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Practical Resolution Methods for MDPs in Robotics
Exemplified with Disassembly Planning
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Abstract—In this paper we focus on finding practical resolution
methods for Markov Decision Processes (MDPs) in robotics.
Some of the main difficulties of applying MDPs to real-world
robotics problems are: (1) having to deal with huge state spaces;
and (2) designing a method that is robust enough to dead
ends. These complications restrict or make more difficult the
application of methods such as Value Iteration, Policy Iteration
or Labeled Real Time Dynamic Programming (LRTDP). We see
in determinization and heuristic search a way to successfully
work around these problems. In addition, we believe that many
practical use cases offer the opportunity to identify hierarchies
of subtasks and solve smaller, simplified problems. We propose
a decision-making unit that operates in a probabilistic planning
setting through Stochastic Shortest Path Problems (SSPPs), which
generalize the most common types of MDPs. Our decision-
making unit combines: (1) automatic hierarchical organization
of subtasks; and (2) on-line resolution via determinization. We
argue that several applications of planning benefit from these
two strategies. We exemplify our approach with a robotized
disassembly application. The disassembly problem is modeled in
Probabilistic Planning Definition Language (PPDDL), and serves
to define our experiments. Our results show many advantages
of our method over LRTDP, like a better capability to handle
problems with large state spaces and state definitions that change
when new fluents are discovered.

Index Terms—Planning, Scheduling and Coordination; Hybrid
Logical/Dynamical Planning and Verification; Task Planning

I. INTRODUCTION

NEW versatile industrial robot need to operate in less and
less structured environments. We would like to enable

robots to tackle problems in a more flexible manner, using
declarative models with little to no control knowledge.

In this paper we are concerned with planning in environ-
ments that exhibit uncertainty in the form of probabilistic
effects. The dynamics of these environments can be captured
thanks to the Markov Decision Process (MDP) formalism,
which is of particular interest in robotics. However, many
techniques for solving MDPs, like Value Iteration and Pol-
icy Iteration, struggle against the large size of the state
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spaces present in practical applications. More sophisticated
techniques, like Labeled Real Time Dynamic Programming
(LRTDP), address the large number of states up to a certain
extend, but can be compromised in the presence of dead
ends. We argue that: (1) on-line resolution of MDPs via
determinization has still many practical advantages nowadays,
and can be used to effectively circumvent these issues through
heuristic search; and (2) many real-life problems offer the
opportunity to bound the complexity of the planning task by
identifying smaller subtasks and reducing the size of the state.

We will resort to a specific application to exemplify these
points: the automatic disassembly of electromechanical de-
vices. We pose the problem as follows: a robotic arm has to
retrieve the most valuable and/or hazardous components from
a device presented in front of it. MDPs offer a principled
way of handling outcome uncertainty and are a suitable
and (until now) overlooked framework for this application.
We are targeting a large range of devices, so we consider
generic actions and a not completely controlled environment.
Actions may have undesirable outcomes that deviate from their
intended effect. Under these requirements, it is not practical
to develop a fixed disassembly script, and modeling and
solving the problem as an MDP becomes more appealing. This
domain offers a clear hierarchy of subtasks: components have
precedence relations among them. In addition, the application
has beneficial implications for sustainability. We believe that
these reasons make the problem well-suited to be solved
through probabilistic planning methods and interesting from
an environmental and social perspective. We have developed
a decision-making unit that combines determinization with
subtask selection thinking of this particular domain.

The rest of this paper is structured as follows: Section II
reviews previous literature related to determinization, task hi-
erarchization and planning disassembly sequences; Section III
describes our decision making unit, including the hierarchiza-
tion and the determinization strategies; Section IV discusses
the experimentation process and provides some quantitative
and qualitative results; and Section V wraps up and gives some
future work ideas.

II. RELATED WORK

Kaelbling and Lozano-Pérez’s contribution [1] combines
Hierarchical Planning in the Now with both world and
state uncertainty. Similarly to us, they pose an Stochastic
Shortest Path Problem (SSPP) that is later determinized and
solved classically. From them we have borrowed the α-Cost-
Transition-Likelihood (ACTL) determinization.
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Perhaps one of the most well-known successes in deter-
minization techniques is FF-Replan [2], unofficial winner of
the International Probabilistic Planning Competition (IPPC)
in 2004 and 2006, and is often used as a baseline for new and
improved techniques. Later, FF-Hindsight [3], [4] and Robust-
FF [5] appeared, and were able to cope well with Littman
et al.’s probabilistic interesting problems [6], specifically
designed to beat replanners. We can see that stochastic domain
determinization receives a lot of attention nowadays. For
instance: hindsight optimization is an active research topic [7],
[8], and the work of Kolobov et al. [9] is heavily influenced
by determinization. This suggests that determinization-based
probabilistic planning is still worth exploring nowadays.

LRTDP and UCT are two of the most successful algorithms
employed to deal with MDPs in an on-line fashion, and are im-
plemented respectively by G-Pack [10], [11] and PROST [12],
the top performing planners of the latest IPPCs. As a baseline
for this paper, we will use an earlier implementation of LRTDP
by Bonet and Geffner [13].

In our previous work [14] we have also studied the benefits
of hierarchical organization of subtasks. Doing this we seek
to bound the complexity of planning and avoid expensive re-
planning in the event of undesired outcomes.

A relatively recent advance in automatic disassembly is
Liam [15], a robot by Apple Inc. aimed at disassembling
iPhone 6 devices. We can find more automatic or semi-
automatic disassembly systems, like: a robot for assisting in re-
cycling batteries [16]; Bdiwi et al.’s workstation for cars [17];
and, less recently, Scholz-Reiter et al.’s disassembly cell [18].
These contributions are meant to excel in a very specific
task, at the cost of limiting their application to controlled
environments. Others have tackled the problem of automatic
disassembly from a lower level perspective, like Zhang et
al. [19], who seek to find disassembly motions for retrieving
components that are closely coupled.

A more general disassembly approach is given by Puente
et al. [20], [21]. Their device representation and precedence
management are similar to ours. Hui et al’s contribution [22]
is also very interesting in this regard. They apply genetic
algorithms to extract good disassembly sequences from fea-
sibility graphs. However, these researchers do not take into
account uncertainty in a explicit way, nor do they consider
preparatory actions like switching tools or rotating the device.
On the other hand, the work of Alshibli et al. [23] is interesting
because it seeks to address state uncertainty. Even so, they do
not consider neither actions with multiple outcomes nor the
possibility of reaching dead ends.

To the best of our knowledge, MDPs have not been applied
to automatic device disassembly.

III. PROPOSED METHODOLOGY FOR PLANNING
DISASSEMBLY SEQUENCES

We model the disassembly domain as an SSPP, a class of
MDP that is more general than Infinite Horizon Discounted
Reward MDPs and Finite Horizon MDPs [24]. In SSPPs,
rewards are reformulated as costs, there is no discount factor
(λ = 1), and there is at least one absorbing (goal) state. For

the purpose of this paper, we focus entirely on the planning
problem. That is: we assume that the information about the
current state of the device and the robot is extracted from the
sensors and processed into a convenient form.

The SSPP is specified in PPDDL (Probabilistic PDDL [25]),
a probabilistic extension of PDDL (Planning Domain Defini-
tion Language [26]). The devices are described in terms of
their components and the relationships among them. We have
aimed at crafting a domain that is general enough to fit a wide
range of devices. In order to do this, we use object types and
predicates that are not specific to a particular type of product.
More details on these are given in Section III-A.

We only have access to the information that can be inferred
from sensors. That is, total occlusions prevent the robot
from knowing the whole configuration of the device. Partial
occlusions are also interesting, because they give an idea of
the precedence relationships between componennts. For the
purpose of this paper, we focus on high-level planning and
assume that the information about the environment comes from
perception routines that are capable of computing facts such
as the object types and partial occlusions.

We propose a decision-making unit that combines deter-
minization with subtask selection. First, we will give more
details on the disassembly domain that we have designed.
Then, we will describe our decision unit’s architecture. Next,
we explain how subtasks are identified and isolated in a
hierarchical fashion. Finally, we focus on the determinization
method.

A. In-Depth View of the Disassembly Domain

The proposed problem consists in disassembling small elec-
tromechanical devices like hard drives. Fig. 1 illustrates a hard
drive and a graph representing its topology.

We have hand-crafted a PPDDL domain that covers a
large number of scenarios. The device is described in
terms of generic PDDL object types like screw, lever-point,
and removable-component. Relations and other circumstantial
nuances are provided with predicates like (fixed-by ?c -
removable-component ?s - screw), (at-side ?c - component
?s - side) and (partially-occludes ?c1 ?c2 - component).
We believe that the proposed domain is interesting and rich
from a planning perspective, and a good representative of the
class of real-world problems that we want to target with our
methodology.

The robot capabilities to cope with this task consist both
of preparatory (e.g. picking, flipping, and placing the device
and switching tools) and retrieval actions (e.g. unscrewing,
levering, sucking, and bashing). The robot can perform both
in-hand operations thanks to a SCARA finger, or operate on
the device while it is resting on the table. Retrieval actions are
not directly applied to components. Instead, from each compo-
nent we identify a set of candidate points called affordances.
Each affordance has a different degree of confidence (e.g. a
levering point that is close to a corner of a surface is generally
worse than one that is in the middle of a segment).

In our model, dead ends may arise if a tool or a component
breaks, meaning that we cannot continue the task. All our
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Fig. 1. (a) Top view of a hard drive without its cover lid. The main
components are highlighted. (b) Representation of the visible components
as a graph.

actions have a uniform cost to penalize plan length. Occlusions
may prevent the robot from knowing the whole configuration
of the device (e.g. the components below a closed lid). There-
fore, the robot may learn of the existence of new fluents on-
the-go. All these characteristics add up to the complexity of the
domain. The decision unit has to evaluate diverse disassembly
approaches, pondering which additional preparatory actions
are worth executing and when it is convenient to switch tools.

B. Architecture Outline

Our system is composed of 5 modules: (1) a world interface
that provides the current state as a set of PPDDL predicates;
(2) a subtask selector that is in charge of deciding the next
component to be retrieved, based on the component hierarchy
induced by the topological constraints among components; (3)
a cache for storing state/action pairs to avoid replaning if the
previously computed plan performs as expected; (4) a deter-
minizer that transforms the PPDDL specification into PDDL
via ACTL [1]; and (5) a deterministic planner for processing
the deterministic version of the problem and suggesting a plan.
Fig. 2 depicts these blocks and their interaction more clearly.

The predicates provided by the world interface consist not
only of the device’s perceived configuration, but also of the
robot status (e.g. which tool it is currently holding) and
its interaction with the device (e.g. whether it is currently

Obtain state from
environment
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Determinize

Invoke planner

Store state/action pairs

Send action to environment

Get cached action

Extract subtask

World
interface

Subtask
selector

Cache

Determinizer

Planner

yes

no

Fig. 2. Overview of the system’s architecture and flow.

holding the device). They would normally be inferred from
the perception routines and the robot’s encoders. However, for
our experiments we obtain them from a simulator, described
later in Section IV.

On the other hand, the cache is trivially implemented, as
it consists solely of a map from states to actions. The map
is filled with the expected state trajectory derived from a
deterministic plan and the actions suggested by this plan.

In this work we employ an out-of-the-box installation of
Fast Downward [27] as the planner. While conceived several
years ago, this is a planner that receives a lot of attention
nowadays thanks to its modularity, which allows to extend it
with state-of-the-art heuristics. Fast Downward is an essential
tool in recent research on dead ends and heuristic search.

Therefore, in the rest of the section we will focus on
the remaining two modules: the subtask selector and the
determinizer .

C. Hierarchical Task Organization

The subtask selector module operates converting the set of
predicates that describes the device into a graph representa-
tion. This graph is useful because it allows to reason more
easily about the precedence relationships among components.
Namely, it allows us to identify a set of components that are
candidate for retrieval.

We perform topological sorting, removing from the state all
the components and associated affordances that are partially
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Fig. 3. (a) Device with partial occlusions. The only components eligible for
retrieval are reader and pcb. (b) and (c) show the simplified state that results
from focusing on each of these, respectively.

occluded by some other component. The rationale is that
partially occluded components are often kept in place by the
occluding component. See for instance Fig. 1a. The platter is
partially occluded by the plastic fastener. During the manual
disassembly of this hard drive, we found that the fastener
was effectively restraining the platter, and its retrieval was a
requirement.

It is not always the case that partial occlusion imposes hard
precedence between two components. An example of this is
the R/W head, which is occluded by the actuator, and that
nonetheless can be extracted. However, in general it is still
advantageous to take care of occluding components first, as
they may be hiding unseen affordances (e.g. lever or suction
points that are better than the currently visible ones). Another
possibility is that removing the occluding object can result in
more progression than expected (e.g. removing the actuator
will also take away the R/W head, which is an unexpected
beneficial consequence).

More complex assemblies require special treatment. We
could think of two mutually occluding components. This
special case can be handled grouping both of them in a
single macro-component. On the limitations side, we could
also think of a contrived assembly in which an occluded
component keeps in place its occluding component. Since this
is the opposite of what we are assuming, our subtask selection
procedure would not work. While this could be addressed with
a more clever subtask selection procedure, we have not found
any assembly like this in practice, and we believe that our
approach is illustrative enough to show how to break a large
problem into smaller subtasks.

Fig. 3 illustrates the subtask selection procedure. The de-
vice’s graph (Fig. 3a) induces a component hierarchy in which
pcb and reader are the only components with no precedents.
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Fig. 4. Device with unseen components and relations (total occlusions).
Namely, pcb is hiding some screws that are fixing the reader component
at the opposite side of the hard drive. This corresponds to a real-life model.

1 Function UpdateComponentStack( stackn−1, staten)
2 notPreceded← TopologicalSort(Staten)
3 new← NotPreceded \ Stackn−1

4 retrieved← Stackn−1 \NotPreceded
5 stackn ← stackn−1 \ retrieved
6 AddToBottom(stackn, new)
7 return stackn

8 Function SelectSubtask(staten−k+1..n, stackn−1)
9 stackn ← UpdateComponentStack(stackn−1, staten)

10 if Stagnated(staten−k+1..n) then
11 AddToBottom(stackn, PopTop(stackn))

12 C← GetTop(stackn)
13 state′n ← IsolateComponent(staten,C)
14 return state′n, stackn

Fig. 5. Subtask selection algorithm

Without a knowledge base nor learning capabilities in the
decision-making unit, there is no obvious way of choosing
one over the other. Therefore, we allow the module to select
randomly one of the candidates. It may be the case that the
current view of the device is not complete. Consider Fig. 4,
which shows the ground truth of the device depicted in Fig. 3a.
In this figure it is easy to appreciate that pcb should be
retrieved first, instead of reader. Therefore, if the subtask
selector chooses to retrieve reader first, the robot would get
stuck, risking to break one of the device’s components. We
address this issue by monitoring the state. If there is no
progression in several successive steps, the selection algorithm
assumes that there is some hidden precedence relationship and
chooses a different component to retrieve.

This whole process is illustrated more clearly in the algo-
rithm shown in Fig. 5. Here, each stack variable references a
stack of ready-to-retrieve components. Each time no progres-
sion is observed in k successive steps, the top component is
pushed to the bottom of the stack and the next component
is retrieved. The UpdateComponentStack routine takes care of
removing from the stack the components that have already
been retrieved, and adds the components that were not visible
in former states. TopologicalSort extracts all the components
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with no precedences. IsolateComponent performs a graph
reachability analysis and removes all the predicates and objects
irrelevant for the retrieval of a certain component (e.g. think
of pcb and reader in Fig. 3).

D. On-line Solving Via Determinization

Each of the subtasks retrieved via the SelectSubtask
routine shown in Fig. 5 is still a probabilistic planning prob-
lem, described in the PPDDL language. We seek to solve
each of them on-line (that is, avoiding the computation of
full policies).

We transform our PPDDL problem into a PDDL one to
take advantage of heuristic search and obtain plans in a timely
fashion. However, to perform this transformation and obtain
plans that make sense from their probabilistic counterpart point
of view, it is necessary to compile the outcome probabilities
into deterministic features. The idea is to force the planner to
prefer more likely-to-succeed plans. The method of choice for
this paper is ACTL.

ACTL is similar to All-Outcome (AO) determinization in
that it creates a new deterministic action for each probabilistic
action-outcome pair of the original domain. If there are N
actions, each with M outcomes, ACTL will produce N ·M
deterministic actions or less (it can produce less actions if
there are empty outcomes, since these are superfluous from
the point of view of the deterministic planner).

Then ACTL assigns a transformed cost (C ′) to each action a
in a way that penalizes less likely effects. To do so, it combines
the probability of generating a certain state s′ from the current
state s (expressed as P(s′|s, a)) with the cost of the original
action (C) weighted by some parameter α:

C ′(s, a, s′) = αC(s, a, s′)− logP(s′|s, a) (1)

The original cost of the action C(s, a, s′) can be linked
to some metric that we would like to optimize, such as
execution time or energetic consumption. For the purpose of
this paper, we are interested in optimizing plan length, so we
set C(s, a, s′) = 1 ∀a, s, s′. The goal is the retrieval of the
most important components (e.g. reader, pcb and platters).

The α factor is a parameter that establishes a compromise
between the original cost and the probability-based term of the
transformed cost. We think of it as a way to trade-off eagerness
to safety and vice versa: α = 0 implies that the cost depends
exclusively on the outcome probabilities, so the planner will
try to find safe (likely to succeed) plans; α→∞, on the other
hand, gives more relevance to the previous cost of the action,
diminishing the importance of probabilities and optimizing the
original accumulated cost (the planner becomes more eager).

Fig. 6 illustrates the eagerness-safety trade-off. This plot
corresponds to a domain with uniform-cost actions, so α is
a proxy to control the number of plan steps at the cost of
success likelihood. It is worth highlighting that the plot has
been obtained with an admissible heuristic in order to get an
optimal plan. The use of admissible heuristics is not always
feasible in practice.

To apply ACTL, we flatten the probabilistic effects in all the
actions. This makes much easier identifying the outcomes and

Fig. 6. Plot depicting the safety-eagerness compromise. Increasing α sacri-
fices plan success likelihood to potential speed gains, in terms of plan steps.

1 (:action bash
2 :parameters (?comp - removable-component
3 ?side - side)
4 :precondition (and
5 (not (broken-component ?comp))
6 (not (broken-tool hammer))
7 (at-side ?comp ?side)
8 (current-side ?side) (current-tool hammer)
9 (forall (?comp_ - component)

10 (not (partially-occludes ?comp_ ?comp))))
11 :effect (and
12 (probabilistic
13 0.25 (and
14 (forall (?screw - screw)
15 (not (fixed-by ?comp ?screw)))
16 (forall (?screw - screw ?side_ - side)
17 (not (at-side ?screw ?side_)))
18 (probabilistic 0.5 (loose ?comp)))
19 0.10 (broken-component ?comp))
20 (probabilistic 0.05 (broken-tool hammer))
21 (decrease (reward) 1)))

Fig. 7. Action with nested probabilistic effects.

1 (:action bash_o0
2 ...
3 :effect (and
4 (forall (?screw - screw)
5 (not (fixed-by ?comp ?screw)))
6 (forall (?screw - screw ?side_ - side)
7 (not (at-side ?screw ?side_)))
8 (loose ?comp) (broken-tool hammer)
9 (increase (total-cost) 6.075173815233827)))

Fig. 8. One of the deterministic actions derived from bash using ACTL with
α = 1. Parameters and preconditions are the same as in the original action,
so they are omitted.

their associated probabilities. Then, we transform each action-
outcome pair into a deterministic action using Equation 1.
Let us exemplify this transformation with the action shown
in Fig. 7. Notice how the bash action expresses compactly 8
different outcomes (of which one is empty). These outcomes
are translated into a deterministic action that shares the pre-
condition and parameters of the original action. Fig. 8 shows
one of these deterministic actions.
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TABLE I
SUCCESS RATIO (S), AVG. ELAPSED TIME (E) AND COST (C) OF

EPISODES WITH SIMPLE DEVICES.

Method S E (s) C (steps)
LRTDP (FF) 27/150 (18%) 1.53 13.63

ao 98/150 (65.33%) 1.13 19.22
ml 84/150 (56%) 0.45 17.57

alph-0.00 98/150 (65.33%) 1.14 20.70
alph-0.05 100/150 (66.67%) 1.18 18.70
alph-0.10 92/150 (61.33%) 1.23 20.58
alph-0.20 98/150 (65.33%) 1.20 19.73
alph-0.40 97/150 (64.67%) 0.83 16.39
alph-0.80 100/150 (66.67%) 0.94 18.35
alph-1.00 92/150 (61.33%) 0.98 18.34

IV. EXPERIMENTAL EVALUATION

We have conducted a series of experiments to test our
proposal. We have crafted 10 PPDDL disassembly problems1,
each of which related to a different device. 5 of these represent
simple devices with no occlusions, so the state should change
in predictable ways from step to step. The remaining 5 are
more complex and have occlusions. This means that new
components may appear in the state after performing a retrieval
action.

The world state is obtained from a simulator that is similar
in nature to MDPsim2. It maintains a virtual state of the
world in the form of predicates that are modified with each
executed action, via outcome sampling. The main difference
from MDPsim is that our simulator hides the non-observable
objects and relations (those that are occluded).

We compare multiple approaches for solving these prob-
lems. As a baseline, we use an LRTDP algorithm initialized
with the FF heuristic. We chose Bonet’s mini-gpt implementa-
tion because it accepts PPDDL problems. On the other hand,
we use several configurations of our decision unit. These
configurations differ from each other in the determinization
technique. Our code is freely available3.

We have tested several values of α for ACTL. We have
included in the comparison AO and Most-Likely-Outcome
(MLO) determinization to see if ACTL shows any advantage
over them. Notice that MLO and AO represent the same
approach adopted by FF-Replan [2].

We have executed 30 episodes for each problem and con-
figuration to estimate the percentage of solved problems (S),
the average time per successful round (E) and the average
episode’s accumulated cost (C), which is equivalent to the
plan length. The time limit for each episode is constrained to
5 minutes.

Results are shown in Table I for simple devices and Table II
for complex ones. Each row depicts the results for a different
solver. There are different flavors of our decision unit: ml
and ao stand for MLO and AO determinization, respectively.
ACTL determinization is represented as alph-a, where a is the
value of the α parameter. For each method, we have reported

1Shown in the supplementary material: www.iri.upc.edu/people/asuarez/
documents/supplement-suarez2018.pdf

2https://github.com/hlsyounes/mdpsim
3https://github.com/sprkrd/planning tools/

TABLE II
EXPERIMENT RESULTS WITH COMPLEX DEVICES.

Method S E (s) C (steps)
ao 75/150 (50%) 1.49 21.27
ml 82/150 (54.67%) 0.56 20.27

alph-0.00 102/150 (68%) 1.31 22.53
alph-0.05 102/150 (68%) 1.42 21.83
alph-0.10 96/150 (64%) 1.43 22.43
alph-0.20 91/150 (60.67%) 1.27 22.07
alph-0.40 95/150 (63.33%) 1.26 20.67
alph-0.80 80/150 (53.33%) 1.10 19.98
alph-1.00 83/150 (55.33%) 1.13 19.78

success ratio, elapsed time and cost (disassembly sequence).
While we think that the success ratio is the most important
one in the disassembly domain, these metrics can be weighted
differently depending on the particular application.

Notice that the success ratio is, at most, 66.67% on the
simplest devices and 68% on the most complex ones. The
reason behind this moderate success ratio is that the probabil-
ities of the undesirable outcomes in the hand-crafted domain
(events such as breaking a tool or certain components) are
exaggerated so there is a non-negligible chance of arriving to
a dead end. Therefore, the planner has to consider the trade-
offs between different action routes that accomplish the same
objective. Otherwise, the presence of alternative sequences of
actions is irrelevant, and the disassembly domain loses a lot
of its richness. In practice, the presence of dead ends also
results in much harder problems. Therefore, the objective of
our testbed is to compare determinization methods among
them in problems that are difficult, in the sense that it is hard
to avoid the dead ends.

We want to highlight that we applied LRTDP exclusively
to simple devices. The rationale is that out-of-the-box LRTDP
cannot handle dynamic state specifications (i.e. varying num-
ber of fluents). However, the results for the set of simple
devices make evident a surprisingly low ratio of solved
episodes. LRTDP managed to produce a successful disassem-
bly sequence for the first device most of the times (27 out
of 30), but the next devices caused LRTDP to take too much
time, raising time-outs for the remaining episodes (180s per
episode). Since the first device is also the easiest one, LRTDP
takes less steps than the other methods when averaged through
successful episodes. None of the other methods triggered a
time-out.

There is no much difference between the determinization
methods applied to simple devices, except perhaps in the case
of MLO, which takes considerably less time than the other
approaches. This is because MLO produces less actions than
the other determinization methods, but sacrifices many relevant
outcomes. This is evidenced by its lower success ratio with
both simple and complex devices.

ACTL-based methods do not take substantially more time
than AO and provide similar results for simple devices and a
larger success ratio. However, we think that Table II provides
the most interesting and promising results, since it illustrates
perfectly the eagerness-safety trade-off. On the one hand,
ACTL with α = 0 achieves the highest success ratios. On the

www.iri.upc.edu/people/asuarez/documents/supplement-suarez2018.pdf
www.iri.upc.edu/people/asuarez/documents/supplement-suarez2018.pdf
https://github.com/hlsyounes/mdpsim
https://github.com/sprkrd/planning_tools/


SUÁREZ-HERNÁNDEZ et al.: PRACTICAL RESOLUTION METHODS FOR MDPS IN ROBOTICS 7

other hand, we can see how the success ratio can be sacrificed
to potential cost gains with higher α values.

V. CONCLUSIONS AND FUTURE WORK

We have developed a decision-making unit that decomposes
large MDPs into smaller subtasks. These are then solved
through a re-planning cycle that employs determinization. We
have proposed the problem of disassembling electromechani-
cal devices to exemplify our approach.

We think that the results depicted here show that
determinization-based resolution methods for MDPs are suit-
able for practical problems. First, since they are based on
heuristic search, and are fed with the most recent state specifi-
cation, they are not so vulnerable to large state specifications
nor to new variables introduced on-the-go (like newly dis-
covered components, in our disassembly example). Secondly,
dead ends are not so problematic from a theoretical standpoint,
because they do not produce convergence issues. We can
simply rely on the planner to find a candidate plan, and
conclude that there is a dead end if the planner is able to
demonstrate so or if it fails to find a plan in a certain amount of
time. Moreover, this scheme fits very well in the goal-oriented
nature of SSPPs. We also believe that the subtask selection
strategy is useful and can work very well in problems that
exhibit some type of hierarchical structure, since it bounds
the complexity of planning for real-time applications.

The proposed domain is general enough to fit a large set
of devices, since it is defined in terms of types and predicates
that are not specific to a particular type of product. In this
paper we have focused on the use case of dismantling hard
drives, so we think that an interesting idea for future work is
to try to describe other types of products using the concepts
defined in our domain.

However, notice that we have not addressed explicitly partial
observability. That is, we work with MDPs that grow over time
when new variables are discovered, but we do not maintain
a probability distribution over several alternative states that
fit the current observation. We would like to explore in this
direction in the future. In this same line of work, we think
that it would be worth to incorporate a priori knowledge about
the product’s structure. This knowledge can be derived from
images, CAD models or the robot’s experiences, and can help
initializing the probability distribution over the state variables,
or identifying precedence relationships between components
that cannot be detected from the perceived state.

Also, we have assumed static environments, that is, envi-
ronments in which the only modifications are provoked by the
robotic agent. This is the most natural way to model a problem
with an action-centered language such as PPDDL. However,
we would like to extend the present work to transition-based
languages such as RDDL. One of the main appeals of RDDL
is that it allows exogenous effects and concurrency. Moreover,
it would allow us to take advantage of more modern state-of-
the-art MDP solvers like PROST.
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[5] F. Teichteil-Köenigsbuch, G. Infantes, and U. Kuter, “RFF: A robust,
FF-based MDP planning algorithm for generating policies with low
probability of failure,” in ICAPS, 2008.

[6] I. Little and S. Thiebaux, “Probabilistic planning vs replanning,” in
ICAPS Workshop on IPC: Past, Present and Future, 2007.

[7] A. Raghavan, S. Sanner, R. Khardon, P. Tadepalli, and A. Fern, “Hind-
sight Optimization for Hybrid State and Action MDPs,” in AAAI, 2017,
pp. 3790–3796.

[8] M. Issakkimuthua, A. Fern, R. Khardon, P. Tadepalli, and S. Xue, “Hind-
sight Optimization for Probabilistic Planning with Factored Actions,” in
ICAPS, 2015, pp. 120–128.

[9] A. Kolobov, “Towards scalable MDP algorithms,” in IJCAI, 2011, pp.
2818–2819.

[10] A. Kolobov, Mausam, and D. S. Weld, “LRTDP vs. UCT for Online
Probabilistic Planning,” in AAAI, 2012, pp. 1786–1792.

[11] A. Kolobov, P. Dai, Mausam, and D. S. Weld, “Reverse iterative
deepening for finite-horizon MDPs with large branching factors,” in
ICAPS, no. 1, 2012, pp. 146–154.

[12] T. Keller and P. Eyerich, “PROST: Probabilistic Planning Based on
UCT,” in ICAPS, 2012.

[13] B. Bonet and H. Geffner, “MGPT: A probabilistic planner based on
heuristic search,” JAIR, vol. 24, pp. 933–944, 2005.
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assisted disassembly for the recycling of electric vehicle batteries,”
Procedia CIRP, vol. 29, pp. 716–721, 2015.

[17] M. Bdiwi, A. Rashid, and M. Putz, “Autonomous disassembly of electric
vehicle motors based on robot cognition,” in IEEE ICRA, 2016, pp.
2500–2505.

[18] B. Scholz-Reiter, H. Scharke, and A. Hucht, “Flexible robot-based
disassembly cell for obsolete TV-sets and monitors,” Robotics and
Computer-Integrated Manufacturing, vol. 15, no. 3, pp. 247–255, 1999.

[19] L. Zhang, X. Huang, Y. J. Kim, and D. Manocha, “D-plan: Efficient
collision-free path computation for part removal and disassembly,”
Computer-Aided Design and Applications, vol. 5, no. 6, pp. 774–786,
2008.

[20] F. Torres, S. T. Puente, and R. Aracil, “Disassembly Planning Based on
Precedence Relations among Assemblies,” The International Journal of
Advanced Manufacturing Technology, vol. 21, no. 5, pp. 317–327, 2003.

[21] S. T. Puente, F. Torres, and R. Aracil, “Non-Destructive Disassembly
Robot Cell for Demanufacturing Automation,” in IFAC Proceedings
Volumes, vol. 36, no. 23, 2003, pp. 97–102.

[22] W. Hui, X. Dong, and D. Guanghong, “A genetic algorithm for product
disassembly sequence planning,” Neurocomputing, vol. 71, no. 13-15,
pp. 2720–2726, 2008.

[23] M. Alshibli, A. El Sayed, E. Kongar, T. M. Sobh, and S. M. Gupta,
“Disassembly Sequencing Using Tabu Search,” Journal of Intelligent
and Robotic Systems, vol. 82, no. 1, pp. 69–79, 2016.

[24] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming.
Athena Scientific, 1996.

[25] H. L. Younes and M. L. Littman, “PPDDL1.0: An extension to PDDL
for expressing planning domains with probabilistic effects,” CMU-CS-
04-162, Tech. Rep., 2004.

[26] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso,
D. Weld, and D. Wilkins, “PDDL - The Planning Domain Definition
Language,” 1998. [Online]. Available: www.cs.yale.edu/homes/dvm

[27] M. Helmert, “The Fast Downward Planning System,” JAIR, vol. 26, pp.
191–246, 2006.

www.cs.yale.edu/homes/dvm

	Introduction
	Related Work
	Proposed Methodology for Planning Disassembly Sequences
	In-Depth View of the Disassembly Domain
	Architecture Outline
	Hierarchical Task Organization
	On-line Solving Via Determinization

	Experimental Evaluation
	Conclusions and Future Work
	References

