
From Process Models to Chatbots

Anselmo López, Josep Sànchez-Ferreres, Josep Carmona, and Llúıs Padró

Process and Data Science Group, Computer Science Department.
Universitat Politècnica de Catalunya. Barcelona, Spain.
{anselmol,jsanchezf,padro,jcarmona}@cs.upc.edu

http://www.cs.upc.edu/~pads-upc

Abstract. The effect of digital transformation in organizations needs to
go beyond automation, so that human capabilities are also augmented. A
possibility in this direction is to make formal representations of processes
more accessible for the actors involved. On this line, this paper presents
a methodology to transform a formal process description into a conversa-
tional agent, which can guide a process actor through the required steps
in a user-friendly conversation. The presented system relies on dialog
systems and natural language processing and generation techniques, to
automatically build a chatbot from a process model. A prototype tool
–accessible online– has been developed to transform a process model in
BPMN into a chatbot, defined in Artificial Intelligence Marking Lan-
guage (AIML), which has been evaluated over academic and industrial
professionals, showing potential into improving the gap between process
understanding and execution.

1 Introduction

Formal process modeling notations are ubiquitous in organizations. They pre-
cisely describe a business process, using a graphical notation that has a formal
execution semantics, amenable for automating certain tasks of the underlying
process [3]. These notations, among which Business Process Model and Notation
(BPMN) is a prominent example, are not always suitable or understandable by
any actor involved in the process. A good example is a logistic processes, where
several agents are required, ranging from agents to transport the goods, down
to accountants that keep track of the finances of the whole process.

Hence, one cannot assume always that all the actors of a process would be
able to understand a BPMN model, in order to know what they need to do
for the successful execution of the process. The fact that digital transformation
aims at a better maturity and elicitation of an organization’ processes [7], would
only contribute to increasing the complexity and size of the process repositories
in organizations, which in turn causes a pressure on process’ actors. The main
goal of the work of this paper is to alleviate this pressure. A similar observation
and motivation was presented in the seminal work to convert a BPMN model
into a textual description [6], from which this paper shares some parts of the
methodology proposed.

López, F. [et al.]. From process models to chatbots. A: International Conference on Advanced Information Systems
Engineering. "Advanced Information Systems Engineering, 31st International Conference, CAiSE 2019: Rome, Italy, June 3-7,
2019: proceedings". Berlín: Springer, 2019, p. 383-398.
The final authenticated version is available online at https://doi.org/10.1007/978-3-030-21290-2_24

2 A. López et al.

In this paper we are inspired by a trend seen in the last few years in online
services. Often, these sites have a section called Frequently Asked Questions,
where users can read some solutions to common problems. Sometimes, these
pages also have guides to execute some complicated processes or tasks. The
main problem is that users have to search for their solution through all the
web content, which is often a tedious task. That is why companies are using
alternatives to help their customers [15]. One of the most implemented options
currently is the conversational bot or chatbot1.

Chatbots allow a user to query a complex content, so that a more human
interaction with it is enabled. Moreover, the user is relieved from the burden of
searching for a solution, which is now a task carried out by the chatbot.

In this paper we present a methodology that takes as input a BPMN model,
and generates a chatbot aimed to guide a process actor through the modeled
business process. The actor can be guided step-by-step through the process, ask
questions about who should perform certain task, or to whom should a document
be sent, etc. In this way, a more flexible process interaction is envisioned at a
very low cost, since using the methodology proposed some of the processes of a
process repository can be transformed into chatbots. The methodology has been
validated over 33 individuals, both from academy and industry.

The methodology proposed relies on script-based dialog management [16],
in which the dialog state determines what is the system expecting at a given
moment, and the user utterance will determine the system’s answer and the
transition to a new dialog state. We generate the finite state dialog automaton
from the BPMN structure, and the system utterances from the textual com-
ponents of the model (task labels, pool and swimlane names, ...), and we add
additional states and transitions to deal with user questions about actors (e.g.
who should do a task) and objects (e.g. to whom a document must be sent).

The organization of this paper is as follows: next section provides a simple
example to illustrate the contributions of this paper. Then, in Section 3 we
provide the necessary background to understand the methodology that will be
presented in Section 4. In Section 5 we describe the prototype tool implementing
the methodologys of this paper, which is then validated in Section 6. Finally,
Section 7 summarizes the paper milestones and reports future challenges ahead.

2 Motivating Example

To illustrate the contribution of this paper, Figure 2 shows an interaction with
the chatbot obtained by applying the methodology proposed on the simple pro-
cess model shown in Figure 12. The interaction is shown in the following page.

By a careful look at the interaction, one can see the main ingredients of the
methodology described in this paper. First, Natural Language Processing (NLP)

1 One can see an example for the case of computer repair at
http://www.toshiba.co.uk/generic/yoko-home/.

2 This example was found in the Signavio Academic Initiative pool of BPMN models.

From Process Models to Chatbots 3

A
C

M
E

 A
G

A
p

p
ro

ve
r

C
e
n

tr
a
l

P
u

rc
h

a
si

n
g

D
e
p

a
rt

m
e
n

t

ERP-
System

ERP-
System

Parts required

Specify and
quantify

requirements

Parts retrieved
from

storage

Complete a
purchase order

Retrieve parts
from storage

Check purchase
order

no

Parts out of
stock

Parts in stock

Create vendor

Create order
template from
purchase order

Adjust order
status

Approve
purchase

order

Vendor
known? Receipt of

goods

yes

Parts procured

Cancelled due
to

delivery
problems

Delivery
Problems

Fig. 1. BPMN representation of the ‘Procure parts’ business process

is required to analyze the text in the different elements of the BPMN model.
Second, a tailored finite state automata representation of the underlying process
model is used, so that the conversation state is unambiguous depending on the
previous questions. Finally, natural language generation is used, so that sentences
are created to describe the task to the user in a human-readable manner: see for
instance the third-person form when explaining the tasks performed.

3 Preliminaries

3.1 Process Modeling

As it has been already acknowledged in the introduction, formal process no-
tations are an important part of any digitalization initiative, since they open
the door to an unambiguous and focused (process) automation. A recent article
reports three different process management levels, ranging from multi-process
management, to the classical process management level, down to process in-
stance level [8].

Process models can be created using a variety of modeling languages, such
as Petri nets, Event-Driven Process Chains (EPCs), and BPMN. Although we
focus in BPMN, the contributions of this paper are independent of the specific
notation used to define a process model. In particular, we focus on BPMN 2.0,
notation created as a standard for business process modeling. BPMN has three
different kinds of elements. First, the main elements are the nodes in the dia-
gram, which may belong to three different types: Events, which represent that
something happens; Activities, which represents some task that is performed;

4 A. López et al.

Bot: Hi, which process do you want to see?
You: I’m interested in the procure parts process.
Bot: The process begins when the parts are required by the Department.

What do you want to do now?
You: Who checks the purchase order?
Bot: The Central Purchasing checks the purchase order.
You: Follow process.
Bot: Parts out of stock/Parts in stock ?
You: Parts out of stock.
Bot: The Department specifies and quantifies the requirements.
You: Next.
Bot: The Department completes the purchase order.
You: Next.
Bot: The Central Purchasing checks the purchase order. Vendor known?
You: Yes.
Bot: The Central Purchasing creates the order template from purchase order.
You: Who did you say before that checks the purchase order?
Bot: The Central Purchasing checks the purchase order.
You: ok.
Bot: The Approver approves the purchase order.
You: Next.
Bot: After that, the Central Purchasing executes process called “receipt of

goods”.
You: Next.
Bot: Then, the process is finished.

Fig. 2. Example of dialog with the bot generated for the “procure parts” process.

and Gateways, which split or join flow control. Second, the notation has differ-
ent edges to connect nodes. A solid line indicates the process workflow, while
dashed lines represent messages sent between process participants3. Finally, there
are organization elements such as lanes that contain activities performed by the
same participant, and pools, that group several related lanes.

3.2 Dialog Systems

Dialog is the most natural way for humans to communicate, and since the dawn of
computers, researchers have aimed to devise ways to communicate with machines
as we do with people. From Eliza [19] –the first reactive chatbot– to modern
assistants like Siri, Alexa, or Google Assistant, dialog systems construction still
strongly rely on large amounts of human intervention, to establish which topics
the chatbot should be aware of, and provide useful answers to.

Regardless of whether the dialog interface is oral or written, traditional dia-
log systems are tailored to a specific task (e.g. helping the user to buy a plane
ticket, post a claim for a wrong product, etc.) since the system requires a pre-
cise definition of domain concepts and actions to execute depending on the user

3 Dashed lines can also represent data associations.

From Process Models to Chatbots 5

input. For this reason, they usually are expensive to develop, and not easily cus-
tomizable to new application domains. This is also the case of modern personal
assistants.

On the other hand, there are the so-called recreational (also known as conver-
sational) chatbots which do not target a specific task, but only aim to entertain
the user, or to win a Turing’s Test competition [19, 18].

Dialog systems typically consist of four main components:

– User input processing and understanding: Takes care of processing the user
input (which may be speech- or text-based, or even multimodal) and ex-
tracting the relevant information and intention.

– Dialog manager: Keeps track of the dialog state, and decides how to update
it, and which tasks should be executed at each moment.

– Task Manager: Deals with the back-office operations required for the dialog
goal (retrieving information from a database, purchasing tickets, booking
reservations, etc).

– Output generator: Produces the appropriate answer or feedback (speech,
text, or multimodal) to be sent to user.

Each of this components may be realized at different levels of complexity:
Input processing may range from a simple keyword matching on the user text
to an advanced Natural Language Processing system. Dialog managers can fol-
low a simple stateless reactive pattern, be based on finite state automata or
more complex state-keeping structures, or rely on advanced Machine Learning
methods (which require lots of annotated data –actual dialogs– relative to the
target domain to be trained). Task Manager –which is missing in non-task ori-
ented dialog systems– is the most domain-dependent component, and must be
taylored for each application. And finally, output generation can be approached
with techniques ranging from basic pre-written fixed sentences or patterns, up
to complete Natural Language Generation systems.

See [5, 1] for more details on dialog systems architectures and technologies.

3.3 Natural Language Processing and Generation

Apart from the internal logic or domain-related reasoning that a dialog system
must carry out (e.g. access a database to extract available flights matching user’s
needs, decide which may be most useful, etc.), a crucial part of the dialog is
understanding user utterances.

For that, NLP tools are required in order to convert the text spoken or
written by the user into structured data that can be used by the system.

In our case, we are generating a chatbot from a BPMN model. For that,
we need to extract information from the language components in the model –
basically the task labels and pool and lanes descriptions– and for this we also
resort to NLP tools to extract the actions being described in the labels, the agents
who perform each action, and the objects upon which action is performed. The
way we extract this information follows a similar strategy to the one presented
in [6].

6 A. López et al.

Another important component in any dialog system is that in charge of gener-
ating the system reply that will be sent to the user. Ideally, the system utterance
should sound natural, avoid reiteration of already shared information, use a var-
ied set of language structures and lexica, etc. This is addressed by a subfield
of NLP known as Natural Language Generation (NLG), that given a semantic
representation of the concepts to be expressed, generates the appropriate sen-
tences. NLG is used not only to generate system replies in dialog systems, but
also in automatic document generation, either to generate reports from raw from
data (data-to-text NLG) or from other texts (text-to-text NLG) (e.g. automatic
summarization).

NLG can be approached at different complexity levels, depending on the task
and on the expected results. Simple dialog systems often use pre-canned sen-
tences (which may contain wildcards that are appropriately replaced). A varied
set of pre-canned sentences for each situation, from which an answer is randomly
chosen when needed, may be enough to avoid a too repetitive user experience.

However, for more advanced NLG applications, complex architectures may be
needed. Main steps in a NLG system involve: Determining what to say, planning
the structure of the generated text or document, choosing the words to be used,
generating the sentences expressing each concept, aggregating or merging several
sentences in one to avoid redundancy, introducing pronouns to refer to entities
previously mentioned, and finally, realize all that in appropriate and grammatical
sentences. More details on NLG techniques can be found in [14].

In our process model scenario, we can not resort to pre-canned text, since
each input model may be different. Given that our generated dialog has one
state for each model task (see Section 4) we apply the realization step to obtain
a sentence describing the task, and then we use this generated text as a pre-
canned pattern at execution time.

4 Chatbot Generation from BPMN

To achieve our goal of generating a dialog agent from a process model in BPMN,
we first define which kind of interactions the user is expected to have with the
system, namely:

– Ask who is the actor performing any task.
– Ask to who (from who) is a message or a data object sent (received).
– Be guided step-by-step through the process:
• Find out what is the next task to be executed (or a list of possible tasks, if

several are possible) either by a particular actor or in the general process
• Be asked to provide information when exclusive gateways are reached

and be guided into the appropriate branch
• Be informed when the process ends for a particular actor, or as a whole.

The purpose of these interactions is the use cases that may arise from this
work, i.e., helping users to perform tasks of a process model. This type of inter-
actions was required in a short collaboration we had with a process modelling
software company. Other types of interactions are left for future work.

From Process Models to Chatbots 7

Given the expected flows of the dialog, we build a finite state automaton
(FSA) that encodes the interactions and conversation flows that we focus in this
paper.

The utterances that the system will produce when reaching each state in the
FSA are generated analyzing the meaning of the text instances in the BPMN
model (task labels and pool/swimlane names), and then feeding this semantic
representation into a NLG system.

Also, a variety of patterns to match and interpret user response at each
state are generated from model text, plus some general expressions valid for any
process (such as “what is the next task?” or “end this conversation”).

Once the conversation FSA has been generated, it is encoded into AIML [17],
so it can be executed in any available AIML interpretation engine. Figure 3 shows
the main steps in the generation process, detailed in the following sections.

Fig. 3. Chatbot generation process stages (top). Once the chatbot description has been
generated, it can be executed by AIML interpreter to interact with the user (bottom).

4.1 Graph Normalization

We start from the BPMN file, and we parse its XML format in order to load
the process graph. This graph may require some normalization step, in order
to ensure that all blocks in the graph are well-formed. In our case, we aim at
having a BPMN that can be partitioned into Single-Entry Single-Exit (SESE)
components [13]: for instance, the activities P1, P2 and P3 together with the two
adjacent parallel gateways form a SESE in Figure 5(a). Several transformation
techniques can be applied in case a process model is not well-formed (e.g., [12]).
Hence, in the rest of this paper, we assume the process is well-formed.

8 A. López et al.

4.2 Label Processing

Once the graph is normalized, we have to collect the linguistic information of
model labels. We use FreeLing4 library [10] to desambiguate the part-of-speech of
the label text, and to run it through a custom grammar that extracts the action,
the object, as well as other complements. The subject is usually ommitted in
the task label, so it is retrieved from the pool or swimlane name.

For instance, the label Retrieve parts from storage in swimlane Department
in Figure 1 would produce the semantic structure in Figure 4.

[action: retrieve,
subject: department,
object: parts,
complement: from storage]

Fig. 4. Semantic structure produced by NLP analysis of the sentence Retrieve parts
from storage in swimlane Department from Figure 1.

We use a custom grammar and not a general purpose natural language parser
such as those provided by FreeLing or other similar library because of the partic-
ular structure of model task labels: Task labels are commonly written in simple
patterns action-object (retrieve parts), or object-nominalized action (parts re-
trieval) with sometimes some additional complement(s) [11]. Also, the subject
is usually ommitted, which causes general purpose PoS taggers and parsers to
fail more often. Having an ad-hoc grammar allows us to (1) control precisely
which patterns should be detected, and (2) feed the parser with k most-likely
PoS annotations from the tagger to find out if any of them matches the ex-
pected patterns, thus recovering from errors in the tagging step that would lead
to wrong parsing results.

4.3 Dialog graph construction

Next step is generating the dialog graph, that is, the FSA that encodes all the
possible dialog flows. This is a typical architecture followed by many simple
chatbots, specially those based on AIML. The dialog graph consists of a set
of states and transitions between them. Transition from one state to the next
depends on the user utterance.

Definition 1. A dialog graph FSA is a tuple, (Q, T , δ, A,Ω), where:

Q is a finite set of state nodes,
T is the set of all possible text utterances emmited by the user,
δ : Q × T → Q is a transition function that given the current state q ∈ Q
and a text utterance t ∈ T computes the destination state,

4 http://nlp.cs.upc.edu/freeling

From Process Models to Chatbots 9

A ⊆ Q is the set of start state nodes, and
Ω ⊆ Q is the set of final state nodes.

Note that the transition function δ does not work on a closed alphabet as
in normal FSAs. Function δ may range from a simple set of regular expressions
performing pattern matching on the user sentence, to a highly sophisticated
language analysis system using the latest Artificial Intelligence techniques. In
our case, since AIML supports only regular expression based transitions, we
restrict ourselves to that approach, though with some extensions provided by
the used interpeter (see Section 4.5).

Fig. 5. Initial dialog state graph (right) corresponding to a BPMN model (left). Dotted
lines show how split (join) gateways are fused with preceeding (following) elements.
Note the expansion of the parallel block into all its possible paths. Self-loops are added
later to handle questions or commands valid in any state.

The created dialog graph has a structure that resembles the original BPMN
graph, but with some differences to make it suitable for dialog control:

– Join gateways: In the BPMN semantics, join gateways describe the point
where the branches of a previous split gateway are merged. This kind of
node makes no sense in a dialog flow (it would be confusing that the system
uttered “Now there is a join. what do you want to do?”). Thus, this kind of
nodes are removed from the graph, and its entering edges are associated to
the following element.

– Parallel blocks: A parallel block consists of the flow elements between a
split and a join inclusive gateway. In BPMN, parallel block are interpreted as
meaning that the involved tasks may be executed in any order. To account
for this behavior in the dialog graph, we create a path in the dialog graph for
each valid permutation of the tasks in the parallel branches. In this way, the
user can choose the order in which she wants to perform the tasks5. Notice
that as commented in Section 4.1, our strategy to transform parallel blocks
(see bellow the formalization of the algorithm for this specific part) assumes

5 In case of a parallel block consisting on a large amount of parallel tasks, in principle
it is not needed to offer all the permutations in the dialog graph, if that contributes
to a state-space explosion: the artifact would be that the user only sees a subset of
the possibilities offered by the process model, which in some cases can be acceptable.

10 A. López et al.

that all parallel blocks in the BPMN are well-structured (a parallel block is
well-structured when the number of branches going out the split gateway is
equal to the number of branches entering the join gateway).

Figure 5 shows a simple example of the transformation of a BPMN model
into a graph dialog that guides the user through the process.

The steps performed to recursively expand the parallel blocks and gener-
ate the corresponding dialog graph fragment are now overviewed. First of all, a
depth-first search traversal is performed to detect split parallel gateways. When
one is found, a new parallel block instance is pushed onto a general stack. The
stack contains parallel blocks in depth-first order, because we need to guarantee
the correct transformation of internal parallel blocks at every depth. Within a
particular parallel scope, all the nodes encountered are added to the correspond-
ing parallel branch. If the node is a join gateway, then all the active open branches
of the containing parallel block instance are closed, and then the parallel block
with the new expanded instance is replaced. For every parallel block detected,
we check if there is any parallel block inside. If there is one, we call the function
for that node. If there is no block, all the permutations of the branches of the
selected block are created in the corresponding newly created FSM fragment.
Then, these permutations are connected to the rest of the dialog graph.

Once the control-flow is completely transferred to the dialog graph, the last
step of the construction is to also transfer the additional information contained in
the BPMN model: messages, actors and data objects. These mainly correspond
to self-loops on any conversation state, where information is reported to the user
while retaining the conversation state (e.g. the user may ask who did you say
before that checks the purchase order? even when the conversation is not in the
state corresponding to this task).

4.4 Sentence generation

The dialog graph at this point has the definitive structure, but sentences that
will be emmitted by the system at each state have not been generated yet. To
generate these sentences, we proceed in consecutive stages.

First, we create the syntactic specifications for each node. This step uses
the semantic structures generated during label processing (Section 4.2). Using
these annotations –and depending on the BPMN element type they correspond
to– a syntactic structure is created with the appropriate characteristics (kind of
sentence –affirmative, interrogative–, verb features –tense, person, ...–, modifiers,
etc.) Note that some node types require a special treatment. For instance, at the
process start node, the sentence will be headed by the text The process starts
when, to give the user a better context information. Also, exclusive gateways
will be generated as questions and not as affirmative sentences.

Each dialog node can have more than one syntactic structure. Also, the or-
der of the structures can affect the way sentences are generated. The syntactic
structures are provided to the realization engine, a module that applies syntac-
tic, grammatical and morphological rules to produce a correct phrase with the
requested features.

From Process Models to Chatbots 11

We use the realization engine provided by SimpleNLG6 library [4], an open-
source project that uses basic English lexicon and grammar to transform the
input into an appropriate sentence. One of the benefits of SimpleNLG is its
potential to be adapted to other languages, using existing linguistic resources
and performing some code adaptation.

SimpleNLG provides classes representing different kinds of phrases (verb
phrase, noun phrase, prepositional phrase, etc). The calling application can
instantiate any phrase specifying the desired features. SimpleNLG engine will
build the sentences using grammar rules to properly combine the input phrase
instances to form a valid syntactic tree. In our case, we build the phrases using
the semantic structures previously created and we use them as required by the
node type. Once the phrase instances are created, they are sent to the realization
engine to obtain a full sentence.

The realization engine follows several steps to build the final sentence: First,
the syntactic rules are applied to obtain the post-syntax tree. This decides, for
example, the appropriate order for the words in the target language. Then, the
morphological transformations –like selecting the correct determiners or the verb
tense– are applied on the obtained tree. Finally, the last step is the orthography
function, where sentence punctuation is revised and corrected. If there is some
special format required, it is applied after these steps.

Once the sentences for each graph node are generated, we use them as basic
information to create the message sentences and the questions:

When the model contains a message element, the user is asked to choose be-
tween continuing with the next task in the current lane, or to follow the message
and see which task the message recipient will perform7. Message information is
often encoded in the task originating it, and not in the message element itself,
thus the generator needs to check both possibilities and decide which is the right
text to use to generate sentences relative to message sending/receiving.

We also generate possible questions about the elements on the process. We
resort to the same realization engine to produce questions about who is the re-
sponsible for each task, which is the object of an action, or who is the sender/re-
cipient of a message. After some generalization to allow for variations, these
questions are included in the set of regular expressions recognized by function
δ. Also, this nodes are associated with the related task, so after asking, e.g. who
checks the purchase order and getting the answer, the user may decide to follow
the process from that point, or to remain in the current state.

4.5 AIML encoding

Once the dialog graph is complete and all the needed text has been generated,
the dialog can be exported to the desired format to be interpreted by a chatbot
engine.

6 https://github.com/simplenlg
7 This can only be done if the information is present in the original BPMN model.

12 A. López et al.

We use Artificial Intelligence Modeling Language (AIML) standard because
it is the conversational bot definition format most widely used. This XML-based
format builds on the concepts of topics, which correspond to dialog states, and
categories to represent the expected transitions from each state. Each category
specifies a pattern –a regular expression to be matched with the user input–,
and a template providing the answer the bot must emit and the new state to
transition to. Since AIML basically describes extended FSAs, it is straightfor-
ward to convert our dialog graph into this format. AIML patterns allow for the
use of wildcards that will match zero or more words in the user input, as well
as sets, that allow specifying that a word in the user utterance may be any of
a given list. We use both this mechanisms to add flexibility to user sentence
interpretation, allowing for synonyms, or for extra words inserted in the user
input. We pre-encode our sets in general synonym dictionaries extracted from
WordNet [9].

AIML also supports some features over a pure FSA, such as the possibility of
having internal variables to store any relevant information, that may be needed
further along in the dialog (e.g. to store some user-provided information such
as her name, or some other internal information not encoded in the state). In
future versions of our bot generator this could be used, for instance, to ask the
user which process role she wants to play, so when describing tasks executed by
the selected role, the system would output e.g. You check the purchase order
instead of Central Purchasing checks the purchase order.

4.6 AIML Interpretation

Once the AIML dialog definition file has been generated, it can be executed
using any available AIML interpretation engine, so a user can actually interact
with the bot.

Among the many open source available options, we use ProgramY 8. It is
maintained by AIML Foundation (who defines the evolution of the standard),
and it is kept in sync with the latest standard updates. Also, it includes some
useful additional features, like custom tags o full RegEx support, as well as a va-
riety of front-ends to integrate the dialogs in different environments (standalone,
web-based, Telegram, Twitter, Facebook, etc.).

5 Tool support

The methodology of this paper is available through the NLP4BPM platform [2],
accessible at https://bpm.cs.upc.edu/bpmninterface/. Once logged in9, the user
can go to the tab ”BPMN to AIML” where a BPMN file can be uploaded and
get as a result the AIML corresponding to the created chatbot, applying the

8 https://github.com/keiffster/program-y
9 An anonymous user is temporarily available for review purposes with the username

”demo” and password ”caisedemo”.

From Process Models to Chatbots 13

Fig. 6. Example of interpretation for several BPMN process models (available at
https://bpm.cs.upc.edu/chatbot).

methodology of this paper. On the tab ”Interpreting AIML” the user can upload
the AIML generated to interact with the created chatbot.

For a fast insight on the contribution of this paper, we have set up an AIML
interpreter demonstrating some generated chatbots for a collection of BPMN
models, so that a user can interact with them. Figure 6 shows a screenshot of
the environment, accessible at https://bpm.cs.upc.edu/chatbot.

6 Evaluation, Limitations and Use Cases

To evaluate the contribution of this paper, we collected feedback of 33 individuals
from academia (27) or industry (6). After interacting with the chatbot for a
couple of processes, the following questions were answered:
Q1: How was your interaction with the chatbot ? (1: not fluent – 4: very fluent)
Q2: Did the Process Model Chatbot answer your questions about the process? (1:
it did not – 4: it did)
Q3: Do you see potential for this kind of application in organizations? (1: no
potential – 4: large potential).
Two more informations were asked, were individuals could provide free text on
the following two questions;
Q4: What did you like / dislike about the tool ?
Q5: Do you have any suggestions in order to improve the Process Model Chatbot?.

From the answers to Q1-Q2, one can see that there is room for improvement
in the implementation of our ideas: in both questions, more than half of the
answers where on lowest scores. This is an artifact of the limited functionality
of the current implementation, which lacks some flexibility and needs to be
extended to be able to cover more parts of the process. In spite of this, through
the answers to Q3 (81.8% agree on the huge potential of the ideas), we are
confident that by improving theses weakness we will be able to come up with a
solution that can be of practical use in organizations.

14 A. López et al.

0 5 10 15

1
2
3
4

9
8

14
2

#participants

Q1

0 5 10 15

1
2
3
4

3
16

12
2

#participants

Q2

0 5 10 15 20

1
2
3
4

1
5

8
19

#participants

Q3

The answers to Q4-Q5 where an interesting source of ideas for improvement
and encouragement, but confirmed the limited capabilities of the current imple-
mentation. Also, suggestions on use cases where provided, e.g., to help in the
training of individuals, to help in the management of process changes, to have a
state-aware dialogue between the actors and the process, among others.

7 Conclusions and Future Work

In this paper we have presented a fresh view on the interaction between processes
and humans in organizations. By automating the translation between formal
model notations like BPMN into conversational agents, a more flexible ecosystem
is envisioned. This paper represents the first step towards the ambitious goal of
empowering humans in organizations, so that decision-making is facilitated. We
foresee multiple directions for future research, among which we highlight:

– Extend the capabilities of the interaction, either by extending the language
(in our case, AIML), the types of BPMN constructs to consider, or the
interpretation itself. Also, enable the interaction even when the user does
not know the main activities of the process.

– Incorporate domain knowledge and/or other perspectives, e.g., data access
rights, or security/privacy information.

– Create interactions at the level of process repositories.10

Acknowledgments We would like to thank Gero Decker for drawing our at-
tention to the problem considered in this paper. This work has been supported
by MINECO and FEDER funds under grant TIN2017-86727-C2-1-R.

10 In https://bpm.cs.upc.edu/chatbot we provide very simple queries for detecting
processes in a reporitory. One can think on a more elaborated setting where complex
queries can be allowed.

From Process Models to Chatbots 15

References

1. Chen, H., Liu, X., Yin, D., Tang, J.: A survey on dialogue systems: Recent advances
and new frontiers. SIGKDD Explor. Newsl. 19(2), 25–35 (Nov 2017)

2. Delicado, L., Sànchez-Ferreres, J., Carmona, J., Padró, L.: NLP4BPM - natural
language processing tools for business process management. In: Proceedings of
the BPM Demo Track co-located with 15th International Conference on Business
Process Modeling (BPM 2017), Barcelona, Spain, September (2017)

3. Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business
Process Management, Second Edition. Springer (2018)

4. Gatt, A., Reiter, E.: SimpleNLG: a realisation engine for practical applications
(2009)

5. Jurafsky, D., Martin, J.H.: Speech and Language Processing (2Nd Edition).
Prentice-Hall, Inc., Upper Saddle River, NJ, USA (2009)

6. Leopold, H., Mendling, J., Polyvyanyy, A.: Supporting process model validation
through natural language generation. IEEE Trans. Software Eng. 40(8), 818–840
(2014)

7. Matt, C., Hess, T., Benlian, A.: Digital transformation strategies. Business & In-
formation Systems Engineering 57(5), 339–343 (2015)

8. Mendling, J., Baesens, B., Bernstein, A., Fellmann, M.: Challenges of smart busi-
ness process management: An introduction to the special issue. Decision Support
Systems 100, 1–5 (2017)

9. Miller, G.A.: Wordnet: A lexical database for english. Commun. ACM 38(11),
39–41 (1995)

10. Padro, L., Stanilovsky, E.: Freeling 3.0: Towards wider multilinguality. In: Inter-
national Conference on Language Resources and Evaluation. pp. 2473–2479 (May
2012)

11. Pittke, F., Leopold, H., Mendling, J.: Automatic detection and resolution of lexical
ambiguity in process models. In: Software Engineering 2016, Fachtagung des GI-
Fachbereichs Softwaretechnik, 23.-26. Februar 2016, Wien, Österreich. pp. 75–76
(2016)

12. Polyvyanyy, A., Garćıa-Bañuelos, L., Fahland, D., Weske, M.: Maximal structuring
of acyclic process models. Comput. J. 57(1), 12–35 (2014)

13. Polyvyanyy, A., Smirnov, S., Weske, M.: The triconnected abstraction of process
models. In: Business Process Management, 7th International Conference, BPM
2009, Ulm, Germany, September 8-10, 2009. Proceedings. pp. 229–244 (2009)

14. Reiter, E., Dale, R.: Building Natural Language Generation Systems. Cambridge
University Press, New York, NY, USA (2000)

15. Thorne, C.: Chatbots for troubleshooting: A survey. Language and Linguistics
Compass 11(10) (2017)

16. Traum, D.R., Andersen, C.F., Chong, W., Josyula, D.P., Okamoto, Y., Purang, K.,
O’Donovan-Anderson, M., Perlis, D.: Representations of dialogue state for domain
and task independent meta-dialogue. Electron. Trans. Artif. Intell. 3(D), 125–152
(1999)

17. Wallace, R.: The Elements of AIML style. ALICE AI Foundation (2003)
18. Wallace, R.S.: The anatomy of A.L.I.C.E. In: Epstein, R., Roberts, G., Beber,

G. (eds.) Parsing the Turing Test: Philosophical and Methodological Issues in the
Quest for the Thinking Computer, pp. 181–210. Springer Netherlands, Dordrecht
(2009)

19. Weizenbaum, J.: ELIZA - a computer program for the study of natural language
communication between man and machine. Commun. ACM 9(1), 36–45 (1966)

