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ABSTRACT 

The work highlights the importance of directional spreading effects on wave overtopping estimation in 
shallow and mild sloping foreshores. Wave short-crestedness leads, in general, to a reduction of mean 
overtopping discharges on coastal structures. In the present work, the case of a sea dike with gentle foreshore 
in very and extremely shallow water conditions is analysed. Physical model tests have been carried out in 
order to investigate the effect of directional spreading on overtopping and incident wave characteristics. In 
the present experimental campaign, the effect of wave spreading has only been investigated for 
perpendicular wave attack. Results show that directional spreading is proved to cause a reduction of average 
discharge of sea dikes with gentle and shallow foreshore. Expressions for the reduction factor for directional 
spreading are derived, fitted on the tested database. The use of this reduction factor leads to more accurate 
prediction and avoids overtopping overestimation, however reduction-factor formulations are overtopping-
formula depending.  

KEYWORDS: Wave overtopping; directional spreading; reduction factor; shallow foreshore; sea dike. 

1. INTRODUCTION 

Coastal areas worldwide are at risk because of anthropogenic and natural hazards, which are expected to 
increase due to changing climate (Weisse et al., 2012). Effects of the climate change, such as the sea level 
rise and the occurrence of more severe and frequent storms represent major threats to coastal defences. The 
mean sea level has been increasing during the last century on average of 1-2 mm/year, tendency that is 
worsening during the last few decades (Jevrejeva et al., 2006). Besides, the 20th century has seen already a 
number of severe storms causing damage and flooding worldwide.  Examples of these storms are: the North 
Sea flood of 1953, considered to be the worst natural disaster of the 20th century both in the Netherlands, 
Belgium and the United Kingdom, claiming 2,551 lives and leading to damages for more than 0.6 bn USD; 
Xynthia in 2010 (63 casualties and damages for more than 1.4 bn USD); Xaver in 2013 (15 casualties, ≥ 1.3 
bn USD). Worldwide, the Hurricane Katrina caused over 125 bn USD damages and 1,800 casualties only in 
USA in 2005, probably the most destructive hurricane in the latest 20 years in USA, followed by Harvey 
(2017, 68 fatalities and 125 bn USD damages) and Sandy (2012, 233 fatalities 68.7 bn USD). In the same 
geographical area, in 2017 the Hurricane Maria struck and devastated Dominica, the U.S. Virgin Islands, and 
Puerto Rico, with over 3,000 fatalities and 91.61 bn USD damages. All the aforementioned events are just a 
few examples of a long list of severe weather conditions that are likely to occur again, enhanced by the 
climate change. In particular, low-lying countries are ones of the most exposed areas to wave overtopping 
and sea flood. These countries are characterised by densely populated and low-elevation coastal areas that, 
despite the increasing risk for flooding, are experiencing a continuous population growth. In many low-
elevation coastal areas, very shallow, long and gentle foreshores lie in front of the coastal protections. Only a 
few studies are available in literature on wave overtopping prediction for such a beach layout and 
specifically in combination with sea dikes (van Gent et al., 2007; Altomare et al., 2016; Suzuki et al., 2017). 
These studies analysed the case of long-crested wave conditions, being based on wave flume experimental 
campaigns or 2DV numerical modelling. However, it is of high importance to understand the influence of 
gentle and shallow foreshores for real three-dimensional sea states (short-crested waves) on wave 
transformation and wave overtopping. Guza & Feddersen (2012) demonstrated influence of directional 
spreading for wave run-up and Suzuki et al. (2014) showed one for wave overtopping by phase resolving 
wave models. However, those were limited to the numerical modelling. While numerical solvers can help to 
characterise wave transformation and overtopping for short-crested waves (Zijlema et al., 2011; Roelvink et 
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al., 2009), not many data are available for a proper model validation are available for the aforementioned 
conditions with shallow and gentle foreshores under realistic sea states, i.e. short-crested waves. Physical 
model tests have been usually carried out for structures lying on horizontal bottom and deep or intermediate 
water conditions ate the toe, not taking into account the influence of gentle and shallow foreshores (e.g. 
Nørgaard et al., 2014; van Gent and Van der Werf, 2019). Besides, the behaviour of free and bound 
infragravity waves over a sloping bottom (Janssen et al., 2003; Battjes et al., 2004; van Dongeren et al., 
2007) under realistic sea states will be of interest. It would be important to take into account the 
characteristics of free and bound long waves, which dominate the hydrodynamics in the shallow foreshore, 
in order to understand overtopping phenomena in shallow foreshore condition better. 

Physical model tests have been carried out in the shallow-water wave basin at Flanders Hydraulics Research 
(FHR) in Antwerp, Belgium, to analyse the influence of directional spreading on wave overtopping and post-
overtopping processes on sloping sea dikes with 1:35 foreshore slope in case of very and extremely shallow 
water conditions (Hofland et al., 2017). The experimental campaign is part of the CREST (Climate 
REsilience coast) project (http://www.crestproject.be/en), a Belgian-funded project and the goal of which is 
to increase the knowledge of coastal processes nearshore and landward. 
In the present work, the influence of wave short-crestedness on mean overtopping discharge is discussed. 
The results are compared with existing semi-empirical formulae from literature. This work aims at 
representing a first step towards a more comprehensive understanding of wave overtopping of sea dikes for 
cases with very and extremely shallow foreshores due to real three-dimensional sea states. 
 

2. SHALLOW WATER CRITERIA  

The foreshore can be defined as the part of the seabed bathymetry in front of the dike toe, that causes 
processes like wave breaking and refraction. The most recent criterion to define the shallowness of the 
foreshores has been published by Hofland et al. (2017). The authors characterise the shallowness of the 
foreshore by means of the ratio of the still water depth near the structure, ht, by the offshore wave height, 
Hm0,o, in deep waters (Figure 1). Table 1 shows the ranges of foreshore shallowness as in Hofland et al. 
(2017). These criteria allow avoiding misinterpretation of the shallowness as for cases with non-breaking 
swells on deep foreshores. In the present research, cases from very shallow to extremely shallow foreshores, 
which imply heavy wave breaking, have been modelled. 
 

 
Figure 1. Layout for the definition of offshore and toe conditions. The offshore conditions are indicated by the offshore spectral wave 
period Tm-1,0,o and the offshore wave height Hm0,o. The conditions at the toe of a possible structure are indicated by the spectral wave 

period, Tm-1,0,t  the wave height at the toe Hm0,t and the water depth at the toe and ht. Still water level (SWL) is indicated, as well.  

 

Table 1. Ranges of foreshore shallowness (Hofland et al., 2017) 

Deep 
 ℎ�	���,� > 4 

Shallow  
 1 < ℎ�	���,� < 4 

Very Shallow 
 0.3 < ℎ�	���,� < 1 
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Extremely Shallow 
 ℎ�	���,� < 0.3 

 
A new set of formulas for the wave period calculation at the toe of the dike were proposed by Hofland et al. 
(2017). For long-crested waves, the increase of the spectral period from offshore to the toe of the dike is 
expressed by: ����,�,�����,�,� − 1 = 6exp�−4ℎ�� + exp�−ℎ��                (1) 

where Tm-1,0,o and Tm-1,0,t are the spectral wave period offshore and at the toe respectively and a ℎ� is new 
parameter for relative water depth defined as follows:  
 ℎ� = !�"��,� #$%&'(�� )�.*                            (2) 

 
being cotθ the foreshore slope, ranging between 35 and 250 in Hofland et al. (2017). For short-crested 
waves, a formula with similar shape was presented: ����,�,�����,�,� − 1 = 6exp�−6ℎ�� + 0.25 exp�−0.75ℎ��                (3) 

 
 

3. AVERAGE WAVE OVERTOPPING ASSESSMENT IN EXISTING LITERATURE  

Wave overtopping occurs when sea waves run up coastal defences which are not high enough to prevent 
flows over their crest. Wave overtopping is a very complex phenomenon because it varies in time and space 
during the same storm event. It is common practice to assess the mean or average overtopping discharge that 
can be defined as the ratio between the total volume of water that overtops a coastal defence by the duration 
of the storm event. Hence, mean wave overtopping is widely used worldwide as one of the most important 
design criteria for coastal defences. It is a simple but meaningful parameter. Mean overtopping depends not 
only on the local wave conditions, but also on the dike geometry (crest elevation, presence of storm walls or 
blocks, etc.). In areas characterized by gentle and shallow foreshores, the foreshore slope affects also the 
overtopping discharge (Altomare et al., 2016), because of the provoked heavy breaking and propagation of 
the resulting broken waves on the same foreshore. 
Average overtopping can be estimated by means of numerical or experimental modelling or by employing 
semi-empirical formulas, which rely and are fitted on experimental results or in situ measurements. This 
section offers a brief review of those semi-empirical formulas that might be applicable to the case of wave 
overtopping on sea dikes with very or extremely shallow foreshores.  

3.1  Goda (2009)  

Goda (2009) proposed a set of unified formulas for the prediction of the mean rate of wave overtopping of 
smooth impermeable coastal structures both for sloping and vertical structures. For that scope, he analysed a 
specific dataset derived from the database of the EU-funded CLASH project (in total 1254 data), considering 
only cases with smooth, impermeable faces. Excluded from the calibration datasets were also the data of 
vertical walls with re-curved wave walls or broad crests, and the data with oblique wave incidence (angle of 
wave attack not being 0°). Goda used also 198 tests carried out at Kansai University, Japan, by (Tamada et 
al. 2001) that presented dike slopes of 1:3, 1:5 and 1:7 and foreshore slopes equal to 1:10 and 1:30. No wave 
conditions at the toe were provided in this latter dataset, reason why Goda calculated the predicted wave 
height at the toe by means of the method presented in (Goda, 2006).In Goda (2009), the author showed that 
existing exponential formulas have a tendency to overestimate large overtopping rates and underestimate low 
overtopping rates, when calibrated with the extracted dataset. He used the simple well known exponential 
formula for wave overtopping: 
 .

/0"��,�1 = 2 = exp	3−45 + 6 78"��,�9:                         (4) 

 
where q is the mean overtopping discharge expressed in m3/s/m, Rc is the freeboard, Hm0,t is the incident 
spectral wave height at the dike toe, g is the gravity acceleration. The author redefined the coefficients A and 
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B not just as constant values, but as functions of the dike slope, the foreshore slope and the dimensionless toe 
depth. 
 5 = 5�;<=ℎ>?0.956 + 4.44;<=AB ∙ �ℎ& �D�,& + 1.242 − 2.032;<=�.*EA⁄ �G      (5) 6 = 6�;<=ℎ>?0.822 − 2.22;<=AB ∙ �ℎ& �D�,& + 0.578 + 2.22;<=A⁄ �G        (6) 
 
with: 5� = 3.4 − 0.734IJ;K + 0.239IJ;*K − 0.0162IJ;LK            (7) 6� = 2.3 − 0.5IJ;K + 0.15IJ;*K − 0.011IJ;LK              (8) 
 
being θ the foreshore angle with the horizontal, ht the still water depth at the dike toe and α the dike slope 
angle. The Eqs.(5-8) are valid in the range 0≤cot α≤7. Both A and B coefficients increase up to a constant 
value if the relative toe depth increase. The plateau is reached for ht/Hm0,t bigger than 3.0 in both cases. 
However, all collected data are characterized by a dimensionless toe depth ht/Hm0,t bigger than 1.0, therefore 
lacking of data for very and extremely shallow water conditions. 
 

3.2  Mase et al. (2013) 

Mase et al. (2013) proposed a set of formulae for sea dikes with very shallow foreshore and even emergent 
toe. Their formulae are based on deep-water wave characteristics. They first calculate the expected run-up 
and then define an imaginary slope used for overtopping calculation. The imaginary slope is introduced to 
overcome the difficulties in schematizing complex dike geometries. Wave breaking depth is also an 
important parameter for the application of their method. Uncertainties in the calculation of the breaking 
depth and aspects like neglecting the wave directional spreading occurring between offshore location and the 
dike toe, make the use of their formulae of restricted application.  
 

3.3  Van Gent (1999) modified by Altomare et al. (2016) 

Altomare et al. (2016) introduced the concept of equivalent slope in shallow water conditions. The 
equivalent slope is applied to re-assess the surf-similarity parameter, which will be used in the overtopping 
formula that keeps the original structure as proposed by van Gent (1999). The influence of water depth at the 
toe, foreshore slope and dike slope are considered by using the equivalent slope. The authors suggest to use 
the equivalent slope when the ratio ht/Hm0,t is smaller than 1.5, otherwise the dike slope only should be 
considered for further calculations. Hence, it is assumed that the foreshore starts to influence the wave 
overtopping when the toe depth is smaller than 1.5 times the incident wave height. The authors use data from 
CLASH database and data obtained at experimental campaigns at Flanders Hydraulics Research and Ghent 
University (in total 279 data with shallow or very shallow foreshore conditions). The relative toe depth 
ranges between -0.25 m and 3.65 m. The new equivalent slope concept can be applied also to cases of dry 
toe (= negative water depth at the toe). Mean wave overtopping can be assessed using the following 
equation: 
 .

/0"��,�1 = 2 = 10$exp	3− 78"��,�?�.LLM�.�**N���,�B:                  (9) 

 
The c exponent in Eq. (9) is assumed to be normally distributed: under the hypothesis the mean value of c 
results equal to −0.791 and the standard deviation σ is 0.294. The dike or structural slope to calculate the surf 
similarity parameter, ξm-1,0, has to be replaced if ht/Hm0,t≤1.5. In such a case, the average slope between the 
point on the foreshore with a depth of 1.5Hm0,t and the run-up level Ru2%, can be expressed as follows: 
 ;<=KOP = �(.E"��,�M7QR%��(.E"��,�T!��∙$%&'M?!�M7QR%B∙$%&U                     (10) 

 
For the calculation, both structure and foreshore are assumed to have a straight slope without a berm, defined 
by cotα and cotθ respectively. Therefore, the expression of ξm-1,0 becomes: VDT(,� = &WXUYZ[O���,�                                 (11) 
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being sm-1,0 the wave steepness.  

3.4  EurOtop (2018) 

While being already a worldwide reference for wave overtopping assessment, EurOtop (2018) provides 
limited information on wave overtopping for very shallow water cases because of the lack of extensive 
databases on such cases. For very shallow water cases, the equation of Altomare et al. (2016) is reported in 
(EurOtop, 2018). For very steep slopes up to vertical walls a new formula is proposed in EurOtop (2018), in 
which the coefficients of the formula depend on the dike slope. For slopes steeper than 1:2 (V:H) there is an 
influence of the slope angle, for more gentle slope there is no influence based. This formula is applied to 
vertical walls only when there is no influence of the foreshore. Therefore, the dike slope might play an 
important role, leading to conclusions similar to the ones from Goda (2009). Nevertheless, the formula does 
not cover cases with very shallow waters.  
 

4 EXPERIMENTAL CAMPAIGN 

Physical model experiments have been carried out in the wave basin equipped with multi-directional wave 
generation system at FHR. Within the framework of the CREST project, the wave basin was employed 
primarily to study the effects of wave overtopping and post-overtopping processes (e.g. overtopping wave 
layer characteristics and force) of the short-crestedness of the waves in very and extremely shallow water 
conditions with the presence of a gentle foreshore.  
 

4.1  Wave basin setup and generation system  

The wave basin at Flanders Hydraulics Research is 17.9 m wide and 23.2 m long (Figure 3) having a T-
shape where the two side zones are conceived to allow shore-parallel current generation and to place 
damping material as passive absorption system. The effective model area in front of the wave generator is 12 
x 20 m. The maximum operating depth is 0.55 m. The basin is equipped with a multi-directional wave 
generation system, comprising 30 piston paddles (each paddle 0.4 m wide) with electric actuators. The 
independent movement of the paddles allows both short-crested and oblique waves to be generated. The 
maximum paddle stroke is 1.1 m. The system has been built and installed by HR Wallingford, together with 
the wave generation software HR Merlin, which embeds a reflection compensation system. Resistive wave 
gauges placed on each piston paddle are employed to measure the free surface and correct the paddle 
movement in order to absorb the reflected wave components. The maximum regular wave height that can be 
generated is 0.25 m, 0.13 m in case of significant wave height for random sea states. The extended basin 
method (Dalrymple, 1989) can be used instead of the more conventional method to generate oblique long-
crested waves. Three different wave spectra can be used, namely JONSWAP, Pierson-Moskowitz and TMA. 
A user defined spectrum can be specified as well. The new system also allows generating solitary waves and 
focused wave groups.  
The physical model tests consisted in 3D experiments with a fixed bed. A 1:35 foreshore slope was built in 
concrete, representing an average (eroded) profile along the Belgian coast. The foreshore starts at 5.35 m far 
from the position of the wave paddles at rest and extends for 8.89 m. Before the foreshore a 1:10 (V:H) 
transition slope was built. At the end of the foreshore, a 1:2 (V:H) slope sea dike is located (Figure 2). The 
axis origin is at the wave paddle position at rest. Both dike and promenade are built in high density 
polyurethane. The dike height, measured vertically from the toe to its seaward edge is 0.05 m in the model 
scale. The model is split into two different study areas after the dike, see Figure 3: on the right, overtopping 
boxes are installed right after the dike crest; on the left a 1:50 (V:H) promenade of 0.4 m width is installed. 
At the end of the promenade a vertical wall, made of PVC, is installed, modelling the façade of buildings 
built along the coastline.  
Detailed measurements of wave propagation and transformation on the foreshore and overtopping with 
impact loading on the buildings on top of the sea dike have been gathered during the experiments. However, 
those data are not part of the present analysis. Instead, we focus only on average overtopping discharges. It 
was thereby verified the negligible influence of the asymmetric layout in the basin on the incident wave 
characteristics at the toe of the dike (see next section). 
In total 56 instruments have been employed. The ones used for the present study comprise: one star-array 
consisting in 7 wave gauges to measure the incident offshore wave field and wave directionality; seven wave 
gauges located at the toe of the dike to measure the wave characteristics at that location (WGtoe 1-7 in Figure 
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3); three stainless steel overtopping tanks to measure average and individual overtopping equipped with load 
cells and one Baluff magnetostrictive linear position sensor. Load cells, four per overtopping tank, measure 
the variation in weight due to the water overtopping and flowing into the tank. Baluff transducers measure 
the distance between a position magnet, which is floating with the free surface and the head end of the 
sensing rod: knowing the area of tank is then possible to calculate the wave-by-wave overtopping volume. 
Usually employing load cells avoid noise typical of the Baluff measurement for overtopping and that must be 
filtered out, which derives from high frequency water level oscillations within the tank. 
 

 

Figure 2. Cross section of foreshore and dike profile. Horizontal dimensions are distorted.   
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Figure 3. Plan view of the experimental layout (not in scale). 

 

4.2  Wave conditions  

Froude similarity is applied to scale down the prototype conditions and layout. The employed model scale 
was 1:50. Hereafter all wave conditions and results will be expressed in prototype scale (1:1). Stormy wave 
conditions, having a return period of 1,000 and 17,000 years (Verwaest et al., 2008), have been chosen to be 
reproduced in the wave basin. Target offshore wave heights of 3 m, 4 m and 5 m with peak periods of 10 s 
and 12 s have been modelled. The offshore water level varies between +7 m TAW and +8 m TAW in 
prototype, which correspond to a water depth of 22.1 m and 23.1 m respectively. TAW stands for Tweede 
Algemene Waterpassing (Second General Levelling in Dutch), which is the Belgian standard datum level. 
The still water depth at the toe of the dike is between 0.5 m and 1.5 m. The seaward edge of the dike crest is 
at +9 m TAW which correspond to a freeboard between 1 m and 2 m. 
The wave conditions being generated are summarised in Table 2. The wave-generation software did not 
allow combining directional spreading and obliqueness. Therefore, the main direction of short-crested waves 
was perpendicular to the dike. In total 125 tests were carried out. Forty-six tests employed long-crested wave 
waves, 26 of which with perpendicular wave propagation (obliqueness equal to 0°). Test cases with long-
crested oblique waves (23 in total) are not analysed in the present work. 
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Table 2. Offshore target wave characteristics in prototype scale. 

Water level [m] Hm0,o [m] Tp,o [s] Spreading [°] 

22.1 (+7 m TAW) 
23.1 (+8 m TAW)   
 

3.0 
4.0 
5.0 

10 
12 

0, 12, 16, 20,31.5 

 
 
Repeatability has been checked in terms of local wave conditions at the toe of the dike and mean overtopping 
discharges. Two different wave conditions, corresponding to significant wave height offshore of 3 m and 5 m 
and for +7 m TAW water level have been repeated three times. The calculated coefficient of variation σ’, 
defined as the ratio between standard deviation σ and mean value µ, has been calculated, resulting equal to 
1%, 2% and 5% for wave height, period and overtopping respectively,  within acceptable ranges (EurOtop, 
2018).  
 
A preliminary check on the influence of wave generation theory on wave transformation and overtopping has 
been carried out. Second-order wave generation (namely including correction for bound long waves) has 
been employed to generate and absorb long-crested waves. However, the generation of second-order short-
crested waves was not available in the used version of HR Merlin software and almost all cases of short 
crested waves have been generated employing first-order theory. In a second phase, time series of piston 
displacement including bound long-wave correction have been generated externally for the case 
corresponding to Hm0,o=3 m, Tp,o=10 s and directional spreading of 12° and 16° with water level equal to +7 
m TAW. These wave conditions have been selected based on the expected overtopping discharge, namely 
around 0.5-1 l/s/m. The time series have been used by the generation software to generate second-order 
short-crested waves. It is worthy to notice that, in this specific case, accurate absorption of long-wave 
components is not guaranteed. Five different seed numbers have been used for each wave conditions. The 
coefficient of variation (σ’ =σ/µ) of wave height, period and overtopping has been estimated based on the 
different seeding and resulted in σ’(Hm0,t)=1-3%, σ’(Tm-1,0,t)=3-4%, σ’(q)=19-30%, respectively. The 
differences due to wave order generation theory have been quantified. For long-crested waves, a reduction in 
wave height of 5% was measured using a second-order wave theory. Variation in period and overtopping 
discharges were around 6%. Small differences at the toe level were measured (±5%), being in the order of 
the accuracy of the magnetostrictive linear position sensor, which might lead to differences in wave 
transformations and, hence, on wave overtopping, especially for wave conditions characterised by the 
presence of a saturated surf zone, as highlighted Franco et al. (2009). For short-crested waves, no significant 
variation of local conditions was measured between first- and second-order wave theory. The lack of a 
proper wave generation and absorption system for second-order short-crested waves could mask the 
influence of directional spreading. Nevertheless, the differences in overtopping using different generation 
theories in the specific case above fall within the uncertainties related to the seed number as described in 
Williams et al. (2019), where variability of the overtopping discharge was found between 20% and 75%. 
Hence, despite the model limitations due to the generation software, the effect of the wave order for further 
analysis was neglected.  
 
After executing all tests and having acquired all data, the model (including dike, walls and overtopping 
tanks) has been removed and only the foreshore slope has been left. A horizontal bottom followed by passive 
absorption material have been placed on the rear side of the foreshore slope. Such a configuration guarantees 
to damp the wave reflection and allows measuring the incident wave conditions at the location corresponding 
to the dike toe. Note that the well-known reflection analysis methods (e.g. Mansard and Funke) are not fully 
applicable to the condition at the toe of the dike in this campaign since the waves are highly non-linear. Due 
to the non-uniform spatial distribution of wave height and period, the average of the spectral wave height and 
mean period over all 3 gauges in front of overtopping tanks (WGtoe 5-7) is used for mean wave overtopping 
assessment. The spatial variability of local conditions is mostly due to small construction uncertainties of the 
foreshore, which result in slightly different water depth at the toe, and other model effects (such as reflection 
from the later guiding walls). The coefficient of variation has been employed to quantify the uncertainty due 
to spatial distribution, resulting σ’(Hm0,t)=0.6-6.6% and σ’(T m-1,0,t)=0.3-4%. The influence of it has been 
quantified in terms of mean overtopping discharge by means of Eq. (9), showing variation of q of at most 1.7 
times, largely within the uncertainties of the formula prediction. The range of conditions at the dike toe is 
shown in Table 3. 
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Table 3. Measured overtopping and incident waves characteristics at the position of the dike toe expressed in 
prototype scale. 

Water depth at the dike toe 
[m] 

Hm0,t [m]   Tm-1,0,t [s] q [l/s/m] 

0.46-1.53 0.61-1.51 19.96- 62.47 0.25-173.7 

 

4.3  Scale effects 

The employed small model scale could result in significant scale effects on wave overtopping due to surface 
tension and viscous forces in some cases. The influence of viscous forces and surface tension has been 
analysed by calculating the Reynolds and Weber number for wave overtopping (Req and Weq) respectively 
and by comparing the results with the critical limits, namely Req>103 and Weq>10. For further details, see 
also EurOtop (2018). Only 5 tests did not satisfy the condition Req>103. The Weber number as calculated for 
all tests varies between 25 and 39, bigger than the critical limit of 10. The 5 tests with Req<103 have been 
excluded from further analysis, resulting in a database of 97 tests with negligible scale effects for viscous 
forces and surface tension. 
The tested water levels and wave heights at the structure toe are relatively small (of ca. 1cm), following 
typical guidelines on wave run-up and overtopping modelling. To exclude model effects e.g. the water depth 
and wave height and need to be in the correct ranges, as recommended in EurOtop (2018) and Frostick et al. 
(2011): water depth h>5cm and wave height Hm0>2cm. Since this is not the case here where extremely 
shallow waters lead to very small values of water depth and incident wave height at the dike toe in model 
scale, further model effects cannot be completely ruled out. Hence, it is recommended, whenever possible, to 
validate the results at a larger scale if a quantification at prototype scale of average discharge is pursued for 
such structural layout and for design purposes. 
 
 

5 RESULTS AND DISCUSSIONS 

5.1  Average overtopping discharge 

The results in terms of average wave overtopping discharge are summarized and discussed in the present 
section. First a general overview of all results, including long-crested and short-crested waves is given. Later 
on, a more detailed analysis of the influence of short-crestedness is carried out. Finally, the results are 
compared versus the prediction of Eq. (9) and Eq. (4). The measured average discharge (expressed in l/s/m) 
is plotted against the incident wave height at the toe in Figure 4. Bigger the wave height, larger the 
overtopping discharge, however differences can be already noticed between long-crested cases (diamond 
markers), which gives the larger overtopping discharges, and short—crested test cases (circle markers).  
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Figure 4. Average overtopping discharge versus incident spectral wave height at the dike toe (prototype conditions). Data are split 
in two groups: very shallow water conditions (0.3<Hm0,t<1) and extremely shallow water conditions (Hm0,t<0.3). 
 
The data plotted gather in two groups corresponding respectively to very (0.3<ht/Hm0,t<1.0) and extremely 
(ht/Hm0,t<0.3) shallow water conditions. The former group corresponds to initial still water level of +8 m 
TAW and toe depth of 1.5 m. The latter one is characterised by +7 m TAW and toe depth of 0.5 m.  Mean 
overtopping discharge for ht/Hm0,t<0.3 is one or more order of magnitude smaller than the one measured for 
0.3<ht/Hm0,t<1.0. Main reason is the increase of the dimensionless freeboard, Rc/Hm0,t, due to both the 
increase of the dike crest freeboard Rc and reduction of the incident wave height at the toe caused by heavier 
wave breaking.   

 

5.2 Shallowness regime  

As previously mentioned, the wave conditions at the toe have been defined as very or extremely shallow. A 
first check on the application of Eq. (1) and Eq. (3) was made based on the surf-similarity-like parameter, βb 
defined as follows: 
 \] = A D̂.(,�,%/ 0"��,�                             (12)       

 
Hofland’s equations can be applied if βb <0.62. This threshold characterises mild slopes where shoaling of 
bound long waves is the dominant generation mechanism for infragravity waves. The value of βb for each 
test case is depicted in Figure 5 versus the relative water depth at the toe, ht/Hm0,o. While all data are 
characterized by mild slope and βb is always minor than 0.62, the data are still gathered in two groups 
corresponding to very and extremely shallow water conditions.   
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Figure 5. Surf-similarity-like parameter function of relative water depth at the toe.  
 
The importance of water levels on overtopping results are clarified in Figure 6 where the variation of the 
discharge with the relative toe depth, ht/Hm0,o is depicted. As for Figure 4, the data are clearly split in two 
groups: very shallow water cases (0.3<ht/Hm0,t<1.0) and extremely shallow water cases (ht/Hm0,t<0.3). This 
distinction is very important since the existing formulas will perform differently for the two regimes, as 
described in the following sections. Within a regime overtopping decreases when ht/Hm0,o increases, however 
the influence is bigger for extremely shallow water conditions, where the discharge can differ of some order 
of magnitude, suggesting a different behaviour for different water depths to be further investigated (not part 
of the present research). Therefore, the water depth at the toe is playing an important role, as also anticipated 
by Goda (2009). 
 

 
 

Figure 6. Dependence of discharge on the ratio ht/Hm0,o 

Finally the measured spectral wave period at the toe has been compared with predictions from Hofland et al. 
(2017). The period evolution from offshore to the toe of the dike has been compared with Eq. (1) and Eq. (3). 
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The results are depicted in Figure 7.  Both plots of long-crested  and short-crested waves follow the 
predictions and fall within the confidence interval.  

 

 
 

Figure 7. Evolution of the spectral wave period as function of relative water depth and comparison with formulas from Hofland 
et al. (2017) 

5.3  Influence of the short-crestedness on overtopping and wave characteristics  

The results of long-crested perpendicular and short-crested wave cases are compared in this section. It is 
expected that larger spreading values lead to lower overtopping discharges according to Guza & Feddersen 
(2012). The influence of the directional spreading is shown as ratio of short-crested values by corresponding 
long-crested wave cases (Figure 8). Wave height and period at the dike toe correspond to the average of 
WGtoe 5-7. Overtopping discharge is averaged over the three wave tanks. The directional spreading measured 
in deep water is shown (using the star-array data). A clear distinction between the two different water levels 
can be noticed in the top and bottom plots of Figure 8: the influence of the spreading is bigger for lower 
water depth (+7 m TAW) than for higher water depth (+8 m TAW). The distinction between the two water 
levels is noticeable especially for wave height and average overtopping. The wave period reduces as well 
with the spreading, however it is not possible to distinguish clearly between higher and lower water levels. 
Values of the wave height and wave overtopping ration greater than 1 can be noticed in the figure, due to the 
fact that different seeding numbers have been used in some cases leading to different wave characteristics at 
the toe and different overtopping discharges. Even though the results are quite scattered, the influence of 
wave spreading can be seen clearly. The overtopping discharge reduces up to 1 order of magnitude for low 
water levels. The wave height decreases 10% and 20% in average for water levels equal to +8 m TAW and 
+7 m TAW, respectively. The maximum wave period reduction is about 35%. In general, the lower wave 
periods for short-crested waves than for long-crested waves confirm that the wave transformation and the 
mechanism leading to the release of infra-gravity waves act differently whether the spreading is present or 
not.  
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Figure 8. Reduction of measured wave height (top), wave period (middle) and average overtopping (bottom) as function of the 

measured directional spreading 

The decrease of wave overtopping due to the wave short-crestedness has been assessed in terms of 
reductions factors. Besides directional spreading is proved to have on wave transformation and local wave 
characteristics at the toe of the dike, this is not enough to explain overtopping reduction. Directional 
spreading is expected to affect the whole process of waves running up the dike and overtopping it, if 
compared with similar incident wave conditions but from long-crested waves. The general way to calculate 
the value of the reduction factors is to assume it equal to ratio of mean discharge of the test where the 
reduction takes place with reference test, q/qref, however the requirement is that the wave conditions at the 
toe of the two tests must be the same (EurOtop, 2018). This condition was not met in this investigation. 
Hence, two different expressions of the reduction factor are proposed in the present work, derived for Eq. (9) 
and Eq. (4), respectively. The reader must consider that this approach has the limitation that each reduction 
factor formulation is formula depending. For Eq. (9), the reduction factor for each test has been calculated as 
follows:  
 _̀ 	= abac 	exp	?de∗ − d∗̀ B                                                              (13) 

 

where d∗ = 3 78"��,�,�ghY?�.LLM�.�**N���,�,�ghYB: and 2 = .�ghY(�8/0"��,�,�ghY1   

The subscripts σ and ⊥ indicate the short-crested wave case and the reference long-crested wave case, 
respectively. Employing Eq. (4), the reduction factor is expressed as follows: 
 _̀ = abac 	exp	[?5 + 6dB	e − ?5 + 6dB	`]               (14) 

where d = 3 78"��,�,�ghY: and 2 = .�ghY
/0"��,�,�ghY1  

The coefficients A and B are calculated based on Eqs. (5-8) for each test case. In this the difference between 
local condition at the toe is taken into account. 
 
The results are plotted in Figure 9 together with the best fits which are expressed by the following equations.  
 
For Altomare et al. (2016): 
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_̀ = k exp?−0.046lB , mJn !�"��,� < 0.3exp?−0.014lB , mJn	0.3 < !�"��,� < 0.1                             (15) 

 
For Goda (2009): 

_̀ = k exp?−0.053lB , mJn !�"��,� < 0.3exp?−0.02lB , mJn	0.3 < !�"��,� < 0.1                                (16) 

 
 
The R2 for each fit is indicated in the figures: low accuracy is shown only when Eq. (4) is applied for 
extremely shallow water conditions. This was expectable because of the lack of data in such conditions 
employed by Goda (2009) to derive the expressions of the A and B coefficients. Figure 9 confirms the clear 
distinction for 0.3<ht/Hm0,o<1 and ht/Hm0,o<0.3, as shown previously is in Figure 8. Larger wave spreading 
leads to stronger reduction of wave overtopping, but this reduction is more pronounced for ht/Hm0,o<0.3 than 
for 0.3<ht/Hm0,o<1, at least within the range of the tested conditions.  
 

 
 

Figure 9.Calculated reduction factors for wave short-crestedness employing Eq. (9) (a) and Eq.(4) (b), respectively. The solid 
lines indicate the best fit: red for extremely shallow waters (ES) and blue for very shallow waters (VS).  

5.4  Average overtopping prediction  

The results of mean overtopping discharge are compared with predictions employing Eq. (4) and Eq. (9). 
Distinction is made between long-crested (depicted in figures as diamonds) and short-crested wave cases 
(circles). Both formulas take into account combined influence of the foreshore slope, dike slope and local 
water depth for overtopping assessment, however in different ways: 

1. van Gent (1999)as modified by Altomare et al. (2016): equivalent or average slope is calculated 
assessing the wave run-up by iteration and used in Eq. (9). 

2. Goda (2009): coefficients A and B are calculated by means of Eqs. (5-8) and used in Eq. (4) to 
assess mean overtopping discharge.  

 
Reduction factors for directional spreading have been applied for overtopping prediction.  The revised Eq.(9) 
can be expressed as follows: 
 .

/0"��,�1 = _̀ 10$exp	3− 78"��,�?�.LLM�.�**N���,�B:            (17) 

 
meanwhile Eq.(4) can be now expressed as: 
 



 

15 

 

.
/0"��,�1 = _̀ exp	3− 45 + 6 78"��,�9:                   (18) 

 
Where γσ is expressed by Eqs. (15) and (16). 
The comparison between measured mean overtopping discharge and predicted one is depicted in Figure 10 
for Eq.(9) and Eq.(17). The left plot shows the measured and calculated discharge using Eq. (9) with no 
reduction factors. Overtopping of short-crested waves is overestimated when the reduction factor is not 
applied. Values of wave overtopping discharge around 1 l/s/m, often assumed as threshold for structural 
design, are better predicted when the reduction factor for short-crestedness is applied.   

 
Figure 10. Comparison between measured overtopping discharge and calculated discharge using Eq.(9) (a) and Eq. (17) with  

the application of the reduction factors for directional spreading (b). 

When Goda (2009) is applied – see Figure 11a - the results are good for high water level (i.e. very shallow 
water conditions). However, for low water level (i.e. extreme shallow water conditions) all results start to 
diverge significantly: Eq. (4) over predicts the mean discharge of about 10 times. This is due to the 
inaccuracies in the calculation of the coefficients A and B, the expression of which is extrapolated for very 
low values of ht/Hm0,t. In any case, it is evident also from Figure 11 that short-crested wave cases require a 
further correction in the formula in order to be properly predicted. The right plot Figure 11 show the 
measured discharge versus the one predicted using Eq. (18). The prediction improves significantly when 
reduction factors are applied.  
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Figure 11. Comparison between measured overtopping discharge and calculated discharge using Goda (2009), without (left 

picture) and with (right picture) the application of the reduction factors for wave obliqueness and directional spreading. 

The accuracy of the prediction has been evaluated by means of the error estimator proposed in Goda (2009). 
The geometric mean is expressed as follows: 
 o̅q = ros t(u∑ w=oxuxy( z  with     ox = .gY�,{.�ghY,{                   (19) 

 
where N is the number of data, qest,i and qmeas,i are the i-th predicted and measured mean overtopping 
discharge, respectively. The geometric standard deviation is calculated as the exponential value of the 
standard deviation of the logarithm:  
 GSD = ros �t(u∑ ??w=oxB*−?w=o̅qB*Buxy( z�.E�                  (20) 

 
The geometric standard deviation expresses how much the data are scattered around the geometric mean. 
Considering a quantity normally distributed, 90% of the data will be contained in the range between o̅q/?1.64 × ���B and o̅q × 1.64 × ���. Table 4 lists  all results for geometric mean and standard deviation for 
the aforementioned formulas, together with the extremes of the range prediction assuming the overtopping 
normally distributed and the 90% confidence interval. The errors are shown for the two foreshore 
shallowness regimes, namely 0.3<ht/Hm0,o<1 and ht/Hm0,o<0.3. The application of the reduction factors 
improves globally the prediction, giving minor errors and narrower prediction intervals. 
 

Table 4. Error calculation: geometric mean and standard deviation 

Formula 
Foreshore 

shallowness 

No reduction factors With reduction factor 

o̅q GSD 
90% qest/qmeas 
interval prediction  o̅q GSD 

90% qest/qmeas 
interval 
prediction  

van Gent (1999), 
as modified by 
Altomare et al. 
(2016) 
 

0.3 < ℎ�	���,� < 1 
1.63 1.57 0.63-4.20 1.13 1.55 0.45-2.89 

ℎ�	���,� < 0.3 
1.59 1.57 0.62-4.08 0.99 1.54 0.39-2.50 

Goda (2009) 
 

0.3 < ℎ�	���,� < 1 
1.24 1.22 0.62-2.50 0.99 1.15 0.52-1.86 
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ℎ�	���,� < 0.3 
3.62 1.50 1.47-8.91 2.10 1.49 0.86-5.14 

 

6 CONCLUSIONS 

The influence of directional spreading on overtopping of sea dike with gentle foreshore in very and 
extremely shallow water conditions is analysed in the present work. Physical model tests were carried out in 
the multi-directional wave basin of Flanders Hydraulics Research. Main focus was to characterise the wave 
transformation and wave overtopping on sea dikes and compare long- and short-crested wave cases. The 
results show a clear influence of the directional spreading (i.e. wave short-crestedness) on wave 
transformation and, hence, on wave overtopping: wave height at the dike toe is smaller, wave period shorter 
and resulting wave overtopping discharge is reduced by almost one order of magnitude if compared to long-
crested wave cases. A preliminary analysis on wave order for generation was carried out, while the 
generation of second-order short-crested waves was not embedded in the generation software. The analysis 
showed that the differences in overtopping using second- or first-order generation fall within the 
uncertainties related to the seed number. Therefore, the effect of wave order was neglected in this 
investigation. However, it is recommended not to generalize this assumption outside the conducted 
experimental campaign and tested conditions. 
The effect of directional spreading has been analysed only for tests with main direction perpendicular to the 
dike crest. A few tests with oblique wave conditions have been simulated, but only for long-crested waves, 
due to limitations of the wave generator. Therefore, these tests have been excluded from the analysis and the 
combined effect of obliqueness and short-crestedness is not taken into account and would require further 
studies. A detailed analysis of the short-crested wave tests has allowed defining new expressions for the 
reduction factor, γσ, for directional spreading that despite the large data scatter from which is derived, proves 
to improve significantly the overtopping prediction in the tested range of wave conditions. Yet, considering 
the particular model layout and the relative small model scale employed for this experimental campaign, 
namely 1:50, it is recommended that the new factors for wave spreading are employed within the range of 
tested conditions and for very similar layouts. Besides, it is advised to perform experimental campaign at 
larger model scale for a better assessment of possible scale effects on the studied phenomenon. 
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Highlights 

 
1. The effect of short-crestedeness on average overtopping of sea dikes with gentle foreshores 
in very and extremely shallow waters in studied.  

 
2. Experimental campaign is carried out in the multi-directional wave basin at Flanders 
Hydraulics Research, focusing on 3D effects for very and extremely shallow waters.  
 

3. The results are compared against existing semi-empirical approaches.  
 
4. A correction factor for short-crestedness is proposed.  

 
5. The results show a clear reduction of wave overtopping discharge and influence on local 
wave characteristics due to short-crested waves. 


