of k (see [22, eq. (1.62)] for the definition of the transform),
and one has to approximate k by some suitable test functions.

For this reason, for δ > 0 small (that will be specified later), we define the smoothed kernel kδ(u) by

kδ(u) =
1

4π sinh2(δ/2)
χ[0,(cosh δ−1)/2](u).(3.7)

We also define the hyperbolic convolution of two functions by

k1 ∗ k2(u(z, w)) =
∫

H

k1(u(z, v))k2(u(v, w))dµ(v),(3.8)

and the kernels k±(u) defined by

k±(u) =
(

χ[0,(cosh(R±δ)−1)/2] ∗ kδ
)

(u)(3.9)

If hi(t) stands for the S/H-C transform of ki(u), then the S/H-C transform of the hyperbolic convolution
k1 ∗ k2 is given the product h1(t)h2(t) (see [7, pages 322-323]). Using this observation we can compute
the S/H-C transform of kernels k±(u).

Proposition 3.2. With notation as above, the S/H-C transforms h±(t) of the kernels k±(u) satisfy:
a) If λj < 1/4, i.e. sj = 1/2 + itj with tj /∈ R then

h±(tj) =
√
π

Γ(|tj |)
Γ(|tj |+ 3/2)

X1/2+|tj | +O(Xδ +X1/2).(3.10)

b) If λj = 1/4, i.e. tj = 0 then

h±(0) = O(X1/2 logX).(3.11)

c) If λj > 1/4, i.e. tj ∈ R− {0} then

h±(tj) = O

(

X1/2

|tj |3/2
min

{

1,
1

(δ|tj |)3/2
})

.(3.12)

For t real we also have the uniform bound h±(tj) = O
(

X1/2 logX
)

.

Proof. Part a) follows from [7, eq.(2.14), p. 323] and part b) from [7, Lemma 2.4, (d)]. Part c) is
calculated in [33, eq. (5.5), (5.10)], [34, eq. (6.3), (6.4)]. �

Since k− ≤ k ≤ k+ [34, page 15], summing over the group we deduce the inequalities

K−(z, z) ≤ N(X, z, z) ≤ K+(z, z),
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hence

∑

z∈Λd

f(z)E(X ; z, z) ≪ min
±

∣

∣

∣

∣

∣

∑

z∈Λd

f(z)
(

K±(z, z)−M(X ; z, z)
)

∣

∣

∣

∣

∣

.(3.13)

The kernels k± are admissible in the pre-trace formula, which implies the expansions

K±(z, z) =
∑

tj

h±(tj)|uj(z)|2.(3.14)

Since we have a finite number of eigenvalues 0 ≤ λj ≤ 1/4, we conclude

1

h(D, d)

∑

z∈Λd

f(z)
(

K±(z, z)−M(X ; z, z)
)

=
∑

tj∈R

h±(tj)

h(D, d)

∑

z∈Λd

f(z)|uj(z)|2 +Of,Γ(δX +X1/2 logX).(3.15)

The last sum can be rewritten as
∑

tj∈R

h±(tj)

vol(X (D, 1))

∫

X (D,1)

f(z)|uj(z)|2d +
∑

tj∈R

h±(tj)G(d, tj)

+ O(δX +X1/2 logX).(3.16)

By Theorem 2.4, the first sum in (3.16) is bounded by X5/8+ǫ. For the second sum, we first estimate
G(d, tj) in dyadic intervals as follows. For real tj ∈ [T, 2T ], Proposition 3.1 and bound (2.9) implies

∑

T≤tj≤2T

G(d, tj) ≪f,Γ,ǫ |d|−1/12+ǫT 41/12+ǫ.(3.17)

Secondly, interchanging the sums and using inequality (2.8) we get

∑

tj∈R

1

h(D, d)

∑

z∈Λd

f(z)|uj(z)|2 ≪f,Γ T 2

hence
∑

T≤tj≤2T

G(d, tj) ≪f,Γ T 2.(3.18)

Interpolation between estimates (3.17), (3.18) gives
∑

T≤tj≤2T

G(d, tj) ≪f,ǫ T
2−2a|d|− a

12
+ǫT

41

12
a+ǫ = |d|− a

12
+ǫT 2+ 17

12
a+ǫ(3.19)

for any a ∈ [0, 1]. We apply estimates for the S/H-C transform from part c) of Proposition 3.2 and
estimate (3.19). We get

∑

tj∈R

h±(tj)G(d, tj) =
∑

|tj |<δ−1

h±(tj)G(d, tj) +
∑

|tj |≥δ1

h±(tj)G(d, tj)

≪ X1/2|d|−a/12+ǫδ−1(1/2+17a/12+ǫ)(3.20)

under the condition a < 12/17. Thus, the discrete average of the error term is balanced by

O
(

X5/8+ǫ +X1/2|d|−a/12+ǫδ−1(1/2+17a/12+ǫ) + δX
)

.(3.21)

Picking a close to 12/17 and balancing δ = X−1/5|d|−2/85 we complete the proof of the theorem. �
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