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Abstract

In the study of the dynamics of neuronal networks, it is interesting to see how the interac-
tion between neurons can elicit di�erent behaviours in each individual one. Moreover, this
can lead to the population exhibiting collective phenomena that is not intrinsic to a single
cell, such as synchronization. In dynamical systems theory, this problem has been tackled
through both high-dimensional systems of coupled single-cell models and mean-�eld models
that describe the macroscopic state of the network in terms of the �ring rate or the mean
membrane potential.

In this project, we work with a large-scale network and a �ring-rate model of quadratic
integrate-and-�re (QIF) neurons. We study the dynamics of the QIF model and compute its
phase response curve (PRC), which is a well-known tool for the analysis of the perturbations
of the cell's membrane potential caused by the di�erent stimuli received from the network.
Then, we propose an algorithm to describe the population through the PRCs. Our method
is able to replicate the same dynamics we observe with the aforementioned models and it also
serves us to gain more insight into the transmission of pulses and to explain how a network
can maintain a state of synchronized �ring. Our results are a positive test that a mean-�eld
model with PRCs could be obtained.

Keywords: mathematical neuroscience, quadratic integrate-and-�re, neuronal network,
phase response curve, synchronization.





Resum

En l'estudi de la din�amica de xarxes neuronals, �es interessant veure com la interacci�o entre
neurones pot provocar diferents comportaments en cada una. Aix�o pot portar incl�us a que
la poblaci�o mostri una fenomenologia col�lectiva no inherent a cap neurona, com �es el cas de
la sincronitzaci�o. En la teoria de sistemes din�amics, aquest problema s'ha atacat a partir de
sistemes d'alta dimensi�o on s'acoblen models neuronals i tamb�e a partir de models de camp
mitj�a, que descriuen l'estat macrosc�opic de la xarxa a partir de la freq•u�encia de desc�arrega
(�ring-rate ) o del potencial de membrana mitj�a.

En aquest projecte, treballem amb una xarxa de gran escala i amb un model de �ring-rate
de neurones de tipusquadratic integrate-and-�re (QIF). Estudiarem la din�amica del model
QIF i calcularem la seva corba de resposta de fase (PRC), que �es una eina ben coneguda
utilitzada per l'an�alisi de les pertorbacions del potencial de membrana de la c�el�lula, que
s�on causades pels diferents est��muls provinents de la xarxa. Seguidament, proposem un
algorisme que descriu la poblaci�o a partir de les PRCs. El nostre m�etode �es capa�c de replicar
la mateixa din�amica que observem amb els models anteriors i ens serveix per entendre millor
la transmissi�o d'impulsos i per explicar com una xarxa pot mantenir un estat de sincronia.
Els resultats obtinguts s�on un test positiu de qu�e es podria obtenir un model de camp mitj�a
amb PRCs.
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1 Introduction

A neuron is an excitable cell such that, depending on the stimuli received, can remain qui-
escent or it can experience spiking activity. From the perspective of dynamical systems,
several mathematical neuronal models have been suggested to study the bifurcations that
govern this transition from resting to �ring, and the equilibrium points, whether these are
stable (resting or excitable state, see �g.1.1a and �g.1.1b) or unstable (sustained spiking, see
�g.1.1c), as well as other aspects about its dynamics. One of the earliest proposals was made
in 1907 by Louis Lapicque, with what is known as theleaky integrate-and-�re. Nowadays it
is still used, mainly because of its simplicity, but there are other more biophysically accurate
approaches such as theHodgkin-Huxley modelof the giant squid axon. Proposed in 1952
by Alan Hodgkin and Andrew Huxley, this model was pivotal in the understanding of the
generation of action potentials in neurons, and became the reference for many models, which
were built around it. For their work, they were awarded the 1963 Nobel Prize in Physiology
or Medicine.

Having an understanding of single-cell dynamics, one can proceed to couple neurons to study
their interaction in a network. A population of neurons can display interesting phenomena
that is not inherent to an individual cell, like synchrony. For instance, some species of �re-
ies in a swarm are able to ash in a coordinated manner after some time[3], and increased
synchrony has a role in some neurological disorders, such as epilepsy[13].

Other types of models called�ring-rate models have been introduced to study the behaviour
of a network. They describe properties of the population as a whole (the mean membrane
potential, mean �ring rate, etc.) rather than the particular state of each neuron, and they
are widely used due to their simplicity, which allows for more theoretical results.

In the remainder of this chapter, we will give a brief overview of why neurons emit electric
signals and present some of the ways one can model a single neuron.Then, we will review
in more detail the model of choice for our work: thequadratic integrate-and-�re (QIF).
Finally, we will see how we can model a network, with a high-dimensional system of coupled
heterogeneous QIF neurons, and with a novel �ring-rate model, both presented in [16].
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2 1. Introduction

1.1 What makes a neuron �re?

A neuron receives thousands of signals through the synapses. These inputs generate a cur-
rent across the membrane which alters the membrane potential of this cell, generating what
is called apostsynaptic potential(PSP). If the current is weak, we obtain small PSPs, and if
it is strong, we have high PSPs. Furthermore, there are channels embedded in the membrane
which, depending on the voltage, can amplify the PSPs.

The basic idea is that a neuron sums the PSPs from all the inputs and, with the additional
ampli�cation from the voltage-sensitive channels, it can surpass the �ring threshold, and
consequently generate anaction potential (or spike), see �g.1.1b-c. These spikes are the
main events that trigger the communication among neurons, and it is interesting to see how
two identical neurons can have di�erent responses to the same transmission and, conversely,
how two di�erent neurons can have the same response to an input.

Figure 1.1: (a) Resting, (b) excitable and (c) sustained spiking states.

1.2 Modeling a single neuron

We have very precise neuronal models from the biological standpoint, such as the classic
by Hodgkin and Huxley[9], for the particular case of a giant squid axon. However, as it
takes into account the biophysical phenomena related to the generation of spikes, we have
an intricate model, given by

Cm
dVm

dt
= gK n4(EK � Vm ) + gNa m3h(ENa � Vm ) + gl (E l � Vm ) + I;

dn
dt

= � n (Vm )(1 � n) � � n (Vm )n;

dm
dt

= � m (Vm )(1 � m) � � m (Vm )m;

dh
dt

= � h(Vm )(1 � h) � � h(Vm )h;
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where the� 's and � 's are functions obtained by interpolating points found experimentally,
and are de�ned by

� n (Vm ) =
0:01(10� Vm )

exp
�

10� Vm
10

�
� 1

; � n (Vm ) = 0 :125 exp
�

� Vm

80

�
;

� m (Vm ) =
0:1(25� Vm )

exp
�

25� Vm
10

�
� 1

; � m (Vm ) = 4 exp
�

� Vm

18

�
;

� h(Vm ) = 0 :07 exp
�

� Vm

20

�
; � h(Vm ) =

1
exp

�
30� Vm

10

�
+ 1

:

It is a system of nonlinear diferential equations inR4, which complicates the study of the
phase space. Without getting much into it, functionsn, m and h are involved in the reg-
ulation of the opening and closing of channel gates of the neuron, which let in and out of
the cell the di�erent types of ions that create a di�erence in electric potential across the
membrane, measured byVm .

We have other mathematical representations of a neuron, like the FitzHugh-Nagumo model[8][18]

which is not as faithful to the biological interpretation, but preserves the qualitative features
of the neurons' dynamics described in the H-H model, while at the same time reducing its
dimensions to two. This means that we can study the dynamics inR2 and so, it helps inter-
preting and explaining some of the phenomena surmised from the Hodgkin-Huxley model.
The system is

"
dv
dt

= f (v) � w + I;

dw
dt

= v � w;

where
f (v) = v(1 � v)(v � � ) for 0 < � < 1; " � 1:

A fundamental property of neurons isexcitability. As de�ned in [13], the textbook description
of neuronal excitability is that a small stimulus will not generate a spike, whereas a large
enough pulse will. This means we have athreshold. From the dynamical systems viewpoint,
the subthreshold response translates into: all the trajectories that start close enough to
the equilibrium will converge to it (this is the so-calledresting state, see �g.1.1a). The
supratheshold response translates into leaving a certain neighborhood of the equilibrium,
resulting in a large-amplitude piece of trajectory, which then returns, and it either converges
to the equilibrium (�g.1.1b) or continues with sustained oscillations (�g.1.1c). Therefore,
what gives us information is not so much the shape of the spikes but their absence or
presence. In fact, in 1948, Hodgkin identi�ed the di�erent types of responses, and suggested
a classi�cation of neurons according to their excitability[13]:
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� Class I: The neuron can spike at arbitrarily low frequencies, depending on the strength
of the current. The neurons that undergo a saddle-node bifurcation on invariant circle
(SNIC) are the ones associated with this class, as the oscillations are born with in�nite
period and it gradually decreases as the intensity grows.

� Class II : The spiking frequency is bounded from below, and changing the strength
of the intensity barely alters it. In general, the neurons in this class undergo a Hopf
bifurcation, as the oscillations emerge with non-zero frequency.

� Class III : The neuron can exhibit a single spike in response to a pulse of current,
and only with really strong injected currents, one can observe more than one spike in
succession or none at all. Hodgkin referred to these as \sick neurons"; some books do
not even consider this class, and focus on the �rst two.

A drawback of the aforementioned models is that, even though their parameters can be
measured experimentally, these are usually an average from di�erent cells[13], which can lead
to the model exhibiting a di�erent behaviour from the experiments. This is why we will
considerintegrate-and-�re (IF) models. The basic idea behind IF models is that when the
membrane potentialV reaches a certain peak value, the neuron is said to �re a spike, and
the voltage is reset. Integrate-and-�re models provide a faithful reproduction of basic neu-
rocomputational features related to excitability, such as the timing of the action potentials
and how it is a�ected depending on di�erent stimuli, which is the basic element in the com-
munication between neurons in a network.

Furthermore, even though the previous models allow for a very detailed analysis of the be-
haviour of a single neuron, if we want to adapt them for the study of a neural network, it
may lead to e�ciency problems due to the complexity of the systems (not to mention that,
depending on the parameters used, both H-H and F-N are sti� di�erential equations). This
makes the computational treatment of networks more di�cult, so that considering integrate-
and-�re models can be helpful, as they are governed by only one �rst-order ODE (note that,
in some cases, we can even obtain an exact solution, so they are easier to study analytically).
Moreover, when working with networks, the intrinsic properties of each neuron are not as
relevant, so working with these types of models makes more manageable the study of their
properties as a collective.

An example of an IF model is the leaky integrate-and-�re (LIF, attributed to Louis Lapicque[14])
which, after rescaling, can be written as

dV
dt

= b� V; if V = 1 then V  0:

The idea is what we described earlier: when the membrane potentialV reaches a threshold
(in this caseVthresh = 1), then the neuron is said to �re a spike, and the voltage is reset (here
Vreset = 0).
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1.2.1 Quadratic integrate-and-�re

For our work, we will use one of the simplest models of a spiking neuron, the quadratic
integrate-and-�re (QIF, suggested by Izhikevich[11][12][13]). It can be obtained from a more
general model called thetheta model(introduced by Ermentrout and Kopell[6]), via a change
of variables. The quadratic integrate-and-�re model is a class I neuron, and it is described
by the following �rst order di�erential equation 1

dV
dt

= I + V 2; if V = + 1 then V  Vreset ; (1.1)

whereV is the membrane voltage variable, andI is the input current, which will usually be
taken as a constant. Here, the voltage is reset when it reaches +1 (we will see that this
happens in �nite time). However, when doing simulations, we will �x a �nite valueVpeak (or
Vthresh as in the LIF model) instead of +1 which will have the same role.

It is a Riccati's equation and it can also be solved by separation of variables. Either way, its
analytical solution for I > 0 is

V(t) =
p

I � tan
�

(t + C)
p

I
�

;

for some constantC, which depends on the initial conditionV(t0) = V0. Solving the initial
value problem yields

V(t) =
p

I tan
�

arctan
�

V0p
I

�
+

p
I (t � t0)

�
: (1.2)

Notice that the voltage goes to in�nity in a �nite time; this is why we have the resetting
mechanism described earlier. After rescaling, one can takeVpeak = 1 (as seen in [13]) but
in some instances it is useful to takeVpeak = + 1 for analytical results (see, for example, [7]).

For I < 0, we considerJ = � I and proceed with separation of variables, obtaining

V(t) =
2
p

� I

1 � e2
p

� I (t � t0 )
�

1 � 2
p

� I
V0+

p
� I

� �
p

� I: (1.3)

Finally, for I = 0, the solution is

V(t) =
V0

1 � V0(t � t0)
: (1.4)

As a �nal note, we have the analytic solution, but if we wanted to solve it numerically,
Matlab's ode45(or another ODE solver) can be used, together with anevents function to
check if Vpeak has been reached. Also, all the step-by-step calculations can be found at the
end of appendix A.

1 This is the nondimensionalized version, which is its simplest form as well. For more details, see appendix A.
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1.2.1.1 Dynamics of a QIF neuron

The next step is to run simulations to con�rm and better understand some of the phenomena
governed by (1.1).

Since the right-hand side of (1.1) is a quadratic function, we may have two, one or no
roots, depending on the value ofI , as it moves the parabola up and down. These roots de-
termine the equilibria and, depending onV0 and Vreset , di�erent phenomena can be observed:

With negative input current I , f (V) = I + V 2 has two real roots, namelyV� = �
p

jI j. In
the one-dimensional case, the stability is given by the slope off , therefore, the negative root
V� is a stable point (the resting point) and the positive one is unstable (the threshold point
V+ ). As long as the initial valueV0 is below the threshold, the voltage will always converge
to the resting point (see �g.1.2).

Figure 1.2: QIF resting state (I < 0, V0 < V+ )2

Otherwise, if the initial value is above the threshold, the neuron will �re a spike, and the
following response will depend on whether the reset valueVreset is sub or suprathreshold. If
Vreset < V+ , a spike is �red, the voltage resets and then converges to the resting state, as
seen in �g.1.3. But if Vreset > V+ , there is a �rst action potential, and then it starts the
periodic spiking (see �g.1.4).

Figure 1.3: QIF excitable state (I < 0, V0 > V+ ; Vreset < V+ )

2 From now on, in the �gures, �lled and empty circles represent stable and unstable equilibria respectively.
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Figure 1.4: QIF bursting (I < 0, V0 > V+ ; Vreset > V+ )

This last scenario does not correspond to regular spiking since, after �ring a spike, the neuron
would need to recover, that is, the membrane potential should return to the resting voltage,
which is smaller thanV+ . However, it might make sense in the context ofbursting[13], but
this is another type of phenomena that we will no explore here.

Figure 1.5: Equilibria of (1.1) as a function ofI

When I reaches 0, the equilibrium
points merge into one (f (V) = V 2

has double root 0) and originates a
saddle-node (fold) bifurcation (see
�g.1.5). The initial values to its left
will make the membrane potential
converge to equilibrium, and the
ones to its right will be repelled.
After the bifurcation, the equilib-
ria have annihilated each other and
no resting points exist. This means
that whatever the initial and reset
values are, the model will exhibit
sustained spiking (�g.1.6).

Figure 1.6: QIF periodic spiking (I > 0)
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As we mentioned earlier, the quadratic integrate-and-�re models a class I neuron. However,
this category of neurons are characterized by undergoing a saddle-node on invariant circle
bifurcation, where the center manifold makes a homoclinic loop, and, as we have seen,
_V = I + V 2 has a fold bifurcation whenI = 0. But, if we add the resetting mechanism, it
actually becomes a SNIC bifurcation. This might be easier to see if we change to the theta
model: Taking V = tan( �=2), one obtains _� = 1 � cos� + (1 + cos � )I , with � lying on the
unit circle (when � = � , the neuron spikes). Now, looking at �g.1.7, we see that for negative
currents we have a heteroclinic orbit connecting both �xed points. AsI increases, they get
closer, until they collide, forming a homoclinic orbit atI = 0. Actually, if we take solution
(1.4) for I = 0 , we see that it takes in�nite time to close the orbit. Finally, for I > 0, we
are left with a periodic orbit. This is the description of a SNIC bifurcation.

Figure 1.7: Saddle-node bifurcation on invariant circle in the theta model.

1.3 Modeling a network of neurons

When studying the behaviour of several neurons connected in a network, one might be in-
terested in the dynamics of each individual cell. However, sometimes it is preferable to deal
with models that capture the nature of the network as a whole, describing it in terms of
macroscopic measures, such as the mean membrane potential or the �ring rate (the mean
rate at which neurons emit spikes). These macroscopic descriptions are usually called�ring-
rate models or �ring-rate equations (FREs). The main advantage of FREs compared to
the microscopic approach with large networks is their simplicity, which allows for mathe-
matical analysis, and also, they are computationally e�cient. Still, traditional �ring-rate
models such as the Wilson-Cowan equations[7] do not give a precise relationship between
the microscopic dynamics of individual neurons and the macroscopic state of the network,
and furthermore, do not describe settings where a fraction of the neurons are in synchrony[16].

In this project, we will work with the two network models presented in [16], where the
authors derive a system of FREs given by

_r =
�
�

+ 2rv; (1.5a)

_v = v2 + � + Jr + I (t) � � 2r 2; (1.5b)

with parameters �, � , J and a functionI (t). The overdot denotes the derivative with respect
to time. This system is for an all-to-all network ofN heterogeneous QIF neurons, and its
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microscopic model is given by the membrane potentialsf Vj gj =1 ;:::;N , which are governed by

_Vj = I j + V 2
j ; if Vj = Vpeak then Vj  Vreset ; (1.6)

where the input current I j has the form

I j = � j + Js(t) + I (t); (1.7)

with the mean synaptic activation s(t) (which is what links the neurons) written as

s(t) =
1
N

NX

j =1

X

kjtk
j

Z t

�1
a� (t � t0)� (t0 � tk

j ) dt0: (1.8)

Here, tk
j is the time of the kth spike of the j th neuron, � (t) is the Dirac delta function, and

a� (t) is the normalized synaptic activation caused by a single presynaptic spike with time
scale� . The parameters and functions will be described with more detail in the following
sections, but for further explanations, we refer to [16].

Their results show the correlation between the spike generation mechanism of individual
neurons (1.6), and the �ring-rate (r ) and mean membrane potential (v) coupling given by
(1.5). In fact, this correspondence is exact in the thermodynamic limit (i.e.N ! + 1 ).

Figure 1.8: Simulations of both models (FREs in red and large-scale network in blue).
Equations (1.5a)� (1.5b) describe exactly the model given by (1.6). HereN = 104, J = 15,
� = � 5, � = 1. I (t) = I 0 sin(!t ) for t � 0 and I (t) = 0 otherwise (I 0 = 3, ! = �= 20) is
shown in the last plot. Also drawn is a raster plot of 300 randomly selected neurons, which
marks with a dot if the neuronj at time t �res a spike. To compute the �ring rate, we count
the number of spikes within [t � �t; t ] and divide it by N and �t (�t = 2 � 10� 2). The mean
membrane potential is computed considering only the population that is not in refractory
state.
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1.4 Outline of the project

In this project, our goal is to understand how the interaction between neurons can a�ect
each individual one to the point where it may elicit a type of behaviour that it would not
exhibit on its own. In this introductory chapter, we have provided the background necessary
for the following sections.

In chapter 2, we will de�ne the phase response curve(PRC), which is what will give us
information about how a neuron responds to a perturbation. We will see that the quadratic
integrate-and-�re actually has a closed form for the expression of its PRC, so we will derive
it and study its properties.

In chapter 3, we will consider a population of coupled heterogeneous QIF neurons. We will
explain with more detail equations (1.6)� (1.7)� (1.8) and we will run simulations of the
network they describe. Then, we propose an algorithm to couple PRCs. We will discuss its
implementation and compare the results that our method yields with both the QIF network
and the mean-�eld model, to see if we are describing qualitatively the same activity of the
population of neurons. This algorithm will help us understand how the di�erent stimuli re-
ceived from the network can push a neuron to spike earlier and, in particular, how knowing
the shape of the PRC can help us achieve a synchronous state in the network.

In chapter 4, we give a summary of the conclusions we have reached and discuss future work.



2 Neuron's response to perturbations.
The phase response curve

Given a neuron exhibiting periodic spiking, if it receives a brief stimulus that causes a
change of its membrane potential, it can advance or postpone the next spike. Interestingly,
this response may vary depending on when this stimulus takes place. In order to study these
variations, we will consider the associated phase response curves (PRC), a well-known tool
for the analysis of the interaction between neurons in a network.

2.1 Phase response curve

Let us consider a system with a limit cycle which, in our context, is a neuron displaying
sustained spiking. We de�nephase, which will be denoted by� , as the time elapsed since
the last spike. Therefore,� 2 [0; T), where T is the period of oscillation.

Now, suppose, as in �g.2.1, that we inject a stimulus at phase� (i.e., we increase byA units
the variable that describes the membrane potential) and this pulse causes the neuron to �re
earlier, and so, the phase is reset to a greater one� new (in short: V(� ) + A = V(� new )). The
map from � to � new is called thephase transition curve(PTC) and the PRC for each phase
is de�ned as

PRC(� ) = PTC( � ) � � = � new � �:

Figure 2.1: QIF unperturbed (blue) and after stimulation (red). In this case, the pulse at�
advances the action potentials. The PRC is the time shift between the old and new spikes.

11
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Now, still in the same setting as in �g.2.1, we have the periodT, which is the time between
spikes for the unperturbed neuron. If there is a pulse at� , we de�ne � as the time until the
new spike. This is equivalent to writing� = T � � new . Therefore, the time of the new spike
is T� = � + � = � � � new + T, from which we deduce

PRC(� ) = T � T� :

This expression will be useful in the following computations. We note that even though we
call it \curve", the PRC is, of course, a map. However, what is usually presented is its graph.

2.1.1 PRC of the QIF model

The phase response curve (also calledphase-resetting curve) is usually computed numeri-
cally, using the so-calledadjoint method[7] (derived from Malkin's theorem[13]), but one of
the advantages of having the analytical solution of the QIF (1.1), is that we can easily obtain
the exact expression of its PRC:

For I > 0, which is when we have periodic spiking, we will considerV0 = Vreset , so we can
work in the interval [t0; t f ], where t f is the time when the �rst spike is �red (this way, we
have slightly nicer expressions). By de�nition,V(t f ) = Vpeak, therefore, using solution (1.2)
we have

V(t f ) = Vpeak ()
p

I tan
�

arctan
�

Vresetp
I

�
+

p
I (t f � t0)

�
= Vpeak

=) t f =
1

p
I

�
arctan

�
Vpeakp

I

�
� arctan

�
Vresetp

I

��
+ t0; (2.1)

and if we now taket0 = 0, then t f is the periodT.

To compute T� for some� 2 [0; T], we suppose there is a brief pulse att = � that raises
the membrane potential by A units, and then we resume the integration from (t; V ) =
(�; V (� ) + A). Then, similar to what we have just seen forT, we obtain

T� =
1

p
I

�
arctan

�
Vpeakp

I

�
� arctan

�
V(� ) + A

p
I

��
+ �; (2.2)

and using (1.2) to evaluateV(� ), we end up with

T� =
1

p
I

�
arctan

�
Vpeakp

I

�
� arctan

�
A

p
I

+ tan
�

arctan
�

Vresetp
I

�
+

p
I�

���
+ � (2.3)

and so

PRC(�; A ) = min
�

1
p

I

�
arctan

�
A

p
I

+ tan
�

arctan
�

Vresetp
I

�
+

p
I�

��
� arctan

�
Vresetp

I

��
; T

�
� � (2.4)

The reason we write the minimum is because for everyA, there is a point � � where this
perturbation is just enough to reachVpeak so, for any � 2 [� � ; T], it turns out that T� = � ;
as a consequence, PRC(�; A ) = T � � and, on that interval, the curve is a straight line with
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slope� 1. In fact, in eq.(2.2), if V (� ) + A > V peak, because arctan(x) is a strictly increasing
function, we would haveT� < � , and this is not coherent ifT� is the time of the new spike
after the perturbation at phase� .

Figure 2.2: PRC of (1.1) with I = 0:01, A = 0:01 and Vpeak = � Vreset = 1. PRC( � ) has
been rescaled, so it is easier to compare it against the unperturbedV(t) (dotted line). Bear
in mind that the PRC has units of time and V is a voltage, so it is not rigorous to compare
them in quantitative terms, but it is interesting to explain the shape of the PRC usingV(t).

An important observation to make regarding �g.2.2, is that the PRC is always positive,
which means that the spikes are always advanced in time whenever there is a positive volt-
age increaseA after a stimulus (if A > 0 we say that the stimulus is excitatory). IfA < 0 (i.e.
the stimulus is inhibitory), we would have a negative PRC and the spikes would be delayed.
Other models might exhibit delay or advancement depending on the phase of stimulation
(for example, both Hodgkin-Huxley and FitzHugh-Nagumo models have a sinusoidal form[2]).

Notice as well that the PRC displayed in �g.2.2 looks (somewhat) symmetrical. This is in
part due to the symmetrical shape of the solution, but this only happens for small stimuli.
If we compute the PRC for increasing strengths of the perturbation, we will see a gradual
tilt of the curve to the left (see �g.2.3).

Figure 2.3: Comparison of PRCs for the QIF model (1.1) withI = 0:01 for increasing values
of the perturbation parameterA > 0 (without scaling).
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