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S1.  Description of Symbols  

𝐴 
2

(𝛼2+1)−2
𝐶Δ,𝑜

𝐶0
(𝛼2−1)

; constant defined for convenience 

𝑐  salt concentration in solution in the ion-exchange patch system 

�̃� 𝑐 𝑐0⁄  salt concentration divided by the bulk salt concentration in the ion-exchange patch system 

𝑐0 salt concentration in the bulk solution in the ion-exchange patch problem 

𝑐𝑖 concentration of ion 𝑖 in the virtual solution for the boundary layer or in the numerical 

simulations, the real ion concentration in the boundary layer 

𝑐�̅� concentration of ion 𝑖 in the real solution in the membrane or in the boundary layer 

𝑐𝑖0 concentration of ion 𝑖 in the left or right stirred solution 
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𝑐𝑋 concentration of fixed charge in the membrane 

𝐶̅ sum of the mobile ion concentrations in the membrane 

𝐶(𝜉) 𝑜𝑟 𝐶  sum of the concentrations of all ions in the virtual solution 

𝐶0 sum of the concentrations of all ions in the bulk stirred solution 

𝐶Δ 𝑐1 − 𝑐2; difference in the concentration of two counterions 

𝐶∆̅ 𝑐1̅ − 𝑐2̅; difference in the real counterion concentrations in the membrane 

𝐶Δ,𝑙 𝑐1 − 𝑐2 at the left side of the left boundary layer 

𝐶Δ,𝑟 𝑐1 − 𝑐2 at the right side of the right boundary layer 

𝐶Δ,𝑜 𝑐1 − 𝑐2 in the bulk solution 

𝐷𝑖 ion diffusion coefficient in solution 

�̅�𝑖 diffusion coefficient of ion 𝑖 in the membrane, normalized by the boundary layer thickness 

𝐸0 constant bulk electric field defined in the ion-exchange patch system 

𝑓 
𝑐10

𝑐10+𝑐20
 

𝐹 Faraday’s constant 

𝑔(𝜉, 𝜂) function defined in Eq(62) for solving the Laplace equation 

𝑖 index representing a specific ion 

𝑗𝑖 flux of ion 𝑖 

𝑗(1) small correction to the flux of ion “1” given in Eq(48) 

𝐼 current density 

𝐼 current density divided by Faraday’s constant 

𝐼𝑙𝑖𝑚 limiting current density divided by Faraday’s constant 

𝐼 
𝐼

𝐶0√𝑃1𝑃2
; dimensionless current 

𝐾𝑐 integration constant in Eq(63) 

𝐾𝜑 integration constant in Eq(64) 

𝑙 half width of an ion-exchange patch 



S4 
 

𝐿 Half thickness of the membrane divided by the boundary layer thickness 

𝑃𝑖 boundary layer permeance to ion 𝑖, i.e. permeability divided by boundary layer thickness 

𝑃𝑖
∗ Γ𝑖𝐷𝑖; permeability of ion 𝑖 

𝑃𝑠 salt permeance of the membrane 

𝑅 gas constant 

𝑆𝑗  ∑
𝑗𝑖

𝑃𝑖
𝑖 ; sum of permeance-normalized fluxes 

𝑆�̅� 
𝑗1

�̅�1
+

𝑗2

�̅�2
; sum of fluxes divided by the normalized diffusion coefficients in the membrane 

𝑆𝑍 ∑ 𝑍𝑖 ∙
𝑗𝑖

𝑃𝑖
𝑖 ; sum of the ion charge multiplied by the permeance-normalized fluxes 

𝑆∆ 
𝑗1

𝑃1
−

𝑗2

𝑃2
; difference of permeance-normalized counterion fluxes 

𝑆Δ̅ 
𝑗1

�̅�1
−

𝑗2

�̅�2
; differences in counterion fluxes divided by normalized diffusion coefficients in the 

membrane 

𝑡1 
𝑃1𝑐10

𝑃1𝑐10+𝑃2𝑐20
; transference number for counterion “1” in the boundary layer with an ideally 

permselective membrane 

𝑡2 
𝑃2𝑐20

𝑃1𝑐10+𝑃2𝑐20
; transference number for counterion “2” in the boundary layer with an ideally 

permselective membrane 

T temperature 

𝑥 coordinate for one-dimensional diffusion or a coordinate for the ion-exchange patch 

𝑦  
𝑆𝑗

𝐶0
 or a coordinate for the ion-exchange patch 

𝑦0  the value of 
𝑆𝑗

𝐶0
 when 𝛽 = 0 

𝑦1 a constant for linear correction of 𝑦, i.e. 𝑦 = 𝑦0 + 𝛽𝑦1 

𝑍𝑖  charge of ion 𝑖 

𝛼 √
𝑃2

𝑃1
;  square root of the ratio of permeances to counterion “2” and counterion “1” in the 

boundary layer 
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�̅� √
�̅�2

�̅�1
; square root of the ratio of diffusion coefficients for counterion “2” and counterion “1” in 

the membrane 

𝛽 
𝐿

𝑐𝑋 𝐶0⁄
∙ √

𝑃1𝑃2

�̅�1�̅�2
; parameter defined for the linear correction 

𝛿 boundary layer thickness 

𝛾𝑖  activity coefficient of ion 𝑖 in a virtual solution 

�̅�𝑖 activity coefficient of ion 𝑖 in a real solution 

Γ𝑖  
𝑐�̅�

𝑐𝑖
; partition coefficient for ion 𝑖 between a real and virtual solution 

𝜂 y-coordinate divided by the patch width 

𝜆 
𝐹𝐸0𝑙

2𝑅𝑇
 dimensionless voltage drop on the half width of the ion-exchange patch 

�̅�𝑖 electrochemical potential of ion 𝑖 for a real or virtual solution 

𝜇𝑖
𝑜 standard state chemical potential of ion 𝑖 in the virtual solution 

�̅�𝑖
𝑜 real solution standard state chemical potential of ion 𝑖 

𝜈𝑖 stoichiometric coefficient of ion 𝑖 in a salt 

𝜉 𝑥/𝛿; x coordinate divided by either the boundary layer thickness or the thickness of an ion-

exchange membrane patch 

𝜉0 any specificed x-coordinate in the boundary layers divided by the boundary layer thickness  

𝜑 virtual electrostatic potential multiplied by F/RT 

�̅� real electrostatic potential multiplied by F/RT 

𝜙 virtual electrostatic potential with dimensions 

�̅� real electrostatic potential with dimensions 

𝜓𝐷 Donnan potential at the membrane-boundary interface 

 

S2. Origin of Eq(1), ion fluxes 

In one dimension with no convection, Eq(S1) describes the transport of ion 𝑖, 
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𝑗𝑖 = −
𝑐�̅�𝐷𝑖

𝑅𝑇

𝑑�̅�𝑖

𝑑𝑥
          (S1) 

where �̅�𝑖  is the electrochemical potential of ion 𝑖, 𝐷𝑖 is the ion diffusion coefficient, 𝑐�̅� is the real 

concentration of this ion, 𝑅 is the gas constant and 𝑇 is temperature.  Eq(S2) gives the electrochemical 

potential of the ion, where 

�̅�𝑖 =  �̅�𝑖
𝑜 + 𝑅𝑇𝑙𝑛(�̅�𝑖𝑐�̅�) + 𝑍𝑖𝐹�̅�        (S2) 

�̅�𝑖
𝑜 is the standard-state electrochemical potential of the ion, �̅�𝑖 is the activity coefficient, 𝑍𝑖  is the ion 

charge and �̅� is the real electrostatic potential.   

Assuming that  �̅�𝑖 = 1, differentiating Eq(S2) and substituting into Eq(S1) yields the typical Nernst-Planck 

equation. 

𝑗𝑖 = −𝑐�̅�𝐷𝑖 (
1

𝑐�̅�

𝑑𝑐�̅�

𝑑𝑥
+

𝑍𝑖𝐹

𝑅𝑇

𝑑�̅�

𝑑𝑥
) = −𝐷𝑖

𝑑𝑐�̅�

𝑑𝑥
− 𝐷𝑖

𝑐�̅�𝑍𝑖𝐹

𝑅𝑇

𝑑�̅�

𝑑𝑥
     (S3) 

Use of this equation requires both partition coefficients (to obtain boundary conditions for real 

concentrations) and diffusion coefficients.  The use of virtual solutions, or solutions that could be in 

equilibrium with a given point in the membrane, simplifies the model in that it requires only a single 

permeability coefficient.  For the virtual solution, we obtain 

�̅�𝑖 =  𝜇𝑖
𝑜 + 𝑅𝑇𝑙𝑛(𝛾𝑖𝑐𝑖) + 𝑍𝑖𝐹𝜙        (S4) 

where 𝑐𝑖 and 𝜙 are the virtual concentration and electrical potential, respectively.  We define the 

partition coefficient  

Γ𝑖 =
𝑐�̅�

𝑐𝑖
           (S5) 

Differentiation of Eq(S4), substitution into Eq(S1), and the use of Eq(S5) leads to  

𝑗𝑖 = −Γ𝑖𝐷𝑖𝑐𝑖 (
1

𝑐𝑖

𝑑𝑐𝑖

𝑑𝑥
+

𝑍𝑖𝐹

𝑅𝑇

𝑑𝜙

𝑑𝑥
) = −𝑃𝑖

∗ (
𝑑𝑐𝑖

𝑑𝑥
+ 𝑐𝑖

𝑍𝑖𝐹

𝑅𝑇

𝑑𝜙

𝑑𝑥
)     (S6) 

In this equation, we defined 𝑃𝑖
∗ = Γ𝑖𝐷𝑖, where 𝑃𝑖

∗ is the permeability to the ion. 

We also define a dimensionless coordinate, 𝜉, where 𝜉 = 𝑥/𝛿 and 𝛿 is the boundary layer thickness.  

Additionally, we define a dimensionless electrostatic potential 𝜑 = 𝜙
𝐹

𝑅𝑇
.  This leads to  

𝑗𝑖 = −𝑃𝑖 (
𝑑𝑐𝑖

𝑑𝜉
+ 𝑐𝑖𝑍𝑖

𝑑𝜑

𝑑𝜉
)        (S7) 

In this equation 𝑃𝑖=𝑃𝑖
∗/𝛿, which is the membrane permeance.   

S3. Derivation of Eq(20), potential drop across the membrane (not including the boundary layers) 

under conditions of equal counterion electrochemical potentials 
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As noted in the text, equating ion electrochemical potentials in Eq(S4) for the ideal virtual solutions on 

the two faces of the membrane gives 

𝑙𝑛(𝑐1(−0)) + 𝜑(−0) = 𝑙𝑛(𝑐1(+0)) + 𝜑(+0)       (S8) 

𝑙𝑛(𝑐2(−0)) + 𝜑(−0) = 𝑙𝑛(𝑐2(+0)) + 𝜑(+0)       (S9) 

where −0 and +0 denote the left and right surfaces of the infinitely thin membrane (see Fig. 1).  Thus 

far, we solved the differential equations for the sum of ion concentrations and the potentials in the 

boundary layers (see Eq(6) and Eq(11)), but we need to know the individual ion concentrations to 

substitute into Eq(S8) or Eq(S9) to solve for the potential drop across the infinitesimally thin membrane.   

By subtracting Eq(S9) from Eq(S8), one obtains 

𝑙𝑛 (
𝑐1(−0)

𝑐2(−0)
) = 𝑙𝑛 (

𝑐1(+0)

𝑐2(+0)
)        (S10) 

We define the following variable 

𝐶Δ ≡ 𝑐1 − 𝑐2           (S11) 

Using the definitions of 𝐶Δ and 𝐶, and noting that for a solution containing only monovalent ions 𝑐1 +

𝑐2 − 𝑐3 = 0 (electroneutrality) in the boundary layers, 

𝑐1 ≡
1

4
∙ (𝐶 + 2𝐶Δ)          (S12) 

𝑐2 ≡
1

4
∙ (𝐶 − 2𝐶Δ)          (S13) 

Substituting Eqs(S12,S13) into Eq(S10) leads to  

𝐶(−0)+2𝐶Δ(−0)

𝐶(−0)−2𝐶Δ(−0)
=

𝐶(+0)+2𝐶Δ(+0)

𝐶(+0)−2𝐶Δ(+0)
         (S14) 

This equation transforms to  

𝐶Δ(−0)

𝐶(−0)
=

𝐶Δ(+0)

𝐶(+0)
           (S15) 

Substituting Eq(S12,S13) into Eq (S8) leads to 

𝜑(−0) − 𝜑(+0) =  𝑙𝑛 (
𝑐1(+0)

𝑐1(−0)
) = 𝑙𝑛 (

𝐶(+0)+2𝐶Δ(+0)

𝐶(−0)+2𝐶Δ(−0)
) = 𝑙𝑛 (

𝐶(+0)(1+2
𝐶Δ(+0)

𝐶(+0)
)

𝐶(−0)(1+2
𝐶Δ(−0)

𝐶(−0)
)
)  (S16) 

Finally, using Eq(15) gives 

𝜑(−0) − 𝜑(+0) =  𝑙𝑛 (
𝐶(+0)

𝐶(−0)
) = 𝑙𝑛 (

𝐶0+𝑆𝑗

𝐶0−𝑆𝑗
)      (S17) 
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S4. Derivation of Eq(27), potential drop allowing for the resistance of the membrane and introduction 

of a third differential equation in the solution and in the membrane 

Introduction of a third differential equation 

The boundary layers. 

To introduce a third differential equation, we define the following variable 

𝑆∆ ≡
𝑗1

𝑃1
−

𝑗2

𝑃2
           (S18) 

where ions “1” and “2” have the same monovalent charge sign and are counterions of the ion-exchange 

membrane.  Subtracting Eq(1) for ion “2” from Eq(1) for ion “1” yields 

−𝑆∆ =
𝑑𝐶Δ

𝑑𝜉
+ 𝐶Δ ∙

𝑑𝜑

𝑑𝜉
          (S19) 

This is a first-order ordinary differential equation that can be solved in quadratures.  The solution is 

𝐶Δ(𝜉) = 𝑒𝑥𝑝(𝜑(𝜉0) − 𝜑(𝜉)) ∙ [𝐶Δ(𝜉0) − 𝑆∆ ∙ ∫ 𝑒𝑥𝑝(𝜑(𝜉′) − 𝜑(𝜉0))𝑑𝜉′
𝜉

𝜉0
]   (S20) 

By substituting Eq(11), 𝜑(𝜉) − 𝜑(𝜉0) =
𝑆𝑍

𝑆𝑗
∙ 𝑙𝑛 (

𝐶(𝜉)

𝐶(𝜉0)
), we obtain 

𝐶Δ(𝜉) = (
𝐶(𝜉)

𝐶(𝜉0)
)

−
𝑆𝑍
𝑆𝑗 [𝐶Δ(𝜉0) − 𝑆∆ ∙ ∫ (

𝐶(𝜉′)

𝐶(𝜉0)
)

𝑆𝑍
𝑆𝑗 𝑑𝜉′𝜉

𝜉0
]     (S21) 

Substituting Eq(6), 𝐶(𝜉) − 𝐶(𝜉0) = −𝑆𝑗 ∙ (𝜉 − 𝜉0) into the numerator of the integral, after integration 

and transformation one obtains 

𝐶Δ(𝜉) = (𝐶Δ(𝜉0) −
𝑆∆∙𝐶(𝜉0)

𝑆𝑗+𝑆𝑍
) ∙ (

𝐶(𝜉)

𝐶(𝜉0)
)

−
𝑆𝑍
𝑆𝑗 +

𝑆∆∙𝐶(𝜉0)

𝑆𝑗+𝑆𝑍
∙

𝐶(𝜉)

𝐶(𝜉0)
     (S22) 

With complete blockage of coions from the membrane and monovalent positive counterions  

𝑗3 = 0            (S23) 

𝑆𝑍 = 𝑆𝑗           (S24) 

Substituting Eq(S24) into Eq(S22) yields 

𝐶Δ(𝜉) = (𝐶Δ(𝜉0) −
𝑆∆∙𝐶(𝜉0)

2𝑆𝑗
) ∙ (

𝐶(𝜉)

𝐶(𝜉0)
)

−1
+

𝑆∆∙𝐶(𝜉0)

2𝑆𝑗
∙

𝐶(𝜉)

𝐶(𝜉0)
     (S25) 

Eq(6) and Eq(S25) are relationships between the ion fluxes (contained in the constants 𝑆∆ and 𝑆𝑗) and 

solution composition (given by 𝐶(𝑥) and 𝐶Δ(𝑥) since due to the electro-neutrality of virtual solutions 

only two virtual ion concentrations are independent. 
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Inside the membrane 

Next, we consider the membrane phase.  Defining 

𝐶∆̅ ≡ 𝑐1̅ − 𝑐2̅ and 𝑆Δ̅ ≡
𝑗1

�̅�1
−

𝑗2

�̅�2
        (S26) 

we obtain this first-order ordinary differential equation with constant coefficients for the difference of 

real counter-ion concentrations in the membrane.  

𝑑𝐶∆̅

𝑑𝜉
− 𝐶∆̅ ∙

�̅�𝑗

𝑐𝑋
+ 𝑆Δ̅ = 0          (S27) 

(This equation relies on the identity that 𝐶∆̅ ∙
�̅�𝑗

𝑐𝑋
= −𝑐1̅

𝑑�̅�

𝑑𝜉
+ 𝑐2̅

𝑑�̅�

𝑑𝜉
 and stems from Eq(S3) with non-

dimensionalized coordinate and potential and complete coion exclusion.  We took the difference of the 

modified Eq(S3) for the two counterions.)  Eq(S27) has this exponential solution that relates the function 

𝐶∆̅ at two arbitrary points inside the membrane: 

𝐶∆̅(𝜉′) = 𝐶∆̅(𝜉) ∙ 𝑒𝑥𝑝 (
�̅�𝑗

𝑐𝑋
∙ (𝜉′ − 𝜉)) + 𝑐𝑋 ∙

�̅�Δ

�̅�𝑗
∙ (1 − 𝑒𝑥𝑝 (

�̅�𝑗

𝑐𝑋
∙ (𝜉′ − 𝜉)))   (S28) 

Next, we apply the boundary conditions of known solution compositions in the perfectly-stirred 

reservoirs and of Donnan equilibria at the membrane surfaces. Virtual concentrations just outside a 

membrane surface are related to the real concentrations just on the other side of this interface (inside 

the membrane) via exponentials of the Donnan potential. 

Therefore, at the membrane surfaces 

(𝑐1 + 𝑐2) ∙ 𝑒𝑥𝑝(−𝜓𝐷) = 𝑐1̅ + 𝑐2̅ = 𝑐𝑋        (S29) 

where 𝜓𝐷 is the Donnan potential. Since, just outside the membrane, 𝑐1 + 𝑐2 =
𝐶

2
 

𝑒𝑥𝑝(−𝜓𝐷) =
2𝑐𝑋

𝐶
          (S30) 

Accordingly, 

𝐶∆̅(𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦) = 𝐶Δ(𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦) ∙ 𝑒𝑥𝑝(−𝜓𝐷) = 𝐶Δ
2𝑐𝑋

𝐶
   (S31) 

In particular, at the left and right membrane surfaces 

𝐶∆̅(−𝐿 + 0) = 𝐶Δ(−𝐿 − 0) ∙
2𝑐𝑋

𝐶(−𝐿−0)
        (S32) 

𝐶∆̅(𝐿 − 0) = 𝐶Δ(𝐿 + 0) ∙
2𝑐𝑋

𝐶(𝐿+0)
         (S33) 

where L is the membrane half-thickness scaled on the boundary-layer thickness. At the same time, using 

𝜉′ = 𝐿 and 𝜉 = −𝐿 in Eq(S28) gives 
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𝐶∆̅(𝐿 − 0) = 𝐶∆̅(−𝐿 + 0) ∙ 𝑒𝑥𝑝 (
2𝐿�̅�𝑗

𝑐𝑋
) + 𝑐𝑋 ∙

�̅�Δ

�̅�𝑗
∙ (1 − 𝑒𝑥𝑝 (

2𝐿�̅�𝑗

𝑐𝑋
))    (S34) 

By substituting Eqs(S32,S33) into Eq(S34), we obtain 

𝐶Δ(𝐿+0)

𝐶(𝐿+0)
=

𝐶Δ(−𝐿−0)

𝐶(−𝐿−0)
∙ 𝑒𝑥𝑝 (

2𝐿�̅�𝑗

𝑐𝑋
) +

�̅�Δ

2�̅�𝑗
∙ (1 − 𝑒𝑥𝑝 (

2𝐿�̅�𝑗

𝑐𝑋
))     (S35) 

When 
2𝐿�̅�𝑗

𝑐𝑋
→ 0, Eq(S35) becomes Eq(S15), consistent with the limiting case of zero differences of 

electrochemical potentials of counterions that should occur for very thin (small L), highly charged (large 

𝑐𝑋) and permeable (small 𝑆�̅�) membranes. 

The derivation of Eqs(12-13) and Eq(S25) is not specific to the way we treat the membrane.  Substituting 

coordinates into these three equations gives 

𝐶(−𝐿 − 0) = 𝐶0 − 𝑆𝑗          (S36) 

𝐶(𝐿 + 0) = 𝐶0 + 𝑆𝑗          (S37) 

𝐶Δ(−𝐿 − 0) = (𝐶Δ(−𝐿 − 1) −
𝑆∆∙𝐶0

2𝑆𝑗
) ∙ (

𝐶0

𝐶0−𝑆𝑗
) +

𝑆∆(𝐶0−𝑆𝑗)

2𝑆𝑗
    (S38) 

𝐶Δ(𝐿 + 0) = (𝐶Δ(𝐿 + 1) −
𝑆∆∙𝐶𝑜

2𝑆𝑗
) ∙ (

𝐶0

𝐶0+𝑆𝑗
) +

𝑆∆∙(𝐶0+𝑆𝑗)

2𝑆𝑗
     (S39) 

Note that −𝐿 − 0 and 𝐿 + 0 correspond to positions in solution just to the left and right (see Fig. 2) of 

the membrane, respectively.  Substituting Eqs(S36-S39) into Eq(S35) with rearrangements and noting 

the definition of the sinh function gives 

(
𝐶Δ,𝑙

𝐶0
−

𝑆∆

2𝑆𝑗
) ∙ (

𝐶0

𝐶0−𝑆𝑗
)

2

∙ 𝑒𝑥𝑝 (
𝐿�̅�𝑗

𝑐𝑋
) − (

𝐶Δ,𝑟

𝐶0
−

𝑆∆

2𝑆𝑗
) ∙ (

𝐶0

𝐶0+𝑆𝑗
)

2

∙ 𝑒𝑥𝑝 (−
𝐿�̅�𝑗

𝑐𝑋
) = − (

𝑆∆

𝑆𝑗
−

�̅�Δ

�̅�𝑗
) ∙ 𝑠𝑖𝑛ℎ (

𝐿�̅�𝑗

𝑐𝑋
) (S40) 

where 

𝐶Δ,𝑙 ≡ 𝐶Δ(−𝐿 − 1)          (S41) 

𝐶Δ,𝑟 ≡ 𝐶Δ(𝐿 + 1)          (S42) 

The voltage drop across the system when the membrane has a finite thickness 

Now we consider the entire system (boundary layers plus membrane).  Eqs(14,15) still apply (repeated 

below), but the values of the parameter 𝑆𝑗 will be different from the limiting case of zero 

electrochemical-potential differences and the coordinates will be different.  

𝜑(−1) − 𝜑(−0) =
𝑆𝑍

𝑆𝑗
∙ 𝑙𝑛 (

𝐶𝑜

𝐶𝑜−𝑆𝑗
) (left boundary layer)    (14) 
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𝜑(+0) − 𝜑(+1) =
𝑆𝑍

𝑆𝑗
∙ 𝑙𝑛 (

𝐶0+𝑆𝑗

𝐶0
)  (right boundary layer)    (15) 

If the membrane has a finite thickness, the left hand side of Eq(14) will represent 𝜑(−1 − 𝐿) −

𝜑(−0 − 𝐿).  Similarly the left hand side of Eq(15) will represent (𝜑(𝐿 + 0) − 𝜑(+1 + 𝐿). 

Substituting the coordinates into Eq(26) gives the difference of the real electrostatic potentials at the 

two interior sides of the membrane.   

�̅�(−𝐿 + 0) − �̅�(𝐿 − 0) =
2𝐿�̅�𝑗

𝑐𝑋
         (S43) 

Additionally the total potential drop between the two boundary layers should also include the 

difference between the two Donnan potentials (defined as the membrane potential minus the solution 

potential in both cases).  Using Eq(S30) 

𝜓𝐷(−𝐿) − 𝜓𝐷(𝐿) = 𝑙𝑛 (
𝐶(−0−𝐿)

𝐶(𝐿+0)
) ≡ 𝑙𝑛 (

𝐶0−𝑆𝑗

𝐶0+𝑆𝑗
)       (S44) 

Summing Eq(S43) and Eq(S44) gives the total potential drop between the boundary layers. 

𝜑(−𝐿 + 0) − 𝜑(𝐿 − 0) ≡ �̅�(−𝐿 + 0) − �̅�(𝐿 − 0) − (𝜓𝐷(−𝐿) − 𝜓𝐷(𝐿)) =
2𝐿�̅�𝑗

𝑐𝑋
+ 𝑙𝑛 (

𝐶0+𝑆𝑗

𝐶0−𝑆𝑗
) (S45) 

Finally, adding up the virtual-potential drops across the boundary layers (Eq(17) and the membrane 

(Eq(S45)), for the total electrostatic-potential difference we obtain 

𝜑(−1 − 𝐿) − 𝜑(1 + 𝐿) = 2 [
𝐿�̅�𝑗

𝑐𝑋
+ 𝑙𝑛 (

𝐶0+𝑆𝑗

𝐶0−𝑆𝑗
)]       (S46) 

Note that Eq(S46) assumes 
𝑆𝑍

𝑆𝑗
= 1. 

S5. Derivation of Eqs(29-35), Concentration profiles under bi-ionic conditions with equal 

electrochemical potentials across the membrane 

In the bi-ionic configuration with different 1:1 salts on each side of the membrane, but at the same 

concentration 𝐶0, the following apply with complete coion exclusion.  (Ion “1” is not present in the right 

perfectly stirred layer and ion “2” is not present in the left perfectly stirred layer.)  

𝐶Δ,𝑙 = 𝐶0 2⁄            (S47) 

𝐶Δ,𝑟 = −𝐶0 2⁄             (S48) 

𝑗2 = −𝑗1           (S49) 

Based on the definitions of 𝑆𝑗 and 𝑆∆,  

𝑆∆

𝑆𝑗
=

𝑃2+𝑃1

𝑃2−𝑃1
          (S50) 
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Starting from Eq(S25) (repeated here for convenience), 

𝐶Δ(𝜉) = (𝐶Δ(𝜉0) −
𝑆∆∙𝐶(𝜉0)

2𝑆𝑗
) ∙ (

𝐶(𝜉)

𝐶(𝜉0)
)

−1
+

𝑆∆∙𝐶(𝜉0)

2𝑆𝑗
∙

𝐶(𝜉)

𝐶(𝜉0)
     (S25) 

for the infinitesimally thin membrane with substitution of Eqs(12,13) we obtain  

𝐶Δ(−0) = (𝐶Δ,𝑙 −
𝑆∆∙𝐶0

2𝑆𝑗
) ∙ (

𝐶0

𝐶0−𝑆𝑗
) +

𝑆∆∙(𝐶0−𝑆𝑗)

2𝑆𝑗
       (S51) 

𝐶Δ(+0) = (𝐶Δ,𝑟 −
𝑆∆∙𝐶0

2𝑆𝑗
) ∙ (

𝐶0

𝐶0+𝑆𝑗
) +

𝑆∆∙(𝐶0+𝑆𝑗)

2𝑆𝑗
       (S52) 

Inserting Eqs(S51,S52) and Eqs(12,13) into Eq(S15) gives 

(𝐶Δ,𝑙 −
𝑆∆∙𝐶0

2𝑆𝑗
) ∙

1

(𝐶0−𝑆𝑗)
2 = (𝐶Δ,𝑟 −

𝑆∆∙𝐶0

2𝑆𝑗
) ∙

1

(𝐶0+𝑆𝑗)
2      (S53) 

Substituting Eq(S47,S48, and S50) into Eq(S53), with appropriate rearrangements, we obtain 

𝑆𝑗

𝐶0
=

𝛼−1

𝛼+1
           (S54) 

where  

𝛼2 ≡ 𝑃2 𝑃1⁄            (S55) 

In the left boundary layer, Eq(6) 𝐶(𝜉) − 𝐶(𝜉0) = −𝑆𝑗 ∙ (𝜉 − 𝜉0) leads to  

𝐶(𝜉)

𝐶0
= 1 −

𝑆𝑗

𝐶0
(𝜉 + 1)         (S56) 

Substituting Eq(S54) into Eq(S56) gives 

𝐶(𝜉)

𝐶0
= 1 − (

𝛼−1

𝛼+1
) (1 + 𝜉)        (S57) 

Starting from Eq(S12), 𝑐1 =
1

4
∙ (𝐶 + 2𝐶Δ) and inserting the expression for 𝐶Δ(𝜉) in Eq(S25) leads to  

𝑐1 ≡
1

4
∙ (𝐶(𝜉) + (𝐶0 −

𝑆∆∙𝐶0

𝑆𝑗
) (

𝐶(𝜉)

𝐶0
)

−1
+

𝑆∆∙𝐶(𝜉)

𝑆𝑗
)     (S58) 

Substituting Eq(S50) and appropriate transformations leads to  

𝑐1(𝜉) =
𝐶0

2
∙

𝛼2∙
𝐶(𝜉)

𝐶0
 − 

𝐶0
𝐶(𝜉)

𝛼2−1
         (S59) 

Similarly, 

𝑐2(𝜉) =
𝐶0

2
∙

𝐶0
𝐶(𝜉)

 − 
𝐶(𝜉)

𝐶0

𝛼2−1
         (S60) 
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Derivation of the concentration profiles in the boundary layer on the right side of the membrane follows 

similarly.   

S6. Derivation of ion fluxes (Eq(36)) under bi-ionic conditions and equal electrochemical potentials 

across the membrane 

For complete coion exclusion 𝑗1 = −𝑗2 and  

𝑆𝑗 ≡ ∑
𝑗𝑖

𝑃𝑖
𝑖 =

𝑗1

𝑃1
−

𝑗1

𝑃2
         (S61) 

Dividing this expression by 𝐶0 and substituting Eq(S54) along with appropriate transformations leads to  

𝑗1 =
𝐶0

(
1

√𝑃1
+

1

√𝑃2
)

2          (S62) 

S7. Derivation of an expression for the bi-ionic potential drop, (Eq(37)), under conditions of equal 

electrochemical potentials across the membrane 

Starting from Eq(21) and substituting the expression for 
𝑆𝑗

𝐶0
 in Eq(S54) leads to  

𝜑(−1) − 𝜑(1) = 2𝑙𝑛 (
𝐶0+𝑆𝑗

𝐶0−𝑆𝑗
) = 2𝑙𝑛 (

1+
𝑆𝑗

𝐶0

1−
𝑆𝑗

𝐶0

) = 2𝑙𝑛 (
1+

𝛼−1

𝛼+1

1−
𝛼−1

𝛼+1

)    (S63) 

Rearrangement gives 

𝜑(−1) − 𝜑(1) = 2𝑙𝑛 (
2𝛼

𝛼+1
2

𝛼+1

) = 2𝑙𝑛(𝛼) = ln(𝛼2) = 𝑙𝑛 (
𝑃2

𝑃1
)    (S64) 

S8. Derivation of a first-order flux correction (Eq(38)) to the limiting case of constant electrochemical 

potentials:  Bi-ionic potentials 

This derivation starts with Eq(S40), which we repeat hear for convenience.   

(
𝐶Δ,𝑙

𝐶0
−

𝑆∆

2𝑆𝑗
) ∙ (

𝐶0

𝐶0−𝑆𝑗
)

2

∙ 𝑒𝑥𝑝 (
𝐿�̅�𝑗

𝑐𝑋
) − (

𝐶Δ,𝑟

𝐶0
−

𝑆∆

2𝑆𝑗
) ∙ (

𝐶0

𝐶0+𝑆𝑗
)

2

∙ 𝑒𝑥𝑝 (−
𝐿�̅�𝑗

𝑐𝑋
) = − (

𝑆∆

𝑆𝑗
−

�̅�Δ

�̅�𝑗
) ∙ 𝑠𝑖𝑛ℎ (

𝐿�̅�𝑗

𝑐𝑋
) (S40) 

We assume that the terms 
𝐿�̅�𝑗

𝑐𝑋
 is small.  This leads to the following linear approximations  

𝑠𝑖𝑛ℎ (
𝐿�̅�𝑗

𝑐𝑋
) =

𝐿�̅�𝑗

𝑐𝑋
; 𝑒𝑥𝑝 (

𝐿𝑆̅𝑗

𝑐𝑋
) = 1 +

𝐿�̅�𝑗

𝑐𝑋
; 𝑒𝑥𝑝 (−

𝐿�̅�𝑗

𝑐𝑋
) = 1 −

𝐿�̅�𝑗

𝑐𝑋
    (S65) 

Inserting these approximations along with 
𝐶Δ,𝑙

𝐶0
= −

𝐶Δ,𝑟

𝐶0
=

1

2
  (monovalent salts with only one salt in each 

stirred solution) leads to 
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(1 −
𝑆∆

𝑆𝑗
) ∙ (

𝐶0

𝐶0−𝑆𝑗
)

2

+
𝐿�̅�𝑗

𝑐𝑋
(1 −

𝑆∆

𝑆𝑗
) ∙ (

𝐶0

𝐶0−𝑆𝑗
)

2

− (−1 −
𝑆∆

𝑆𝑗
) ∙ (

𝐶0

𝐶0+𝑆𝑗
)

2

+
𝐿�̅�𝑗

𝑐𝑋
(−1 −

𝑆∆

𝑆𝑗
) ∙ (

𝐶0

𝐶0+𝑆𝑗
)

2

+

2 (
𝑆∆

𝑆𝑗
−

�̅�Δ

�̅�𝑗
) ∙

𝐿�̅�𝑗

𝑐𝑋
 =0         (S66) 

Rearranging yields 

(1 −
𝑆∆

𝑆𝑗
) ∙ (

𝐶0

𝐶0−𝑆𝑗
)

2

+ (1 +
𝑆∆

𝑆𝑗
) ∙ (

𝐶0

𝐶0+𝑆𝑗
)

2

+
𝐿�̅�𝑗

𝑐𝑋
{(1 −

𝑆∆

𝑆𝑗
) ∙ (

𝐶0

𝐶0−𝑆𝑗
)

2

− (1 +
𝑆∆

𝑆𝑗
) ∙ (

𝐶0

𝐶0+𝑆𝑗
)

2

+

2 (
𝑆∆

𝑆𝑗
−

�̅�Δ

�̅�𝑗
)} = 0          (S67) 

This equation relates sums and differences of fluxes to permeances, diffusion coefficients, and the bulk 

sum of concentration.  Our task is to make the relationship between a specific ion flux and the 

permeances and normalized diffusion coefficients explicit.  Based on their definitions, we also have the 

following expressions 

𝑆∆

𝑆𝑗
=

𝑃2+𝑃1

𝑃2−𝑃1
=

𝛼2+1

𝛼2−1
;  𝛼, �̅� ≡ √

𝑃2

𝑃1
, √

�̅�2

�̅�1
 ;  𝛽 ≡

𝐿

𝑐𝑋 𝐶0⁄
∙ √

𝑃1𝑃2

�̅�1�̅�2
 ; 𝑦 ≡

𝑆𝑗

𝐶0
    (S68) 

Additionally, from the definitions of 𝑆�̅� and 𝑆𝑗, and the assumption of steady state and coion exclusion 

with 𝑗2 = −𝑗1 

�̅�𝑗

𝐶0
=

𝑆𝑗

𝐶0
∙

1

�̅�1
−

1

�̅�2
1

𝑃1
−

1

𝑃2

= 𝑦 ∙
𝑃2

�̅�2
∙ (

�̅�2−1

𝛼2−1
) = 𝑦 ∙ (

�̅�2−1

𝛼2−1
) √

𝑃2

�̅�2
∙ √

�̅�1

𝑃1
√

𝑃1𝑃2

�̅�1�̅�2
= 𝑦 ∙ (

�̅�2−1

𝛼2−1
)

𝛼

�̅�
√

𝑃1𝑃2

�̅�1�̅�2
≡ 𝑦 ∙ (

�̅�−
1

�̅�

𝛼−
1

𝛼

) √
𝑃1𝑃2

�̅�1�̅�2
 

           (S69) 

Moreover, the definitions of 𝑆Δ̅ and 𝑆�̅� and 𝑗2 = −𝑗1 give 

�̅�Δ

�̅�𝑗
=

1

�̅�1
−

1

�̅�2
1

𝑃1
−

1

𝑃2

=
�̅�2+1

�̅�2−1
         (S70) 

Eq(S67) contains the term 
𝐿�̅�𝑗

𝑐𝑋
.  We can rewrite this term as 

𝐿�̅�𝑗

𝑐𝑋
≡

𝐿

𝑐𝑋 𝐶0⁄

�̅�𝑗

𝐶0
≡

𝐿

𝑐𝑋 𝐶0⁄
𝑦 ∙ (

�̅�−
1

�̅�

𝛼−
1

𝛼

) √
𝑃1𝑃2

�̅�1�̅�2
≡ 𝛽𝑦 ∙ (

�̅�−
1

�̅�

𝛼−
1

𝛼

)      (S71) 

Substituting Eqs(S68,S70,S71) into Eq(67) gives  

(1 −
𝛼2+1

𝛼2−1
) ∙ (

1

1−𝑦
)

2
+ (1 +

𝛼2+1

𝛼2−1
) ∙ (

1

1+𝑦
)

2
+ {(1 −

𝛼2+1

𝛼2−1
) ∙ (

1

1−𝑦
)

2
− (1 +

𝛼2+1

𝛼2−1
) ∙ (

1

1+𝑦
)

2
+

2 (
𝛼2+1

𝛼2−1
−

�̅�2+1

�̅�2−1
)} ∙ 𝛽𝑦 ∙ (

�̅�−
1

�̅�

𝛼−
1

𝛼

) = 0       (S72) 

The use of common denominators leads to 



S15 
 

(
−2

𝛼2−1
) ∙ (

1

1−𝑦
)

2
+ (

2𝛼2

𝛼2−1
) ∙ (

1

1+𝑦
)

2
+ {(

−2

𝛼2−1
) ∙ (

1

1−𝑦
)

2
− (

2𝛼2

𝛼2−1
) ∙ (

1

1+𝑦
)

2
+ 2 (

𝛼2+1

𝛼2−1
−

�̅�2+1

�̅�2−1
)} ∙ 𝛽𝑦 ∙

(
�̅�−

1

�̅�

𝛼−
1

𝛼

) = 0          (S73) 

Noting that 
𝛼2+1

𝛼2−1
−

�̅�2+1

�̅�2−1
=

(𝛼2+1)(�̅�2−1)−(𝛼2−1)(�̅�2+1)

(𝛼2−1)(�̅�2−1)
=

2(�̅�2−𝛼2)

(𝛼2−1)(�̅�2−1)
, substituting this expression into 

Eq(S73) and multiplying both sides of Eq(S73) by −
(𝛼2−1)

2
 leads to  

(
1

1−𝑦
)

2
− 𝛼2 ∙ (

1

1+𝑦
)

2
+ {(

1

1−𝑦
)

2
+ 𝛼2 ∙ (

1

1+𝑦
)

2
−

2(�̅�2−𝛼2)

(�̅�2−1)
} ∙ 𝛽𝑦 ∙ (

�̅�−
1

�̅�

𝛼−
1

𝛼

) = 0   (S74) 

Multiplying both sides of the equation by (1 + 𝑦)2 yields 

(
1+𝑦

1−𝑦
)

2
− 𝛼2 + {(

1+𝑦

1−𝑦
)

2
+ 𝛼2 − (1 + 𝑦)2 ∙

2(�̅�2−𝛼2)

(�̅�2−1)
} ∙ 𝛽𝑦 ∙ (

�̅�−
1

�̅�

𝛼−
1

𝛼

) = 0   (S75) 

Next, we make assume a linear correction in the sum of the fluxes, 𝑆𝑗, due to the finite membrane 

thickness.  We do this in the form 

𝑦 =
𝑆𝑗

𝐶0
= 𝑦0 + 𝛽𝑦1         (S76) 

In Eq(S76), 𝑦0 is the value of 
𝑆𝑗

𝐶0
 when 𝛽 = 0, and 𝑦1 is a constant.  Note that when 𝛽 = 0, we return to 

the limiting case.  Substituting Eq(S76) into Eq(S75) and retaining only expressions with linear terms in 𝛽 

leads to  

(
1+𝑦0+𝛽𝑦1

1−𝑦0−𝛽𝑦1
)

2
− 𝛼2 + {(

1+𝑦0

1−𝑦0
)

2
+ 𝛼2 − (1 + 𝑦0)2 ∙

2(�̅�2−𝛼2)

(�̅�2−1)
} ∙ 𝛽𝑦0 ∙ (

�̅�−
1

�̅�

𝛼−
1

𝛼

) = 0  (S77) 

Note that because the term in braces is multiplied by 𝛽, we discarded the corrections within the braces.  

Substituting 𝑦0 =
𝛼−1

𝛼+1
 (Eq(S54) and  

1+𝑦0

1−𝑦0
=

𝛼+1+𝛼−1

𝛼+1
𝛼+1−𝛼+1

𝛼+1

=
2𝛼

2
= 𝛼, 

(
1+𝑦0+𝛽𝑦1

1−𝑦0−𝛽𝑦1
)

2
− 𝛼2 + {𝛼2 + 𝛼2 − (1 +

𝛼−1

𝛼+1
)

2
∙

2(�̅�2−𝛼2)

(�̅�2−1)
} ∙ 𝛽 ∙ (

𝛼−1

𝛼+1
) ∙ (

�̅�−
1

�̅�

𝛼−
1

𝛼

) = 0   (S78) 

Multiplying (
1+𝑦0+𝛽𝑦1

1−𝑦0−𝛽𝑦1

) by (
1+𝑦0

1−𝑦0
) (

1−𝑦0

1+𝑦0
) yields 

(
1+𝑦0+𝛽𝑦1

1−𝑦0−𝛽𝑦1
) =

1+𝑦0

1−𝑦0
(

1+
𝛽𝑦1

1+𝑦0

1−
𝛽𝑦1

1−𝑦0

)        (S79) 

Reemembering that 
1+𝑦0

1−𝑦0
= 𝛼 (rearrangement of Eq(S54) leads to 
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(
1+𝑦0+𝛽𝑦1

1−𝑦0−𝛽𝑦1
) = 𝛼 (

1+
𝛽𝑦1

1+𝑦0

1−
𝛽𝑦1

1−𝑦0

) so (
1+𝑦0+𝛽𝑦1

1−𝑦0−𝛽𝑦1
)

2
=  𝛼2 (

1+
𝛽𝑦1

1+𝑦0

1−
𝛽𝑦1

1−𝑦0

)

2

    (S80) 

If 
𝛽𝑦1

1+𝑦0
 is small (

1+
𝛽𝑦1

1+𝑦0

1−
𝛽𝑦1

1−𝑦0

)

2

≈ (1 +
2𝛽𝑦1

1+𝑦0
) (1 +

2𝛽𝑦1

1−𝑦0
).  Thus, taking only linear terms 

(
1+𝑦0+𝛽𝑦1

1−𝑦0−𝛽𝑦1
)

2
= 𝛼2 (

1+
𝛽𝑦1

1+𝑦0

1−
𝛽𝑦1

1−𝑦0

)

2

≈ 𝛼2 + 2𝛼2𝛽𝑦1 (
1

1+𝑦0
+

1

1−𝑦0
) = 𝛼2 +

4𝛼2𝛽𝑦1

1−𝑦0
2   (S81) 

Substituting for 𝑦0 =
𝛼−1

𝛼+1
 and rearranging gives 

(
1+𝑦0+𝛽𝑦1

1−𝑦0−𝛽𝑦1
)

2
= 𝛼2 [1 + (

4𝛽𝑦1∙(1+𝛼)2

(1+𝛼)2−(1−𝛼)2)] ≡ 𝛼2 [1 + (1 + 𝛼)2 (
𝛽𝑦1

𝛼
)]    (S82) 

Subsituting Eq(S82) into Eq(S78) yields 

𝛼2 [1 + (1 + 𝛼)2 (
𝛽𝑦1

𝛼
)] − 𝛼2 + {2𝛼2 − (

2𝛼

𝛼+1
)

2
∙

2(�̅�2−𝛼2)

(�̅�2−1)
} ∙ 𝛽 ∙ (

𝛼−1

𝛼+1
) ∙ (

�̅�−
1

�̅�

𝛼−
1

𝛼

) = 0 (S83) 

This is identical to  

𝛽 {(1 + 𝛼)2 ∙ 𝑦1 + 2𝛼 ∙ [1 − (
2

1+𝛼
)

2
∙

(�̅�2−𝛼2)

(�̅�2−1)
] ∙ (

�̅�−
1

�̅�

𝛼−
1

𝛼

) ∙ 𝑦0} = 0    (S84) 

Dividing by 𝛽 and applying significant transformations leads to  

(1 + 𝛼)2 ∙ 𝑦1 +
2𝛼2

𝛼2−1
∙ [(�̅� −

1

�̅�
) − (

2
1

√𝛼
+√𝛼

)

2

∙ (
�̅�

𝛼
−

𝛼

�̅�
)] ∙ 𝑦0 = 0    (S85) 

Finally, 

𝑦1 = −
2𝛼2

(1+𝛼)2(𝛼2−1)
[(�̅� −

1

�̅�
) − (

2
1

√𝛼
+√𝛼

)

2

∙ (
�̅�

𝛼
−

𝛼

�̅�
)] ∙ 𝑦0 = −

2𝛼2

(1+𝛼)2(𝛼2−1)
[(�̅� −

1

�̅�
) − (

2

1+𝛼
)

2
∙

(�̅� −
𝛼2

�̅�
)] ∙ 𝑦0          (S86) 

From the definition of 𝑆𝑗 =
𝑗1

𝑃1
+

𝑗2

𝑃2
, with complete coion exclusion (𝑗2 = −𝑗1),  

𝑗1 = 𝑆𝑗
𝑃1𝑃2

𝑃2−𝑃1
= 𝑆𝑗

√𝑃1𝑃2

𝛼−
1

𝛼

         (S87) 

Additionally, 

𝑗1 =
𝑆𝑗

𝐶𝑜
∗

𝐶𝑜√𝑃1𝑃2

𝛼−
1

𝛼

= 𝐶0
√𝑃1𝑃2

𝛼−
1

𝛼

∙ (𝑦0 + 𝛽𝑦1)      (S88) 
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Substituting for 𝑦1 using Eq(S86) and the definition of 𝛽 (Eq(68) gives  

𝑗1 = 𝐶0
√𝑃1𝑃2

𝛼−
1

𝛼

∙ (𝑦0 −
𝐿

𝑐𝑋 𝐶0⁄
∙ √

𝑃1𝑃2

�̅�1�̅�2
(

2𝛼2

(𝛼2−1)(1+𝛼)2 [(�̅� −
1

�̅�
) − (

2

1+𝛼
)

2
∙ (�̅� −

𝛼2

�̅�
) ∙] 𝑦0)) (S89) 

Substituting 𝑦0 = (
𝛼−1

𝛼+1
) (see Eq(S54)) and using the definitions of 𝛼, �̅� ≡ √

𝑃2

𝑃1
, √

�̅�2

�̅�1
, one obtains after 

extensive rearrangement 

𝑗1 =
𝐶0

(
1

√𝑃1
+

1

√𝑃2
)

2 {1 −

2𝐿

(𝑐𝑋 𝐶0⁄ )

(√
𝑃2
𝑃1

−√
𝑃1
𝑃2

)(
1

√𝑃1
+

1

√𝑃2
)

2 ∙ [(
1

�̅�1
−

1

�̅�2
) − (

2

√𝑃1+√𝑃2
)

2

∙ (
𝑃1

�̅�1
−

𝑃2

�̅�2
)]} (S90) 

S9. Derivation of a first-order potential difference correction (Eq(39)) to the limiting case of constant 

electrochemical potentials:  Bi-ionic potentials 

This derivation begins with Eq(27), which we repeat below for convenience. 

𝜑(−1 − 𝐿) − 𝜑(1 + 𝐿) = 2 [
𝐿�̅�𝑗

𝑐𝑋
+ 𝑙𝑛 (

𝐶0+𝑆𝑗

𝐶0−𝑆𝑗
)]       (27) 

We need to make small corrections to the values of 𝑆�̅� and 𝑆𝑗 obtained with the assumption of equal 

electrochemical potentials of counterions across the membrane.  Based on Eq(S71) and taking only 

linear terms in 𝛽 

𝐿�̅�𝑗

𝑐𝑋
= 𝛽𝑦 ∙ (

�̅�−
1

�̅�

𝛼−
1

𝛼

) ≈ 𝛽𝑦0 ∙ (
�̅�−

1

�̅�

𝛼−
1

𝛼

)       (S91) 

For the last term in the brackets in Eq(27), 

𝑙𝑛 (
𝐶0+𝑆𝑗

𝐶0−𝑆𝑗
) = 𝑙𝑛 (

1+𝑦

1−𝑦
) ≈ 𝑙𝑛 (

1+𝑦0

1−𝑦0
) + 𝑙𝑛 (

1+
𝛽𝑦1

1+𝑦0

1−
𝛽𝑦1

1−𝑦0

) ≈ 𝑙𝑛(𝛼) + 𝛽𝑦1 ∙ (
1

1+𝑦0
+

1

1−𝑦0
) = 𝑙𝑛(𝛼) + 2𝛽𝑦1 ∙

(
1

1−𝑦0
2) = 𝑙𝑛(𝛼) +

𝛽𝑦1∙(𝛼+1)2

2𝛼
    (S92) 

Eq(S92) uses the approximation that 𝑙𝑛(1 + 𝑥) = 𝑥 and 𝑙𝑛 (
1

1−𝑥
) = 𝑥 for small x.  It also includes 𝑦0 =

𝛼−1

𝛼+1
 so 𝛼 =

1+𝑦0

1−𝑦0
.   

Substituting Eq(S92) and Eq(S91) into Eq(27) gives  

𝜑(−1 − 𝐿) − 𝜑(1 + 𝐿) ≈ 2 [𝛽𝑦0 ∙ (
�̅�−

1

�̅�

𝛼−
1

𝛼

) + 𝑙𝑛(𝛼) +
𝛽𝑦1∙(𝛼+1)2

2𝛼
]    (S93) 

Eq(S86) gives an expression for 𝑦1.  Use of this expression in Eq(S93) leads to  
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𝜑(−1 − 𝐿) − 𝜑(1 + 𝐿) ≈ 2 [𝑙𝑛(𝛼) +  𝛽𝑦0 ∙ {(
�̅�−

1

�̅�

𝛼−
1

𝛼

) −
𝛼

(𝛼2−1)
[(�̅� −

1

�̅�
) − (

2
1

√𝛼
+√𝛼

)

2

∙ (
�̅�

𝛼
−

𝛼

�̅�
)]}]  (S94) 

Substituting 𝑦0 =
𝛼−1

𝛼+1
 and rearranging gives 

𝜑(−1 − 𝐿) − 𝜑(1 + 𝐿) ≈ 2 [𝑙𝑛(𝛼) +  𝛽 ∙
1

4
(

2
1

√𝛼
+√𝛼

)

4

∙ (
�̅�

𝛼
−

𝛼

�̅�
)]     (S95) 

Substituting 𝛽 ≡
𝐿

𝑐𝑋 𝐶0⁄
∙ √

𝑃1𝑃2

�̅�1�̅�2
 and 𝛼, �̅� ≡ √

𝑃2

𝑃1
, √

�̅�2

�̅�1
 and rearranging finally yields  

𝜑(−1 − 𝐿) − 𝜑(1 + 𝐿) = 𝑙𝑛 (
𝑃2

𝑃1
) +

8𝐿𝐶0

𝑐𝑋
∙

𝑃1
�̅�1 

 − 
𝑃2
�̅�2

( √
𝑃2
𝑃1

4
+ √

𝑃1
𝑃2

4
)

4      (S96) 

S10. Derivation of Eqs(42, 43) for the flux and potential drop during current passage in the limiting 

case of constant electrochemical potentials across an ion-exchange membrane 

For a membrane flanked by boundary layers and two perfectly stirred reservoirs with the same solution 

composition,   

𝐶Δ,𝑙 = 𝐶Δ,𝑟 = 𝐶Δ,𝑜         (S97) 

In this case, Eq(S53) becomes 

(𝐶Δ,𝑜 −
𝑆∆∙𝐶0

2𝑆𝑗
) ∙

1

(𝐶0−𝑆𝑗)
2 = (𝐶Δ,𝑜 −

𝑆∆∙𝐶0

2𝑆𝑗
) ∙

1

(𝐶0+𝑆𝑗)
2     (S98) 

Because 
1

(𝐶0−𝑆𝑗)
2 will in general not equal 

1

(𝐶0+𝑆𝑗)
2, then  

𝐶Δ,𝑜 −
𝑆∆∙𝐶0

2𝑆𝑗
= 0 𝑠𝑜 

𝑆∆

𝑆𝑗
=

2𝐶Δ,𝑜

𝐶0
        (S99) 

Using Eq(40), , 𝑗2 = 𝐼 − 𝑗1, and the definitions of 𝑆∆, 𝑆𝑗, and 𝐶Δ,𝑜, and 𝐶0 = 2𝑐10 + 2𝑐20, one can show 

that  

𝑆∆

𝑆𝑗
≡

𝑗1∙(
𝑃2
𝑃1

+1)−𝐼

𝑗1∙(
𝑃2
𝑃1

−1)+𝐼
=

2𝐶Δ,𝑜

𝐶0
=

𝑐10−𝑐20

𝑐10+𝑐20
       (S100) 

Accordingly, solving for 𝑗1 gives 

𝑗1 =
𝐼

𝑃2∙𝑐20
𝑃1∙𝑐10

+1
=

𝐼𝑃1∙𝑐10

𝑃2∙𝑐20+𝑃1∙𝑐10
        (S101) 

Using the definition of 𝑆𝑗, Eq(40), and Eq(S101), we obtain 
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𝑆𝑗 ≡ 𝑗1 (
1

𝑃1
−

1

𝑃2
) +

𝐼

𝑃2
= 𝐼 [

𝑃1𝑐10

𝑃1𝑐10+𝑃2𝑐20
(

1

𝑃1
−

1

𝑃2
) +

1

𝑃2
] =

𝐼

𝑃2
[

𝑐10(𝑃2−𝑃1)

𝑃1𝑐10+𝑃2𝑐20
+ 1] =

𝐼

𝑃2

𝑐10(𝑃2−𝑃1)+𝑃1𝑐10+𝑃2𝑐20

𝑃1𝑐10+𝑃2𝑐20
=

𝐼
𝑐10+𝑐20

𝑃1𝑐10+𝑃2𝑐20
=

𝐶0𝐼 2⁄

𝑃1𝑐10+𝑃2𝑐20
         (S102) 

Substituting Eq(S102) into Eq(21), 𝜑(−1) − 𝜑(+1) = 2𝑙𝑛 (
𝐶0+𝑆𝑗

𝐶0−𝑆𝑗
), yields 

𝜑(−1) − 𝜑(1) = 2𝑙𝑛 (
𝐶0+𝑆𝑗

𝐶0−𝑆𝑗
) = 2𝑙𝑛 (

𝐶0+
𝐶0�̃� 2⁄

𝑃1𝑐10+𝑃2𝑐20

𝐶0−
𝐶0�̃� 2⁄

𝑃1𝑐10+𝑃2𝑐20

) = 2𝑙𝑛 (
1+

�̃� 2⁄

𝑃1𝑐10+𝑃2𝑐20

1−
�̃� 2⁄

𝑃1𝑐10+𝑃2𝑐20

) = 2𝑙𝑛 (
𝑃1𝑐10+𝑃2𝑐20+𝐼 2⁄

𝑃1𝑐10+𝑃2𝑐20−𝐼 2⁄
)  

          (S103) 

S11. Derivation of Eq(45) for the flux of ion “1” during current passage:  First-order correction to the 

limiting case of constant electrochemical potentials across an ion-exchange membrane 

As with the bi-ionic potential, this derivation starts with Eq(S40), which we repeat hear for convenience.   

(
𝐶Δ,𝑙

𝐶0
−

𝑆∆

2𝑆𝑗
) ∙ (

𝐶0

𝐶0−𝑆𝑗
)

2

∙ 𝑒𝑥𝑝 (
𝐿�̅�𝑗

𝑐𝑋
) − (

𝐶Δ,𝑟

𝐶0
−

𝑆∆

2𝑆𝑗
) ∙ (

𝐶0

𝐶0+𝑆𝑗
)

2

∙ 𝑒𝑥𝑝 (−
𝐿�̅�𝑗

𝑐𝑋
) = − (

𝑆∆

𝑆𝑗
−

�̅�Δ

�̅�𝑗
) ∙ 𝑠𝑖𝑛ℎ (

𝐿�̅�𝑗

𝑐𝑋
) (S40) 

We again assume that the term 
𝐿�̅�𝑗

𝑐𝑋
 is small, which leads to the linear approximations described 

previously. 

𝑠𝑖𝑛ℎ (
𝐿�̅�𝑗

𝑐𝑋
) =

𝐿�̅�𝑗

𝑐𝑋
; 𝑒𝑥𝑝 (

𝐿𝑆̅𝑗

𝑐𝑋
) = 1 +

𝐿�̅�𝑗

𝑐𝑋
; 𝑒𝑥𝑝 (−

𝐿�̅�𝑗

𝑐𝑋
) = 1 −

𝐿�̅�𝑗

𝑐𝑋
    (S65) 

Substituting these approximations gives  

(
𝐶Δ,𝑙

𝐶0
−

𝑆∆

2𝑆𝑗
) ∙ (

𝐶0

𝐶0−𝑆𝑗
)

2

+
𝐿�̅�𝑗

𝑐𝑋
(

𝐶Δ,𝑙

𝐶0
−

𝑆∆

2𝑆𝑗
) ∙ (

𝐶0

𝐶0−𝑆𝑗
)

2

− (
𝐶Δ,𝑟

𝐶0
−

𝑆∆

𝑆𝑗
) ∙ (

𝐶0

𝐶0+𝑆𝑗
)

2

+
𝐿�̅�𝑗

𝑐𝑋
(

𝐶Δ,𝑟

𝐶0
−

𝑆∆

𝑆𝑗
) ∙ (

𝐶0

𝐶0+𝑆𝑗
)

2

+

(
𝑆∆

𝑆𝑗
−

�̅�Δ

�̅�𝑗
) ∙

𝐿�̅�𝑗

𝑐𝑋
=0         (S104) 

Using 𝐶Δ,𝑙 = 𝐶Δ𝑟 = 𝐶Δ,𝑜, Eq(S97), and rearranging gives 

(
𝐶Δ,𝑜

𝐶0
−

𝑆∆

2𝑆𝑗
) [(

𝐶0

𝐶0−𝑆𝑗
)

2

− (
𝐶0

𝐶0+𝑆𝑗
)

2

] +
𝐿�̅�𝑗

𝑐𝑋
{(

𝐶Δ,𝑜

𝐶0
−

𝑆∆

2𝑆𝑗
) ∙ [(

𝐶0

𝐶0−𝑆𝑗
)

2

+ (
𝐶0

𝐶0+𝑆𝑗
)

2

] + (
𝑆∆

𝑆𝑗
−

�̅�Δ

�̅�𝑗
)} = 0   

           (S105) 

We will look at the different terms in this expression to eventually solve for the fluxes of individual ions.  

First, we remember that for applications of a constant current 

𝑗2 = 𝐼 − 𝑗1           (40) 

Accordingly based on the definitions of 𝑆𝑗 and 𝑆�̅� (sums of fluxes divided by permeances) 

𝑆𝑗 ≡ 𝑗1 ∙ (
1

𝑃1
−

1

𝑃2
) +

𝐼

𝑃2
          (S106) 

𝑆�̅� ≡ 𝑗1 ∙ (
1

�̅�1
−

1

�̅�2
) +

𝐼

�̅�2
          (S107) 
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𝑗1 ≡
𝑆𝑗−

�̃�

𝑃2

(
1

𝑃1
−

1

𝑃2
)
           (S108) 

The use of Eq(S108) in Eq(S107) gives 

𝑆�̅� ≡
𝑆𝑗−

�̃�

𝑃2

(
1

𝑃1
−

1

𝑃2
)

∙ (
1

�̅�1
−

1

�̅�2
) +

𝐼

�̅�2
        (S109) 

With sufficient identical transformations and substitution of 𝛼, �̅� ≡ √
𝑃2

𝑃1
, √

�̅�2

�̅�1
 into this equation, we 

obtain 

𝑆�̅� ≡ √
𝑃1𝑃2

�̅�1�̅�2
∙ [𝑆𝑗 ∙ (

�̅�−
1

�̅�

𝛼−
1

𝛼

) +
𝐼

√𝑃1𝑃2
∙

𝛼

�̅�
−

�̅�

𝛼

𝛼−
1

𝛼

]       (S110) 

As in prior derivations of corrections to bionic potentials, defining 𝑦 ≡ 𝑆𝑗 𝐶0⁄  leads to  

�̅�𝑗

𝐶0
≡ √

𝑃1𝑃2

�̅�1�̅�2
∙ [𝑦 ∙ (

�̅�−
1

�̅�

𝛼−
1

𝛼

) + 𝐼 ∙ (
𝛼

�̅�
−

�̅�

𝛼

𝛼−
1

𝛼

)]       (S111) 

where we define a dimensionless current, 𝐼 

𝐼 =
𝐼

𝐶0√𝑃1𝑃2
          (S112) 

Using Eq(S111) and the definition 𝛽 ≡
𝐿

𝑐𝑋 𝐶0⁄
∙ √

𝑃1𝑃2

�̅�1�̅�2
 

𝐿�̅�𝑗

𝑐𝑋
= 𝐿

�̅�𝑗 𝐶0⁄

𝑐𝑋 𝐶0⁄
≡

𝐿

𝑐𝑋 𝐶0⁄
√

𝑃1𝑃2

�̅�1�̅�2
∙ [𝑦 ∙ (

�̅�−
1

�̅�

𝛼−
1

𝛼

) + 𝐼 ∙ (
𝛼

�̅�
−

�̅�

𝛼

𝛼−
1

𝛼

)] = 𝛽 ∙ [𝑦 ∙ (
�̅�−

1

�̅�

𝛼−
1

𝛼

) + 𝐼 ∙ (
𝛼

�̅�
−

�̅�

𝛼

𝛼−
1

𝛼

)]  (S113) 

Substituting Eq(S108) and Eq(40) into the definition of 𝑆∆  

𝑆∆ =
𝑆𝑗−

�̃�

𝑃2

(
1

𝑃1
−

1

𝑃2
)

∙ (
1

𝑃1
+

1

𝑃2
) −

𝐼

𝑃2
        (S114) 

With appropriate transformations and substitution of 𝛼 = √
𝑃2

𝑃1
,  

𝑆∆ = 𝑆𝑗 ∙

1

𝑃1
+

1

𝑃2
1

𝑃1
−

1

𝑃2

−
𝐼

𝑃2
∙ (1 +

1

𝑃1
+

1

𝑃2
1

𝑃1
−

1

𝑃2

) = 𝑆𝑗 ∙
𝑃2+𝑃1

𝑃2−𝑃1
− 2𝐼 ∙ (

1

𝑃2−𝑃1
) = 𝑆𝑗 ∙

𝛼+
1

𝛼

𝛼−
1

𝛼

−
2𝐼

√𝑃1𝑃2
∙ (

1

𝛼−
1

𝛼

) (S115) 

Finally, dividing by both sides by 𝑆𝑗 and substituting the definition of 𝑦 ≡ 𝑆𝑗 𝐶0⁄  and 𝐼 =
𝐼

𝐶0√𝑃1𝑃2
 yields 

𝑆∆

𝑆𝑗
≡ (

𝛼+
1

𝛼

𝛼−
1

𝛼

) −
1

𝑦
∙ (

2𝐼

𝛼−
1

𝛼

)         (S116) 
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Using a similar procedure  

𝑆∆̅ ≡ 𝑆�̅� ∙ (
�̅�+

1

�̅�

�̅�−
1

�̅�

) −
2𝐼

√�̅�1�̅�2
∙ (

1

�̅�−
1

�̅�

)       (S117) 

Dividing both sized of Eq(117) by 𝑆�̅� and in the second term on the right substituting for 𝑆�̅�from Eq(S113) 

leads to  

�̅�∆

�̅�𝑗
= (

�̅�+
1

�̅�

�̅�−
1

�̅�

) −

2�̃�

𝐶0√�̅�1�̅�2
∙(

�̅�

�̅�2−1
)

√
𝑃1𝑃2
�̅�1�̅�2

∙[𝑦∙(
�̅�−

1
�̅�

𝛼−
1
𝛼

)+𝐼∙(

𝛼
�̅�−

�̅�
𝛼

𝛼−
1
𝛼

)]

= (
�̅�+

1

�̅�

�̅�−
1

�̅�

) −
(

2�̌�

�̅�−
1
�̅�

)

𝑦∙(
�̅�−

1
�̅�

𝛼−
1
𝛼

)+𝐼∙(

𝛼
�̅�−

�̅�
𝛼

𝛼−
1
𝛼

)

     (S118) 

Looking at Eq(S105), which we repeat here for convenience, 

(
𝐶Δ,𝑜

𝐶0
−

𝑆∆

2𝑆𝑗
) [(

𝐶0

𝐶0−𝑆𝑗
)

2

− (
𝐶0

𝐶0+𝑆𝑗
)

2

] +
𝐿�̅�𝑗

𝑐𝑋
{(

𝐶Δ,𝑜

𝐶0
−

𝑆∆

2𝑆𝑗
) ∙ [(

𝐶0

𝐶0−𝑆𝑗
)

2

+ (
𝐶0

𝐶0+𝑆𝑗
)

2

] + (
𝑆∆

𝑆𝑗
−

�̅�Δ

�̅�𝑗
)} = 0   

           (S105) 

Considering the limiting case where 
𝐿

𝑐𝑋
 approaches zero, (

𝐶Δ,𝑜

𝐶0
−

𝑆∆

𝑆𝑗
) must be zero so the first term goes 

to zero.  Thus, for small linear corrections, (
𝐶Δ,𝑜

𝐶0
−

𝑆∆

𝑆𝑗
) should be small.  In this approximation  

𝐿�̅�𝑗

𝑐𝑋
(

𝐶Δ,𝑜

𝐶0
−

𝑆∆

2𝑆𝑗
) ∙ [(

𝐶0

𝐶0−𝑆𝑗
)

2

+ (
𝐶0

𝐶0+𝑆𝑗
)

2

] ≈ 0      (S119) 

because it contains the product of two small terms, namely 
𝐿�̅�𝑗

𝑐𝑋
 and (

𝐶Δ,𝑜

𝐶0
−

𝑆∆

2𝑆𝑗
).  Taking into account 

Eq(S119), Eq(S105) becomes 

(
𝐶Δ,𝑜

𝐶0
−

𝑆∆

2𝑆𝑗
) [(

𝐶0

𝐶0−𝑆𝑗
)

2

− (
𝐶0

𝐶0+𝑆𝑗
)

2

] +
𝐿�̅�𝑗

𝑐𝑋
(

𝑆∆

𝑆𝑗
−

�̅�Δ

�̅�𝑗
) ≈ 0      (S120) 

With the substitution that 𝑦 = 𝑆𝑗/𝐶0,  

(
𝐶0

𝐶0−𝑆𝑗
)

2

− (
𝐶0

𝐶0+𝑆𝑗
)

2

= (
1

1−𝑦
)

2
− (

1

1+𝑦
)

2
=

4𝑦

(1−𝑦2)2     (S121) 

Substituting Eq(121) and Eq(S113) into Eq(S120) gives 

(2
𝐶Δ,𝑜

𝐶0
−

𝑆∆

𝑆𝑗
) ∙

4𝑦

(1−𝑦2)2 + 2 (
𝑆∆

𝑆𝑗
−

�̅�Δ

�̅�𝑗
) ∙ 𝛽 ∙ [𝑦 ∙ (

�̅�−
1

�̅�

𝛼−
1

𝛼

) + 𝐼 ∙ (
𝛼

�̅�
−

�̅�

𝛼

𝛼−
1

𝛼

)] ≈ 0    (S122) 

Identical transformations lead to  
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2 (
𝑆∆

𝑆𝑗
−

�̅�Δ

�̅�𝑗
) ∙ [𝑦 ∙ (

�̅�−
1

�̅�

𝛼−
1

𝛼

) + 𝐼 ∙ (
𝛼

�̅�
−

�̅�

𝛼

𝛼−
1

𝛼

)] = 2 {(
𝛼+

1

𝛼

𝛼−
1

𝛼

) − (
�̅�+

1

�̅�

�̅�−
1

�̅�

) +
(

2�̃�

�̅�−
1
�̅�

)

𝑦∙(
�̅�−

1
�̅�

𝛼−
1
𝛼

)+𝐼∙(

𝛼
�̅�−

�̅�
𝛼

𝛼−
1
𝛼

)

−
1

𝑦
∙ (

2𝐼

𝛼−
1

𝛼

)} [𝑦 ∙ (
�̅�−

1

�̅�

𝛼−
1

𝛼

) +

𝐼 ∙ (
𝛼

�̅�
−

�̅�

𝛼

𝛼−
1

𝛼

)] = 2 [(
𝛼+

1

𝛼

𝛼−
1

𝛼

) − (
�̅�+

1

�̅�

�̅�−
1

�̅�

) −
1

𝑦
∙ (

2𝐼

𝛼−
1

𝛼

)] ∙ [𝑦 ∙ (
�̅�−

1

�̅�

𝛼−
1

𝛼

) + 𝐼 ∙ (
𝛼

�̅�
−

�̅�

𝛼

𝛼−
1

𝛼

)] +
4𝐼

�̅�−
1

�̅�

   (S123) 

Noting that (
𝛼+

1

𝛼

𝛼−
1

𝛼

) − (
�̅�+

1

�̅�

�̅�−
1

�̅�

) ≡
𝛼�̅�−

𝛼

�̅�
+

�̅�

𝛼
−

1

𝛼�̅�
−(𝛼�̅�+

𝛼

�̅�
−

�̅�

𝛼
−

1

𝛼�̅�
)

(𝛼−
1

𝛼
)(�̅�−

1

�̅�
)

≡ −
2(

𝛼

�̅�
−

�̅�

𝛼
)

(𝛼−
1

𝛼
)(�̅�−

1

�̅�
)
, 

2 (
𝑆∆

𝑆𝑗
−

�̅�Δ

�̅�𝑗
) ∙ [𝑦 ∙ (

�̅�−
1

�̅�

𝛼−
1

𝛼

) + 𝐼 ∙ (
𝛼

�̅�
−

�̅�

𝛼

𝛼−
1

𝛼

)] = 2 [(
𝛼+

1

𝛼

𝛼−
1

𝛼

) − (
�̅�+

1

�̅�

�̅�−
1

�̅�

) −
1

𝑦
∙ (

2𝐼

𝛼−
1

𝛼

)] ∙ [𝑦 ∙ (
�̅�−

1

�̅�

𝛼−
1

𝛼

) + 𝐼 ∙ (
𝛼

�̅�
−

�̅�

𝛼

𝛼−
1

𝛼

)] +

4𝐼

�̅�−
1

�̅�

= 2 [−
2(

𝛼

�̅�
−

�̅�

𝛼
)

(𝛼−
1

𝛼
)(�̅�−

1

�̅�
)

−
1

𝑦
∙ (

2𝐼

𝛼−
1

𝛼

)] ∙ [𝑦 ∙ (
�̅�−

1

�̅�

𝛼−
1

𝛼

) + 𝐼 ∙ (
𝛼

�̅�
−

�̅�

𝛼

𝛼−
1

𝛼

)] +
4𝐼

�̅�−
1

�̅�

= −
4

(𝛼−
1

𝛼
)

2 [
(

𝛼

�̅�
−

�̅�

𝛼
)

(�̅�−
1

�̅�
)

+ (
𝐼

𝑦
)] ∙

[𝑦 ∙ (�̅� −
1

�̅�
) + 𝐼 ∙ (

𝛼

�̅�
−

�̅�

𝛼
)] +

4𝐼

�̅�−
1

�̅�

= −
4

(𝛼−
1

𝛼
)

2 [𝑦 ∙ (
𝛼

�̅�
−

�̅�

𝛼
) + 𝐼 ∙

(
𝛼

�̅�
−

�̅�

𝛼
)

2

(�̅�−
1

�̅�
)

+ 𝐼 ∙ (�̅� −
1

�̅�
) +

𝐼2

𝑦
∙ (

𝛼

�̅�
−

�̅�

𝛼
)] +

4𝐼

�̅�−
1

�̅�

       

           (S124) 

In the absence of small corrections, i.e. in the limiting case where L approaches zero, the first term of 

Eq(105), (
𝐶Δ,𝑜

𝐶0
−

𝑆∆

2𝑆𝑗
) must be zero.  Using Eq(116) 

2𝐶Δ,𝑜

𝐶0
=

𝑆∆

𝑆𝑗
= (

𝛼+
1

𝛼

𝛼−
1

𝛼

) −
1

𝑦𝑜
∙ (

2𝐼

𝛼−
1

𝛼

)       (S125) 

Solving Eq(S125) for 𝑦0 yields 

𝑦0 =
2𝛼𝐼

(𝛼2+1)−2
𝐶Δ,𝑜

𝐶0
(𝛼2−1)

= 𝛼𝐴𝐼        (S126) 

𝐴 =
2

(𝛼2+1)−2
𝐶Δ,𝑜

𝐶0
(𝛼2−1)

=
1

𝑓+𝛼2∙(1−𝑓)
; 𝑓 =

𝑐10

𝑐10+𝑐20
      (S127) 

In Eq(S122), we multiply 2 (
𝑆∆

𝑆𝑗
−

�̅�Δ

�̅�𝑗
) ∙ [𝑦 ∙ (

�̅�−
1

�̅�

𝛼−
1

𝛼

) + 𝐼 ∙ (
𝛼

�̅�
−

�̅�

𝛼

𝛼−
1

𝛼

)] by∙ 𝛽, so we can approximate 𝑦0 for 𝑦 in 

Eq(S124).  This leads to  

2 (
𝑆∆

𝑆𝑗
−

�̅�Δ

�̅�𝑗
) ∙ [𝑦 ∙ (

�̅�−
1

�̅�

𝛼−
1

𝛼

) + 𝐼 ∙ (
𝛼

�̅�
−

�̅�

𝛼

𝛼−
1

𝛼

)] = −
4𝐼

(𝛼−
1

𝛼
)

2 [𝛼𝐴 ∙ (
𝛼

�̅�
−

�̅�

𝛼
) +

(
𝛼

�̅�
−

�̅�

𝛼
)

2

(�̅�−
1

�̅�
)

+ (�̅� −
1

�̅�
) +

1

𝛼𝐴
∙ (

𝛼

�̅�
−

�̅�

𝛼
)] +

4𝐼

�̅�−
1

�̅�

 

           (S128) 

In Eq(S122), with the correction, the term (
𝐶Δ,𝑜

𝐶0
−

𝑆∆

𝑆𝑗
) will be small.  Thus, we can also susbstitute 𝑦0 for 

𝑦 in the term 
4𝑦

(1−𝑦2)2.  Finally, we return to 
𝑆∆

𝑆𝑗
≡ (

𝛼+
1

𝛼

𝛼−
1

𝛼

) −
1

𝑦
∙ (

2𝐼

𝛼−
1

𝛼

) in Eq(S116).  With the substitution of 

𝑦 = 𝑦0 + 𝛽𝑦1, the expression becomes 
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𝑆∆

𝑆𝑗
≡ (

𝛼+
1

𝛼

𝛼−
1

𝛼

) −
1

𝑦0+𝛽𝑦1
∙ (

2𝐼

𝛼−
1

𝛼

)        (S129) 

Using the approximation that for small 𝑥, 
1

1+𝑥
= 1 − 𝑥, 

𝑆∆

𝑆𝑗
≡ (

𝛼+
1

𝛼

𝛼−
1

𝛼

) −
1

𝑦0(1+
𝛽𝑦1
𝑦0

)
∙ (

2𝐼

𝛼−
1

𝛼

) ≈ (
𝛼+

1

𝛼

𝛼−
1

𝛼

) − (
2𝐼

𝛼−
1

𝛼

) ∙
1

𝑦0
(1 −

𝛽𝑦1

𝑦0
) = [(

𝛼+
1

𝛼

𝛼−
1

𝛼

) − (
2𝐼

𝛼−
1

𝛼

) ∙
1

𝑦0
] + (

2𝐼

𝛼−
1

𝛼

) ∙
𝛽𝑦1

𝑦0
2   

           (S130) 

Substituting from Eq(S125) 

𝑆∆

𝑆𝑗
=

2𝐶Δ,𝑜

𝐶0
+ (

2𝐼

𝛼−
1

𝛼

) ∙
𝛽𝑦1

𝑦0
2          (S131) 

Thus,  

(
2𝐶Δ,𝑜

𝐶0
−

𝑆∆

𝑆𝑗
) ∙

4𝑦0

(1−𝑦0
2)

2 ≈ −
4𝑦0

(1−𝑦0
2)

2 (
2𝐼

𝛼−
1

𝛼

) ∙
𝛽𝑦1

𝑦0
2 = − (

8𝐼

𝛼−
1

𝛼

) ∙
𝛽𝑦1

𝑦0∙(1−𝑦0
2)

2    (S132) 

Substituting Eq(S132) and Eq(S128) int Eq(S122) and dividing both sided by 𝛽 leads to  

− (
8𝐼

𝛼−
1

𝛼

) ∙
𝑦1

𝑦0(1−𝑦0
2)

2 −
4𝐼

(𝛼−
1

𝛼
)

2 [𝛼𝐴 ∙ (
𝛼

�̅�
−

�̅�

𝛼
) +

(
𝛼

�̅�
−

�̅�

𝛼
)

2

(�̅�−
1

�̅�
)

+ (�̅� −
1

�̅�
) +

1

𝛼𝐴
∙ (

𝛼

�̅�
−

�̅�

𝛼
)] +

4𝐼

�̅�−
1

�̅�

= 0 (S133) 

Substituting 𝑦0 =
2𝛼𝐼

(𝛼2+1)−2
𝐶Δ,𝑜

𝐶0
(𝛼2−1)

= 𝛼𝐴𝐼 and multiplying by by (𝛼 −
1

𝛼
) /4 gives  

−
2𝑦1

𝛼𝐴∙(1−(𝛼𝐴𝐼)2)2 −
𝐼

(𝛼−
1

𝛼
)

[𝛼𝐴 ∙ (
𝛼

�̅�
−

�̅�

𝛼
) +

(
𝛼

�̅�
−

�̅�

𝛼
)

2

(�̅�−
1

�̅�
)

+ (�̅� −
1

�̅�
) +

1

𝛼𝐴
∙ (

𝛼

�̅�
−

�̅�

𝛼
)] + 𝐼 ∙

(𝛼−
1

𝛼
)

(�̅�−
1

�̅�
)

= 0 (S134) 

Rearranging yields 

−
2𝑦1

𝛼𝐴(1−(𝛼𝐴𝐼)2)2 −
𝐼

(𝛼−
1

𝛼
)

[(𝛼𝐴 +
1

𝛼𝐴
) ∙ (

𝛼

�̅�
−

�̅�

𝛼
) +

(
𝛼

�̅�
−

�̅�

𝛼
)

2

(�̅�−
1

�̅�
)

+ (�̅� −
1

�̅�
)] + 𝐼 ∙

(𝛼−
1

𝛼
)

(�̅�−
1

�̅�
)

= 0   (S135) 

Through the series of transformations shown in the non-numbered equations below  

(𝛼𝐴 +
1

𝛼𝐴
) ∙ (

𝛼

�̅�
−

�̅�

𝛼
) +

(
𝛼

�̅�
−

�̅�

𝛼
)

2

(�̅�−
1

�̅�
)

≡ (
𝛼

�̅�
−

�̅�

𝛼
) [(𝛼𝐴 +

1

𝛼𝐴
) +

𝛼

�̅�
−

�̅�

𝛼

�̅�−
1

�̅�

] ≡ (
𝛼

�̅�
−

�̅�

𝛼

�̅�−
1

�̅�

) [(𝛼𝐴 +
1

𝛼𝐴
) (�̅� −

1

�̅�
) + (

𝛼

�̅�
−

�̅�

𝛼
)]  

 

−
2𝑦1

𝛼𝐴(1−(𝛼𝐴𝐼)2)2 −
𝐼

(𝛼−
1

𝛼
)

{(
𝛼

�̅�
−

�̅�

𝛼

�̅�−
1

�̅�

) [(𝛼𝐴 +
1

𝛼𝐴
) (�̅� −

1

�̅�
) + (

𝛼

�̅�
−

�̅�

𝛼
)] + (�̅� −

1

�̅�
)} + 𝐼 ∙

(𝛼−
1

𝛼
)

(�̅�−
1

�̅�
)

= 0  
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−
2𝑦1

𝛼𝐴(1−(𝛼𝐴𝐼)2)2 −
𝐼

(𝛼−
1

𝛼
)(�̅�−

1

�̅�
)

{(
𝛼

�̅�
−

�̅�

𝛼
) [(𝛼𝐴 +

1

𝛼𝐴
) (�̅� −

1

�̅�
) + (

𝛼

�̅�
−

�̅�

𝛼
)] + (�̅� −

1

�̅�
)

2
} + 𝐼 ∙

(𝛼−
1

𝛼
)

(�̅�−
1

�̅�
)

= 0  

𝑦1 = −
𝛼𝐴(1−(𝛼𝐴𝐼)2)

2

2
∙

𝐼

(𝛼−
1

𝛼
)(�̅�−

1

�̅�
)

∙ {(
𝛼

�̅�
−

�̅�

𝛼
) [(𝛼𝐴 +

1

𝛼𝐴
) (�̅� −

1

�̅�
) + (

𝛼

�̅�
−

�̅�

𝛼
)] + (�̅� −

1

�̅�
)

2
− (𝛼 −

1

𝛼
)

2
}   

 

(�̅� −
1

�̅�
)

2
− (𝛼 −

1

𝛼
)

2
≡ [�̅� −

1

�̅�
− (𝛼 −

1

𝛼
)] [�̅� −

1

�̅�
+ (𝛼 −

1

𝛼
)] ≡ [�̅� − 𝛼 − (

1

�̅�
−

1

𝛼
)] [�̅� + 𝛼 −

(
1

�̅�
+

1

𝛼
)] ≡ (�̅� − 𝛼) (1 +

1

�̅�𝛼
) (�̅� + 𝛼) (1 −

1

�̅�𝛼
) ≡ (�̅�2 − 𝛼2) (1 −

1

(�̅�𝛼)2) ≡ (
�̅�2−𝛼2

�̅�𝛼
) (�̅�𝛼 −

1

�̅�𝛼
) ≡

− (
𝛼

�̅�
−

�̅�

𝛼
) (�̅�𝛼 −

1

�̅�𝛼
)   

𝑦1 = −
𝛼𝐴∙(1−(𝛼𝐴𝐼)2)

2

2
∙

𝐼∙(
𝛼

�̅�
−

�̅�

𝛼
)

(𝛼−
1

𝛼
)(�̅�−

1

�̅�
)

∙ {[(𝛼𝐴 +
1

𝛼𝐴
) (�̅� −

1

�̅�
) + (

𝛼

�̅�
−

�̅�

𝛼
)] − (�̅�𝛼 −

1

�̅�𝛼
)}   

(
𝛼

�̅�
−

�̅�

𝛼
) − (�̅�𝛼 −

1

�̅�𝛼
) ≡ −�̅�𝛼 +

𝛼

�̅�
−

�̅�

𝛼
+

1

�̅�𝛼
≡ −𝛼 ∙ (�̅� −

1

�̅�
) −

1

𝛼
∙ (�̅� −

1

�̅�
) ≡ − (�̅� −

1

�̅�
) (𝛼 +

1

𝛼
)  

𝑦1 = −
𝛼𝐴∙(1−(𝛼𝐴𝐼)2)

2

2
∙

𝐼∙(
𝛼

�̅�
−

�̅�

𝛼
)

(𝛼−
1

𝛼
)(�̅�−

1

�̅�
)

∙ {[(𝛼𝐴 +
1

𝛼𝐴
) (�̅� −

1

�̅�
) − (�̅� −

1

�̅�
) (𝛼 +

1

𝛼
) ]} ≡ −

𝛼𝐴∙(1−(𝛼𝐴𝐼)2)
2

2
∙

𝐼∙(
𝛼

�̅�
−

�̅�

𝛼
)

(𝛼−
1

𝛼
)

∙ {[(𝛼𝐴 +
1

𝛼𝐴
) − (𝛼 +

1

𝛼
) ]}  

 

1

𝛼𝐴
−

1

𝛼
≡

1

𝛼
(

1

𝐴
− 1) ≡

1

𝛼
(𝑓 + 𝛼2 ∙ (1 − 𝑓) − 1) ≡

1

𝛼
∙ (1 − 𝑓)(𝛼2 − 1) ≡ (1 − 𝑓) (𝛼 −

1

𝛼
)  

𝛼(𝐴 − 1) ≡ 𝛼 ∙ (
1

𝑓+𝛼2∙(1−𝑓)
− 1) ≡ 𝛼 ∙

1−𝑓−𝛼2∙(1−𝑓)

𝑓+𝛼2∙(1−𝑓)
≡ 𝛼 ∙ (1 − 𝑓)

1−𝛼2

𝑓+𝛼2∙(1−𝑓)
  

(𝛼𝐴 +
1

𝛼𝐴
) − (𝛼 +

1

𝛼
) ≡  𝛼 ∙ (1 − 𝑓)

1−𝛼2

𝑓+𝛼2∙(1−𝑓)
+ (1 − 𝑓) (𝛼 −

1

𝛼
) ≡ (1 − 𝑓) (𝛼 −

1

𝛼
) [1 −

𝛼2

𝑓+𝛼2∙(1−𝑓)
] ≡ (1 − 𝑓) (𝛼 −

1

𝛼
)

𝑓+𝛼2∙(1−𝑓)−𝛼2

𝑓+𝛼2∙(1−𝑓)
≡ (1 − 𝑓) (𝛼 −

1

𝛼
)

𝑓∙(1−𝛼2)

𝑓+𝛼2∙(1−𝑓)
  

we finally obtain 

𝑦1 = −
𝛼𝐴∙(1−(𝛼𝐴𝐼)2)

2

2
∙

𝐼∙(
𝛼

�̅�
−

�̅�

𝛼
)

𝑓+𝛼2∙(1−𝑓)
∙ (1 − 𝑓) ∙ 𝑓 ∙ (1 − 𝛼2) = −

𝑓∙(1−𝑓)

2
∙ 𝛼 ∙ (1 − 𝛼2) ∙ 𝐴2 ∙ (

𝛼

�̅�
−

�̅�

𝛼
) ∙

[1 − (𝛼𝐴𝐼)
2

]
2

∙ 𝐼          (S136) 

Thus, 

𝑦 =
𝑆𝑗

𝐶𝑜
= 𝑦0 + 𝛽𝑦1 = 𝛼𝐴𝐼 ∙ {1 +

𝑓∙(1−𝑓)

2
∙ 𝛽 ∙ (𝛼2 − 1) ∙ 𝐴 ∙ (

𝛼

�̅�
−

�̅�

𝛼
) ∙ [1 − (𝛼𝐴𝐼)

2
]

2

} (S137) 
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Remembering that 𝑦 is the sum of ion fluxes divided by the total ion concentration in the bulk solution, 

we now need to develop this into an expression for individual ion fluxes.  Based on the definition of 𝑆𝑗 

and Eq(40), 

𝑗1 ∙ (
1

𝑃1
−

1

𝑃2
) ≡ 𝑆𝑗 −

𝐼

𝑃2
         (S138) 

𝑗1

𝐶0
=

𝑦−
�̃�

𝐶0𝑃2
1

𝑃1
−

1

𝑃2

= √𝑃1𝑃2

𝑦−√
𝑃1
𝑃2

∙
�̃�

𝐶0√𝑃1𝑃2

𝛼−
1

𝛼

= √𝑃1𝑃2 ∙
𝑦−

�̌�

𝛼

𝛼−
1

𝛼

= √𝑃1𝑃2 ∙
𝑦0−

�̌�

𝛼
+𝛽𝑦1

𝛼−
1

𝛼

   (S139) 

In principle, we can simply substitute Eq(137) into Eq(139) to obtain an expression for 𝑗1.  However, a 

simpler form in terms of only permeances and ion concentrations is preferable.  To obtain such an 

expression we note that from Eq(S127) that 𝐴 =
2

(𝛼2+1)−2
𝐶Δ,𝑜

𝐶0
(𝛼2−1)

=
1

𝑓+𝛼2∙(1−𝑓)
; 𝑓 =

𝑐10

𝑐10+𝑐20
. 

Using Eq(S126), one can show that 

𝛼𝐴𝐼 =
𝛼𝐼

𝑓+𝛼2∙(1−𝑓)
=

√
𝑃2
𝑃1

�̃�

𝐶0√𝑃1𝑃2
𝑐1

𝑐1+𝑐2
+

𝑃2
𝑃1

∙(
𝑐2

𝑐1+𝑐2
)

=

�̃�

2𝑃1

𝑐1+
𝑃2
𝑃1

𝑐2

=
�̃�

2

𝑃1𝑐1+𝑃2𝑐2
=

𝐼

𝐼𝑙𝑖𝑚
=

𝐼

𝐼𝑙𝑖𝑚
   (S140) 

In Eq(S140), 𝐼𝑙𝑖𝑚 = 2(𝑃1𝑐10 + 𝑃2𝑐20). 

Substituting from Eq(S126),  

𝑦0 −
𝐼

𝛼
= 𝛼𝐴𝐼 −

𝐼

𝛼
= 𝐼 ∙ (𝛼𝐴 −

1

𝛼
)       (S141) 

Moreover, based on Eq(127),   

𝛼𝐴 −
1

𝛼
=

1
𝑓

𝛼
+𝛼∙(1−𝑓)

−
1

𝛼
=

𝛼−
𝑓

𝛼
−𝛼∙(1−𝑓)

𝑓+𝛼2∙(1−𝑓)
=

𝑓∙(𝛼−
1

𝛼
)

𝑓+𝛼2∙(1−𝑓)
.       (S142) 

Substituting Eqs(S136, S141,S142) into Eq(S139) and rearranging gives 

𝑗1

𝐶0√𝑃1𝑃2
=

𝑦0−
�̌�

𝛼
+𝛽𝑦1

𝛼−
1

𝛼

= 𝐼 ∙
𝑓

𝑓+𝛼2∙(1−𝑓)
+

𝛽𝑦1

𝛼−
1

𝛼

=
𝑓∙𝐼

𝑓+𝛼2∙(1−𝑓)
+ 𝛼𝐴𝐼 ∙ {

𝑓∙(1−𝑓)

2
∙ 𝛽 ∙ 𝛼𝐴 ∙ (

𝛼

�̅�
−

�̅�

𝛼
) ∙

[1 − (𝛼𝐴𝐼)
2

]
2

}          (S143) 

Further substituting Eq(S140) and the definitions of 
𝛼

�̅�
, 

�̅�

𝛼
, and 𝛽 ≡

𝐿

𝑐𝑋 𝐶0⁄
∙ √

𝑃1𝑃2

�̅�1�̅�2
 while noting that 

𝛽 (
𝛼

�̅�
−

�̅�

𝛼
)=

𝐿

𝑐𝑋 𝐶0⁄
(

𝑃2

�̅�2
−

𝑃1

�̅�1
) leads to 

𝑗1

𝐶0√𝑃1𝑃2
=

𝑓∙𝐼

𝑓+𝛼2∙(1−𝑓)
+

𝐿

𝑐𝑋 𝐶0⁄
∙ (

𝐼

𝐼𝑙𝑖𝑚
)

𝑓∙(1−𝑓)

2
∙ 𝛼𝐴 (

𝑃2

�̅�2
−

𝑃1

�̅�1
) (1 − (

𝐼

𝐼𝑙𝑖𝑚
)

2

)
2

   (S144) 

Finally, solving for 𝑗1, noting that  𝐼 = 𝐼𝐶0√𝑃1𝑃2; 𝑓 =
𝑐10

𝑐10+𝑐20
;  𝐶0 = 2𝑐10 + 2𝑐20, using Eq(S140) and 

rearranging yields 
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𝑗1 =
𝑓∙𝐼

𝑓+𝛼2∙(1−𝑓)
+ 𝐶0√𝑃1𝑃2

𝐿

𝑐𝑋 𝐶0⁄
∙ (

𝐼

𝐼𝑙𝑖𝑚
)

𝑓∙(1−𝑓)

2
∙ 𝛼𝐴 (

𝑃2

�̅�2
−

𝑃1

�̅�1
) (1 − (

𝐼

𝐼𝑙𝑖𝑚
)

2
)

2

=
𝑃1𝑐10

𝑃1𝑐10+𝑃2𝑐20
∙ 𝐼 +

√𝑃1𝑃2
𝐿

𝑐𝑋
∙ (

𝐼

𝐼𝑙𝑖𝑚
) 2𝑐10𝑐20 ∙ 𝛼𝐴 (

𝑃2

�̅�2
−

𝑃1

�̅�1
) (1 − (

𝐼

𝐼𝑙𝑖𝑚
)

2
)

2

=
𝑃1𝑐10

𝑃1𝑐10+𝑃2𝑐20
∙ 𝐼 + √𝑃1𝑃2 (

𝐿

𝑐𝑋
) ∙ (

𝐼

𝐼𝑙𝑖𝑚
) ∙

2𝑐10𝑐20
𝑓

𝛼
+𝛼∙(1−𝑓)

(
𝑃2

�̅�2
−

𝑃1

�̅�1
) (1 − (

𝐼

𝐼𝑙𝑖𝑚
)

2
)

2

=
𝑃1𝑐10

𝑃1𝑐10+𝑃2𝑐20
∙ 𝐼 + (

𝐿

𝑐𝑋 𝐶0⁄
) ∙ (

𝐼

𝐼𝑙𝑖𝑚
) ∙

𝑐10𝑐20𝑃1𝑃2

𝑃1𝑐10+𝑃2𝑐20
(

𝑃2

�̅�2
−

𝑃1

�̅�1
) (1 − (

𝐼

𝐼𝑙𝑖𝑚
)

2
)

2

= 2𝑃1𝑐10 (
𝐼

𝐼𝑙𝑖𝑚
) ∙ {1 − (

𝐿

2𝑐𝑋 𝐶0⁄
) ∙

𝑐20𝑃2

𝑃1𝑐10+𝑃2𝑐20
(

𝑃1

�̅�1
−

𝑃2

�̅�2
) (1 − (

𝐼

𝐼𝑙𝑖𝑚
)

2
)

2

} (S145) 

S12. Derivation of Eq(46) for the potential drop during current passage through an ion-exchange 

membrane:  First-order correction to the limiting case of constant electrochemical potentials across an 

ion-exchange membrane 

This derivation begins with Eq(27), which we repeat below for convenience. 

𝜑(−1 − 𝐿) − 𝜑(1 + 𝐿) = 2 [
𝐿�̅�𝑗

𝑐𝑋
+ 𝑙𝑛 (

𝐶0+𝑆𝑗

𝐶0−𝑆𝑗
)]       (27) 

We derived Eq(27) in Section S3.  Remembering that 𝑦 = 𝑆𝑗/𝐶0 

𝜑(−1 − 𝐿) − 𝜑(1 + 𝐿) = 2 [
𝐿�̅�𝑗

𝑐𝑋
+ 𝑙𝑛 (

1+𝑦

1−𝑦
)]      (S146) 

As shown previously in Eq(S113), 

𝐿�̅�𝑗

𝑐𝑋
= 𝛽 ∙ [𝑦 ∙ (

�̅�−
1

�̅�

𝛼−
1

𝛼

) + 𝐼 ∙ (
𝛼

�̅�
−

�̅�

𝛼

𝛼−
1

𝛼

)]       (S113) 

Note that in Eq(S113) 𝑦 is multiplied by 𝛽, which is small, so we can neglect the correction and replace 𝑦 

with 𝑦0 = 𝛼𝐴𝐼 (Eq(S126)).   

With appropriate substitutions of Eqs(S113,S126), and using the first-order correction 𝑦 = 𝑦0 + 𝛽𝑦1, we 

obtain 

𝜑(−1 − 𝐿) − 𝜑(1 + 𝐿) ≈ 2𝛽 ∙ [𝛼𝐴𝐼 ∙ (
�̅�−

1

�̅�

𝛼−
1

𝛼

) + 𝐼 ∙ (
𝛼

�̅�
−

�̅�

𝛼

𝛼−
1

𝛼

)] + 2 [𝑙𝑛 (
1+𝑦0

1−𝑦0
) + 𝑙𝑛 (

1+
𝛽𝑦1

1+𝑦0

1−
𝛽𝑦1

1−𝑦0

)] (S147) 

Noting that for small 𝑥, ln(1 + 𝑥) = 𝑥 𝑎𝑛𝑑 ln(1 − 𝑥) = −𝑥 

𝜑(−1 − 𝐿) − 𝜑(1 + 𝐿) ≈ 2𝛽 ∙ [𝛼𝐴𝐼 ∙ (
�̅�−

1

�̅�

𝛼−
1

𝛼

) + 𝐼 ∙ (
𝛼

�̅�
−

�̅�

𝛼

𝛼−
1

𝛼

)] + 2 [𝑙𝑛 (
1+𝑦0

1−𝑦0
) + 𝛽𝑦1 (

1

1+𝑦0
+

1

1−𝑦0
)] (S148) 

Identical transformations give 
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𝜑(−1 − 𝐿) − 𝜑(1 + 𝐿) ≈ 2𝛽 ∙ [𝛼𝐴𝐼 ∙ (
�̅�−

1

�̅�

𝛼−
1

𝛼

) + 𝐼 ∙ (
𝛼

�̅�
−

�̅�

𝛼

𝛼−
1

𝛼

)] + 2 [𝑙𝑛 (
1+𝑦0

1−𝑦0
) +

2𝛽𝑦1

1−𝑦0
2] = 2𝑙𝑛 (

1+𝑦0

1−𝑦0
) + 2𝛽 ∙

[𝛼𝐴𝐼 ∙ (
�̅�−

1

�̅�

𝛼−
1

𝛼

) + 𝐼 ∙ (
𝛼

�̅�
−

�̅�

𝛼

𝛼−
1

𝛼

) +
2𝑦1

1−𝑦0
2]        (S149) 

Based on Eqs(S126,S140), 𝑦0 =
𝐼

𝐼𝑙𝑖𝑚
=

𝐼

𝐼𝑙𝑖𝑚
,  Additionally, with appropriate identical transformations,  

𝛼𝐴 ∙ (
�̅�−

1

�̅�

𝛼−
1

𝛼

) + (
𝛼

�̅�
−

�̅�

𝛼

𝛼−
1

𝛼

) =
𝛼[

�̅�

𝛼
𝑓+

𝛼

�̅�
(1−𝑓)]

𝑓+𝛼2(1−𝑓)
=

�̅�

𝛼
∙𝑓+

𝛼

�̅�
∙(1−𝑓)

𝑓

𝛼
+𝛼∙(1−𝑓)

.  Substituting these expressions into Eq(S149), along 

with Eq(S136) and Eq(S140) gives 

𝜑(−1 − 𝐿) − 𝜑(1 + 𝐿) ≈ 2𝑙𝑛 (
1+𝐼 𝐼𝑙𝑖𝑚⁄

1−𝐼 𝐼𝑙𝑖𝑚⁄
) + 2𝛽𝐼 ∙ [

�̅�

𝛼
∙𝑓+

𝛼

�̅�
∙(1−𝑓)

𝑓

𝛼
+𝛼∙(1−𝑓)

+ 𝑓 ∙ (1 − 𝑓) ∙ 𝛼 ∙ (𝛼2 − 1) ∙ 𝐴2 ∙ (
𝛼

�̅�
−

�̅�

𝛼
) ∙

(1 − (
𝐼

𝐼𝑙𝑖𝑚
)

2
)]           (S150) 

Noting that 𝛼𝐴 =
1

𝑓

𝛼
+𝛼∙(1−𝑓)

, Eq(S150) becomes 

𝜑(−1 − 𝐿) − 𝜑(1 + 𝐿) = 2𝑙𝑛 (
1+𝐼 𝐼𝑙𝑖𝑚⁄

1−𝐼 𝐼𝑙𝑖𝑚⁄
) + 2𝛽𝛼𝐴𝐼 ∙ [(

�̅�

𝛼
∙ 𝑓 +

𝛼

�̅�
∙ (1 − 𝑓)) + 𝑓 ∙ (1 − 𝑓) ∙ (𝛼2 − 1) ∙ 𝐴 ∙

(
𝛼

�̅�
−

�̅�

𝛼
) ∙ (1 − (

𝐼

𝐼𝑙𝑖𝑚
)

2
)]         (S151) 

Using the following identities 

𝛽 ≡
𝐿

𝑐𝑋 𝐶0⁄
√

𝑃1𝑃2

�̅�1�̅�2
 ; 

�̅�

𝛼
≡ √

�̅�2𝑃1

�̅�1𝑃2
; 𝛽

�̅�

𝛼
=

𝐿

𝑐𝑋 𝐶0⁄
√

𝑃1𝑃2

�̅�1�̅�2
√

�̅�2𝑃1

�̅�1𝑃2
=

𝐿

𝑐𝑋 𝐶0⁄

𝑃1

�̅�1
; 𝛽

𝛼

�̅�
≡

𝐿

𝑐𝑋 𝐶0⁄
√

𝑃1𝑃2

�̅�1�̅�2
√

�̅�1𝑃2

�̅�2𝑃1
≡

𝐿

𝑐𝑋 𝐶0⁄

𝑃2

�̅�2
 

𝜑(−1 − 𝐿) − 𝜑(1 + 𝐿) = 2𝑙𝑛 (
1+𝐼 𝐼𝑙𝑖𝑚⁄

1−𝐼 𝐼𝑙𝑖𝑚⁄
) +

2𝐿𝐶0

𝑐𝑋
∙ (

𝐼

𝐼𝑙𝑖𝑚
) ∙ [(

𝑃1

�̅�1
∙ 𝑓 +

𝑃2

�̅�2
∙ (1 − 𝑓)) + 𝑓 ∙ (1 − 𝑓) ∙

(𝛼 −
1

𝛼
) ∙ 𝛼𝐴 ∙ (

𝑃2

�̅�2
−

𝑃1

�̅�1
) ∙ (1 − (

𝐼

𝐼𝑙𝑖𝑚
)

2
)]       (S152) 

Noting that 𝐶0𝑓 ∙ (1 − 𝑓) ∙ (𝛼 −
1

𝛼
) ∙ 𝛼𝐴 =

2𝑐10𝑐20

𝑐10+𝑐20

𝑃2−𝑃1

𝑓𝑃1+(1−𝑓)𝑃2
=

2𝑐10𝑐20∙(𝑃2−𝑃1)

𝑃1𝑐10+𝑃2𝑐20
 and using identical 

transformations leads to 

𝜑(−1 − 𝐿) − 𝜑(1 + 𝐿) = 2 {𝑙𝑛 (
1+𝐼 𝐼𝑙𝑖𝑚⁄

1−𝐼 𝐼𝑙𝑖𝑚⁄
) +

2𝐿

𝑐𝑋
∙ (

𝐼

𝐼𝑙𝑖𝑚
) [

𝑃1𝑐10

�̅�1
+

𝑃2𝑐20

�̅�2
+

𝑐10𝑐20∙(𝑃1−𝑃2)

𝑃1𝑐10+𝑃2𝑐20
∙ (

𝑃1

�̅�1
−

𝑃2

�̅�2
) ∙

(1 − (
𝐼

𝐼𝑙𝑖𝑚
)

2
)]}           (S153) 
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S13.  Numerical simulations of bi-ionic potentials and fluxes 

Nernst-Planck Equation.  The model for ion transport includes diffusion and electromigration in the two 
boundary layers, ion partitioning at the boundary layer/membrane interfaces, and diffusion and 
electromigration in the membrane. We employ the Nernst-Planck equation (S154) to describe the 
fluxes, 𝑗𝑖, of specific ions in the boundary layer. 

−
𝑗𝑖

𝐷𝑖
=

𝑑𝑐𝑖

𝑑𝑥
+ 𝑧𝑖𝑐𝑖

𝑑𝜑

𝑑𝑥
         (S154) 

As previously described, 𝐷𝑖 is the diffusion coefficient in solution, 𝑐𝑖 is the real ion concentration, which 
depends on the coordinate 𝑥, 𝑧𝑖  is the ion charge, and 𝜑 is dimensionless (in F/RT units) real electrical 
potential.  In the ion-exchange membrane, equation (S155) describes the fluxes.  

−
𝑗𝑖

�̅�𝑖
=

𝑑𝑐�̅�

𝑑�̅�
+ 𝑧𝑖𝑐�̅�

𝑑�̅�

𝑑�̅�
          (S155) 

The overbars denote that the specific variables apply to the ion-exchange membrane.  The concentrations 
and electrical potential are real, rather than virtual, quantities because we use a diffusion coefficient 
rather than a permeability coefficient. Thus, we also need to determine partitioning at the interface of 
the boundary later and the membrane. In this case, we employ the Donnan model to describe ion 
partitioning.  

The Donnan model.  In equilibrium partitioning of an ion between two phases, the ion’s electrochemical 

potentials should be equal in the two phases. Considering membrane, M, and solution, S, phases, this 

gives equation (S156),   

�̅�𝑖
𝑀 = �̅�𝑖

𝑆          (S156) 

where �̅�𝑖
𝑀 and �̅�𝑖

𝑆 are the electrochemical potentials in the membrane and solution, respectively. 

Substituting for the electrochemical potentials leads to 

𝜇𝑖
𝑜𝑀 + 𝑅𝑇𝑙𝑛𝑎𝑖

𝑀 + 𝑧𝑖𝐹𝜙𝑀 = 𝜇𝑖
𝑜𝑆 + 𝑅𝑇𝑙𝑛𝑎𝑖

𝑆 + 𝑧𝑖𝐹𝜙𝑆     (S157) 

In these equations, 𝜇𝑖
𝑜 is the standard state chemical potential, 𝑎𝑖  is the ion activity, and 𝜙 is the electrical 

potential for the denoted phase. Further, 𝑧𝑖  is the ion charge, 𝑅 is the gas constant and 𝑇 is temperature. 

The Donnan model assumes that 𝜇𝑖
𝑜𝑀=𝜇𝑖

𝑜𝑆 and that activity coefficients are unity so activities equal 

concentrations. These assumptions lead to   

𝜙𝑀 − 𝜙𝑆 =
𝑅𝑇

𝑧𝑖𝐹
𝑙𝑛

𝐶𝑖
𝑆

𝐶𝑖
𝑀         (S158) 

For a system with three ions, we can equate the potential differences for all three ions.   

𝑅𝑇

𝑧1𝐹
𝑙𝑛

𝐶1
𝑆

𝐶1
𝑀 =

𝑅𝑇

𝑧2𝐹
𝑙𝑛

𝐶2
𝑆

𝐶2
𝑀 =

𝑅𝑇

𝑧3𝐹
𝑙𝑛

𝐶3
𝑆

𝐶3
𝑀  or  (

𝐶1
𝑀

𝐶1
𝑆 )

1/𝑧1

= (
𝐶2

𝑀

𝐶2
𝑆 )

1/𝑧2

= (
𝐶3

𝑀

𝐶3
𝑆 )

1/𝑧3

   (S159) 

We define a partition coefficient Γ𝑖  
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Γ𝑖 =
𝐶𝑖

𝑀

𝐶𝑖
𝑆            (S160)  

Substituting this definition into equation (S159) yields 

Γ2 =
𝐶2

𝑀

𝐶2
𝑆 = Γ1

𝑧2
𝑧1  and Γ3 =

𝐶3
𝑀

𝐶3
𝑆 = Γ1

𝑧3
𝑧1       (S161) 

For a three-ion system, the electrical neutrality condition inside the membrane is 

𝑧1𝐶1
𝑀 + 𝑧2𝐶2

𝑀 + 𝑧3𝐶3
𝑀 + 𝑧𝑥𝐶𝑥

𝑀=0.       (S162) 

Using equations (S161) to define the concentrations in the membrane, equation (S162) becomes 

𝑧1𝐶1
𝑠Γ1 + 𝑧2𝐶2

𝑆Γ1

𝑧2
𝑧1 + 𝑧3𝐶3

𝑆Γ1

𝑧3
𝑧1 + 𝑧𝑥𝐶𝑥

𝑀=0      (S163) 

Knowing the ion concentrations in solution, for a mixture of KCl and LiCl this is a quadratic equation that 

one can solve for Γ1.  Subsequently equation (S161) allows calculation of other ion partition coefficients 

and the concentrations of each ion in the membrane.  

Numerical Procedures.  Equations (S154 and S155) are systems of three equations (one equation for each 

ion). We assume that the ion-exchange membrane is homogeneous (
𝑑𝑐𝑥

𝑑�̅�
= 0). With the assumption of 

electroneutrality (∑ 𝑧𝑖𝑐𝑖 =𝑖 0 𝑎𝑛𝑑  ∑ 𝑧𝑖𝑐�̅� =𝑖 𝑐𝑥), one can transform equations (S154 and S155) into: 

𝑑𝑐𝑖

𝑑𝑥
= −

𝑗𝑖

𝐷𝑖
+  𝑧𝑖𝑐𝑖

∑ 𝑧𝑖
𝑗𝑖
𝐷𝑖

𝑖

∑ 𝑧𝑖
2𝑐𝑖𝑖

                                                                                                       (S164) 

𝑑𝑐�̅�

𝑑�̅�
= −

𝑗𝑖

�̅�𝑖
+  𝑧𝑖𝑐�̅�

∑ 𝑧𝑖
𝑗𝑖
�̅�𝑖

𝑖

∑ 𝑧𝑖
2𝑐�̅�𝑖

                                                                                                                (S165) 

We assumed a thermodynamic equilibrium established at the boundary layer/membrane interface and 
employed the Donnan model to relate 𝑐𝑖 and 𝑐�̅� at the interfaces. We treated equations (S164 and S165) 
as initial value problems by specifying one set of the bulk concentrations 𝑐𝑖 (−1 − 𝐿)  as initial conditions. 
By inputting two ion fluxes (the third flux is specified by the zero-current condition, ∑ 𝑧𝑖𝑗𝑖 =𝑖 0), we solved 
equations (S164 and S165) using a differential equation solver that is based on an explicit Runge-Kutta 
formula to get the ion concentration profiles in the boundary layers and in the membrane. In the MATLAB 
program, we performed iterations on the two ion fluxes until the other set of bulk concentrations 
𝑐𝑖 (1 + 𝐿), obtained from the solver, converged with the ones we specified.  

S14.  Numerical simulations of current-induced concentrations polarization 

The procedures for simulating current-induced concentrations polarization are largely like the ones we 

employed in section S13. However, the zero-current condition (∑ 𝑧𝑖𝑗𝑖 =𝑖 0) is replaced with equation 

(S166): 

𝐹 ∑ 𝑧𝑖𝑗𝑖 =𝑖 𝐼          (S166)  

𝐹 is the Faraday’s constant and 𝐼 is the current density. We employed the same Nernst-Planck equations 

to describe ion transport and the Donnan model to describe ion partitioning. The numerical procedures 
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are the same as well. We treated equations (S164 and S165) as initial value problems by specifying one 

set of the bulk concentrations 𝑐𝑖 (−1 − 𝐿)  as initial conditions. By specifying current density and 

inputting two ion fluxes (the third flux is specified by equation (S166)), we solved equations (S164 and 

S165) using a differential equation solver that is based on an explicit Runge-Kutta formula to get the ion 

concentration profiles in the boundary layers and in the membrane. In the MATLAB program, we 

performed iterations on the two ion fluxes until the other set of bulk concentrations 𝑐𝑖  (1 + 𝐿), 

obtained from the solver, converged with the ones we specified. We provide the MATLAB program here.  

 

MATLAB code 

This is a sample program that solves the concentration profiles of K+, Li+, and Cl-. The current density is 
5.5 A/dm2. The fixed charge density of the cation-exchange membrane is 1M (negative in the program to 
account for the negative fixed charges). Boundary layers are each 100 μm thick while the membrane is 
50 μm thick. We employed literature infinite dilution values for diffusion coefficients of ions in the 
boundary layer and assumed different extents of reduction of diffusion coefficients in the cation 
exchange membrane. The bulk concentrations are 0.1 M KCl and 0.1 M LiCl in the mixture. All 
parameters can be easily changed in the program. However, one should input reasonable initial guesses 
to facilitate the iteration process.  

clear 
clf 
clc 
  
z1=1; %charge of K 
z2=1; %charge of Li   
z3=-1; %charge of Cl   
c1L=0.1; %K concentration at the left bulk solution in M          
c2L=0.1; %Li concentration at the left bulk solution in M                      
c3L=(z1*c1L+z2*c2L)/-(z3); 
c1R=0.1; %K concentration at the right bulk solution in M         
c2R=0.1; %Li concentration at the right bulk solution in M           
c3R=(z1*c1R+z2*c2R)/-(z3); 
cx=-1; %fixed charge density of cation exchange membrane in M 
l1=100*10^-5; %boundary layer thickness in dm 
l2=50*10^-5; %membrane thickness in dm 
D1=1.96*10^-7; %K diffusion coefficient in boundary layer in dm^2/s   
D2=1.03*10^-7; %Li diffusion coefficient in boundary layer in dm^2/s   
D3=2.03*10^-7; %Cl diffusion coefficient in boundary layer in dm^2/s   
D1_m=1.96*10^-8; %K diffusion coefficient in membrane in dm^2/s     
D2_m=D1_m/4; %Li diffusion coefficient in membrane in dm^2/s     
D3_m=D1_m*D3/D1; %Cl diffusion coefficient in membrane in dm^2/s     
I=5.5; %Current Density in A/dm^2 
F=96485.33; %Faraday’s constant in C/mol 
  
j1=3.8e-5; %initial K flux guess in mol/dm^2/s 
j2=1.5e-5; %initial Li flux guess in mol/dm^2/s 
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options = optimset('TolX',1e-18,'TolFun',1e-18,'MaxFunEvals',1e13,'MaxIter',1e13); 
sol = fminsearch(@(j) funcSolve(j, z1,z2,z3, 
c1L,c2L,c3L,c1R,c2R,c3R,cx,l1,l2,D1,D2,D3,D1_m,D2_m,D3_m,I,F), [j1,j2],options); 
j1=sol(1); 
j2=sol(2); 
  
 
 
 
 
function [res] = funcSolve (j, z1,z2,z3,c1L,c2L,c3L,c1R,c2R,c3R,cx,l1,l2,D1,D2,D3,D1_m,D2_m,D3_m,I,F) 
j1 = j(1); 
j2 = j(2); 
j3=(I-z1*F*j1-z2*F*j2)/z3/F; 
  
[t1,c1]=ode45(@(t1,c1) func1(c1, D1,D2,D3,z1,z2,z3,j1,j2,j3,l1), [0 1], [c1L,c2L,c3L]); 
  
c1_int1=c1(end,1); 
c2_int1=c1(end,2); 
c3_int1=c1(end,3); 
  
p1 = [z1*c1_int1+z2*c2_int1 cx z3*c3_int1]; 
r1= roots(p1); 
gamma1=r1(imag(r1)==0 & r1>=0); 
  
co1=gamma1*c1_int1; 
co2=(gamma1^(z2/z1))*c2_int1; 
co3=(gamma1^(z3/z1))*c3_int1; 
  
[t2,c2]=ode45(@(t2,c2) func1(c2, D1_m,D2_m,D3_m,z1,z2,z3,j1,j2,j3,l2), [0 1], [co1,co2,co3]); 
  
ce1=c2(end,1); 
ce2=c2(end,2); 
ce3=c2(end,3); 
  
p2 = [z3*ce3 0 z1*ce1+z2*ce2]; 
r2 = roots(p2); 
gamma2=r2(imag(r2)==0 & r2>=0); 
  
c1_int2 = ce1/gamma2; 
c2_int2 = ce2/gamma2^(z2/z1); 
c3_int2 = ce3/gamma2^(z3/z1); 
  
[t3,c3]=ode45(@(t3,c3) func1(c3, D1,D2,D3,z1,z2,z3,j1,j2,j3,l1), [0 1], [c1_int2,c2_int2,c3_int2]); 
  
c1R_out=c3(end,1); 
c2R_out=c3(end,2); 
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c3R_out=c3(end,3); 
  
res = (c1R_out/c1R-1)^2+(c2R_out/c2R-1)^2+(c3R_out/c3R-1)^2; 
  
function dc = func1(c, D1,D2,D3,z1,z2,z3,j1,j2,j3,l) 
dc =[-j1*l/D1+(z1*c(1)*l*((z1*j1/D1)+(z2*j2/D2)+(z3*j3/D3)))/(z1*z1*c(1)+z2*z2*c(2)+z3*z3*c(3)); 
        -j2*l/D2+(z2*c(2)*l*((z1*j1/D1)+(z2*j2/D2)+(z3*j3/D3)))/(z1*z1*c(1)+z2*z2*c(2)+z3*z3*c(3)); 
        -j3*l/D3+(z3*c(3)*l*((z1*j1/D1)+(z2*j2/D2)+(z3*j3/D3)))/(z1*z1*c(1)+z2*z2*c(2)+z3*z3*c(3))]; 
end 
end 

 

S15.  Numerical simulations for modelling concentration profiles above a bipolar ion-exchange patch 

To calculate the salt-concentration profiles in the two-dimensional system with a patch of a perfectly 
selective ion exchanger, we used Comsol Multiphysics 4.2 software. Ion fluxes in the electrolyte solution 
above the wall with the IEX patch were modeled using the extended Nernst-Planck Equation module, 
which generally accounts for diffusion, electro-migration and convective components of ion flows. 
However, we set the fluid flow rate to zero, as we assumed negligible convective flow. The diffusion 
coefficients of the ions of a 1:1 electrolyte were assumed to be 𝐷1 = 𝐷2 = 2 ∙ 10−9 𝑚2 𝑠⁄ , and their 

electrical mobility was defined as 𝑢1,2 =
𝐷1,2

𝑅𝑇
 . We assumed the patch width to be equal to 20 μm 

positioning it on the x-axis from x = -10 μm to x = + 10 μm. 
 
The electrolyte domain was chosen in the form of a hemi-cylinder located above the wall with the 

center in the middle of the patch and with a radius of 100 μm. For graphing purposes, additional 

sections were made at the heights of 2 μm, 4 μm, and 6 μm. The mesh was generated automatically 

with the largest element size being 0.5 μm and the smallest being 0.001 μm. A mesh layer with 

increased resolution was added at the wall for improving the accuracy. 

 

Computational domain 
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Since the problem involves finding two quantities, salt concentration and electrostatic potential, on each 
of the sections of the boundary it is necessary to set two boundary conditions. On the semi-circular 
boundary of the domain we set a constant electrolyte concentration equal to the bulk concentration 
(assumed to be 1 mM) and an electric potential that corresponds to an uniform electric field of a given 
strength: 𝜑 = −𝑈0𝑥. 
 
At the wall outside the patch, the boundary conditions reflect the absence of flux of both ions normal to 
the surface. Obviously, these conditions automatically mean zero electrical current through the wall. For 
the coions the zero normal flux condition applies to the patch region, too. The second boundary 
condition at the patch reflects its very high permeability to the counterions so their electrochemical 
potential along the patch does not change: 

𝜇1 = 𝜇1
0 + 𝑅𝑇 ln 𝐶 + 𝐹𝑍1𝜑  is a constant, so 𝑅𝑇 ln 𝐶 + 𝐹𝑍1𝜑 is also a constant. 

We iterated on the value of 𝑅𝑇 ln 𝐶 + 𝐹𝑍1𝜑 so that the net normal flux of counter-ions (and electric 
current) through the patch was zero. At the same time, the counterions were allowed to “enter” the 
patch from the solution in one part of it, but had to “exit” it from another. Thus, the condition for 
choosing 𝜇1 reflects the fact that the patch is insulated from external sources of ions. 
 


