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Abstract: A new approach to infer the bathymetry from coastal video monitoring systems is presented.1

The methodology uses Principal Component Analysis of the Hilbert transform of video images2

to obtain the components of the wave propagation field and their corresponding frequency and3

wavenumber. Incident and reflected constituents and subharmonics components are also found.4

Local water depth is then successfully estimated through wave dispersion relationship. The method5

is first applied to monochromatic and polychromatic synthetic wave trains propagated using linear6

wave theory over an alongshore uniform bathymetry, in order to analyze the influence of different7

parameters on the results. To assess the ability of the approach to infer the bathymetry under more8

realistic conditions, and to explore the influence of other parameters, nonlinear wave propagation9

is also performed using a fully nonlinear Boussinesq-type model over a complex bathymetry. In10

the synthetic cases, the relative root-mean-square error obtained in bathymetry recovery (for water11

depths 0.75 m 6 h 6 8.0 m) ranges from ∼ 1 % to ∼ 3 % for infinitesimal-amplitude wave cases12

(monochromatic or polychromatic) to ∼ 15 % in the most complex case (nonlinear polychromatic13

waves). Finally, the new methodology is satisfactorily validated through a real field site video.14

Keywords: Video monitoring; Bathymetry inversion; Principal Component Analysis.15

1. Introduction16

Decision making in coastal zone management requires a knowledge of the bathymetry [1,2].17

Obtaining accurate bathymetries has interest on its own, since it allows, e.g., to know how the waves18

propagate to the shore, how the morphology has evolved in time (if several bathymetries are available),19

or to decide if it is necessary to dredge the mouth of a harbour. Measuring bathymetric time-series20

also allows to validate morphodynamic numerical models, especially if obtained with a relatively high21

frequency. The morphodynamic models, in turn, can be a helpful tool to predict future changes and22

analyze the impact of potential human actions [3,4]. There is, consequently, a large interest in obtaining23

accurate bathymetries [5,6, to mention just a few].24

In situ bathymetric measurement techniques include a wide variety of approaches that range25

from swath-sounding sonar systems [7] to bottom-contacting vehicles such as the Coastal Research26

Amphibious Buggy (CRAB) [5]. While in situ techniques provide excellent bathymetries at high spatial27

resolution, they are both expensive and highly time consuming. Except during experimental field28

campaigns, they are usually obtained at most few times per year. Alternatives to in situ methods29

include, among other, LiDAR techniques [8,9], satellite images [6,10], video images [11,12] and X-band30
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radar images [13,14]. The reader is referred to the work by [15] for a review. One technique will be31

preferable relative to the others depending on aspects such as the size of the area to be analyzed or32

the desired spatial and temporal resolution. For instance, satellite information is unbeatable for large33

domains but it has a low spatial resolution and a limited temporal resolution. On the other hand, video34

monitoring systems, the object of this work, provide excellent spatio-temporal resolution for domains35

up to a few kilometers.36

Video monitoring systems [16–18], mainly developed after the relatively recent advent of digital37

cameras, have shown to be a powerful and low-cost tool to monitor the coast. These systems are38

useful in a wide range of studies, such as, for example, shoreline detection and coastal variability39

[2,19,20], intertidal bathymetry [21,22] or the study of the morphodynamics of beach systems [23–26].40

Video systems have also shown to be able to give estimates of the bathymetry through the wave41

propagation linear dispersion relationship, which relates the water depth to the wavenumber and42

the wave frequency. For this purpose, the wave frequency and (space-varying) wavenumber are to43

be obtained from a sequence of snap images. [11] obtained the wavenumber from the wave speed44

(and the wave frequency) which, in turn, were obtained from timestack images of several transects45

normal and parallel to the coast. From then on, there has been a considerable effort to develop reliable46

techniques to obtain the bathymetry from video images, working both in 1D in space, i.e., in transects,47

or treating the whole images, i.e., 2D [e.g.: 12,27]. Some of the proposed approaches use video images48

combined with numerical models and/or radar images. Of mention, there have also been attempts to49

obtain the bathymetry without the dispersion equation, using the wave dissipation pattern observed50

in time averaged (timex) images instead of a sequence of snaps [28].51

The cBathy algorithm [12] is nowadays the most popular algorithm to obtain 2D bathymetries52

from video stations [e.g.: 29,30]. The code is made-up of two main parts: first, a bathymetry estimate53

is obtained for each hourly video (typically of few minutes at ∼ 0.5 Hz); second, given a bunch of54

hourly (estimated) bathymetries, they are smoothed through a Kalman filter [31] to obtain the final55

hourly estimates. In regard to the first part (i.e., the estimate of the bathymetry from one video, which56

is the topic this work is focused on), cBathy first transforms each pixel intensity time history to the57

frequency domain. To obtain the water depth at any given point, it then considers a neighborhood58

of the point and obtains the wave spatial pattern through frequency-domain empirical orthogonal59

functions of the Cross Spectral Matrices (CSMs) averaged within frequency bands of interest. The60

latter is done to handle with the noisy data such as the video images. The analysis of the set of CSMs61

allows to get the dominant frequencies (those whose signal are more coherent) and their corresponding62

wavenumbers. The dispersion relationship then allows to obtain estimates of the local water depth for63

each dominant frequency and a weighted average of them. Some limitations and/or known problems64

of cBathy have been reported in the literature [30,32] (e.g., dealing with high wave heights, wet/dry65

tiles or long waves).66

In this work we propose an alternative to cBathy to obtain nearshore bathymetries from videos,67

which is based on Principal Component Analysis (PCA) of the Hilbert transform of the video images.68

This methodology consists on retrieving wave patterns from time-space complex-PCA analysis of video69

images, i.e., avoiding the frequency-domain analysis, to subsequently obtain nearshore bathymetries.70

The use of PCA in wave propagation problem was actually introduced prior to the popularization of71

video monitoring stations [33]; in this work PCA was applied to data recorded through tide gauges72

and the goal was detecting infragravity waves. The problems observed in that work (a note of caution,73

actually), were related to the fact that the distance between the gauges was relatively large compared74

to the wavelength. This is actually not expected to be a problem for video images detecting wind75

waves, for the pixel size, projected in the space, is much smaller than the wavelength in the area of76

interest. The presented algorithm, uBathy, takes it name from cBathy, but with “u” referring to ULISES77

[34], the software it has been developed in.78

The aim of the present contribution is to demonstrate the validity of this new methodology and79

to find the algorithms and parameter values that optimize the result. In order to fully control the80
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conditions, most tests are performed with synthetic bathymetries and waves. To test the performance of81

uBathy in real conditions, the bathymetry inferred from a video captured in a field site is also included.82

The proposed methodology is first presented and illustrated with a simple 1D case (Section 2). The83

validity of the proposed approach is analyzed through synthetic wave fields, both linear and nonlinear,84

propagating over two different bathymetries (Section 3). Special emphasis is devoted in the recovery of85

the wave frequency and the wavenumber from the PCA analysis of the video. The influence of the most86

relevant parameters is further discussed (Section 4), such as the temporal and spatial discretization87

of the video or the parameters that influence the post-process of the PCA to recover the bathymetry.88

Additionally, a video from a field site is analyzed with the presented methodology to estimate a89

real bathymetry. The result is compared with the one obtained from cBathy. To conclude, the most90

important findings are listed (Section 5).91

2. Methodology92

The present algorithm relies on PCA, which is briefly described in Section 2.1 for completeness.93

From this algebraic decomposition, the frequency and wavenumber of the different wave components94

are determined (Sections 2.2 and 2.3), and henceforth the bathymetry is obtained (Section 2.4). All the95

steps are illustrated with a simple 1D case (for ease of representation).96

2.1. Principal Component Analysis97

Consider any spatio-temporal real-valued function, f (x, t) , discretized in space and time into98

a matrix X so that Xmn = f (xm, tn) , with m = 1, . . . , M and n = 1, . . . , N. When working with real99

video images, xm will be the real-world coordinates corresponding to the image pixels, tn the time100

of each snapshot and f , typically, the value of the pixel intensity for the snapshot. Each column of X101

corresponds to a stacked “snapshot”, while each row is the time record at a given point.102

Let Y be the demeaned matrix, built up by subtracting to each column of X the time average103

space-vector, i.e.,104

〈 f 〉m =
1
N

N

∑
n=1

f (xm, tn) , m = 1, . . . , M ,

so that105

Ymn = Xmn − 〈 f 〉m . (1)

Considering M time-depending variables, one for each row of the matrix Y, their covariance matrix106

is Y·YT/N. Singular value decomposition, key in PCA, allows to rewrite Y ∈ MM×N (i.e., a M×N107

matrix) as108

Y = U·S·VT, (2)

with U ∈ MM×Q, S ∈ MQ×Q, V ∈ MN×Q and Q = min {M, N} . Further, UT·U = VT·V = IQ×Q,109

the identity, and S is a diagonal matrix of real positive values (by convention, in decreasing order110

in the diagonal). Following usual notation, the q-th column of U, a spatial vector, is the “Empirical111

Orthogonal Function” EOFq, while the q-th row of the product S·VT, a time vector, is the “Principal112

Component” PCq. From equations (1) and (2),113

Xmn = 〈 f 〉m +
Q

∑
q=1

EOFq (xm)PCq (tn) . (3)

The EOFs (columns of U) are a set of orthonormal vectors in space, while the PCs (rows of S·VT)114

are a set of orthogonal vectors in time. Each pair {EOFq, PCq} is a mode of the decomposition. The PCs115
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can be interpreted as a rewritten version of the information in Y using the EOFs as a basis in equation116

(2). The covariance matrix of the data expressed in this new basis is117

1
N

(S·VT) · (S·VT)
T
=

1
N

S·ST ,

i.e., a diagonal matrix. The contribution of each PCq and the corresponding EOFq to the total signal is118

quantified by the values of the diagonal matrix S·ST, which indeed represents the explained variance,119

σ2
q = (S·ST) qq. For complex-valued signals, the above results hold as long as transposed matrices are120

substituted by conjugate-transposed matrices. In that case both EOFq and PCq become complex-valued121

vectors, but σ2
q remains real-valued.122

Propagation of small-amplitude waves over a flat bed can be described as [35]123

f =
J

∑
j=1

aj cos (kj·x−ωjt + ϕj) ,

where J is number of components of the wave field, aj are the amplitudes, kj = (kxj, kyj) are the wave124

vectors (with corresponding wavenumbers k j = | kj |), ωj = 2π/Tj are the angular frequencies (with125

Tj being the wave periods) and ϕj are the wave phase lags. The time-wise Hilbert transform is126

F =
J

∑
j=1

aj exp (−i (kj·x + ϕj) ) exp (i ωjt) , (4)

and the corresponding space and time discretized matrix reads127

Xmn =
J

∑
j=1

aj exp (−i (kj·xm + ϕj) ) exp (i ωjtn) . (5)

For large time domains it is 〈 f 〉m ∼ 0 and Ymn ∼ Xmn. The J time-wise complex vectors, i.e.,128

exp (i ωjtn) , tend to be orthonormal as also the space-wise vectors do, i.e. exp (−i (kj·xm + ϕj) ) , and129

the equation (5) is already the PCA decomposition of the signal into its monochromatic components130

(with ωj and kj). In this case, the explained variance for the q-th mode reads131

σ2
q =

a2
q

∑J
j=1 a2

j

. (6)

Hence, each component of the wave field can be linked to a mode of the PCA. Moreover, the angle132

of a given PC and EOF can be used to obtain the ωj and k j, respectively, of the corresponding wave133

component since134

αt = angle {PC (t) } ≈ angle {exp (i ωjt) } = ωjt , (7a)

αx = angle {EOF (x) } ≈ angle {exp (−i (kj·x + ϕj) ) } = − (kj·x + ϕj) . (7b)

Above we have considered kj·x, while in wave propagation over uneven beds kj is not constant and135

the spatial phase φj (x) = ∫ kj·dx has to be used instead. As shown below, this will not actually be a136

limitation.137

The usefulness of PCA to analyze wave propagation over uneven beds (i.e., with variable k) is138

illustrated with the linear 1D propagation of waves. The bathymetry considered is defined by a water139

depth, h, equal to140

h (x) = 6 m− 4 m tanh
(

x− 100 m
20 m

)
, 0 6 x 6 200 m . (8)
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To represent more realistic sea state situations at the coast, where waves with different frequencies141

and wavenumbers can coincide, the superposition of two wave trains has been considered. The free142

surface elevation η (waves travelling rightwards) is143

η (x, t) =
2

∑
j=1

aj (x) cos (φj (x) −ωjt + ϕj) .

The amplitudes, aj (x) , are obtained from the amplitudes at x = 0, a0
j , using fundamentals of linear144

wave propagation theory [35]. The wavenumbers k j are related to the angular frequencies and the145

water depth through the dispersion relationship146

ω2
j = gk j tanh (k jh) .

Three synthetic linear wave propagation cases are considered (Table 1), including a case with only147

one wave train (monochromatic), a case with two wave trains of different frequencies (bi-chromatic)148

and a case with two wave trains of the same frequency but opposite propagation directions (reflective).149

This allows to describe different features of the PCA. The discretization considers xm = m∆x and tn =150

n∆t, with ∆x = 1 m, m = 1, . . . , M = 200 (so that xmax = 200 m), ∆t = 0.25 s, and n = 1, . . . , N = 400151

(so that tmax = 100 s).152

cases T1 [s] a0
1 [cm] dir1 T2 [s] a0

2 [cm] dir2

monochromatic 5.1 3.0 + —– —– —–
bi-chromatic 5.1 3.0 + 8.3 1.0 +
reflective 5.1 3.0 + 5.1 1.0 −

Table 1. Wave conditions in the seaward boundary for the 1D examples. For each wave train (two at
most): Tj is the period, a0

j is the wave amplitude at x = 0 and dirj the direction of wave propagation
(+, rightwards).

For the monochromatic case, the analysis of the signal yields one main mode that represents 99.5%153

of the variance (Table 2). For the bi-chromatic case, two main modes are obtained (corresponding to154

the two components), with variances σ2
1 = 87.6 % and σ2

2 = 12.1 % (i.e., that account for the 99.7% of155

the total variance). Finally, when two waves with the same period and moving in opposite directions156

are superimposed (reflective case), only one mode that represents 99.7% of the variance is obtained out157

of the PCA.158

The angles of the PCs and EOFs of the three cases are represented in the top panels of Figures 1159

and 3 respectively. In the monochromatic case, the slope of the angle αt of the PC, leaving aside160

the jumps from π to −π, is approximately constant. The slope of the angle αx of the EOF is gentler161

at x = 0 than at x = 200 m and acknowledges the dependence of the wavenumber on the water162

depth. In the bi-chromatic case each mode corresponds to one of the superimposed waves: the163

slope of αt is gentler for the second mode than for the first one, consistently with the fact that164

ω2 = 0.757 rad/s < 1.232 rad/s = ω1. In the reflective case, where there is only one mode, αt is similar165

to the monochromatic case but now αx has a wavy behavior, resulting from the superposition of two166

waves with the same frequency.167

2.2. Wave frequency and wavenumber: phase fitting168

The wave angular frequency (just frequency hereafter) at a certain time t0 is to be determined by169

fitting the angle of the PC in a vicinity of radius Rt around t0, making use of equation (7a). However,170

to prevent the discontinuities in αt, the latter is first centered at t0,171

α̂t = angle {exp (i (αt − αt (t0) ) ) } = angle {PC (t) PC (t0) } , (9)
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mode σ2 [%] T [s]

monochromatic 1 99.5 5.1

by-chromatic 1 87.6 5.1
2 12.1 8.3

reflective 1 99.7 5.1

Table 2. Summary of the results of the PCA obtained for the 1D examples.

Figure 1. Angle of the PC (top), and frequency (bottom), for the monochromatic (left), bi-chromatic
(center) and reflective (right) 1D cases, versus time. First (second) mode in solid (dashed) lines. Red
lines for the mean angular frequencies.

where complex conjugated values are denoted with an overline. Figure 2 illustrates how α̂t avoids the172

discontinues for t0 = 10 s and considering ∆t = 1 s and Rt = 3 s. In a second step, being t̂ = t− t0, α̂ is173

fitted through the expression174

α̂t ≈ p0 + p1 t̂ ,

so that the frequency at t0 is estimated as ω = p1. This fitting method will be referred to as phase fitting.175

An analogous phase fitting procedure can be applied to determine the wavenumber, k, from αx in176

equation (7b).177

Figure 1 (bottom panels) shows, in black, ω (t) obtained in the 1D examples, with Rt = 0.5 s178

(∆t = 0.25 s in the example). The observed overshoots in ω (t) at the domain boundaries are related to179

the discrete Hilbert transform. For each PCA mode, corresponding to a travelling wave, the frequency180

must be constant. This constant value is estimated by averaging ω (t) , but skipping the values at a time181

distance of ≈ T near the boundaries. This averaged frequency will hereafter be referred to as ω and it182

is plotted in red in Figure 1. For the monochromatic and reflective cases ω ∼ ω1 = 1.232 rad/s (Table183

2, expressed as period), and for the bi-chromatic case the first mode gives ω ∼ ω1 and the second184

mode gives ω ∼ ω2 = 0.757 rad/s. In all cases the relative error in ω1 and ω2 is less than 0.05 %. The185

standard deviation, σω, of the values of ω (t) used to obtain ω can be regarded as a measure of the186

quality of the recovered frequency. Above, σω/ω < 1 % for the first modes and σω/ω ∼ 2 % for the187

second mode in the bi-chromatic case.188

Figure 3, second row, shows the values of k obtained in the 1D examples through phase fitting189

of αx with Rx = 2 m (= 2∆x). The behavior of the wavenumber is smooth (with small oscillations),190

except for the reflective case (right), which is unrealistic but consistent with the corresponding αx. In191

order to cope with reflected waves, which can occur in some real conditions, an alternative method to192

obtain k must be developed.193
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Figure 2. Angle of the PC before centering (circles) and after centering around t = t0 = 10 s (triangles)
for ∆t = 1 s and Rt = 3 s. Red denotes the point of interest and blue indicates the neighbour points
used.

2.3. Wavenumber: function fitting194

If non-negligible reflection occurs, the EOF contains the information of both the incident and195

reflected wave, i.e.196

EOF ≈ Aa exp (−i (ka·x + ϕa) ) + Ab exp (−i (kb·x + ϕb) ) , (10)

with the condition | ka | = | kb | = k. To obtain k and the rest of parameters involved, and following197

the procedure described before for the frequency (section 2.2) but now including a normalization, we198

first define199

ÊOF =
EOF (x) EOF (x0)

|EOF (x0) |2
,

so that ÊOF (x = x0) = 1 (real), with x0 being the point where the wavenumber is being estimated.200

The expression (10) is then201

ÊOF ≈ Âa exp (−i (ka·x̂ + ϕ̂a) ) + Âb exp (−i (kb·x̂ + ϕ̂b) ) , (11)

where x̂ = x− x0. The function (11) is therefore fitted to the normalized EOF, by optimization, in the202

neighborhood of x = x0. The seven optimization parameters are Âa, Âb, ϕ̂a, ϕ̂b, | ka | = | kb | = k and203

the two angles (directions) of the wavenumbers. The wavenumbers obtained with this method match204

the analytical values in all three cases of the 1D example (not shown). This method to get k, that will205

be referred to as function fitting, is computationally much more expensive than phase fitting (around206

two orders of magnitude).207

2.4. Depth inversion208

Once ω (constant) and k (space-varying) have been estimated, the local water depth, h, can be209

inferred from the dispersion equation [12]. Being γ = ω2/gk, it reads210

h =
1
k

atanh(γ) . (12)

Figure 3 (third and fourth rows) shows the results of h in the three 1D cases using, respectively,211

phase fitting and function fitting approaches for k (ω is always computed with phase fitting). The exact212

bathymetry of equation (8) is also included in the figure (blue lines). Most interestingly, the function213

fitting method allows to properly recover the bathymetry in the reflective case, where the phase fitting214

method fails. From Figure 3, for the non-reflective cases and for the first mode, the function fitting215

method avoids the small oscillations observed in the phase fitting method. The function fitting can also216



Version 14 November 2019 submitted to Remote Sens. 8 of 24

Figure 3. From top to bottom: angle of the EOF, wavenumber from phase fitting and depth from phase
fitting, function fitting and windowing (wt = 40 s). From left to right: monochromatic, bi-chromatic
and reflective 1D cases. First (second) mode in solid (dashed) lines. Blue lines for the exact depth.

produce spurious peaks, which are due to the difficulties in the optimization to obtain the parameters217

in equation (10). This errors can be avoided by further increasing the computational time.218

To reduce the errors associated to the small oscillations observed for the phase fitting method219

with a low computational cost, and to handle real videos that might include time intervals with large220

noise, an extension of the above scheme is proposed. First, instead of performing one unique PCA, all221

the sub-videos obtained from a moving time window of width wt are analyzed, and only the dominant222

PCA mode of each sub-video is considered for the analysis. Second, for each time window, ti, a223

pair {ωi, σωi} is obtained from the first PC, and sub-videos for which σωi/ωi > 15% are discarded224

assuming that the recovered ωi is not good enough. Third, for each time window k is obtained from225

the first EOF using the phase fitting method. Since the recovery of k might be unfeasible at some226

points, those points where the correlation coefficient of the fitted αx are below 0.70 are filtered out227

as well. Finally, in a fourth step and following [12], the bathymetry at each point is the result of the228

best fit of the dispersion relationship (12) using all the pairs {ωi, ki} obtained in a neighborhood R′x of229

the point (R′x = 0 meaning that only the values at the point are considered). This extension will be230
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Figure 4. Evolution of the RMS error in h as a function of tmax for the monochromatic case using phase
fitting (without windowing).

referred to as windowing method. The last row in Figure 3 shows, for the same examples, the results231

of the windowing method with wt = 40 s and R′x = 0. While the reflective case cannot be recovered,232

as expected, it is seen how the recovered bathymetry fits the exact one in the monochromatic and233

bi-chromatic cases.234

The oscillations, and related errors, observed using the phase fitting method can also be reduced235

by increasing the total time of the video (for non-reflective cases only). Following the above example,236

Figure 4 shows the evolution of the root mean square error of the obtained bathymetry, ERMS
h , as a237

function of time tmax using phase fitting (without windowing) for the monochromatic case. As a238

general trend, the error (from the oscillatory pattern in h) reduces as tmax increases. The oscillatory239

behavior in Figure 4 is related to the time domain adjusting (or not) to a multiple of the wave period.240

For tmax = 300 s the error is below 5.5 cm. In Figure 3, corresponding to tmax = 100 s, the errors ERMS
h241

for the monochromatic case are 10.5 cm (phase fitting), 4.3 cm (function fitting) and 2.8 cm (phase242

fitting + windowing).243

3. Results244

The proposed methodology introduces parameters such as the resolution of the spatio-temporal245

discretization (∆t and ∆x), the radius (Rt and Rx) of the neighborhoods to recover the wave frequency246

and the wavenumber from the PCs and EOFs, the video duration (tmax, assuming that the video starts247

at t = 0), or the parameters defining the windowing (wt and R′x). The influence of these parameters248

is studied using synthetic linear and nonlinear 2D wave fields. Linear wave propagation equations249

assume that the wave height is infinitesimally small and, for alongshore uniform bathymetries, simple250

analytical solutions can be computed. The synthetic linear wave fields will be used to analyze the251

influence of ∆t, ∆x, Rt and Rx. These linear solutions, however, dismiss wave reflections at the shore,252

and are unable to represent other important features of real wave fields such as wave decomposition253

(energy transfer from one frequency to other) or wave-wave interactions. For this reason, realistic254

non-linear numerical models are also used to examine other phenomena: propagation over complex255

bathymetries, generation of subharmonics and wave reflection. The synthetic nonlinear 2D wave fields256

will also allow to investigate the influence of tmax and wt (time windowing).257

3.1. Analysis for synthetic linear waves: phase fitting258

Three monochromatic wave trains (W1, W2 and W3, Table 3), and their superposition (WS = W1+259

W2 + W3), are propagated over an alongshore uniform bathymetry (Figure 5, left). This bathymetry260

corresponds to a beach profile with a shore-parallel bar located 80 m from the shore. Wave conditions261

are meant to provide different wave periods in a realistic range and different propagation directions to262

check whether the obtained bathymetry is mainly independent of the wave characteristics. Notice that,263
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Figure 5. Bathymetries (in meters) for the analysis of linear waves (left) and nonlinear waves (right).
The white strip next to the shore highlights h = 0.75 m.

wave train T [s] A [cm] θ [◦] ϕ [◦]

W1 7.945 10.0 −16.588 39.0
W2 12.00 6.0 +0.0 0.0
W3 5.022 2.0 +26.079 108.7

Table 3. Wave conditions in the seaward boundary for the analysis of synthetic 2D cases. For each
wave train, T is the period, A is the wave amplitude in deep waters, θ is the angle with respect to the
shore-normal in deep waters and ϕ is a phase lag.

since linear wave theory assumes infinitesimal amplitudes, in this section the amplitudes of Table 3264

are only to show the influence of the relative strength of the different wave trains in the WS case.265

Knowing the wave conditions in the seaward boundary (Table 3), the waves are propagated266

towards the coast using the linear wave theory [35]. The initial snapshots for W1, W2, W3 and WS are267

shown in Figure 6. In all cases, the spatial domain is 200 m× 300 m (in the alongshore and cross-shore268

directions, respectively) and the time domain is of 90 s. The video snapshots, Xmn, are obtained by269

assigning to each pixel an intensity that is a linear function of the free surface elevation.270

In this section 3.1, only the phase fitting method is applied. Within this Section 3.1, windowing is271

not considered so as to focus on the influence of ∆t, ∆x, Rt and Rx. The influence of the spatio-temporal272

discretization (∆t and ∆x = ∆y) of the signal is analyzed considering all combinations of ∆x = ∆y in273

W1 W2 W3 WS

Figure 6. Initial snapshots for linear synthetic wave trains W1, W2 and W3 and their superposition
WS. Spatial domain is 200 m× 300 m (in the alongshore and cross-shore directions, respectively) and
pixel intensity is a linear function of the modelled free surface elevation.
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Figure 7. Angles αt and αx of the first PC and EOF corresponding to linear propagation of W1 for
∆t = 0.5 s and ∆x = 4 m. The explained variance is above 99 %.

∆t [s]

Rt [s] 0.25 0.50 1.0 2.0

0.5 −0.066 −0.049 — —
1.0 −0.101 −0.092 −0.051 —
2.0 −0.105 −0.105 −0.095 0.024
4.0 −24.7 −48.4 −72.7 −55.4

Table 4. Relative errors for ω, εω (in %), as a function of ∆t and Rt for ∆x = 2 m, corresponding to
linear propagation of W1.

{1 m, 2 m, 4 m, 10 m} and ∆t in {0.25 s, 0.5 s, 1 s, 2 s, 4 s}. A major result of the PCA for monochromatic274

waves is to obtain one main mode that explains, in all cases, more than 98% of the total variance of the275

signal and that matches the corresponding wave train. The results found for the three monochromatic276

wave trains are qualitatively similar and the focus hereafter is on W1. For illustrative purposes, Figure 7277

shows an example of the angles αt and αx, capturing the refraction of the propagation as the wave278

train travels to the shore (compare αx with W1 in Figure 6). For ∆t = 4 s the PCA decomposition yields279

useless results for any ∆x and hereafter results with ∆t = 4 s have been disregarded.280

The wave frequency from the PC has been computed for all the combinations of ∆t and ∆x and281

for different values of Rt in {0.5 s, 1.0 s, 2.0 s, 4.0 s}. The relative errors of the recovered ω, εω, for W1282

are shown in Table 4 for ∆x = 2 m. It turns out that results are independent of ∆x. The case Rt = 4 s,283

giving large errors, is not considered in the following. The wavenumber k from the EOFs has been284

computed for the 2D-spatial domain using values of Rx in {2 m, 4 m, 8 m, 12 m, 16 m} and the different285

combinations of ∆x and ∆t. Figure 8 (top panels) shows an example of the recovered k as well as the286

local relative error, εk, obtained from the first (and only) EOF of the wave train W1. As depicted in287

the figure, εk is below ∼ 1%. The global relative RMSE, εRMS
k , obtained for the full set of exploration288

results is shown in Table 5 for the domain restricted to depths h > 0.75 m (see also Figure 5 where289

h = 0.75 m is highlighted). As occurred with ∆x in the frequency recovery, the influence of ∆t is minor290

when computing k (only ∆t = 0.5 s is shown in Table 5).291

Once ω and k are obtained from the only PCA mode of each monochromatic wave train, the292

corresponding bathymetry can be derived. Figure 8 (bottom panels) shows the bathymetry and the293

error obtained from the same case above. The inversion produces small errors, the largest errors being294

located in the shallower area. As in the 1D example, very small oscillations appear manifestly in k and295

especially in h. A summary of the results from the PCA for each monochromatic wave train and the296

corresponding global relative errors in ω, k and h is presented in Table 6 (upper half) for W1, W2 and297

W3. The errors in k and h are significantly larger for W3, which corresponds to the wave field with the298

smallest period.299
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Figure 8. Recovered k (top, left) and h (bottom, left) and the corresponding local relative errors, εk
and εh (right panels, in %), obtained using the phase fitting method for the first EOF corresponding to
linear propagation of W1 and for ∆t = 0.5 s, ∆x = 2 m, Rt = 1 s and Rx = 8 m.

∆x [m]

Rx [m] 1 2 4 10

2 0.583 0.578 — —
4 0.542 0.530 0.508 —
8 0.466 0.468 0.487 —
12 1.279 1.002 4.579 0.741
16 5.534 5.453 6.091 0.732

Table 5. Relative RMSE for k, εRMS
k (in %), for h > 0.75 m, as a function of ∆x and Rx for ∆t = 0.5 s

and Rt = 1.0 s, corresponding to linear propagation of W1.

mode σ2 [%] T [s] εω [%] εRMS
k [%] εRMS

h [%]

1 99.2 7.952 [W1] −0.092 0.468 1.083
monochromatic 1 98.7 11.993 [W2] 0.062 0.526 1.085

1 99.9 5.022 [W3] −0.003 4.232 18.572

1 71.0 7.955 [W1] −0.122 1.432 3.182
polychromatic 2 25.3 11.949 [W2] 0.423 2.703 5.826

3 2.9 5.028 [W3] −0.124 6.665 27.554

Table 6. Summary of the results of the PCA obtained using phase fitting (without windowing) for
linear wave propagation and ∆t = 0.5 s, ∆x = 2.0 m, Rt = 1.0 s, Rx = 8 m. Relative RMS errors, εRMS

k
and εRMS

h , are given for h > 0.75 m. Next to the retrieved period, the corresponding wave field is
indicated.



Version 14 November 2019 submitted to Remote Sens. 13 of 24

Figure 9. Phase fitting without windowing of the linear polychromatic wave field WS for ∆t = 0.5 s,
∆x = 2 m, Rt = 1 s, Rx = 8 m. From top to bottom: αx and εh.

The PCA of the linear polychromatic wave field (WS in Figure 6) has been performed only for300

the default values ∆t = 0.5 s, ∆x = 2.0 m, Rt = 1.0 s and Rx = 8 m, so as to explore the ability of the301

method to identify the different wave components and to infer the bathymetry from each one of them.302

In this case three main modes are obtained, see Table 6 (lower half), that accumulate a 99.2 % of the303

variance. The periods of each of these modes coincide with those of the corresponding constitutive304

linear waves. Further, the variance of each of them corresponds to the one predicted by equation (6)305

from each of the amplitudes (which are 71.1 %, 25.7 % and 2.8 %). The angle αx of these three modes306

(Figure 9, upper panels), reproduce well each respective linear wave train. A summary of the errors in307

k and h is included in Table 6 (lower half). The errors in k and h increase with the mode number and,308

again, the largest errors in h occur for the third mode, which corresponds to the smallest period (W3).309

However, the bathymetry can be successfully retrieved from the first mode, with a relative error of310

only 3 %.311

3.2. Analysis for synthetic nonlinear waves: function fitting and windowing312

Nonlinear wave propagation over a nonuniform bathymetry has also been analyzed. The goal is313

to test the capability of the new bathymetry inversion method under more challenging conditions and314

o gain a better understanding of function fitting and windowing methods. The proposed bathymetry315

is based on the one for linear waves, but with the addition of three sand banks: two in the region316

of the bar, simulating a crescentic bar, and another one near the shore, simulating a transverse bar317

(Figure 5, right). Nonlinear waves are modelled with the fully nonlinear Boussinesq-type model318

FUNWAVE [36] (see Appendix A for details). Unlike in the linear propagation model used above,319

wave reflection is allowed to happen in FUNWAVE. Only two wave fields are considered in this320

section: W1 (monochromatic) and WS (polychromatic). The influence of the wave height is analyzed321

through three multiplying factors for the wave amplitudes in Table 3 (which now represents the322

real wave amplitudes). The three multiplying factors are F = 1.0 as reference case, F = 0.25 for323
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factor F mode σ2 [%] T [s]

0.25 1 98.7 7.953 [W1]

1.0 1 94.6 7.948 [W1]
2 3.9 3.961 [ — ]

2.5
1 87.6 7.955 [W1]
2 8.4 3.958 [ — ]
3 2.0 2.637 [ — ]

Table 7. Results of the PCA obtained for nonlinear wave propagation of the monochromatic W1 case
with different F factors. Next to the retrieved period, the corresponding wave field is indicated (when
applicable).

W1 WS

Figure 10. Initial snapshots for synthetic nonlinear wave trains W1 and WS for F = 2.5. Spatial domain
is 200 m× 300 m (in the alongshore and cross-shore directions, respectively) and pixel intensity is a
linear function of the modelled free surface elevation.

smaller nonlinearities (i.e., wave amplitudes A1 = 2.5 cm, A2 = 1.5 cm and A3 = 0.5 cm), and F = 2.5324

(A1 = 25.0 cm, A2 = 15.0 cm and A3 = 5.0 cm). Figure 10 shows snapshots of the wave fields. In the325

forthcoming analysis, ∆t = 0.532 s, ∆x = 2.0 m, Rt = 1.1 s and Rx = 8 m.326

The computations for the first wave field case, W1, are presented to show how the nonlinear327

nature of the waves is revealed in the PCA and the corresponding EOFs (Table 7). The first mode328

for F = 2.5 corresponds to the wave field W1 (period T ≈ 7.95 s), the second one has half the period329

and reflects the nonlinear transfer of the dominant wave field W1 into its first harmonic (of twice the330

frequency of the main one). Further on this, the third EOF has a period which is 1/3 of that of the331

dominant wave field. As wave amplitudes decrease, contributions to higher harmonics are reduced332

and for F = 0.25 this nonlinear transfer is so small that only one EOF is obtained.333

For the polychromatic wave field, WS, the complete analysis is performed and the results obtained334

using phase and function fitting are summarized in Table 8. For F = 0.25, the three modes retrieve335

the three wave fields W1, W2 and W3 (compare the periods in Table 8 with the ones in Table 3). For336

F = 1.0 and F = 2.5 the modes retrieve only W1 and W2. The first mode provides better results in337

all cases and function fitting method improves the results for F = 0.25 and F = 1.0. The upper half338

of Figure 11 shows, for F = 1.0, how the first two modes correspond to the first two components of339

the wave field (W1 and W2) while the third one seems to mix characteristics from a harmonic of W1340

with W3 (given that T1/2 ≈ T3). Figure 11 also includes the bathymetry obtained using phase fitting.341

Again, as in the linear case, the bathymetries retrieved by modes 2 and 3 have larger errors than that342

corresponding to mode 1, and thereby only the first mode will be considered for windowing.343

The results obtained by windowing the polychromatic case WS are shown in Table 9. The three344

multiplying factors F, two video lengths (tmax = 90 s, as above, and tmax = 150 s) and five different345

values of wt are considered. The number of sub-videos, that is a function of tmax and wt for given346

∆t, are included in Table 9 in parentheses. The results have been obtained for R′x = Rx = 8 m, thus347
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εRMS
h [%]

factor F mode σ2 [%] T [s] p f

1 58.6 7.954 [W1] 19.0 10.1
0.25 2 36.2 11.882 [W2] 54.5 23.4

3 3.1 5.023 [W3] 24.8 10.7

1 52.5 7.951 [W1] 13.5 11.7
1.0 2 34.2 11.870 [W2] 37.1 25.2

3 4.2 4.779 [ — ] — —

1 45.4 7.964 [W1] 30.3 31.7
2.5 2 31.6 11.849 [W2] 36.4 39.0

3 6.9 4.788 [ — ] — —

Table 8. Summary of the results for nonlinear wave propagation of the polychromatic WS case with
different F factors. Relative RMSE, εRMS

h , are given for h > 0.75 m. Here, “p” and “ f ” stand for phase
and function fitting of the wavenumber. Next to the retrieved period, the corresponding wave field is
indicated (when applicable).

introducing some spatial filtering. The results for R′x = 0 have larger errors (∼ 50% higher, not shown).348

Applying windowing method improves the results of phase fitting method (for certain optimal values349

of wt) and the obtained relative RMSE in h can remain below 15 % for the three values of F.350

As an example, Figure 12 shows, for the three inversion methods, the relative errors, εh, obtained351

for F = 1.0, tmax = 150 s (and using wt = 60 s for windowing). In this case, both function fitting and352

windowing improve the result of phase fitting in all the domain. However, as in the 1D example,353

function fitting method shows, at some points, peaks due to an optimization failing.354

εRMS
h [%]

windowing, wt [s]

tmax F p f 30 40 60 80 90

(112) (94) (56) (18) (1)
0.25 19.0 10.1 28.0 13.1 13.6 16.2 19.0

90 s 1.00 13.5 11.7 28.1 10.3 10.8 14.1 13.5
2.50 30.3 31.7 86.1 91.0 83.8 30.8 30.3

(225) (207) (169) (131) (113)
0.25 18.4 8.2 24.8 11.6 12.0 11.9 11.0

150 s 1.00 13.0 10.1 24.2 8.2 8.8 8.6 7.0
2.50 27.5 26.5 99.1 52.5 43.2 30.9 15.1

Table 9. Results for the first mode for nonlinear wave propagation of the polychromatic WS case with
different F factors, total video length tmax, and window width wt. Relative RMSE, εRMS

h , are given for
h > 0.75 m. Here, “p” and “f ” stand for results using phase and function fitting for tmax, respectively.
The number of sub-videos are included in parentheses.

4. Discussion355

4.1. Error sources356

As already seen in the 1D linear example (Figure 3 monochromatic and bi-chromatic cases), while357

the errors in k are similar both in deep and shallow waters (they are almost negligible in the first mode),358

the errors in h are much larger in the deeper region. This is a consequence of how the errors, both in ω359

and in k, propagate to the inverted water depth. Recalling the dispersion relationship, we can write360

| εh | 6 | δωεω |+ | δkεk | ,
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Figure 11. Results for αx (top) and εh (bottom) obtained with the phase fitting method without
windowing from the nonlinear polychromatic wave field WS with F = 1.0 for ∆t = 0.532 s, ∆x = 2 m,
Rt = 1.1 s, Rx = 8 m and tmax = 90 s.

Figure 12. Results for εh obtained with phase fitting, function fitting and windowing (with wt = 60 s)
from the first mode for the nonlinear polychromatic wave field WS with F = 1.0, ∆t = 0.532 s, ∆x = 2 m,
Rt = 1.1 s, Rx = 8 m and tmax = 150 s.
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Figure 13. Propagation of the errors in k and ω to water depth h when using the dispersion relation.

for the relative errors εh, εω and εk, with361

δω =
ω

h
dh
dω

=
2γ

(1− γ2) atanh(γ)
, δk =

k
h

dh
dk

=
1
2

δω + 1 .

Here, γ = ω2/gk. Figure 13 shows δk and δω as functions of γ. This figure is similar to that by [11]362

for δk, but here including δω. For γ & 0.8 (which is equivalent to kh & 1.10 or ω2h/g & 0.88), the363

propagation errors are large and increase rapidly. The physical reason is that waves do not feel the364

bottom if water depth is much larger than their wavelength.365

Note that the number γ increases both if the water depth increases or the wave period diminishes.366

A critical analysis of the results in the view of the values of γ is crucial. In the 1D linear example shown367

in Section 2.4, γ goes from 0.53 in the shallow area to 0.93 in the deeper area, with the corresponding368

observed amplification of the errors in h (Figure 3). In the 2D examples, the bathymetry retrieved from369

W3 gives the largest errors (e.g., Table 6) because the period is the smallest (T = 5.0 s) and γ & 0.8 for370

h & 5.5 m, i.e., inside the studied domain (for W1, T = 7.95 s, so that γ & 0.8 for h & 13.5 m, outside371

the studied domain).372

4.2. Sensitivity to ∆t, ∆x, Rt and Rx373

The influence of the spatio-temporal discretization of the signal has been analyzed through the374

linear propagation of W1. One major result of the PCA for monochromatic waves is to obtain one main375

mode that explains more than 98%. The error of the wave frequency, εω , depends mainly on ∆t and Rt376

(not on ∆x). The radius Rt (that has to be > ∆t) is required to be smaller than T/2 (Table 4) to avoid377

the jumps of α̂t, i.e., it has to hold ∆t 6 Rt < T/2. Once this condition is satisfied, the errors in ω are378

small in all cases. Similarly, for the recovery of k through phase fitting ∆t plays a minor role and the379

condition ∆x 6 Rx < L/2 must hold, where L is the wavelength (which will depend on h for a given380

ω). In this case, the error εRMS
k reduces as ∆x and Rx reduce (Table 5), getting stable for ∆x 6 4 m and381

Rx 6 8 m (the wavelength in that case ranged from ∼ 20 m to ∼ 65 m).382

4.3. Sensitivity to the inversion method, tmax and wt383

While phase fitting is the only alternative proposed for the recovery of ω from PCs, three different384

approaches are considered to recover k from the EOFs: phase fitting, function fitting and windowing.385

Windowing for k relies on phase fitting, applying windowing on function fitting has been disregarded386

due to the high computational cost.387

Function fitting turns out to be the best choice whenever wave reflection is not negligible or there388

are two wave fields with the same frequency (e.g., Figure 3, function fitting panels). Windowing is389

able, in general, to reduce the oscillatory patterns of phase fitting, but it does not work for cases with390

non negligible reflection (e.g., Figure 3, windowing panels). Regarding the more realistic nonlinear 2D391

wave fields, windowing with a convenient wt can reduce the errors compared to both phase fitting392

(p) and even function fitting ( f ) for F in {1.0, 2.5} (Table 9). For F = 0.25 windowing can improve393
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Figure 14. Propagation of the errors εh in the bathymetry inversion for three time windows.

the phase fitting results (likely removing part of the oscillatory patterns), but not those of function394

fitting. Actually, wave reflection, though small, is not negligible for F = 0.25. In that case there is little395

wave breaking, less energy dissipation and, therefore, more wave reflection. Wave reflections are in396

general small in dissipative beaches, but may play a role in reflective beaches (e.g., beaches with large397

slopes or short waves) or in areas with structures such as harbours. Whenever wave reflection is not398

negligible, function fitting should be considered.399

Figure 14 shows how windowing mitigates oscillatory patterns. The figure shows the relative400

errors of h recovered from three different sub-videos. The oscillatory pattern of the error propagates401

similar to the own wave field component. Therefore, provided that there are sufficient sub-videos,402

the errors are compensated to some extent in the averaging process. The more sub-videos there are403

available, the better the windowing will filter the oscillatory pattern, as long as the quality of the ω and404

h recovered from each sub-video are sufficiently good. This fact can be seen in the Table 9 (especially for405

F = 1.0). For small values of wt the error is greater than that obtained for the analysis of the complete406

video (tmax duration), however as wt increases the error diminishes. For excessively large values of wt407

the error rises again as the number of sub-videos is reduced. The dependency on wt becomes stronger408

for increasing F (more nonlinear waves).409

4.4. Field data410

The present methodology has finally been applied to a video from a real field site in which waves411

are not only nonlinear but also affected by noise. The results have been compared to those obtained412

from cBathy. The cBathy code and the wave video snaps for test have been obtained from the GitHub413

distribution [37], managed by the Coastal Imaging Research Network. The cBathy code and images414

used (October 22, 2011 at 15h in Duck, NC) are part of the study presented by [12]. The video consists415

of 2048 snaps at 2 Hz. The spatial domain of the video covers a region of 1000 m× 500 m with an416

irregular mesh of 8576 points (the spatial mesh not being regular does not make a difference for the417

present approach). The dominant wave period is around T ∼ 15 s, the wavelengths are around 100 m,418

and wave breaking was present in some regions of the domain (lower left part). The ground truth419

was obtained through a Coastal Research Amphibious Buggy (CRAB) on October 19, 2011, and the420

results are known in a regular mesh (Figure 15), so that all the results from the video analysis were421

interpolated to the CRAB mesh for comparison purposes. The reader is referred to the work by [12] for422

further details on the data set.423

The video, of around 16 minutes, has been analyzed using the windowing method with wt = 80 s424

(i.e., around 5 periods). The results without windowing were unsatisfactory (not shown). For each425

sub-video only the dominant mode is considered. Also, Rt = 1.5 s (for frequency recovery) and, given426

the long wavelengths, R′x = Rx = 30 m (for wavenumber recovery). Regarding cBathy, the code is427
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cBathy uBathy

percentage of points 60 % 84 %
average error (bias) −0.50 m −0.27 m

RMS error 1.38 m 1.29 m

Table 10. Summary of the results for the field site video analysis.

Figure 15. On top (bottom) results from cBathy (uBathy). From left to right: measured bathymetry
with the CRAB, inferred bathymetry, error of the inferred bathymetry (in m), and histogram of the
errors for the pixels.

applied without modifying any parameter and the Kalman filter is not used (since we consider only428

one video). The results obtained both from cBathy and the new methodology (“uBathy”) are shown in429

Figure 15, together with the ground truth bathymetry provided by the “CRAB” (the plot is doubled for430

ease). In regions with observed wave breaking, where the dispersion relation is not applicable, the431

errors increase with both methodologies. As shown in Table 10, uBathy improves the results obtained432

with cBathy. It not only recovers a higher amount of points (40 % more) but also provides smaller433

average error (bias) and RMSE. This proves that the new proposed methodology is also valid to handle434

the noisy wave conditions occurring in real beaches. The computational times to analyse the video435

with “cBathy” and “uBathy” were of the same order of magnitude.436

4.5. Future work437

Several known issues require further analysis or remain still open. Such issues will be investigated438

in the future by applying systematically the present approach to real field site videos. First, the439

wavelength depends on h and, therefore the values of Rx (and R′x) could be a function of a previous440

estimate (if available) of the bathymetry. Second, when using real videos there will be the possibility441

that some regions of the wave field are particularly noisy at given time intervals (e.g., due to passing442

of moving objects). This suggests the extension of the (time) windowing scheme proposed above to a443

space-time windowing scheme. Third, the window width wt can be chosen as a function of the wave444

period T (namely, wt ∝ T). The exact length of each sub-video is relevant for the quality of its result,445

according to Figure 4 (in that figure, tmax plays the role of wt, since there is just one video). By properly446
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choosing the windows width the errors could probably be reduced. Fourth, when dealing with a series447

of hourly videos, following [15], a Kalman filter should be used.448

Finally, for real field site wave conditions, it is recommendable to retrieve the bathymetry for449

adequate conditions: monochromatic waves of small height (ideally), with an adequate wave period450

for the desired depths to be measured. In case of macro-tidal conditions, the method can be applied451

both in high tide (to obtain the bathymetry of the shallower area) and in low tide (to obtain the deeper452

area bathymetry). In dissipative beaches, where wave reflection is minor, the method using phase453

fitting with windowing should provide better results, whilst in reflective beaches, function fitting454

method should be applied.455

5. Conclusions456

A new methodology to retrieve the bathymetry out of wave propagation recorded by coastal457

video monitoring systems has been presented. It is based on Principal Component Analysis (PCA) of458

the Hilbert transform of video images. The method is first tested and validated with synthetic wave459

fields over known bathymetries. A first set of examples of wave fields are obtained with linear wave460

theory, which describes the propagation of waves of infinitesimal height over an alongshore uniform461

bathymetry. To generate more realistic conditions, a fully nonlinear Boussinesq-type model is also462

applied to propagate finite-amplitude waves over a more complex alongshore variable bathymetry.463

Finally, a field site video is also used to test the method under real wave conditions. A major result of464

the present contribution is that PCA successfully provides a decomposition of the videos into a set465

of modes associated to the different components of the wave propagation field, even when waves466

have large amplitudes (i.e., large nonlinearities). In the latter case, the PCA also allows to isolate the467

subharmonic components.468

The frequency (ω) of the wave trains are obtained by phase fitting the angles of the PCs, which469

successfully works in all the studied conditions. Three different approaches have been developed470

to obtain the wavenumber (k). Performing a phase fitting of the angles of the Empirical Orthogonal471

Functions (EOFs) can only resolve well the linear wave cases but it fails under more realistic conditions.472

Making a function fitting of the angles of the EOFs, enables to accurately obtain the wavenumbers in473

most of the tested conditions and it can even identify incident and reflected constituents, but it has a474

high computational cost. Applying a time windowing to the phase-fitting method greatly improves the475

results and provides accurate values of the bathymetry for all tested cases, being much more efficient476

computationally, but it fails when there are reflected waves. The latter is the recommended method to477

use in dissipative beaches but in sites with significant wave reflection the function fitting method is478

the only valid approach.479

Once ω and k are obtained, the local water depth is successfully estimated by inverting the wave480

dispersion relation (for water depths 0.75 m 6 h 6 8.0 m), after establishing the optimal values for481

all the parameters. When the methodology is applied to a field of monochromatic or polychromatic482

linear waves on the alongshore-uniform bathymetry, relative errors in h do not exceed 3.5 % (using483

the phase-fitting method for k). For the more realistic case of polychromatic nonlinear waves over a484

complex bathymetry, the relative root-mean-square errors in h are around 15 % (using the windowing485

method for k). An application to a real video obtained in a field site confirms the capability of the486

present methodology to handle realistic wave conditions. Compared to a state-of-the-art bathymetry487

extraction code, the present new approach recovers a 40 % larger amount of points and the overall488

error is smaller.489
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Figure A1. Domain used in the FUNWAVE simulations, where the study region is called video zone.
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CRAB Coastal Research Amphibious Buggy
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EOF Empirical Orthogonal Function
PC Principal Component
RMSE Root Mean Square Error

502

Appendix A. Nonlinear wave field generation503

To model nonlinear waves, FUNWAVE-TVD [36] has been used, which simulates wave504

propagation over a rectangular domain employing a set of fully-nonlinear Boussinesq equations.505

The wave forcing input is modelled by a source term in the equations (the wavemaker), localized in506

some internal region of the domain. It needs to be placed over a constant depth, and must have a507

thickness comparable to the wavelengths present in the domain (usually > 0.25 wavelengths). The508

wavemaker used is called WK_DATA2D and adds up monochromatic waves of frequency, orientation509

and amplitude specified by the user. The source code has been modified to also accept the phases of the510

monochromatic waves (originally, it used random ones). The coastal and the offshore boundaries are511

modelled with sponges followed by reflective walls. Direct sponges have been used, which attenuate512

the value of variables over the sponged cells. The values used for the parameters verify that the sponge513

thickness is of the order of the wavelength and that most of wave energy is absorbed. In the laterals,514

periodic boundary conditions are implemented.515
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The bathymetry shown in Figure 5 (right panel) is implemented here in the so-called video zone,516

which has dimensions of 200 m× 300 m (alongshore and cross-shore, respectively) as in the linear517

wave case. However, the FUNWAVE domain has been extended to fit the wavemaker and the sponges518

(Figure A1). Instead of the original seaward depth limit of 7.3 m, the profile is extended up to 8 m depth,519

and then becomes constant. For the frequencies used, this depth results in a maximum wavelength520

of about 100 m. Therefore, the thickness of the wavemaker is 25 m, and that of the sponges is 100 m.521

The extension in the offshore boundary is of 250 m to fit the wavemaker, the sponge and separation522

spaces for safety. A coastal extension of 122 m that includes a sponge is also implemented. In order523

to limit reflection and to avoid breaking the bathymetry is clipped to 0.3 m there. However, some524

wave reflection still occurs, although the reflected wave has a tiny amplitude. In the laterals, a space525

of 140 m at each side is used to minimize potential influences of the periodic boundary conditions526

into the domain (Figure A1). The grid size is of 1 m both in cross-shore and in alongshore directions.527

The first 200 s are the warm-up time and the subsequent 150 s become the videos used for bathymetry528

inversion.529
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