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1 Introduction

The Poisson distribution is a distribution commonly used in statistics and in operations
research (Haight, 1967; Johnson et al., 2005; Krishnamoorthy, 2016). It also plays a
central role in the analysis of the transient behavior of continuous-time Markov chains
(see, e.g., (Trivedi, 2011)). Let λ > 0 and N := {0, 1, . . . }. A random variable X is said
to have a Poisson distribution with parameter λ if

Pr[X = n] =
λn

n!
e−λ, n ∈ N . (1)

In the following, we will use the notation Pn(λ) := (λn/n!) e−λ. We will also assume that
all non-integer computations will be performed using IEEE 754 floating-point arithmetic
and using the binary64 format with rounding mode round to nearest even (IEEE, 2008)
(see also (Muller et al., 2010)). With that format, the smallest normal number that
can be represented is τ = 2−1 022 ≈ 2.2 · 10−308 and the largest number that can be
represented is Ω = (2− 2−52) · 21 023 ≈ 1.8 · 10307. A number x will be said to underflow
if x < τ and will be said to overflow if x > Ω. Also of interest is the roundoff unit of the
format, which for rounding mode round to nearest even is 2−53, meaning, approximately,
that the number of correct decimal digits that the format can guarantee when performing
elementary arithmetic operations is − log10 2−53 ≈ 16.

Direct use of (1) easily leads to numerical underflow or overflow even for moderate
values of λ and n. Consequently, there have been published several methods for the
computation of Pn(λ). These are, to the best of the authors’ knowledge, the ones
described in (Whittlesey, 1963; Knüsel, 1986; Fox and Glynn, 1988; Kemp and Kemp,
1991; Johnson et al., 2005; Press et al., 2007; Forbes et al., 2011; Krishnamoorthy,
2016). Broadly speaking, these methods fall into two classes: methods intended for
the computation of a whole set of probabilities for the same value of the parameter
λ (Fox and Glynn, 1988; Kemp and Kemp, 1991; Forbes et al., 2011) and methods
intended for the computation of a single probability Pn(λ) (Whittlesey, 1963; Knüsel,
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1986; Johnson et al., 2005; Press et al., 2007; Krishnamoorthy, 2016). In this paper, we
develop a new method for the computation of a single probability Pn(λ). As we will
illustrate, the method seems to be more accurate than and as fast as any of the methods
described in (Whittlesey, 1963; Knüsel, 1986; Johnson et al., 2005; Press et al., 2007;
Krishnamoorthy, 2016).

The rest of the paper is organized as follows. In section 2, we describe the published
methods and analyze the accuracy of those intended for the computation of a single
probability Pn(λ). In section 3, we develop the new method. In section 4, we assess the
method in terms of accuracy and computation time and compare it with the methods
described in (Whittlesey, 1963; Knüsel, 1986; Press et al., 2007). Finally, in section 5
we present our conclusions.

2 Previous work

In this section, we will review the methods described in (Whittlesey, 1963; Knüsel, 1986;
Fox and Glynn, 1988; Kemp and Kemp, 1991; Johnson et al., 2005; Press et al., 2007;
Forbes et al., 2011; Krishnamoorthy, 2016) and discuss briefly the accuracy of those
intended for the computation of a single probability Pn(λ).

We review first the methods intended for the computation of whole set of probabilities
for the same value of the parameter λ. Let bxc denote the integer part of x. The method
described in (Fox and Glynn, 1988) determines, using normal bounds for the tails of the
Poisson distribution, nonnegative integers L, R such that

∑R
n=L Pn(λ) ≥ 1 − ε, where

ε is an error control parameter, next computes weights wn, L ≤ n ≤ R, by setting
wbλc = Ω/(1010(R− L)) and using the recurrence

wn =
λ

n
wn−1, n ≥ 1 ,

and finally computes upper bounds for Pn(λ), L ≤ n ≤ R, as wn/
∑R

i=Lwi. The bounds
are tight in the sense that

0 <
wn∑R
i=Lwi

− Pn(λ) ≤ 1∑R
n=L Pn(λ)

− 1 ≤ ε

1− ε
.

The methods described in (Kemp and Kemp, 1991; Forbes et al., 2011) are based on
computing a starting probability and next obtaining the probabilities of interest using
the recurrence

Pn(λ) =
λ

n
Pn−1(λ), n ≥ 1 .

In (Kemp and Kemp, 1991, sect. 3), the starting probability is Pbλ+0.5c(λ), which is
approximated using formulas developed in (Kemp, 1988b). In (Forbes et al., 2011,
sect. 35.1), the starting probability is P0(λ).

We review next the methods intended for the computation of a single probability Pn(λ)
described in (Whittlesey, 1963; Knüsel, 1986; Johnson et al., 2005; Press et al., 2007;
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Krishnamoorthy, 2016). All these methods save the one described in (Johnson et al.,
2005, sect. 4.5) are based on computing the natural logarithm of Pn(λ). Therefore, for
ease of exposition we will start by reviewing the method proposed in (Johnson et al.,
2005, sect. 4.5) and next will review the remaining methods starting with the least
accurate ones.

In (Johnson et al., 2005, sect. 4.5), three strategies are considered for the computation
of Pn(λ). The first one is based on the central limit theorem and consists in using the
approximation

Pn(λ) ≈ 1√
2π

∫ K+

K−

e−u
2/2 du ,

where K− = (n − λ − 1
2)/
√
λ and K+ = (n − λ + 1

2)/
√
λ. This strategy is reasonably

accurate only if λ is large (say≥ 106) and therefore does not seem appropriate to compute
Pn(λ) in the general case.

Let Γ(x) denote the gamma function. The second strategy consists in using n! =
Γ(n+ 1) = nΓ(n) in (1) and next estimating Γ(n) using its Laplace expansion (see, e.g.,
(Wang, 2016, p. 571)). This yields the approximation

Pn(λ) ≈ en−λ√
2πn

(λ
n

)n(
1 +

1

12n
+

1

288n2
− 139

51840n3
− 571

2488320n4
+ · · ·

)−1
. (2)

The third strategy proposed in (Johnson et al., 2005) consists in replacing the expression
within parenthesis in (2) by a polynomial approximation developed in (Kemp, 1988a).
The result is the approximation

Pn(λ) ≈ en−λ√
2πn

(λ
n

)n(
1−

1
12

n+ 1
24 + 293

8640n

)
. (3)

When n = λ, this strategy can be very advantageous since, in that case,

Pn(λ) ≈ 1√
2πn

(
1− 1/12

n+ 1/24 + 293/(8640n)

)
,

an expression that is likely to be fast in terms of computation time because it does not
require the evaluation of the exponential function nor of powers of n. However, when
n� 1 the factor (λ/n)n can easily overflow if λ > n and can easily underflow if λ < n,
and the factor en−λ can easily underflow if λ � n and can easily overflow if λ � n.
Therefore, neither (2) nor (3) seem to be appropriate to compute Pn(λ) in the general
case.

The methods described in (Whittlesey, 1963; Knüsel, 1986; Press et al., 2007; Krish-
namoorthy, 2016) are all based on

Pn(λ) = e−λ+n log λ−log Γ(n+1) , (4)

which follows immediately by n! by Γ(n + 1) in (1) and next taking logarithms. We
will review first the methods described in (Press et al., 2007; Krishnamoorthy, 2016),
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which are very similar and, we will argue, are the least accurate. Next, we will review
the method described in (Whittlesey, 1963), which can be regarded as an improvement
of the previous two methods. Finally, we will review the method described in (Knüsel,
1986), which in turn can be regarded as an improvement of the method described in
(Whittlesey, 1963).

In the method described in (Press et al., 2007, sect. 6.4.13), the probability Pn(λ) is
approximated by combining (4) with an approximation for ln Γ(n+1) based on formulas
derived in (Lanczos, 1964) (see (Press et al., 2007, sect. 6.1)). In the method described in
(Krishnamoorthy, 2016, sect. 5.13), the probability Pn(λ) is approximated by combining
(4) with an approximation for ln Γ(n + 1) based on a continuous fraction derived in
(Hart et al., 1968) (see (Krishnamoorthy, 2016, sect. 1.8)). Both methods suffer from
severe cancellations when both λ and n are large (Knüsel, 1986) because, then, λ +
ln Γ(n + 1) ≈ n lnλ. As an example, for λ = 106 and n = λ +

√
λ = 1 001 000, we have

λ + ln Γ(n + 1) ≈ 1.3829334 × 107, n lnλ ≈ 1.3829326 × 107, and |lnPn(λ)| ≈ 8.32703.
This suggests a loss of about seven decimal digits of accuracy. To verify it, we computed
tight rigorous bounds for Pn(λ) using the multiprecision interval arithmetic library MPFI
(Revol and Rouillier, 2005) in order to have accurate estimates of Pn(λ) and, using them,
computed an accurate estimate for

d(λ, n) := − log10

∣∣∣Pn(λ)− P̃n(λ)

P̃n(λ)

∣∣∣ , (5)

where P̃n(λ) denotes the approximation. The result was d = 8.80. This confirms that for
this particular example, the methods proposed in (Press et al., 2007; Krishnamoorthy,
2016) lose around 16.0− 8.80 ≈ 7 decimal digits of accuracy.

The method proposed in (Whittlesey, 1963, sect. 2) tackles this loss of accuracy by
introducing a scaled gamma function

G(n) =
Γ(n+ 1)(

n
e

)n , n ≥ 1 ,

in order not to have to deal with ln Γ(n+ 1). Clearly,

lnG(n) = ln Γ(n+ 1)− n lnn+ n (6)

and, therefore, using (4),

Pn(λ) = en−λ+n ln(λ/n)−lnG(n) . (7)

In the method, the lnG(n) is approximated as follows. By combining ln Γ(n + 1) =
lnn+ ln Γ(n) with the Stirling series for ln Γ(n) (Abramowitz and Stegun, 1965, 6.1.41),
we obtain

ln Γ(n+ 1) ≈
(
n+

1

2

)
lnn− n+

1

2
ln(2π) + I(m,n), n > 0 , (8)
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with

I(m,n) :=
m∑
j=1

T (j, n), (9)

T (j, n) :=
B2j

2j(2j − 1)n2j−1
, (10)

where Bk denotes the kth Bernoulli number. Then, by (6) and (8),

lnG(n) ≈ 1

2
ln(2πn) + I(m,n) . (11)

Finally, using (7),

e(n−λ)+n ln(λ/n)−lnG(n) ≈ e(n−λ)+n ln(λ/n)−ln(2πn)/2−I(m,n) := E(m,λ, n)

and the Pn(λ) is approximated as

Pn(λ) ≈

{
E(7, λ, n) if n ≥ 8

E(7, λ, 8)× 8× 7 · · · (n+ 1)× λn−8 if n < 8
.

Continuing with the previous example, for λ = 106, n = 1 001 000 we have n − λ =
1 × 103, n ln(λ/n) − (1/2) ln(2πn) − I(7, n) ≈ −1.083 × 103, and |lnPn(λ)| ≈ 8.32703.
This suggests losing only about three decimal digits of accuracy. However, in this case
d = 10.5. This implies that the number of decimal digits of accuracy actually lost is
about 16.0−10.5 = 5.5, suggesting that there is another source of numerical inaccuracy.

The second source of numerical inaccuracy turns out to be the computation of ln(λ/n)
when n is close to λ. The reason is that, since the condition number of lnx is 1/|lnx|,
the error incurred in the actual computation of λ/n tends to result in a relative error
in ln(λ/n) of the order of that in λ/n divided by |ln(λ/n)|, which can be very large if
λ ≈ n. The method proposed in (Knüsel, 1986, sect. 5) tackles this second source of
error by introducing a shifted logarithm function

lnx = ln(1 + x) ,

which has a condition number of one for x = 0 and is therefore much less sensitive to
errors in x when x ≈ 0. Let

h(λ, n) =


lns
(n− λ

λ

)
if n ≥ λ

− lns
(λ− n

n

)
if n < λ

. (12)

Then, by (7), (11), (12),

Pn(λ) = en−λ−nh(λ,n)−lnG(n), n ≥ 1, (13)

≈ e(n−λ)−nh(λ,n)−(1/2) ln(2πn)−I(m,n), n ≥ 1 . (14)

5



λ dm(λ, n) dM(λ, n) d(λ, n) 〈d(λ, n)〉
100 2.30 15.4 13.6 4.40

101 2.30 16.6 13.8 15.1

102 2.30 17.9 13.9 15.6

103 12.4 16.6 13.7 15.1

104 12.0 17.1 13.2 14.6

105 11.7 16.2 12.7 14.2

106 11.0 15.8 12.2 13.6

107 10.7 15.9 11.7 13.1

108 10.2 15.1 11.2 12.6

109 9.57 13.7 10.7 12.1

1010 9.19 13.4 10.2 11.7

1011 8.72 12.6 9.71 11.1

1012 8.17 11.9 9.25 10.6

1013 7.68 12.1 8.75 10.1

1014 7.25 11.4 8.22 9.65

1015 6.62 11.2 7.71 9.13

Table 1: Accuracy of the method proposed in (Knüsel, 1986, sect. 5).

In the method proposed in (Knüsel, 1986, sect. 5), the probability is approximated using
(14) with the recommended choice m = 7. Continuing with the example previously
considered, the computation of Pn(λ) for λ = 106 and n = 1 001 000 using this method
results in d = 13.2. For this particular example, then, the accuracy is much better than
it was in the method proposed in (Whittlesey, 1963, sect. 2).

In order to more thoroughly assess the accuracy of the method proposed in (Knüsel,
1986, sect. 5), we performed the following experiment. First, we chose a representa-
tive set of values for the λ parameter, namely 100, . . . , 1015. Next, for each value of λ
we obtained, using the MPFI library, the set of n values {nl, . . . , nr} for which Pn(λ)
does not underflow. Finally, for each set {max{nl, 1}, . . . , nr}, we chose min{1 000, nr −
max{1, nl} + 1} values of n as described later and for each such n computed tight rig-
orous bounds for Pn(λ) using the MPFI library in order to have accurate estimates of
Pn(λ) and, using them, computed an accurate estimate for (5) d(λ, n). With ∆ := (nr−
max{1, nl})/(min{999, nr −max{1, nl}), the values of n considered for each value of λ,
N (λ), were obtained by rounding max{1, nl}+k∆, k = 0, 1, . . .min{999, nr−max{1, nl}}
to nearest ties to away. The results are summarized in table 1, where we show the
minimum accuracy dm(λ, n) := minn∈N (λ) d(λ, n), the maximum accuracy dM(λ, n) :=

maxn∈N (λ) d(λ, n), the average accuracy d(λ, n) :=
∑

n∈N (λ) d(λ, n)/n and the weighted
average accuracy 〈d(λ, n) :=

∑
n∈N (λ) Pn(λ)d(λ, n)/

∑
n∈N (λ) Pn(λ). The results were

obtained on a workstation equipped with Intel R© Xeon R© E7-8837 microprocessors, using
only one core. As we can see, for λ small (say ≤ 102), the method exhibits poor accuracy
for some values of n, and for λ large (say ≥ 109), the minim and average accuracy are
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substantially smaller than 16, which is, we recall, the approximate number of correct
decimal digits that the binary64 format with rounding mode round to nearest even can
guarantee when performing elementary arithmetic operations. In the following section
we will argue that this loss of accuracy can be explained by the fact that when both λ
and n are large and n is close to λ but different from it, there can be cancellations in
(14).

3 Proposed Method

3.1 Development

As previously mentioned, direct use of (1) easily leads to numerical overflow or underflow.
However, trivially, P0(λ) = e−λ, λ > 0. Besides, taking into account that n!, 0 ≤ n ≤
22, can be computed exactly using the binary64 format (Press et al., 2007), that,
if λ ≥ 2−43, then λ22/22! ≥ 2−1 022, and that, if λ ≤ 29, then e−λ ≥ 2−1 022 and
λ22 ≤ (2− 2−52)21 023, it turns out that Pn(λ) can be safely computed using (1) for the
set of (λ, n) pairs, λ > 0, n ∈ N, with n satisfying n = 0 and the set of (λ, n) pairs,
λ > 0, n ∈ N, with λ satisfying 2−43 ≤ λ ≤ 29 and n satisfying 0 < n ≤ 22. This set will
be referred to as set S1.

For (λ, n) /∈ S1, it seems reasonable to turn our attention to (14). As we have com-
mented, that equation can be inaccurate when λ is small and when both λ and n are
large and n is close to λ but different from it. When λ is small, so is n because otherwise
the probability would underflow. And when n is small, the approximation for lnG(n)
that results from taking m = 7 in (9) can be inaccurate. This may make the method
inaccurate when λ is small. We argue next that in the case in which both λ and n are
large and n is close to λ but different from it, there can be cancellations in (14). Let us
start analyzing the case n ≥ λ. Define

f(x) := −x+ (x+ 1) lnsx . (15)

Then, using (14), (12),

lnPn(λ) +
1

2
ln(2πn) ≈ −

(
λ− n+ n lns

(n− λ
λ

)
+ I(m,n)

)
= −

(
λ(−t+ (t+ 1) lns(t)) + I(m,n)

)
= −

(
λ f(t) + I(m,n)

)
, (16)

where t = (n − λ)/λ. The Maclaurin’s series of lns(t) truncated after the second term
gives

lns(t) ≈ t− t2

2
. (17)

Combining (16), (15), and (17) yields

lnPn(λ) +
1

2
ln(2πn) ≈ −

(
λ
(
− t+

(
t+

t2

2
− t3

2

))
+ I(m,n)

)
.
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The above equation suggests that if t = (n − λ)/λ is positive and small, i.e., if 0 <
n− λ� λ, which holds if both λ and n are large and n is larger than λ but close to it,
then there can be cancellations in (14).

Consider now the case n < λ. Define

g(x) :=
x− lnsx

1 + x
. (18)

Using again (14), (12),

lnPn(λ) +
1

2
ln(2πn) ≈ n− λ+ n lns

(λ− n
n

)
− I(m,n)

= −
(
λ
( v

1 + v
− 1

1 + v
lns(v)

)
+ I(m,n)

)
≈ −

(
λ g(v) + I(m,n)

)
, (19)

where v = (λ− n)/n. Combining (19), (18), (17) gives

lnPn(λ) +
1

2
ln(2πn) ≈ −

(
λ
v − (v − v2/2)

1 + v
+ I(m,n)

)
.

Again, the above equation suggests that if v = (λ − n)/n is small and positive, i.e., if
0 < λ− n� n, which holds if both λ and n are large and n is smaller than λ but close
to it, then there can be cancellations in (14).

After performing several numerical experiments, we found that the cancellations in
(14) are not significant provided that either (n−λ)/λ > 0.5, n−λ = 0, or (λ−n)/n > 0.5,
i.e., if either n > 1.5λ, n = λ, or n < λ/1.5. Accordingly, in the new method, the (λ, n)
pairs, λ > 0, n ∈ N, not belonging to S1 will be partitioned into three additional sets
labeled S2, S3, and S4, and the probability will be approximated differently in each of
them.

Set S2 will include all (λ, n) pairs, λ > 0, n ∈ N, with λ satisfying λ < 2−43 or λ > 29

and n satisfying 0 < n ≤ 22, all pairs with n satisfying n > max{22, 1.5λ}, all pairs with
λ and n satisfying n = λ > 22, and all pairs with n satisfying 22 < n < λ/1.5. Set S3 will
include all (λ, n) pairs, λ > 0, n ∈ N, with n satisfying max{λ, 22} < n ≤ 1.5λ. Finally,
set S4 will include all (λ, n) pairs, λ > 0, n ∈ N, with n satisfying max{λ/1.5, 23} ≤ n <
λ.

For the (λ, n) pairs in set S2 with n satisfying 0 < n ≤ 22, the Pn(λ) will be computed
using

Pn(λ) =
1√
2πn

e(n−λ)−nh(λ,n)−ln(G(n)/
√

2πn) . (20)

The values for ln(G(n)/
√

2πn), 0 < n ≤ 22 are computed accurately beforehand using
the MPFI library and stored.

For the (λ, n) pairs in set S2 with n satisfying n > 22, the Pn(λ) will be approximated
using (14) after factoring the term ln(2πn)/2 out of the exponential. This gives

Pn(λ) ≈ Pm,n(λ) :=
1√
2πn

e(n−λ)−nh(λ,n)−I(m,n) . (21)
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The value of m will be chosen so that the approximation relative error is ≤ 2−53. To
that end, we note that the difference between lnG(n) and ln(2πn)/2 + I(m,n) has the
same sign as T (m + 1, n) (positive if m is even and negative otherwise) and is upper
bounded in absolute value by |T (m+ 1, n)| (Abramowitz and Stegun, 1965, 6.1.42), i.e.,
that, if m is even, then

0 ≤ lnG(n)− 1

2
ln(2πn)− I(m,n) ≤ T (m+ 1, n) (22)

and otherwise,

0 ≤ − lnG(n) + ln(2πn)/2 + I(m,n) ≤ −T (m+ 1, n) . (23)

Therefore, if m is even, using (13), (21), and (22),

0 ≤ Pm,n(λ)− Pn(λ)

Pm,n(λ)
≤ 1− e−T (m+1,n) ,

and, if m is odd, using (13), (21), and (23),

0 ≤ Pn(λ)− Pm,n(λ)

Pm,n(λ)
≤ e−T (m+1,n) − 1 .

We then proceed as follows to determine appropriate values for m. Consider, for a given
m, the minimum nonnegative integer q such that 1−e−T (m+1,2q) ≤ 2−53 if m is even and
e−T (m+1,2q) − 1 ≤ 2−53 otherwise. Since the exponential function is monotone and by
(10), |T (m+1, n)| decreases on n, both the differences 1−e−T (m+1,n) and e−T (m+1,n)−1
will decrease on n as well, implying that for all n ≥ 2q we will have 1−e−T (m+1,n) ≤ 2−53

if m is even and e−T (m+1,n)−1 ≤ 2−53 otherwise. Then, using the MPFI library to ensure
that we computed accurate upper bounds for 1 − e−T (m+1,n) in case m is even and for
e−T (m+1,n) − 1 otherwise, we solved

q = min
r≥0
{1− e−T (m+1,2r) ≤ 2−53} (24)

for m = 0, 2, 4, and 6, obtaining, respectively, q = 50, 9, 5, and 4, and solved

q = min
r≥0
{e−T (m+1,2r) − 1 ≤ 2−53} (25)

for m = 1, 3, 5, and 7, obtaining, respectively, q = 15, 7, 4, and 4. Therefore, taking
m = 5 if 24 ≤ n < 25, m = 4 if 25 ≤ n < 27, m = 3 if 27 ≤ n < 29, m = 2 if 29 ≤ n < 215,
m = 1 if 215 ≤ n < 250, and m = 0 if n ≥ 250 will ensure that the approximation relative
error |Pn(λ)/Pm,n(λ)− 1| is ≤ 2−53. These results are summarized in table 2.

Consider now the set S3. Combining (13), (12) with n ≥ λ, and (15), we obtain

Pn(λ) = e−(λ f((n−λ)/λ)+lnG(n)) . (26)
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n [24, 25) [25, 27) [27, 29) [29, 215) [215, 250) [250,∞)

m 5 4 3 2 1 0

Table 2: Value of m in Pm,n(λ) as a function of n ∈ N.

The term lnG(n) will be approximated using (11) with m chosen appropriately. The
function f(x) will be approximated by means of a truncated series. The starting point
will be the series (Abramowitz and Stegun, 1965, 4.1.29)

lnsx = 2
∑
k≥0

z2k+1

2k + 1
, z =

x

2 + x
, (27)

which for x real and > −1 is convergent. Combining the series with (15) gives

f(x) =
x2

2 + x
+

2(x+ 1)x

2 + x

∞∑
k=1

(z2)k

2k + 1
, z =

x

2 + x
. (28)

By truncating the series at k = l, we obtain

fl(x) =
x2

2 + x
+

2(x+ 1)x

2 + x

l∑
k=1

(z2)k

2k + 1
, z =

x

2 + x
. (29)

The Pn(λ) will then be approximated by

Pl,m,n(λ) :=
1√
2πn

e−(λ fl((n−λ)/λ)+I(m,n)) . (30)

We describe next how m, l will be chosen so that the relative approximation error

errl,m(λ, n) :=
∣∣∣ Pn(λ)

Pl,m,n(λ)
− 1
∣∣∣ (31)

is ≤ 2−53. We begin by combining (26), (30), and (31), obtaining

errl,m(λ, n) =
∣∣∣e−(λ(f((n−λ)/λ)−fl((n−λ)/λ))+lnG(n)−I(m,n)−ln(2πn)/2) − 1

∣∣∣ . (32)

Eq. (22) provides a bound for |lnG(n) − I(m,n) − 1
2 ln(2πn)| if m is even and (23)

provides a bound if m is odd. To obtain bounds for f(x)− fl(x), we note that, if x > 0,
which implies z = x/(2 + x) < 1,

∞∑
k=l+1

(z2)k

2k + 1
≤ 1

2l + 3

∞∑
k=l+1

(z2)k =
(z2)l+1

2l + 3

∞∑
k=0

(z2)k =
(z2)l+1

(2l + 3)(1− z2)
. (33)

Therefore, using (28) and (29),

0 ≤ f(x)− fl(x) ≤ 2(x+ 1)z2l+3

(2l + 3)(1− z2)
, z =

x

2 + x
. (34)

10



n [24, 27) [27, 215) [215,∞)

m 5 3 1

Table 3: Value of m in Pl,m,n(λ) as a function of n ∈ N.

To simplify the notation, let

ωk(x) =
2xk

k(1− x2)
. (35)

With that notation, (34) becomes

0 ≤ f(x)− fl(x) ≤ (1 + x)ω2l+3

( x

x+ 2

)
. (36)

If m is even, by (22) the factor lnG(n) − I(m,n) − ln(2πn)/2 will be nonnegative and
upper bounded by T (m+ 1, n) > 0. Therefore, using (32) and (36),

errl,m(λ, n) = 1− e−(λ(f((n−λ)/λ)−fl((n−λ)/λ))+lnG(n)−I(m,n)−ln(2πn)/2)

≤ 1− e−λ(1+t)ω2l+3(t/(2+t))−T (m+1,n), t = n−λ
λ .

If m is odd, by (23) the factor lnG(n) − I(m,n) − 1
2 ln(2πn) will be nonpositive and

lower bounded by T (m+ 1, n) < 0. Then, using again (32) and (36),

errl,m(λ, n) ≤ max
{

1− e−λ(1+t)ω2l+3(t/(2+t)), e−T (m+1,n) − 1
}
, t = n−λ

λ . (37)

The bound (37) will be used to select the parameters m, l for the relative approximation
error (31) to be ≤ 2−53.

To determine appropriate values for m in Pl,m,n(λ), we solved (25) for m = 1, 3, 5, and
7, obtaining q = 15, 7, 4, and 4, respectively. Therefore, taking m = 5 if 24 ≤ n < 27,
m = 3 if 27 ≤ n < 215, and m = 1 if n ≥ 215 will ensure e−T (m+1,n) − 1 ≤ 2−53. These
results are summarized in table 3.

The parameter l is computed on the fly. By imposing 1− e−λ(1+t)ω2l+3(t/(2+t)) ≤ 2−53,
t = (n− λ)/λ and using (35), we obtain

z2l

2l + 1
≤ −1− z2

2z3

2l + 3

2l + 1

ln(1− 2−53)

λ(1 + t)
, t =

n− λ
λ

, z =
t

2 + t
. (38)

From a computational point of view, we find it convenient to replace the quantity− ln(1−
2−53) in (38) by a lower bound that can be computed exactly. Thus, using the inequality
− ln(1−x) > x, x < 1 (Abramowitz and Stegun, 1965, 4.1.34) we have − ln(1− 2−53) >
2−53. Then, in the method the factor fl ((n− λ)/λ) is computed using (29) starting with
l = 1 and increasing l until it holds that

z2l

2l + 1
≤ 1− z2

2z3

2l + 3

2l + 1

2−53

λ(1 + t)
, t =

n− λ
λ

, z =
t

2 + t
. (39)

11



It remains to consider the set S4. Combining (13), (12) with n < λ, and (18), we
obtain

Pn(λ) = e−(λ g((λ−n)/n)+lnG(n)) . (40)

The factor lnG(n) will be approximated using (11) with m chosen appropriately. The
function g(x) will be approximated by a truncated series.

Using (18), (27),

g(x) =
x2

(1 + x)(2 + x)
− 2x

(1 + x)(2 + x)

∞∑
k=1

(z2)k

2k + 1
, z =

x

2 + x
, (41)

which, truncating the infinite series at k = l, becomes

gl(x) =
x2

(1 + x)(2 + x)
− 2x

(1 + x)(2 + x)

l∑
k=1

(z2)k

2k + 1
, z =

x

2 + x
. (42)

The Pn(λ) will be approximated by

P ′l,m,n(λ) :=
1√
2πn

e−(λ gl((λ−n)/n)+I(m,n)) . (43)

The parameters m, l will be chosen so that the relative approximation error

err′l,m(λ, n) :=
∣∣∣ Pn(λ)

P ′l,m,n(λ)
− 1
∣∣∣ (44)

is ≤ 2−53. To that end, we start by combining (40), (43), and (44). This yields

err′l,m(λ, n) =
∣∣∣e−(λ(g((λ−n)/n)−gl((λ−n)/n)

)
+lnG(n)−I(m,n)−ln

√
2πn
)
− 1
∣∣∣ . (45)

Eq. (22) provides a bound for |lnG(n)−I(m,n) ln(2πn)/2| if m is even and (23) provides
a bound if m is odd. Using (41), (42), (33), and (35) we can obtain the bounds for
gl(x)− g(x)

0 ≤ gl(x)− g(x) ≤ ω2l+3 (x/(2 + x))

1 + x
. (46)

Then, combining (46), (22), (23), and (45), gives, if m is even,

err′l,m(λ, n) ≤ max
{

eλω2l+3(v/(2+v))/(1+v) − 1, 1− e−T (m+1,n)
}
, v = λ−n

n , (47)

and, if m is odd,

err′l,m(λ, n) ≤ eλω2l+3(v/(2+v))/(1+v)−T (m+1,n) − 1, v = λ−n
n .

The bound (47) will be used to select the parameters m, l for the relative approximation
error (44) to be ≤ 2−53.
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n [24, 25) [25, 29) [29, 250) [250,∞)

m 6 4 2 0

Table 4: Value of m in P ′l,m,n(λ) as a function of n ∈ N.

To determine appropriate values for m in (43) P ′l,m,n(λ), we solved (24) for m = 0,
2, 4, and 6, obtaining q = 50, 9, 5, and 4, respectively. Therefore, taking m = 6 for
24 ≤ n < 25, m = 4 for 25 ≤ n < 29, m = 2 for 29 ≤ n < 250, and m = 0 for n ≥ 250 will
ensure 1− e−T (m+1,n) ≤ 2−53. These results are summarized in table 4.

The parameter l is computed on the fly. Imposing eλω2l+3(v/(2+v))/(1+v) − 1 ≤ 2−53,
v = (λ− n)/n, gives, using (35),

z2l

2l + 1
≤ 1− z2

2z3

2l + 3

2l + 1

1 + v

λ
ln(1 + 2−53), v =

λ− n
n

, z =
v

2 + v
. (48)

From a computational point of view, we find it convenient to replace the quantity ln(1+
2−53) in (48) by a lower bound that can be computed exactly. Using the inequality
ln(1 + x) > x/(1 + x), x > −1 (Abramowitz and Stegun, 1965, 4.1.33), we get

ln(1 + 2−53) > 2−53/(1 + 2−53) = 1/(253 + 1) = (253 − 1)/
(
(253 − 1)(253 + 1)

)
= (253 − 1)/(2106 − 1) > (253 − 1)2−106 .

Then, in the method the factor gl((λ−n)/n) is computed using (42) starting with l = 1
and increasing l until it holds that

z2l

2l + 1
≤ 1− z2

2z3

2l + 3

2l + 1

1 + v

λ
(253 − 1)2−106, v =

λ− n
n

, z =
v

2 + v
. (49)

3.2 Summary

In the method, the set of (λ, n) pairs, λ > 0, n ∈ N, is partitioned into four sets and the
probability is approximated differently in each set. The first set, which we labeled S1,
consists of all pairs with n satisfying n = 0 and all pairs with λ satisfying 2−43 ≤ λ ≤ 29

and n satisfying 0 < n ≤ 22. For (λ, n) ∈ S1, the Pn(λ) is computed using (1) with
λ0 = 1, 0! = 1, evaluating λn if n > 0 as λn = λ× λ× · · · × λ and evaluating n! if n > 0
as n! = n× (n− 1)× · · · × 2.

The second set, labeled S2, consists of all pairs with λ satisfying λ < 2−43 or λ > 29

and n satisfying 0 < n ≤ 22, all pairs with n satisfying n > max{22, 1.5λ}, all pairs
with λ and n satisfying n = λ > 22, and all pairs with n satisfying 22 < n < λ/1.5. For
(λ, n) ∈ S2, if 0 < n ≤ 22 the Pn(λ) is computed using (20), and if n > 22, the Pn(λ)
is approximated using (21) with m given in table 2. In the case 0 < n ≤ 22, the values
for ln

(
G(n)/

√
2πn

)
, 0 < n ≤ 22 are computed accurately beforehand using the MPFI

library and stored.
The third set, labeled S3, consists of all pairs with n satisfying max{λ, 22} < n ≤ 1.5λ.

For (λ, n) ∈ S3, the Pn(λ) is approximated using (30). The value of m is given in table 3.

13



The factor fl ((n− λ)/λ) is computed using (29) with the minimum l ≥ 1 such that (39)
holds.

The fourth set, labeled S4, consists of all pairs with n satisfying max{λ/1.5, 23} ≤
n < λ. For (λ, n) ∈ S4, the Pn(λ) is approximated using (43). The value of m is given in
table 4. The factor gl((λ− n)/n) is computed using (42) with the minimum l ≥ 1 such
that (49) holds.

For the sake of clarity, in figures 1 and 2 we give a pseudo-code for the proposed
method.

4 Numerical Results

In order to compare the proposed method with the methods described in (Whittlesey,
1963; Knüsel, 1986; Press et al., 2007; Krishnamoorthy, 2016), we performed with each
method the experiment described in sect. 2. In addition, for each method we estimated
the average CPU time in microseconds required to compute Pn(λ) as a function of λ by
measuring the overall time required to obtain 10 000 times the Pn(λ) for all the values
of n considered for each value of λ. The results are summarized in table 5, where we
give d(λ, n) =

∑
n∈N (λ) d(λ, n)/n, 〈d(λ, n)〉 =

∑
n∈N (λ) Pn(λ)d(λ, n)/

∑
n∈N (λ) Pn(λ),

and the average CPU time in microseconds, tCPU.1 The results were obtained on a
workstation equipped with Intel R© Xeon R© E7-8837 microprocessors, using only one core.

1The methods described in (Press et al., 2007; Krishnamoorthy, 2016) perform very similarly and we
only give results for the former.
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Require: Inputs λ > 0, n ∈ N; precomputed values for ln(G(n)/
√

2πn), 1 ≤ n ≤ 22
Ensure: In exact arithmetic, |(Pn(λ)− P̃n(λ))/P̃n(λ)| ≤ 253

if n = 0 or (2−53 ≤ λ ≤ 29 and 0 < n ≤ 22) then . Set S1

P̃n(λ) :=
λn

n!
e−λ

else if (λ < 2−43 or λ > 29) and 0 < n ≤ 22 then . Set S2

P̃n(λ) :=
1√
2πn

e(n−λ)−nh(λ,n)−ln(G(n)/
√

2πn)

else if n > max{22, 1.5λ} or n = λ > 22 or 22 < n ≤ λ/1.5 then
if n > max{22, 1.5λ} then

h(λ, n) := lns
(n− λ

λ

)
else if n = λ > 22 then

h(λ, n) := 0
else

h(λ, n) := − lns
(λ− n

n

)
end if
Select m using table 2

I(m,n) :=

m∑
j=1

B2j

2j(2j − 1)n2j−1

P̃n(λ) :=
1√
2πn

e(n−λ)−nh(λ,n)−I(m,n)

else if max{λ, 22} < n ≤ 1.5λ then . Set S3

h(λ, n) := lns
(n− λ

λ

)
. Compute fl((n− λ)/λ)

t :=
n− λ
λ

z :=
t

2 + t
l := 1

aux :=
z2l

2l + 1
sum := aux

bound :=
1− z2

2z3

2l + 3

2l + 1

2−53

λ(1 + t)
while aux > bound do

l := l + 1

aux :=
z2l

2l + 1
sum := sum + aux

bound :=
1− z2

2z3

2l + 3

2l + 1

2−53

λ(1 + t)
end while

Figure 1: Pseudo-code for the proposed method.
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fl

(n− λ
λ

)
:=

t2

2 + t
+

2(t+ 1)t

2 + t
× sum

Select m using table 3

I(m,n) :=
m∑
j=1

B2j

2j(2j − 1)n2j−1

P̃n(λ) :=
1√
2πn

e−(λ fl((n−λ)/λ)+I(m,n))

else if max{λ/1.5, 23} ≤ n < λ then . Set S4

h(λ, n) := − lns
(λ− n

n

)
. Compute gl((λ− n)/n)

v :=
λ− n
n

z :=
v

2 + v
l := 1

aux :=
z2l

2l + 1
sum := aux

bound :=
1− z2

2z3

2l + 3

2l + 1

1 + v

λ
(2−53 − 1)2−106

while aux > bound do
l := l + 1

aux :=
z2l

2l + 1
sum := sum + aux

bound :=
1− z2

2z3

2l + 3

2l + 1

1 + v

λ
(2−53 − 1)2−106

end while

gl

(λ− n
n

)
:=

v2

(1 + v)(2 + v)
− 2v

(1 + v)(2 + v)
× sum

Select m using table 4

I(m,n) :=
m∑
j=1

B2j

2j(2j − 1)n2j−1

P̃n(λ) :=
1√
2πn

e−(λ gl((λ−n)/n)+I(m,n))

end if
return P̃n(λ)

Figure 2: Pseudo-code for the proposed method. (Cont’d.)
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As we can see, the method developed in the paper seems to be more accurate and almost
always faster than the remaining methods.

Next, we illustrate that the accuracy of the method seems to be quite good if we take
into account what can be expected by using IEEE 754 floating-point arithmetic. Let y
denote the result of evaluating a given algebraic expression using exact arithmetic and let
fl(y) denote the result of evaluating it using IEEE 754 floating-point arithmetic. We can
expect the relative error in fl(y) to be at least equal to 2−53, i.e., that fl(y) = y(1 + δy),
|δy| ≥ 2−53. Now, consider fl(x · ey) assuming, optimistically, that multiplication can be
performed exactly and that the exponential function can be evaluated exactly. We have

fl(x · ey) = fl(x) · efl(y) = x(1 + δx)ey(1+δy) = x(1 + δx)eyeyδy .

Assuming, realistically, that |yδy| � 1, so that we can approximate eyδy by 1 + yδy, and
that |δxδy| � |δy|, so that we can approximate yδy + yδyδx by yδy,

x(1 + δx)eyeyδy ≈ x(1 + δx)ey(1 + yδy) ≈ xey(1 + yδy + δx) .

Therefore, if |δx| ≥ 2−53, |δy| ≥ 2−53,

− log10

∣∣x · ey − fl(x · ey)
fl(x · ey)

∣∣ ≈ − log10|yδy + δx|+ log10|1 + yδy + δx|

= − log10

(
|y|
∣∣δy +

δx
y

∣∣)+ log10|1 + yδy + δx|

≤ − log10|y|+ 53 log10 2− log
(∣∣∣1 +

1

y

∣∣∣)
+ log10|1 + y × 2−53 − 2−53|

= − log10|y|+ 53 log10 2− log
(∣∣∣1 +

1

y

∣∣∣)
+ log10|(253 − 1)× 2−53 + y × 2−53| . (50)

Using (50) with x = 1/
√

2πn and y = ln(
√

2πnPn(λ)), we obtain

− log10

∣∣∣Pn(λ)− fl
(
(1/
√

2πn) exp
(

ln(
√

2πn)Pn(λ))
))

fl
(
(1/
√

2πn) exp
(

ln(
√

2πn)Pn(λ))
)) ∣∣∣

≤ − log10

∣∣ ln(
√

2πnPn(λ))
∣∣+ 54 log10 2− log10

∣∣∣1 +
1

ln(
√

2πnPn(λ))

∣∣∣
+ log10

∣∣∣(253 − 1)× 2−53 + ln(
√

2πnPn(λ))× 2−53
∣∣∣

:= db64(λ, n) . (51)

The quantity db64(λ, n) can be regarded as the accuracy we can expect if we compute
Pn(λ) as

Pn(λ) = fl
{ 1√

2πn

}
efl{ln(

√
2πn)Pn(λ)}
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λ dm(λ, n) dM(λ, n) d(λ, n) db64
m (λ, n) db64

M (λ, n) db64(λ, n)

100 12.9 18.1 14.1 13.1 17.2 13.7

101 12.8 17.0 14.0 13.1 17.3 13.8

102 12.7 17.2 14.1 13.1 16.2 14.0

103 12.4 17.2 14.0 13.1 15.9 13.9

104 12.3 18.1 14.0 13.1 15.7 13.9

105 12.5 17.7 14.0 13.1 15.6 13.9

106 12.5 17.7 14.1 13.1 15.5 13.9

107 12.5 17.6 14.0 13.1 15.4 13.9

108 12.5 17.6 14.0 13.1 15.3 13.9

109 12.6 17.4 14.0 13.1 15.3 13.9

1010 12.6 17.7 14.0 13.1 15.2 13.9

1011 12.6 18.1 14.1 13.1 15.2 13.9

1012 12.4 17.3 14.0 13.1 15.2 13.9

1013 12.6 17.6 14.0 13.1 15.1 13.8

1014 12.6 17.7 14.1 13.1 15.1 13.8

1015 12.6 19.4 14.1 13.1 15.0 13.8

Table 6: Measured accuracy for the proposed method and expected accuracy.

with fl(1/
√

2πn) = (1/
√

2πn)(1+δ), |δ| ≈ 2−53 and fl{ln(
√

2πn)Pn(λ)} = (ln(
√

2πn)Pn(λ))(1+
δ′), |δ′| ≈ 2−53. Since in the proposed method the approximation for Pn(λ) is mostly of
the form Pn(λ) ≈ (1/

√
2πn)ey (cf. (20), (21), (30), (43)), it makes sense to compare the

accuracy measured for the proposed method with the expected accuracy. This is done
in table 6, where we show the minimum, maximum, and average accuracy measured
for the proposed method, dm(λ, n), dM(λ, n), and d(λ, n), and the corresponding values
obtained using instead db64(λ, n) defined in (51). As we can observe, the accuracy of
the proposed method compares very favorably with the expected one.

5 Conclusions

In this paper, we have reviewed published methods for the computation of Poisson
probabilities. Restricting ourselves to methods aimed at the computation of a single
probability, we have shown that neither of them is completely satisfactory in terms of
accuracy. With that motivation, we have developed a new method for the computation of
Poisson probabilities. The method is intended for computing a single probability. Unlike
previous methods, the new method comes with guaranteed approximation relative error.
Numerical experimentation shows that the method seems to be more accurate and almost
always faster than published methods.
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