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S1. Description of Symbols

2 . .
A - s constant defined for convenience

(@?+1)-2-22(a2-1)

0

c salt concentration in solution in the ion-exchange patch system
¢ c¢/c, salt concentration divided by the bulk salt concentration in the ion-exchange patch system
Co salt concentration in the bulk solution in the ion-exchange patch problem
C; concentration of ion i in the virtual solution for the boundary layer or in the numerical

simulations, the real ion concentration in the boundary layer
C; concentration of ion i in the real solution in the membrane or in the boundary layer

Cio concentration of ion i in the left or right stirred solution
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Cx concentration of fixed charge in the membrane

c sum of the mobile ion concentrations in the membrane

C&orcC sum of the concentrations of all ions in the virtual solution

Co sum of the concentrations of all ions in the bulk stirred solution

Ca ¢4 — Cy; difference in the concentration of two counterions

Ca Cq — C,; difference in the real counterion concentrations in the membrane
Cay ¢4 — C, at the left side of the left boundary layer

Car €1 — Cy at the right side of the right boundary layer

Crp €1 — ¢y inthe bulk solution

D; ion diffusion coefficient in solution

D; diffusion coefficient of ion i in the membrane, normalized by the boundary layer thickness
E, constant bulk electric field defined in the ion-exchange patch system

f o

F Faraday’s constant

g(&,n) function defined in Eq(62) for solving the Laplace equation

Ji

j(l)

~

Ilim

~¢

index representing a specific ion

flux of ion i

small correction to the flux of ion “1” given in Eq(48)
current density

current density divided by Faraday’s constant

limiting current density divided by Faraday’s constant

: dimensionless current

T
integration constant in Eq(63)
integration constant in Eq(64)
half width of an ion-exchange patch
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L Half thickness of the membrane divided by the boundary layer thickness
P; boundary layer permeance to ion i, i.e. permeability divided by boundary layer thickness

p* I;D;; permeability of ion i

P, salt permeance of the membrane
R gas constant
S; Ziﬁ; sum of permeance-normalized fluxes
3

.S_'j é—l + é—z; sum of fluxes divided by the normalized diffusion coefficients in the membrane

1 2
S, Y. Z; -ﬁ; sum of the ion charge multiplied by the permeance-normalized fluxes

L

Sa 113—1 — IJD—Z; difference of permeance-normalized counterion fluxes

1 2
Sa é—l - 113—2; differences in counterion fluxes divided by normalized diffusion coefficients in the

1 2
membrane

P1C10

ty ; transference number for counterion “1” in the boundary layer with an ideally

P1C10+P2C20
permselective membrane

P;¢C30

t, ; transference number for counterion “2” in the boundary layer with an ideally

Pic10+P2C20

permselective membrane

T temperature

X coordinate for one-dimensional diffusion or a coordinate for the ion-exchange patch

y i—; or a coordinate for the ion-exchange patch

Vo the value ofi—:;when =0

V1 a constant for linear correction of y, i.e.y = yg + Sy,

Z; charge of ion i

a \/ﬁ:—?; square root of the ratio of permeances to counterion “2” and counterion “1” in the

boundary layer
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D. . . . . . . wnn . wan .
a /5—2; square root of the ratio of diffusion coefficients for counterion “2” and counterion “1” in
1

the membrane

B c;co . ;1222; parameter defined for the linear correction

o) boundary layer thickness

Yi activity coefficient of ion i in a virtual solution

Vi activity coefficient of ion i in a real solution

[; Z;i, partition coefficient for ion i between a real and virtual solution

n y-coordinate divided by the patch width

A Zi‘;} dimensionless voltage drop on the half width of the ion-exchange patch
i electrochemical potential of ion i for a real or virtual solution

ui standard state chemical potential of ion i in the virtual solution

i real solution standard state chemical potential of ion i

V; stoichiometric coefficient of ion i in a salt

& x/&; x coordinate divided by either the boundary layer thickness or the thickness of an ion-

exchange membrane patch

&o any specificed x-coordinate in the boundary layers divided by the boundary layer thickness
10 virtual electrostatic potential multiplied by F/RT

7] real electrostatic potential multiplied by F/RT

0] virtual electrostatic potential with dimensions

¢ real electrostatic potential with dimensions

Yp Donnan potential at the membrane-boundary interface

S2. Origin of Eq(1), ion fluxes

In one dimension with no convection, Eq(S1) describes the transport of ion i,
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_ _ GiDidp;

Ji= "% ix (S1)

where [i; is the electrochemical potential of ion i, D; is the ion diffusion coefficient, ¢; is the real
concentration of this ion, R is the gas constant and T is temperature. Eq(S2) gives the electrochemical
potential of the ion, where

i = @ + RTIn(y;¢;) + Z;F p 52

fi{ is the standard-state electrochemical potential of the ion, ¥; is the activity coefficient, Z; is the ion
charge and ¢ is the real electrostatic potential.

Assuming that y; = 1, differentiating Eq(S2) and substituting into Eq(S1) yields the typical Nernst-Planck
equation.

146 ﬂ@) déi CiZiF dp (S3)

¢; dx RT dx

Ji = —C_iDi(

— Piax YU RT ax

Use of this equation requires both partition coefficients (to obtain boundary conditions for real
concentrations) and diffusion coefficients. The use of virtual solutions, or solutions that could be in
equilibrium with a given point in the membrane, simplifies the model in that it requires only a single
permeability coefficient. For the virtual solution, we obtain

i = ul + RTIn(y;c;) + Z;F 4

where c¢; and ¢ are the virtual concentration and electrical potential, respectively. We define the
partition coefficient

r,=% (S5)

Ci

Differentiation of Eq(S4), substitution into Eq(S1), and the use of Eq(S5) leads to

i = _I.D.c (L3 4 ZiFad) _ _p«(dci . ZiFd
Ji = l-‘LDlCl(cidx-}_RT dx)_ PL (dx+ClRT dx) (56)

In this equation, we defined P;* = I;D;, where P;"* is the permeability to the ion.

We also define a dimensionless coordinate, £, where £ = x/§ and § is the boundary layer thickness.

Additionally, we define a dimensionless electrostatic potential ¢ = ¢;—T. This leads to

. de; d
Ji = —F (d_(;’ +ciZ; d—?) (S7)

In this equation P;=P;" /&, which is the membrane permeance.

S3. Derivation of Eq(20), potential drop across the membrane (not including the boundary layers)
under conditions of equal counterion electrochemical potentials

S6



As noted in the text, equating ion electrochemical potentials in Eq(S4) for the ideal virtual solutions on
the two faces of the membrane gives

ln(c1 (—0)) +@(—-0) = ln(cl(+0)) + @(+0) (S8)

ln(cz (—0)) +@(—-0) = ln(cz(+0)) + @(+0) (S9)

where —0 and +0 denote the left and right surfaces of the infinitely thin membrane (see Fig. 1). Thus
far, we solved the differential equations for the sum of ion concentrations and the potentials in the
boundary layers (see Eq(6) and Eq(11)), but we need to know the individual ion concentrations to
substitute into Eq(S8) or Eq(S9) to solve for the potential drop across the infinitesimally thin membrane.

By subtracting Eq(S9) from Eq(S8), one obtains

In ("’1(‘0)) = In ("’1“0)) (510)

Co (—0) Co (+0)

We define the following variable
Ch=ci—0Cy (511)

Using the definitions of C, and C, and noting that for a solution containing only monovalent ions ¢; +
¢, — ¢3 = 0 (electroneutrality) in the boundary layers,

¢ = i (C +2Cp) (S12)
¢, = % (C —2Cy) (513)

Substituting Eqs(512,513) into Eq(S10) leads to

C(=0)+2CA(=0) _ C(+0)+2CA(+0)

C(=0)=2CA(=0) ~ C(+0)—2Cx(+0) (S14)
This equation transforms to
Ca(=0) _ Ca(+0)
c(-0) ~ C(+0) (515)
Substituting Eq(S12,513) into Eq (S8) leads to
CA(+O)
(@G0 _ . (ceor2cacroy _, (CHo(1+27455)
P(=0) = p(+0) = In (22D = jp (LD _ (—C(_O) e (s16)
Finally, using Eq(15) gives
c(+0) Co+Sj
—0) = 0(+0) = I —1 (_1> 517
9(=0) = p(+0) = In(GF) = In (22 (517)
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S4. Derivation of Eq(27), potential drop allowing for the resistance of the membrane and introduction
of a third differential equation in the solution and in the membrane

Introduction of a third differential equation
The boundary layers.

To introduce a third differential equation, we define the following variable

=Ji_1J2
Si=p— (S18)

where ions “1” and “2” have the same monovalent charge sign and are counterions of the ion-exchange
membrane. Subtracting Eq(1) for ion “2” from Eq(1) for ion “1” yields

_¢. —4C 4o
Sv=" Tl g (S19)

This is a first-order ordinary differential equation that can be solved in quadratures. The solution is

Ca(®) = exp(0(50) — 9(©) - [Ca&0) = Sa - [ exw(p(€) — p(£0))d | (520)
By substituting Eq(11), @ (&) — (&) = ";—Z In (%), we obtain
Ca® = (£2)° [CA(SO) =5y o ()Y g (s21)

Substituting Eq(6), C(§) — C (&) = —S; - (§ — &) into the numerator of the integral, after integration
and transformation one obtains

Sz
_ _ SwC)\ | (LONTS) |, SCG) | €@
)= (CA(E") Sj"'SZ) (o) + o5 cen (522)

With complete blockage of coions from the membrane and monovalent positive counterions
jz=0 (523)
Sz =5 (524)

Substituting Eq(S24) into Eq(S22) yields

Sa-C c®\ 1 spc c
Cp(8) = (CA(fo) . Azs(jfo)) . (c((jo))) + Azs(fo) . C((;O)) (525)

Eq(6) and Eq(S25) are relationships between the ion fluxes (contained in the constants S, and S;) and
solution composition (given by C(x) and C4(x) since due to the electro-neutrality of virtual solutions
only two virtual ion concentrations are independent.
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Inside the membrane

Next, we consider the membrane phase. Defining

Cy=¢ — 6 a”dgAEé_ll_é_zz (S26)

we obtain this first-order ordinary differential equation with constant coefficients for the difference of
real counter-ion concentrations in the membrane.

dac, = 5

dg‘ Ca- -+ SA=0 (527)

(This equation relies on the identity that Cy CS—’ = —c‘l pT: + Cy d—f and stems from Eq(S3) with non-
X

dimensionalized coordinate and potential and complete coion exclusion. We took the difference of the
modified Eq(S3) for the two counterions.) Eq(S27) has this exponential solution that relates the function
C, at two arbitrary points inside the membrane:

Ca§) = Ca(®) - exp( (€ - f)>+Cx _] (1—€xp< (€ - f))) (528)

Next, we apply the boundary conditions of known solution compositions in the perfectly-stirred
reservoirs and of Donnan equilibria at the membrane surfaces. Virtual concentrations just outside a
membrane surface are related to the real concentrations just on the other side of this interface (inside
the membrane) via exponentials of the Donnan potential.

Therefore, at the membrane surfaces

(e + ) -exp(=p) =+ ¢ =cx (S29)
where ), is the Donnan potential. Since, just outside the membrane, ¢; + ¢, = g

exp(—thp) = =X (530)
Accordingly,

Cp(membrane boundary) = Cp(solution boundary) - exp(—yp) = Cp == ZCX (S31)
In particular, at the left and right membrane surfaces

Co(=L+0) = Cp(—L—0) -

C( = 0) (S32)

Coa(L—0) = Cp(L+0) - (533)

C(L+0)

where L is the membrane half-thickness scaled on the boundary-layer thickness. At the same time, using
&' =Land & = —Lin Eq(S28) gives

S9



Co(L —0) = Cy(—L +0) - exp( ) +oyr s (1 — exp (ZLSJ)) (534)
J
By substituting Eqs(532,533) into Eq(S34), we obtain

Ca(L+0) _ Ca(=L=0) 2157\ | Sa (4 _ 2L5;
c(L+0) _ ¢(-L-0) exp( x ) tos (1 exP( ox )) (535)

When @ — 0, Eq(S35) becomes Eq(S15), consistent with the limiting case of zero differences of
X

electrochemical potentials of counterions that should occur for very thin (small L), highly charged (large
cx) and permeable (small S_']-) membranes.

The derivation of Eqs(12-13) and Eq(S25) is not specific to the way we treat the membrane. Substituting
coordinates into these three equations gives

C(-L-0)=C,—S; (S36)

C(L+0)=Co+S; (537)
_ SaCo\ . (_Co 5a(Co=Sj)

Ca(—L—10) = (CA(—L -1)— 25, ) (co-s,-> + 2S; / (S38)

Note that —L — 0 and L + 0 correspond to positions in solution just to the left and right (see Fig. 2) of
the membrane, respectively. Substituting Eqs(S36-S39) into Eq(S35) with rearrangements and noting
the definition of the sinh function gives

2 2 _
car_su). (G 1Y _ (Car S\ (€ V. g (—B5E) — _ (S8 _ S
<C0 251') (CO—S]') xP( ) (Co ZS]> (C0+Sj) exp( Cx) - (5]' S]) th( X)(S4O)

where
CA,l = CA(—L — 1) (541)
CA,r = CA(L + 1) (542)

The voltage drop across the system when the membrane has a finite thickness

Now we consider the entire system (boundary layers plus membrane). Eqs(14,15) still apply (repeated
below), but the values of the parameter S; will be different from the limiting case of zero
electrochemical-potential differences and the coordinates will be different.

(1) — (- 0)_Sz In (C S}) (left boundary layer) (14)

S10



e(+0) —p(+1) = 2. In (ﬁ) (right boundary layer) (15)
Sj Co

If the membrane has a finite thickness, the left hand side of Eq(14) will represent ¢(—1 — L) —

@(—0 — L). Similarly the left hand side of Eq(15) will represent (¢ (L + 0) — @ (+1 + L).

Substituting the coordinates into Eq(26) gives the difference of the real electrostatic potentials at the
two interior sides of the membrane.

2LS;
Cx

o(—L+0)—p(L—-0)= (543)
Additionally the total potential drop between the two boundary layers should also include the
difference between the two Donnan potentials (defined as the membrane potential minus the solution
potential in both cases). Using Eq(S30)

Yo(—1) = ¥p (1) = In (S2) = In (@) (544)

Co+S]
Summing Eq(S43) and Eq(S44) gives the total potential drop between the boundary layers.

Co+S]
CO—S]‘

_ _ 2LS;
D=L +0) = p(L = 0) = G(-L+0) = §(L — 0) = (Yp(~L) ~ hp (1)) = =L+ In (2L (5a5)
Finally, adding up the virtual-potential drops across the boundary layers (Eq(17) and the membrane

(Eq(S45)), for the total electrostatic-potential difference we obtain

o(—1—1)— (1 +1) =2 [Lc—if+ ln(g—f:)] (s46)

Note that Eq(S46) assumes ::—Z =1.

J
S5. Derivation of Eqs(29-35), Concentration profiles under bi-ionic conditions with equal
electrochemical potentials across the membrane

In the bi-ionic configuration with different 1:1 salts on each side of the membrane, but at the same
concentration Cy, the following apply with complete coion exclusion. (lon “1” is not present in the right
perfectly stirred layer and ion “2” is not present in the left perfectly stirred layer.)

CA,Z = Co/z (547)
Car = —Co/2 (548)
J2=—h (S49)

Based on the definitions of Sjand Sy,

Sa _ P,+Pq

S = b, (S50)

S11



Starting from Eq(S25) (repeated here for convenience),

_ CSaCE)Y L (C@\TT | sacl) | c@)
CA(E)—(CA(&)) 25, ) (C(m) AT (525)

for the infinitesimally thin membrane with substitution of Eqs(12,13) we obtain

T _SaCo\ . (_Co Sa(Co—5j)
Ca( 0)—(CM 25}_) (co-s,-)+ o (s51)

_ _SaCo\ . (_Co Sa-(Co+5;)
Ca(+0) = (Cay 25,-) (C0+5j)+ o (s52)

Inserting Eqs(S51,552) and Eqs(12,13) into Eq(S15) gives

SA.CO 1 SA'CO 1
Cag = 22) = (o - 22). L 553
( Al 28; (CO—S]-)Z Ar 28; (C0+Sj)2 ( )

Substituting Eq(S47,548, and S50) into Eq(S53), with appropriate rearrangements, we obtain

Sj _a-1
CO - a+1

(S54)
where
a’?=r,/P, (S55)

In the left boundary layer, Eq(6) C(§) — C(&,) = —S; - (£ — o) leads to

@=1_ﬁ(§+1) (S56)

Substituting Eq(S54) into Eq(S56) gives

D-1-(5)a+o (557)

Starting from Eq(S12), ¢; = i- (C + 2C,) and inserting the expression for C5(&) in Eq(S25) leads to

1 SaCo) (CENT | saC(®
=1 <C(§) + (co - %) (52) "+ As—f) (s58)

Substituting Eq(S50) and appropriate transformations leads to

268 Co

Co ¥ C, C®
@ =2 —2—"C (559)
Similarly,
o Lo _C®
C C
c(§) =2 o (560)

S12



Derivation of the concentration profiles in the boundary layer on the right side of the membrane follows
similarly.

S6. Derivation of ion fluxes (Eq(36)) under bi-ionic conditions and equal electrochemical potentials
across the membrane

For complete coion exclusion j; = —j, and
vy di_h_h
5i = lei P, P, (S61)

Dividing this expression by Cy and substituting Eq(S54) along with appropriate transformations leads to

Co (562)

1= (;Jr;)z

NN
S7. Derivation of an expression for the bi-ionic potential drop, (Eq(37)), under conditions of equal
electrochemical potentials across the membrane

Starting from Eq(21) and substituting the expression for% in Eq(S54) leads to
0

Co+S; 1+? 1+a__1

o(=1) — (1) = Zln< 1) = 2in| =% | = 2 | ez (563)
Co=5j 1 B

0

Rearrangement gives
— P

p(-1) — ) =2In <“T“> = 2Iln(a) = In(a?) = In (P—Z) (S64)
— 1

a+l

S8. Derivation of a first-order flux correction (Eq(38)) to the limiting case of constant electrochemical
potentials: Bi-ionic potentials

This derivation starts with Eq(S40), which we repeat hear for convenience.

2 s 2 = _ _
Car_Sa) . (Lo ) . LSy —(Car _ S} (o) . ) A I T N i
( Co 251') (CO—S]') exp (Cx) ( Co 25]') (C0+Sj) exp ( Cx) - (5]' 51) sinh (Cx) (540)

LS

We assume that the terms C—’ is small. This leads to the following linear approximations
X

] LS; LS; LS; LS; LS; LS;

sinh (—]) =L exp (—’) =14+ exp (— —’) =1-- (S65)
Cx Cx Cx Cx Cx Cx
. S L, C c 1 . .
Inserting these approximations along with % = — CA‘T =3 (monovalent salts with only one salt in each
0 0

stirred solution) leads to

S13



Rearranging yields
(-5 Ga5) + (r2) ) {0 -5) () - () )
Sj Co—Sj Sj CotSj Cx Sj Co—Sj Sj CotSj

2 (Z—f — i—j)} =0 (567)

This equation relates sums and differences of fluxes to permeances, diffusion coefficients, and the bulk
sum of concentration. Our task is to make the relationship between a specific ion flux and the
permeances and normalized diffusion coefficients explicit. Based on their definitions, we also have the
following expressions

S P,+P. a’+1 _ P, |D, PP Si
A2 1o ca,a= |2, |2 p= Lz.y=-L (S68)
S] PZ_Pl a?-1 P D CX/CO D1D2 CO

Additionally, from the definitions of.S:j and S, and the assumption of steady state and coion exclusion

with j, = —J;

_ —_ 1
Sj _Sj Dy Dby_ . P2 (52—1 ] a —1 P, PPy _ (&2—1) a (PP _ (A3 PP,
CO - CO i—i - y 52 az—l az 1 Dz 5152 - y a-1) @ 5152 - y a—l 5152

P1 P2 a

(S69)
Moreover, the definitions of S, and S; and j, = —j; give
B 11 5
Sa D, Dy a“+1
24— = S70
S] 1_1 @2-1 ( )
P1 P2

— — — 1 — 1
LSj_ L Si__L Y i N Rt R

cx ~ ¢x/CoCo CX/COy <a—§> DiD, — By (a—é) (571)
Substituting Eqs(S68,570,571) into Eq(67) gives

a?+1 1 \2 a?+1 1\?2 a?+1 1\?2 a?+1 1 \2
(1-25) () +(0+55) G5) + {(1 ~o) (S) -+ 5) () +
a?+1  a@’+1 5—%

2 (az—l - 32—1)} "By <E> =0 (572)

The use of common denominators leads to

S14



(5)- () + G5)- 65 + () () - G- 65) 2 (552} o
<%> _ (573)

. a?+1  a*+1 _ (a?+1)(@®-1)-(e*-1)(@*+1) _  2(@*-a?)
Noting that prai @ D@D = D@D

substituting this expression into

2_
Eq(S73) and multiplying both sides of Eq(S73) by — ( D leads to

1\2 5 1\? 1 )2 2 (1% 2(@-a? ;
(E) * (m) +{(§) ta (m) @- 1)} y-\2) =0 (574)
Multiplying both sides of the equation by (1 + y)? yields
(”_Y)Z_ 2 4 (ﬂ) _ (14 y)? 2@ a— 0 -
i) ¢ 1-y Y@y Y- oy (S75)

Next, we make assume a linear correction in the sum of the fluxes, S, due to the finite membrane
thickness. We do this in the form

S.
y= C—(’) =yo + By1 (S76)

In Eq(S76), y, is the value of when B =0, and y, is a constant. Note that when § = 0, we return to

the limiting case. Subst|tut|ng Eq(S76) into Eq(S75) and retaining only expressions with linear terms in 8

leads to
_ 1

1+y0+BYy1 a? 1+y, _ 2 2(@-a?) =3\
(1—370—[3311) + {( yO) a (1 + yO) ( 2_ 1) } :8y0 (a_§> - 0 (577)
Note that because the term in braces is multiplied by 3, we discarded the corrections within the braces.

at+l+a—-1
Substituting yo = — (Eq(554) and +yz =gt — 27“ =aq,
a+1
— 1

Ry AL { b (14 ) ) (oo (1)

(1‘3’0‘53’1) at et ta (1 t a+1) (@2-1) B (a+1) a—é =0 (578)
. . 1+y,+By, 1+y,o 1-yo
Multiplying (_1—yo—ﬁy1) by (—1_y0) (1+ 0) yields
14 By

(1+3/0+ﬁ}’1) — Y 1+y, (579)

1-yo—By1 1-yo l—f_Lylo

1+§° = a (rearrangement of Eq(S54) leads to
-Jo
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By1 \ 2

By1
(Looti) _ g i) o (1+3’o+ﬁyl)2 = g2
1-yo=B¥ 1-E2L 1-yo=By1 1-£2L

1-Yo 1-Yo

1-Pry1 14y, 1-y,
1-Yo

By1
1 —_
If% is small ( 1+y°> = (1 + zﬁi) (1 + zﬁi) Thus, taking only linear terms
0

By
1+yo+BYy1 2 2 1-|'1+le 2 2 1 1 2 1a?By,
(—) =a 5 ~a‘+2a ﬁyl(—+ =a°+—7"
1=Yo=By1 1—ﬁ 1+y,  1-Yo 1-¥5

Substituting for y, = Z—: and rearranging gives

(208 < 21+ (2 )] = 21+ 1 (22)

Subsituting Eq(S82) into Eq(S78) yields

214 (4@ (2] - o + fra - (22)7 2E) g (1), 2\ _o
a a a a a a+1 (@2-1) [)) a+1 a—% -
This is identical to

2 \? (@=a)] (2
ﬂ{(1+a)2-y1+2a- [1—(m) . (52—1)].<a_—%>.y0} =0
Dividing by 8 and applying significant transformations leads to
, 2
2, 22 g _Ly_(_2 (2., =
1+ a)-» t e [(a a) <\/LE+\/E> (a a)] Yo =0
Finally,
, 2
2a — 1 2 a «a

N~ T i@y [(a - E) - <%a+‘/5> ' (Z - E)

(a-5)] -7

From the definition of §; = ;—1 + IJD—Z, with complete coion exclusion (j, = —j;),
1 2
g P o PP
1= S] Py—Py S] a—<
a

Additionally,
. Sj  Co/PiP. JP:P.
J1= c_: * —oa_i = Co ai; o + By1)

a a

S16

¥ =~ g | (@ 5) ~ (

(S80)

(S81)

(582)

(583)

(S84)

(S85)

2 )2
1+a

(586)

(587)

(588)



Substituting for y; using Eq(S86) and the definition of £ (Eq(68) gives
\/P1P2 L |PPy ( 2a? _ 1\ (2 2 5 a? ) )
1=’ T\ Y0~ e B, \@narar (@-2)-(52) ~(@=F)|»)) (89

Substituting y, = (Z—:) (see Eq(S54)) and using the definitions of a, @ = \/?,\/%, one obtains after
1 1

extensive rearrangement

2L

2
ji = ( : c0 \/:_\/ix/co) i [(Eil _ Eiz) _ (ﬁ) (% — ’;_z)] (S90)

Pq

S9. Derivation of a first-order potential difference correction (Eq(39)) to the limiting case of constant
electrochemical potentials: Bi-ionic potentials

This derivation begins with Eq(27), which we repeat below for convenience.

p(-1-1) = o +1) = 2|+ n (C"tjj)] (27)

We need to make small corrections to the values of S_J and S; obtained with the assumption of equal
electrochemical potentials of counterions across the membrane. Based on Eq(S71) and taking only
linear terms in B

LS’ =By < ‘f) BYo - (j—:i) (591)

For the last term in the brackets in Eq(27),

By1
CotSj 4y _ 7., (1t A _ -
In (co—sj) In (1 y) ~ In (—) +In <1_ By1> ~ In(a) + By, - (— + —) = In(a) + 28y,

1-yo Fh 1+yo
-Yo

1 _ By1-(a+1)?
(1_%) =In(a) + —— (592)

Eq(S92) uses the approximation that In(1 + x) = x and In (Tlx) = x for small x. It also includes y, =

a-1 1+
g0 = =220,
a+1 1-v,

Substituting Eq(S92) and Eq(S91) into Eq(27) gives

p(-1-L)—p(1+1L) ~2 [ﬁyo (a ‘f) +In(a) + %‘;“)2] (s93)

Eq(S86) gives an expression for y;. Use of this expression in Eq(S93) leads to
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_ 1 2
Pp(-1—1)~ (1 +1)~2 [ln(a) + ﬁyO'{(Z—E> —ﬁ[(a -3)-(=%) -(g—;)m (s94)

Substituting y, = Z—: and rearranging gives

4
5 _
p(-1-L)—p(1+L)~2 [ln(a) + B < +f> (g—g)] (595)
Substituting f = /c 11)311;2 anda,a = /ﬁz fDZ and rearranging finally yields
0 172 1

__1

_ D1 Dy B D,
$10. Derivation of Eqs(42, 43) for the flux and potential drop during current passage in the limiting
case of constant electrochemical potentials across an ion-exchange membrane

I
N

4 8LG,

p(-1-L)—p(1+L)=In (P—l) (S96)

For a membrane flanked by boundary layers and two perfectly stirred reservoirs with the same solution
composition,

Cap = Cpar = Cpp (S97)

In this case, Eq(S53) becomes

SA'CO 1 SA'CO 1
Crp — ) — (CA ) : (598)
( 0255 ) (co-5))? ° 257 ) (Cots))
1 s 1
Because > will in general not equal ———;, then
0=Sj Co+Sj)
_ SaCo _ Sa _ 2Cao
Cao _zsj =0so 5, . (S99)

Using Eq(40), , j, = I — j;, and the definitions of S,, Sj,and Cp o, and Cy = 2¢4¢ + 2¢3, One can show
that

i (P2i1)_7
Sy _ 1 (P1+1) ! _ 2Ca0 _ C10=C20 (S100)
Ji jl-(f,—i—l)+1~ Co C10tCz0
Accordingly, solving for j; gives
, I IP;-¢c10
- 5101
J1 =P P2:201 7 PycyptPrc1o ( )

P1-c10

Using the definition of §;, Eq(40), and Eq(S101), we obtain
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S = (1 l) i_i[ Pic1o (i_i) 1 _i[CIO(PZ_Pl) + 1] _ I c19(P;=P1)+P1C19+PyCa0 _

\p, p P P1C10+P2C20 \P1 P P Py LP1c10+P2C20 P P1C10+P2C20
C10+C20 Col/2

P1C10+P2C20  P1C10+P2C20

(S102)

Substituting Eq(S102) into Eq(21), ¢(—1) — @(+1) = 2In ( ) yields
0

Cot Col/2 14 1/2
_ CotSj\ _ 9" Pycio+Pacao | _ Pici0+Pacp0 | _ P1C19HPyCa0+1/2
(p(—l) - (p(l) =2ln (:) =2Iln — iz | T 2ln — iz |~ 2ln (m
0—Sj Co—o— 02 11— 1C10T1r2C20
Pic10+P2C20 Pic10+P2020

(S103)

S11. Derivation of Eq(45) for the flux of ion “1” during current passage: First-order correction to the
limiting case of constant electrochemical potentials across an ion-exchange membrane

As with the bi-ionic potential, this derivation starts with Eq(S40), which we repeat hear for convenience.

2 2 _
@_S_A Co LS] Car Sa Co . _ﬂ _ S_A SA
(CO 251) (co—sj) Texp ( ) ( Co zsj> (Co+sj> exp( cX) - ( ) smh( ) (540)

Sj S
. LSj . . . L .
We again assume that the term C—’ is small, which leads to the linear approximations described

X
previously.
smh(CX)—CX,exp(CX)—1+CX,exp( CX)—l = (S65)

Substituting these approximations gives
T B T B T X\ A
Co 2S; Co—Sj cx \ Co 2S; Co—Sj Co Sj CotSj cx \ Co S; CotSj
S LS;
<§g__ig).__i=o (5104)
Using Ca; = Car = Cp 0, Eq(S97), and rearranging gives

Cao _ Sa Co 2_ o ? +£_1' Cro _ Sa), Co 2_|_ o ? + S_A_g_A =0
Co 2S;j Co—Sj CotSj Cx Co 2Sj Co—S;j CotS; Sj §j

(5105)

We will look at the different terms in this expression to eventually solve for the fluxes of individual ions.
First, we remember that for applications of a constant current

Ja=1-j (40)

= . (L_1 i
S'j _]1 ( - 2) + ) (5106)
co—; (L_ 1 +i 7
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S.__ -
= J P 1 1 I
J 11

(-p;) \1 D/ D

. - . . . N _ P
With sufficient identical transformations and substitution of ¢, @ = |2
obtain

1 . a «a
¢ = [PaP2 73 + I . @a
J 5152 J a—é ,/P1P2 a—%

As in prior derivations of corrections to bionic potentials, defining y = Sj/CO leads to

b))

where we define a dimensionless current, |

P1P;
D;D,

I

[=—
Co+/P1P;

Using Eq(S111) and the definition g = CH i e
854 " ¢x/Cy +D1D;

LSj _ g 5ilC

T Tex/Co

P1P;
DD,

cx cx/Co

b @b GG

Substituting Eq(S108) and Eq(40) into the definition of Sy

I

S.__ ~
7P 11 T
Sa= (i_i)'(p—h—) 5
P. P, 1 2 2
. . . - P
With appropriate transformations and substitution of a = P—Z,
1
1,1 1,1 1
_+_ ~ _+_ il -
P, P I PP P,+P. = 1 a+ 21 1
SA=%'iif—;“<1+gL£>=%';4“‘U'Q_p)=%'if—7??'<_J
P1 P 2 P1 Py 2 1 2 1 a 12 a

Finally, dividing by both sides by S; and substituting the definition of y = S;/C, and [=

1 v
e _1. (2L
a— y \a—

a a

S20

(S108)

(5109)

D, . . .
, /_—2 into this equation, we
Py N Dy

(5110)

(S111)

(5112)

(S113)

(S114)

T .
———vields
Co\/P1P;

(S116)



Using a similar procedure

5= 5 (Te) - 2L (2 5117
A= 9j &_—% \/51—52 Ec——% ( )
Dividing both sized of Eq(117) by .S:] and in the second term on the right substituting for .S_‘jfrom Eq(S113)

leads to

. ad [ a X ( 2l )
Sa a+= CoyD1D2 (52—1) a+= a—=
5, a2 ) T | fan [=E\ \a=t) T ek (== (5118)
P R Ee(E) Y () ()

Looking at Eq(S105), which we repeat here for convenience,

cao  Sa\( e V(o V| 58 fcan  sa\ I( o N L G V|, (sa_3a\l_
-8 -~ +=4 — 24 + + (23l _p
Co 2S; Co—Sj CotSj Cx Co 2S5; Co—Sj CotSj S; S;

(S105)

c S i
CA"’ — S—A) must be zero so the first term goes
0 j

. . e e L
Considering the limiting case where - approaches zero, (
X

. . c S
to zero. Thus, for small linear corrections, ( CA"’ — —A.

) should be small. In this approximation
0 j

15 (an _ su ). (e} 4 ()] & o (s119)
Cx CO 251 CO—S]' C0+S]

Cao _ Sa
Co 25

. . LS; L
because it contains the product of two small terms, namely C—’ and ( ) Taking into account
X

Eq(S119), Eq(S105) becomes

(CA_,o_S_A)[( Co )2_< G )2]+£f(5_A_§__A)zo (5120)
Co ZS]' CO—S]' C0+S]' Cx S]' S]'
With the substitution that y = S;/C,,
2 2 2 2

Co _ (Lo (Y () =
(co—sj) (c0+sj) - (1—y) (1+y) (1-y2)? (5121)
Substituting Eq(121) and Eq(S113) into Eq(S120) gives

_ — 1 a «a

Cao _Sa)._ 4y Sa_Sa).p.lv. (%2 iz el ~

(2 Co Sj) (1-y?)? 2 (Sj 51’) A [y (a—%) +1 (a—%)] ~0 (5122)

Identical transformations lead to
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x>\ ) T ) e T Ty
a_@\? 5
R O R AMCE RIR = RRACE RE G

(S124)
In the absence of small corrections, i.e. in the limiting case where L approaches zero, the first term of
Eq(105), (ﬁ - S—A) must be zero. Using Eq(116)
Co  2Sj
2Ca0 _Sa_ (“a) _ 1 (2 (5125)
Co  Sj a—é Yo a—%
Solving Eq(S125) for y, yields
2al ¥
= = adl $126
° (a2+1)—26?—’0(a2—1) ( )
0
A= 2 L= G (5127)

(a2+1)—2cg_'°(a2_1) fraz-(-f) C10+C20
o

— — l a «a
In Eq(S122), we multiply 2 (‘;—f - %) . [y . <%> +1- (ﬁ)] by- B, so we can approximate y, for y in

Eq(S124). This leads to
sy § a-= g2 al
24 240, Y .2 a)|l = =
2(2-3) [y (a-é)“ <>] (2

c
In Eq(S122), with the correction, the term (% — &) will be small. Thus, we can also susbstitute y, for

o Sj

(5128)

+ i
y in the term Finally, we return to LY (a—‘f> — % <2—11> in Eq(S116). With the substitution of
ot

4y
(1-y%)% Sj a——
a

y = yo + BYy4, the expression becomes

a
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ol

1 y
ato 1 21

i at] YotBY1 . a-X

J a a

. L 1
Using the approximation that for small x, T 1—x,

ol

w1 (2,
J “‘é YO(1+By—};1) a—é
Substituting from Eq(S125)

S_Azzcﬂ_k 2_7 &
S; Co a—% yé

Thus,

<ZCA_O_S_A)_ 4y 4Y 2]
o 5 0w’ ) ey

Byn _
v§

()

1 .

“_+‘> _ <_> .1( _Bn
1 1

a—; (X—E Yo

By1

vor(1-y2)

Substituting Eq(S132) and Eq(S128) int Eq(S122) and dividing both sided by £ leads to

< 8 > vy 4l
—\ -1 z 2
a——/) vo(1-¥§) (a—é)

2al

Substitutin =
& Yo (a2+1)—2CCA—(;°(a2—1)

2y, I

T aA(1-(aal)?)? (a-D)

Rearranging yields

_ 2y, I
aA(1—(aAD)?)? (a_é)

(a8 +25) (

or- (-3 i

1 a a
a)+a‘(a‘z)

= aAl and multiplying by by (a — %) /4 gives

<
—

)
=

4]

Through the series of transformations shown in the non-numbered equations below

(ca+3) (-5 + G =6

2y I %—Z
- aA(l—(alAi)z)z - (a-2) {(;) [(aA +2

<l

)| (ea+ 2+ 5 E<_) [(ca+2

a a

S23

(5129

(5131

(5132

)

)

)

+—5 = 0(S133)
a—

T =
a

=0 (S134)



~ A e (a_g)i(a_%) {(% ~)(ea+ D) (@-2)+ G0+ (a- %)2} +1- 83 =0

= S (6 5[ 2) (- 2) o (5D (a2 - 2]

=G Y=1(+a>-N-D=1 1-PNE@-D=0-f(a—7)

alfa(lf)

=q-(—1
a(A-1)=a (f+a2-(1—f) 1) Fraaon =0 (- f)f+a2(1 -

(aA+1) (a+ )_a (1- f)mz(1 =+ (1- f)(a——)_(l f)(a——)[ -

_ f+a*(1-f)-a? _ _1\_f(1-a?
f+a2 (1- f)] (1 f)( a) f+az@1-f) (1 f)( )f+a2-(1—f)

we finally obtain

_ _aa(-@n?)® _HE-) A=-f)-f-1-a®)=- f(l D.og-(1—a?)-A2- (a a)

1= 2 f+a2-(1-f) a «a

[1- (aAf)z]z -1 (5136)

Thus,

y=i—j=yo+ﬁy1=aAf-{1+@ B-(a*-1)-A- (———) [1 (“AI)]} (5137)
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Remembering that y is the sum of ion fluxes divided by the total ion concentration in the bulk solution,
we now need to develop this into an expression for individual ion fluxes. Based on the definition of ;

and Eq(40),

. 1 1\ _ I
I ) B (5138)
T Pq, I
e Y- \/P c 1/P P, Yo ﬁyl
C_:):_Pit;z = /PP, ————2 ./PlPZ e =[PP, (5139)
1 2 (x

In principle, we can simply substitute Eq(137) into Eq(139) to obtain an expression for j;. However, a

simpler form in terms of only permeances and ion concentrations is preferable To obtain such an
2

expression we note that from Eq(S127) that A = @ 2 (az 5 f+a2 (1 5t s f = clo+020
Using Eq(S126), one can show that
P, 1 T 1 .
adl = —2 = P S o 1 (5140)
fra®t(=f) = 42 () cigie,  PieitPe Tum Dum
In Eq(5140), ilim = 2(P1C10 + P2C20).
Substituting from Eq(S126),
I N ¥ 1
Yo—z=aAl - =1-(as-2) (s141)
Moreover, based on Eq(127),
f 1
1 1 1 a—o—a(1-f) f'(a—;)
ad =g = Lia(i-f) @ [+a*(-f)  f+a>(1-f) (5142)
Substituting Eqs(S136, $141,5142) into Eq(S139) and rearranging gives
I
J1 _YO_E"'ﬁyl_ y f BY1 _ [ y Ara-0 ., NN
CoyPrP; a—é =1 f+az(1-f) to a—— T fta2(1-f) +adl { 2 B-ad (R a)
212
[1 - (aAI)Z] } (5143)

L P1P2
cx/ Co DyD,

Further substituting Eq(S140) and the definitions of %, g, and § =

b(G-rarm (G 5) tesdsto

while noting that

2
h___ fI L (INFQA=P o (P2 _ P\ (1_ (LY
COV PP, B f+a®(1-f) + cx/Co (ilim) 2 ad (52 51) (1 (ilim) ) (5144)
Finally, solving for j;, noting that I = IVCO\/Pl_P;f = - Cioc ; Co = 2¢10 + 2¢40, using Eq(S140) and
10 20

rearranging yields
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. _ T IGEGE I \fQa-9 . P __ Picio 7
1= f+a?-(1-f) +Goyhib e X/Co (Ilim) 2 aA (52 ) ( (Illm) ) P1c19+PC20 I+
2
P L 2 _ P (1 (Z2)) =P 7 PP (L) (&)
P1P2 ( Iiim ) 2C10620 " @4 ( D, 51) (1 (Ilim) ) "~ Pycio+P2co I+ AP CX) Iiim
2
2C10C20 (P2 Pg 1 2) Picy9 7 L 1 C10C20P1P2 (P
— e (= —-= 1__ :—.I+ o —) == = =
£+a-(1—f) (Dz D1) ( (Ilim) P1c10t+P2C20 (CX/CO) (Ilim) Pic19+P;C20 (Dz

2 2
11;_1) (1 Bl <ﬁ)2) = 2Pt ( lfm) . {1 B (ZCXL/CO) . P1C1C(?11;22020 (g_i - g_z) (1 B (Iljm)z) } (5145)

S12. Derivation of Eq(46) for the potential drop during current passage through an ion-exchange
membrane: First-order correction to the limiting case of constant electrochemical potentials across an
ion-exchange membrane

This derivation begins with Eq(27), which we repeat below for convenience.

o(—1—1)— ¢(1+L)—2[LS’ ln(g—ij)] (27)

We derived Eq(27) in Section S3. Remembering that y = §;/C,

o(-1—1) — ¢(1+L)—2[ Yy in (”z)] (5146)

As shown previously in Eq(S113),

_ _ 1 a «a
ﬁzﬂ.[y(“ §‘>+i-<5‘ g>] (5113)
cx a—— a—=
a a
Note that in Eq(S113) y is multiplied by 8, which is small, so we can neglect the correction and replace y

with y, = aAl (Eq(5126)).

With appropriate substitutions of Eqs(5113,5126), and using the first-order correction y = y, + fy;, we
obtain

1 a @ By1
p(-1—-L)— (1 +L)=2B" [aAI < g>+1 (Z_g>]+2[ln(”§°)+l Cil—ﬁ)] (5147)

1-yo

Noting that for small x,In(1 + x) = x and In(1 —x) = —

o(-1—L)— (1 +L)~ 28" [aAI ( _%) +1- (é)] +2 [ln (1”0) + By, (H + —)] (5148)

Identical transformations give
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1—y0

— 1 a «a
z i)y
Jaar - (25) 1 (£5) + 2] (5149

I

o1-0) =+ 1) = 20 [aal () 1 ()| 2[m (3229) + 228 =21 (22) 4 20

Based on Eqs(5126,5140), y, = = —, Additionally, with appropriate identical transformations,

Illm I 1m

a-t 28 % +2a-p]  EprEa-p)
aA - (a_g) + <a_t:> = ,[‘a+a2a(1—f)] = agia?(l‘f); . Substituting these expressions into Eq(S149), along

with Eq(S136) and Eq(S140) gives

1+I/Illm
I/Ihm

)+ 261 - [‘f ((1 —HfA-pra @@= 4 (5-7)

(1 B (ufm)z)] (5150)

Noting that a4 = ﬁ, Eq(S150) becomes
_+a. —_—

o(=1—L)— (1 +1L) ~2In (

1+1/I1im

P(-1—1) = (1 + 1) = 2n (20m) 4 5047 [( e (1—f))+f A=f)-(a®=1)-4-
650~

Using the following identities

ﬂ= L PPy @ _ Ezpl_ﬁg_ L P1P, %_ L P pa_ L P1P, 51P2: L P

T cx/Co\D:1D; @ — A|D1P,’ T @ cx/CoNDiDa\[D1P;  cx/CoDi’ T @ T cx/Co|DiD2\ DaPy ~ cx/Co Dy

P(-1-1)— p(1 + L) = 2in (20um) 4 2o (L) (B py 2oy )4 f-(1- 1)
1-1/Iim Cx Iiim Dy D,

(a-2) aa-(2-2)-(1- (,l;m)z)] (s152)

. 1 2C1C: P,—P. 2€10C20"(P2—Py) . . .
Noting that Cof - (1 — f) - (a - —) cqd = 020 21 — 21020 and using identical
g Of ( f) a Cro+C20 fP1+(1=f)P, P1C10+P2C20 &

transformations leads to

p(-1-L)—p(1+L)=2 {ln (—1“/’”’") + 2. (L) [Plfw + Paf20 | Cr0a0(PaoPy) (ﬁ - ?) :

1-1/Iiim cx \iim Dy D, P1C10+P2C20 Dy D

(1 - (zlfm)z)]} (5153)
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S$13. Numerical simulations of bi-ionic potentials and fluxes

Nernst-Planck Equation. The model for ion transport includes diffusion and electromigration in the two
boundary layers, ion partitioning at the boundary layer/membrane interfaces, and diffusion and
electromigration in the membrane. We employ the Nernst-Planck equation (S154) to describe the
fluxes, j;, of specific ions in the boundary layer.

_Ji_dei 39 (S154)

D;  dx @ “Ulax

As previously described, D; is the diffusion coefficient in solution, c; is the real ion concentration, which
depends on the coordinate x, z; is the ion charge, and ¢ is dimensionless (in F/RT units) real electrical
potential. In the ion-exchange membrane, equation (5155) describes the fluxes.

—Lo by g le (S155)

The overbars denote that the specific variables apply to the ion-exchange membrane. The concentrations
and electrical potential are real, rather than virtual, quantities because we use a diffusion coefficient
rather than a permeability coefficient. Thus, we also need to determine partitioning at the interface of
the boundary later and the membrane. In this case, we employ the Donnan model to describe ion
partitioning.

The Donnan model. In equilibrium partitioning of an ion between two phases, the ion’s electrochemical
potentials should be equal in the two phases. Considering membrane, M, and solution, S, phases, this
gives equation (5156),

Al = (5156)

where ﬁ?” and ﬁf are the electrochemical potentials in the membrane and solution, respectively.
Substituting for the electrochemical potentials leads to

M + RTIna¥ + z;F¢pM = pP® + RTIna; + z;F ¢S (5157)

In these equations, u7 is the standard state chemical potential, a; is the ion activity, and ¢ is the electrical
potential for the denoted phase. Further, z; is the ion charge, R is the gas constant and T is temperature.
The Donnan model assumes that ufM=u§’S and that activity coefficients are unity so activities equal
concentrations. These assumptions lead to
oM — S = KL E (5158)

z;F C}

4

For a system with three ions, we can equate the potential differences for all three ions.

RT , ¢§ RT, ¢§ RT, C§ NI N ch\1/%
—ln—M=—ln—M=—ln—M or \—=s =\-3 =\=s (5159)
zF Cy zZF Gy zzF  C3 C3 C, C3

We define a partition coefficient [}
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M

G

Substituting this definition into equation (S159) yields
cM Z cM Z

FZ = LS = Flzl and F3 = iS = Flzl (5161)
CZ C3

For a three-ion system, the electrical neutrality condition inside the membrane is

z,CM + z,CM + z3cM + z, CcY=0. (5162)

Using equations (S161) to define the concentrations in the membrane, equation (5162) becomes

Z2 Z3
z,.C3Ty + 2,C5 T4 + 23C3 T4 + 2z, CM=0 (S163)

Knowing the ion concentrations in solution, for a mixture of KCl and LiCl this is a quadratic equation that
one can solve for I[;. Subsequently equation (S161) allows calculation of other ion partition coefficients
and the concentrations of each ion in the membrane.

Numerical Procedures. Equations (5154 and S155) are systems of three equations (one equation for each
ion). We assume that the ion-exchange membrane is homogeneous (% = (). With the assumption of

electroneutrality (}}; zic; =0 and ).; z;C, = c,), one can transform equations (S154 and S155) into:

NiZink

dei _ _Ji o Di
ax D, + ZlClZiZ?Ci (S164)

— . Zizi_—l

ac _ _Ji = b
az = D, + ZLCLZiZiZC'i (S165)

We assumed a thermodynamic equilibrium established at the boundary layer/membrane interface and
employed the Donnan model to relate c; and ¢, at the interfaces. We treated equations (5164 and S165)
as initial value problems by specifying one set of the bulk concentrations ¢; (—1 — L) as initial conditions.
By inputting two ion fluxes (the third flux is specified by the zero-current condition, }}; z;j; = 0), we solved
equations (5164 and S165) using a differential equation solver that is based on an explicit Runge-Kutta
formula to get the ion concentration profiles in the boundary layers and in the membrane. In the MATLAB
program, we performed iterations on the two ion fluxes until the other set of bulk concentrations
¢; (1 + L), obtained from the solver, converged with the ones we specified.

S$14. Numerical simulations of current-induced concentrations polarization

The procedures for simulating current-induced concentrations polarization are largely like the ones we
employed in section S13. However, the zero-current condition ()}; z;j; = 0) is replaced with equation
(5166):

FYizij; =1 (S166)

F is the Faraday’s constant and I is the current density. We employed the same Nernst-Planck equations
to describe ion transport and the Donnan model to describe ion partitioning. The numerical procedures
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are the same as well. We treated equations (5164 and S165) as initial value problems by specifying one
set of the bulk concentrations ¢; (—1 — L) as initial conditions. By specifying current density and
inputting two ion fluxes (the third flux is specified by equation (S166)), we solved equations (5164 and
S165) using a differential equation solver that is based on an explicit Runge-Kutta formula to get the ion
concentration profiles in the boundary layers and in the membrane. In the MATLAB program, we
performed iterations on the two ion fluxes until the other set of bulk concentrations ¢; (1 + L),
obtained from the solver, converged with the ones we specified. We provide the MATLAB program here.

MATLAB code

This is a sample program that solves the concentration profiles of K*, Li*, and CI. The current density is
5.5 A/dm?. The fixed charge density of the cation-exchange membrane is 1M (negative in the program to
account for the negative fixed charges). Boundary layers are each 100 um thick while the membrane is
50 um thick. We employed literature infinite dilution values for diffusion coefficients of ions in the
boundary layer and assumed different extents of reduction of diffusion coefficients in the cation
exchange membrane. The bulk concentrations are 0.1 M KCl and 0.1 M LiCl in the mixture. All
parameters can be easily changed in the program. However, one should input reasonable initial guesses
to facilitate the iteration process.

clear
clf
clc

z1=1; %charge of K

z2=1; %charge of Li

z3=-1; %charge of Cl

c1L=0.1; %K concentration at the left bulk solution in M

c2L=0.1; %Li concentration at the left bulk solution in M
c3L=(z1*c1L+z2*c2L)/-(z3);

c1R=0.1; %K concentration at the right bulk solution in M

€2R=0.1; %Li concentration at the right bulk solution in M
c3R=(z1*c1R+z2*c2R)/-(z3);

cx=-1; %fixed charge density of cation exchange membrane in M
11=100*107-5; %boundary layer thickness in dm

[2=50*10%-5; %membrane thickness in dm

D1=1.96*10"-7; %K diffusion coefficient in boundary layer in dm”"2/s
D2=1.03*107-7; %Li diffusion coefficient in boundary layer in dm”2/s
D3=2.03*107-7; %Cl diffusion coefficient in boundary layer in dm”2/s
D1_m=1.96*10%-8; %K diffusion coefficient in membrane in dm”2/s
D2_m=D1_m/4; %Li diffusion coefficient in membrane in dm”2/s
D3_m=D1_m*D3/D1; %Cl diffusion coefficient in membrane in dm"2/s
I=5.5; %Current Density in A/dm~2

F=96485.33; %Faraday’s constant in C/mol

j1=3.8e-5; %initial K flux guess in mol/dm~2/s
j2=1.5e-5; %initial Li flux guess in mol/dmA2/s
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options = optimset('TolX',1e-18,'TolFun',1e-18,'MaxFunEvals',1e13,'MaxIter',1e13);
sol = fminsearch(@(j) funcSolve(j, z1,z2,z3,
cl1L,c2L,c3L,c1R,c2R,c3R,cx,11,12,01,02,D3,D1_m,D2_m,D3_m,|,F), [j1,j2],0ptions);
j1=sol(1);

j2=s0l(2);

function [res] = funcSolve (j, z1,2z2,z3,c1L,c2L,c3L,c1R,c2R,c3R,cx,11,12,01,02,03,D1_m,D2_m,D3_m,|,F)
j1=j(1);

j2=j(2);

j3=(1-z1*F*j1-z2*F*j2)/z3/F;

[t1,c1]=oded5(@(t1,c1) funcl(cl, D1,D2,D3,z1,22,23,j1,j2,j3,11), [0 1], [c1L,c2L,c3L]);

cl _intl=cl(end,1);
c2_intl=cl(end,2);
c3_intl=cl(end,3);

pl=[z1*cl intl+z2*c2_intl cx z3*c3_intl];
r1=roots(p1l);
gammal=rl(imag(rl)==0 & r1>=0);

col=gammal*cl_intl;
co2=(gammal”(z2/z1))*c2_int1;
co3=(gammal”(z3/z1))*c3_int1;

[t2,c2]=0de45(@(t2,c2) funcl(c2, D1_m,D2_m,D3_m,z1,z2,23,j1,j2,j3,12), [0 1], [col,c02,c03]);
cel=c2(end,1);

ce2=c2(end,2);

ce3=c2(end,3);

p2 = [z3*ce3 0 z1*cel+z2*ce2];

r2 = roots(p2);

gamma2=r2(imag(r2)==0 & r2>=0);

cl_int2 = cel/gammaz2;

c2_int2 = ce2/gamma2/(z2/z1);

c3_int2 = ce3/gamma2/(z3/z1);

[t3,c3]=oded5(@(t3,c3) funcl(c3, D1,02,D3,z1,22,23,j1,j2,j3,11), [0 1], [c1_int2,c2_int2,c3_int2]);

c1R_out=c3(end,1);
c2R_out=c3(end,2);
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c3R_out=c3(end,3);
res = (c1R_out/c1R-1)"2+(c2R_out/c2R-1)A2+(c3R_out/c3R-1)"2;

function dc = funcl(c, D1,D2,D3,z1,22,23,j1,j2,j3,1)

dc =[-j1*I/D1+(z1*c(1)*1*((z1*j1/D1)+(22*]2/D2)+(z3*j3/D3)))/(z1*21*c(1)+22*22%c(2)+23*23*c(3));
-j2*1/D2+(z2*c(2)*1*((z1*j1/D1)+(z2*j2/D2)+(z3*j3/D3)))/(z21*21*c(1)+22*22*c(2)+23*23*(3));
-j3*1/D3+(z3*c(3)*1*((z1*j1/D1)+(z2*j2/D2)+(z3*j3/D3)))/(z1*z1*c(1)+z2*22*c(2)+23*23*c(3))];

end

end

S$15. Numerical simulations for modelling concentration profiles above a bipolar ion-exchange patch

To calculate the salt-concentration profiles in the two-dimensional system with a patch of a perfectly
selective ion exchanger, we used Comsol Multiphysics 4.2 software. lon fluxes in the electrolyte solution
above the wall with the IEX patch were modeled using the extended Nernst-Planck Equation module,
which generally accounts for diffusion, electro-migration and convective components of ion flows.
However, we set the fluid flow rate to zero, as we assumed negligible convective flow. The diffusion

coefficients of the ions of a 1:1 electrolyte were assumed to be D; = D, = 21072 m? /s, and their
1

electrical mobility was defined as u; , = % . We assumed the patch width to be equal to 20 um
positioning it on the x-axis from X =-10 um to X =+ 10 um.

The electrolyte domain was chosen in the form of a hemi-cylinder located above the wall with the
center in the middle of the patch and with a radius of 100 um. For graphing purposes, additional
sections were made at the heights of 2 um, 4 um, and 6 um. The mesh was generated automatically
with the largest element size being 0.5 um and the smallest being 0.001 um. A mesh layer with

increased resolution was added at the wall for improving the accuracy.

x10™

el
x
o

Computational domain
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Since the problem involves finding two quantities, salt concentration and electrostatic potential, on each
of the sections of the boundary it is necessary to set two boundary conditions. On the semi-circular
boundary of the domain we set a constant electrolyte concentration equal to the bulk concentration
(assumed to be 1 mM) and an electric potential that corresponds to an uniform electric field of a given
strength: ¢ = —Upx.

At the wall outside the patch, the boundary conditions reflect the absence of flux of both ions normal to
the surface. Obviously, these conditions automatically mean zero electrical current through the wall. For
the coions the zero normal flux condition applies to the patch region, too. The second boundary
condition at the patch reflects its very high permeability to the counterions so their electrochemical
potential along the patch does not change:

py =pd + RTInC + FZ,¢ is aconstant, so RT InC + FZ, ¢ is also a constant.

We iterated on the value of RT In C + FZ; ¢ so that the net normal flux of counter-ions (and electric
current) through the patch was zero. At the same time, the counterions were allowed to “enter” the
patch from the solution in one part of it, but had to “exit” it from another. Thus, the condition for
choosing u, reflects the fact that the patch is insulated from external sources of ions.
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