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Abstract—Relating event data and process models is becoming
an important element for organizations. This paper presents
a novel approach for aligning traces and process models. The
approach is based on the structural theory of Petri nets (the
marking equation), applied over an unfolding of the initial
process model. Given an observed trace, the approach adopts
an iterative optimization mechanism on top of the unfolding,
computing at each iteration part of the resulting alignment. In
contrast to the previous work that is primarily grounded in the
marking equation, this approach is guaranteed to provide real
solutions, and tries to mimic as much as possible the events
observed in the trace. Experiments witness the significance of
this approach both in quality and execution time perspectives.

Index Terms—Conformance Checking; Alignment; Petri Net;
Optimization;

I. INTRODUCTION

Conformance checking, by its promise of detecting and ex-
plaining deviations of business processes, is gaining attention
due to the impact it may have in organizations [1]. On its
core, conformance checking techniques rely on replaying event
data, materialized in the form of event logs, on top of process
models to identify discrepancies between them.

Although this replay can be done heuristically, to be confi-
dent that the corresponding trace in the process model adheres
optimally to the observed trace, the notion of alignment
was proposed [2]: given an observed trace σ and a process
model, an optimal alignment, or simply alignment, provides
the closest model trace (e.g., in terms of edit distance) to
σ. The computation of alignments has proven to be a com-
putational challenge, illustrated by the number of techniques
that have appeared in the last years (see next section for a
detailed literature review). Examples of strategies followed
in the literature to compute alignments range from state-
based/automata approaches, structural techniques, approaches
based on planning, symbolic representations and decomposi-
tion methods, among others.

In this paper we propose a novel method to compute align-
ments, which is based on using a partial order representation
of the input process model, in combination with a well-
known result on structural theory of Petri nets. By using an
unfolding of the process model which is acyclic, our method -
grounded in the marking equation of Petri nets - is free from
spurious solutions, thus guaranteeing to obtain a real solution
without explicitly traversing the state-space of the process
model. When compared to the state-of-the art techniques in the

literature, a significant reduction in computation time has been
observed, making the proposed approach a good candidate in
case of large problem instances.

Moreover, although the approach is not guaranteed to be op-
timal in the classical sense (minimal number of mismatches),
we show that when the focus is instead to maximize the
number of replayed events that have been observed, our
approach provides solutions that are often significantly better
than the aforementioned techniques.

The structure of this paper is as follows: next section pro-
vides the context for the work of this paper. Sect. III introduces
the necessary background to understand the contribution of
this paper, which is described in Sect. IV. An experimental
evaluation is reported in Sec. V. Sect. VI concludes the paper
and provides pointers for future work.

II. RELATED WORK

The work in [2] proposed the notion of alignment, and
developed a technique to compute optimal alignments for
a particular class of process models. For each trace σ, the
approach consists on exploring the synchronous product of
model’s state space and σ. In the exploration, the shortest
path is computed using the A∗ algorithm, once costs for model
and log moves are defined. The approach represents the state-
of-the-art technique for computing alignments, and can be
adapted (at the expense of increasing significantly the memory
footprint) to provide all optimal alignments.

Alternatives to the A∗ have appeared very recently: in
the approach presented in [3], the alignment problem is
mapped as an automated planning instance. Unlike the A∗,
the aforementioned work is only able to produce one optimal
alignment (not all optimal), but it is expected to consume
considerably less memory. Automata-based techniques have
also appeared [4], [5]. In particular, the technique in [4] can
compute all optimal alignments. The technique in [4] relies on
state space exploration and determinization of automata, whilst
the technique in [5] is based on computing several subsets of
activities and projecting the alignment instances accordingly.

The work in [6], presented the notion of approximate
alignment to alleviate the computational demands of the
current challenge by proposing a recursive paradigm on the
basis of structural theory of Petri nets. In spite of resource
efficiency, the solution is not guaranteed to be executable. A
follow-up work of [6] is presented in [7], which proposes
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a trade-off between complexity and optimality of solutions,
and guarantees executable properties of results. The technique
in [8], presents a framework to reduce a process model
and the event log accordingly, with the goal to alleviate the
computation of alignments. The obtained alignment, which is
called macro-alignment since some of the positions are high-
level elements, is expanded based on the gathered information
during the initial reduction. Decompositional techniques have
been presented [9], [10] that instead of computing optimal
alignments, they focus on the decisional problem of whereas
a given trace fits or not a process model.

Recently, two different approaches from the same authors
have appeared; the work in [11] proposes using binary decision
diagrams to alleviate the computation of alignments. The work
in [12], which has the goal of maximizing the synchronous
moves of the computed alignments, uses a pre-processing step
on the model.

III. PRELIMINARIES

A. Petri nets and Process Mining

A Petri Net [13] is a 3-tuple N = 〈P, T,F〉, where P is
the set of places, T is the set of transitions, P ∩ T = ∅,
F : (P × T ) ∪ (T × P )→ {0, 1} is the flow relation. A la-
beled Petri net (LPN) is a 3-tuple 〈N,Σ, `〉, where N is a Petri
net, Σ is an alphabet (a set of labels) and ` : T → Σ∪ {τ} is
a labeling function that assigns to each transition t ∈ T either
a symbol from Σ or the empty symbol τ . The set of labeled
transitions is represented by T`. A marking is an assignment of
non-negative integers to places. If k is assigned to place p by
marking m (denoted m[p] = k), we say that p is marked with
k tokens. Given a node x ∈ P ∪T , its pre-set and post-set (in
graph adjacency terms) are denoted by •x and x• respectively.

A transition t is enabled in a marking m when all places in
•t are marked. More formally it is denoted by (N,m)[t〉, iff
•t ≤ m. When a transition t is enabled, it can fire or execute by
removing a token from each place in •t and putting a token
to each place in t•. A marking m′ is reachable from m if
there is a sequence of firings t1t2 . . . tn that transforms m into
m′, denoted by m[t1t2 . . . tn〉m′. A sequence of transitions
t1t2 . . . tn is a feasible sequence if it is firable from the initial
marking m0.

A Petri net is called live if no matter what marking has been
reached every transitions of the model can be fired through
some firing sequences. Also it is said to be k-bounded if none
of the places can have more than k tokens for any reachable
marking. In this paper we assume 1-bounded Petri nets.

Workflow processes can be represented in a simple way by
using Workflow Nets (WF-nets). A WF-net is a Petri net where
there is a place start (denoting the initial state of the system)
with no incoming arcs and a place end (denoting the final state
of the system) with no outgoing arcs, and every other node
is within a path between start and end. The transitions in a
WF-net represent tasks. In conjunction with the 1-boundedness
assumption, this paper assumes process models are specified
by weakly sound WF-nets [14], for which every reachable

marking has the option to reach the unique final marking, and
there are no dead transitions.

Definition 3.1 (System Net, Full Firing Sequences): A
system net is a tuple SN = (N,mstart,mend), where N
is a WF-net and the two last elements define the initial
and final marking of the net, respectively. The set {σ |
(N,mstart)[σ〉(N,mend)} denotes all the full firing sequences
of SN .

We now turn the focus to event logs and traces:
Definition 3.2 (Trace, Event Log, Parikh vector): Given

an alphabet of events Σ = {a1, . . . , an}, a trace is a word
σ ∈ Σ∗ that represents a finite sequence of events. An event
log L ∈ B(Σ∗) is a multiset of traces and |σ|a represents
the number of occurrences of a in σ. The Parikh vector
of a sequence of events σ is a function ̂: Σ∗ → Nn de-
fined as σ̂ = (|σ|a1 , . . . , |σ|an). For simplicity, we will also
represent |σ|ai as σ̂[ai]. The support of a Parikh vector σ̂,
denoted by supp(σ̂) is the set {ai|σ̂[ai] > 0}. For a trace
σ, σ[1], σ[2], .., σ[k] denote its first, second and kth elements
respectively. For two Parikh vectors σ̂1 and σ̂2, σ̂1 5 σ̂2 means
that each component of the former is less than or equal to each
corresponding component of the later.

The main metric in this paper to assess the adequacy of a
model in describing a log is fitness [15], which is based on
the reproducibility of a trace in a model:

Definition 3.3 (Fitting Trace): A trace σ ∈ `∗ fits SN =
(N,mstart,mend) if σ coincides with a full firing sequence
of SN , i.e.,(N,mstart)[σ〉(N,mend).

B. Petri net Unfoldings

A finite and complete unfolding prefix π of a Petri net
N is a finite acyclic net which implicitly represents all the
reachable states of N , together with transitions enabled at
those states. Intuitively, it can be obtained through unfolding
N , by successive firings of transitions, under the following
assumptions: (1) for each new firing a fresh transition (called
an event) is generated; (2) for each newly produced token a
fresh place (called a condition) is generated. The unfolding is
infinite whenever N has an infinite run; however, if N has
finitely many reachable states, then the unfolding eventually
starts to repeat itself and can be truncated (by identifying a
set of cut-off events) without loss of information, yielding a
finite and complete prefix. We denote by B, E and Ecut ⊆ E
the sets of conditions, events and cut-off events of the prefix,
respectively. Associated with an unfolding, there is an homo-
morphism ρ : B ∪ E → P ∪ T that associates conditions and
events of the unfolding to places and transitions of the Petri
net. Fig. 1(d) shows a finite and complete unfolding prefix of
the Petri net shown in Fig. 1(a).

Efficient algorithms exist for building such prefixes [16]–
[19], which ensure that the number of non-cut-off events in
a complete prefix can never exceed the number of reachable
states of N . However, complete prefixes are often exponen-
tially smaller than the corresponding state graphs, especially
for highly concurrent Petri nets, because they represent con-
currency directly rather than by multidimensional ”diamonds”



as it is done in state graphs. For example, if the original
Petri net consists of 100 transitions which can fire once in
parallel, the state graph will be a 100-dimensional hypercube
with 2100 nodes, whereas the complete prefix will coincide
with the net itself. Due to its structural properties (such as
acyclicity), the reachable markings of N can be represented
using configurations of π. A configuration C is a downward-
closed set of events (being downward-closed means that if
e ∈ C and f is a causal predecessor of e, then f ∈ C) without
structural conflicts (i.e., for all distinct events e, f ∈ C,
•e ∩• f = ∅). Intuitively, a configuration is a partial-order
execution, i.e., an execution where the order of firing of
concurrent events is not important.

C. Petri nets and Linear Algebra

Let N = 〈P, T,F〉 be a Petri net with initial marking m0.
Given a feasible sequence m0[σ〉m, the number of tokens for
a place p in m is equal to the tokens of p in m0 plus the
tokens added by the input transitions of p in σ minus the
tokens removed by the output transitions of p in σ:

m[p] = m0[p] +
∑
∀t∈•p

|σ|t F(t, p)−
∑
∀t∈ p•

|σ|t F(p, t)

The marking equations for all the places in the net can be
written in the following matrix form (see Fig. 1(c)): m =
m0 + N · σ̂, where N ∈ ZP×T is the incidence matrix of the
net: N[p, t] = F(t, p)− F(p, t). If a marking m is reachable
from m0, then there exists a sequence σ such that m0[σ〉m,
and the following system of equations has at least the solution
X = σ̂

m = m0 + N ·X (1)

If (1) is infeasible, then m is not reachable from m0.
The inverse does not hold in general: there are markings
satisfying (1) which are not reachable. Those markings (and
the corresponding Parikh vectors) are said to be spurious [20].
Fig. 1(a)-(c) presents an example of a net with spurious
markings: the Parikh vector σ̂ = (2, 1, 0, 0, 1, 0) and the
marking m = (0, 0, 1, 1, 0) are a solution to the marking
equation, as is shown in Fig. 1(c). However, m is not reach-
able by any feasible sequence. Fig. 1(b) depicts the graph
containing the reachable markings and the spurious markings
(shadowed). The numbers inside the states represent the tokens
at each place (p1, . . . , p5). This graph is called the potential
reachability graph. The initial marking is represented by the
state (1, 0, 0, 0, 0). The marking (0, 0, 1, 1, 0) is only reachable
from the initial state by visiting a negative marking through the
sequence t1t2t5t1, as shown in Fig. 1(b). Therefore, equation
(1) provides only a necessary condition for reachability of a
marking and replayability for a solution of (1).

As unfoldings are acyclic Petri nets, one can use the results
from [13] to show a fundamental property that serves as key
idea of this paper:

Theorem 3.1 (Marking Equation for Acyclic Petri nets [21]):
Let N be an acyclic Petri net. If the vector y satisfies the

equation m = m0 +N ·X , then there exists a firing sequence
σ firable from marking m0 such that y = σ̂.

D. Alignment of Observed Behavior

As outlined above, the fitness dimension requires an align-
ment of an observed trace and a model: events of the observed
trace need to be related to elements of the model and vice
versa. Such an alignment reveals how the given trace can be
replayed on the process model. The classical notion of aligning
an event log and process model was introduced by [2]. To
achieve an alignment, we need to relate moves in the observed
trace to moves in the model. It may be the case that some of the
moves in the observed trace can not be mimicked by the model
and vice versa. For instance, consider the model N1 in Fig. 2,
with the following labels, `(t1) = a1, `(t2) = a2, `(t3) = a3
and `(t4) = a4, and the trace σ = a1a1a4a2; four possible
alignments are:

α1=
a1 a1 ⊥ a4 a2
t1 ⊥ t3 t4 ⊥

α2=
a1 a1 ⊥ a4 a2
⊥ t1 t2 t4 ⊥

α3=
a1 a1 a4 a2 ⊥
t1 ⊥ ⊥ t2 t4

α4=
a1 a1 a4 a2 ⊥
⊥ t1 ⊥ t2 t4

The moves are represented in tabular form, where moves
by the trace are at the top, and moves by the model are at
the bottom of the table. For example the first move in α2 is
(a1,⊥) and it means that the observed trace moves a1, while
the model does not make any move. Formally, an alignment
is defined as follows:

Definition 3.4 (Alignment): Given a labeled Petri net N and
an alphabet of events Σ, Let AM and AL be the alphabet of
transitions in the model and events in the log, respectively,
and ⊥ denotes no movement, then:
• (X,Y ) is a synchronous move if X ∈ AL, Y ∈ AM and
X = `(Y )

• (X,Y ) is a move in log if X ∈ AL and Y =⊥.
• (X,Y ) is a move in model if X =⊥ and Y ∈ AM .
• (X,Y ) is an illegal move, otherwise.

The set of all legal moves is denoted as ALM and given
an alignment α ∈ A∗LM , the projection of the first element
(ignoring ⊥), α ↓AL

, results in the observed trace σ, and
projecting the second element (ignoring ⊥), α ↓AM

, results
in the model trace.
For the previous example, α1 ↓AM

= t1t3t4 and α1 ↓AL
=

a1a1a4a2. In this paper we focus on the computation of
the model trace given an observed trace. An alignment can
be constructed afterwards, e.g., by using classical sequence
alignment techniques like [22].

Cost can be associated to the different types of moves in
Def. 3.4. Traditionally, the approaches in the literature use a
cost function that assigns higher costs to asynchronous moves
(move in model/log) than to synchronous moves, and the



Figure 1. (a) Petri net, (b) Potential reachability graph, (c) Marking equation, (d) Unfolding

Figure 2. Process model N1.

model trace that minimizes the cost (hence, minimizing the
number of asynchronous moves) is computed.

Recently, a different focus has been proposed for alignment
computation, where the maximization of the synchronous
moves is considered [12]. The underlying idea of maximizing
synchronous moves is to try to adhere as much as possible
to the observed trace, instead of minimizing the penalties
assigned to asynchronous moves. This can be illustrated with
the help of a simple example. For the model of Fig. 3, and
the trace a1a2, the minimization of asynchronous moves would
result in the model trace a1(t2), with an alignment containing
one synchronous and one asynchronous log move. Instead, the
maximization of synchronous moves will provide the model
trace a1b1b2a2, with an alignment containing 2 synchronous
moves and 2 asynchronous moves. Alignments are shown
below.
α1=

a1 a2
a1 ⊥ , α2=

a1 ⊥ ⊥ a2
a1 b1 b2 a2

Figure 3. Process model N2.

IV. UNFOLDING-BASED ALIGNMENT COMPUTATION OVER
THE MARKING EQUATION

This section centers around computing a modeled trace in an
iterative way, given an observed trace. It is worth to stress that
the approach proposed in this paper assumes the computation
of an unfolding of the process model, which should be done
just once. The mechanics of this iterative optimization are
simple, namely, in each iteration the aim is to maximize the
number of synchronous moves that would result on aligning a
subset of the obtained model trace and the corresponding part
of the observed trace.

Let us assume that there is an unfolding π of the Petri net
N and an observed trace σ. Let J = `(Σ)∩ supp(σ̂), i.e., the
labels that appeared in the observed trace; the following ILP
model, which applies the marking equation on π and using as
markings the initial conditions of the unfolding, computes a



solution, i.e., a selection of events in the unfolding π, that is
as similar as possible with respect to the firing of some of the
activities appearing in the observed trace:

Maximize (2)

(
∑
`(e)∈J

X[e]− δ ×
∑
`(e)/∈J

X[e] + 0×
∑
`(e)=τ

X[e]
)
,

Subject to:
mi = mj + Nπ.X

∀e ∈ X,∀a ∈ σ̂ If `(e) ∈ J and `(e) = a :

σ̂[a] =
∑
`(e)=a

(X[e] +Xs[e]),

∑
∀`(e)∈Ecut

X[e] ≥ 1,

X,Xs ≥ 0

Where Nπ denotes the incidence matrix of the unfolding π. In
the above optimization, mi and mj are intermediate markings
of the unfolding, wherein, the later is the unfolding marking
corresponding to mstart at the beginning, and the former is the
unfolding marking corresponding to mend in the final iteration.
XSs are slack variables that handle situations where the model
is unable to reproduce the same number transition for a given
event. It must be noted that at each iteration, at least one of
the cut-off events must be fired, so as to allow continuing for
next iterations. It is worth mentioning that the final marking
will be marked by one of the cut-off events.

Considering Eq. (2), the iterative mechanism is as follows:
given the vector solution X , for the next iteration the observed
trace is set to ∀e∈J σ̂[e] = σ̂[e]−X[e], i.e., we remove from the
observed traces those events that correspond to the unfolding
run obtained. Accordingly, for the next iteration, we recharge
the unfolding, i.e., we mark the unfolding adding a token to
those conditions bk for which there is a final condition bi
that is marked and correspond to the same Petri net place,
B(bk) = B(bi). For example, consider Fig. 4, if c8 is marked
then it also recharges c3, since B(c8) = B(c3) = p6.

The following constraint must be added in each intermediate
step, to preserve the semantics of firing rules and to allow the
iteration over the unfolding model:∑

∀bk∈B(bk)=pi

bk = 1 (3)

Also, the constraint
∑
∀`(e)∈Ecut

X[e] ≥ 1 in Eq. (2) tries to
fire at least one cut-off transition which results in an intermedi-
ate marking according to Eq. (3); it lasts until reaching the final
marking where no more intermediate marking is available.

This iteration continues until reaching the final marking of
the initial model through the unfolding. However, there are
some caveats that might prevent to get the final marking. This
is the case when after some iterations, we might end up in an
intermediate unfolding marking mi where no more observed
events need to be mimicked. This issue causes an unbounded

solution for Eq. (2), due to the lack of negative elements in
the objective function. Therefore, in such cases the objective
function must be changed so as to come up with a solution.
In more detail, to overcome the challenge, in these situations
the objective function will be substituted with the following
one: ∑

∀`(e)∈Ecut

X[e] +
∑

e∈path

X[e] (4)

Wherein, path, denotes the set of unfolding events that are on
a path from the unfolding marking corresponding to mstart

to the unfolding marking corresponding to mend. The latest
term in Eq. (4) guides the algorithm to converge towards the
final marking. Notice that the path is not necessarily unique.
The algorithmic perspective of the mentioned technique is
presented in Alg. 1.

Algorithm 1 Unfolding-Based Sequence Computing
1: Input: Unfolding π of Petri net (N ,mstart, mend), Observed

trace’s Parikh σ̂
2: σ̂X ← ∅
3: mi ← ρ−1(mstart)
4: while mi 6= ρ−1(mend) do
5: result = Solve Eq. (2)
6: if result is bounded then
7: σ̂X ← Concatenate(σ̂X , X)
8: ∀e∈J σ̂[e] = σ̂[e]−X[e], . Updating Parikh of observed trace
9: Update the next initial marking mi

10: else
11: Modify and solve the optimization according to Eq. (4)
12: σ̂X ← Concatenate(σ̂X , X)
13: Update the next initial marking mi

14: end if
15: end while
16: Return σ̂X

In Alg. 1, σ̂X , shows a sequence of Parikh vectors computed
at different iterations. Although the iterative approach just
mentioned can provide a solution, two important properties
hold. Firstly, we will show that this iterative approach con-
verges and, secondly, the obtained result is guaranteed to be
executable.

Lemma 4.1: Given the unfolding model π of a system net
(N,mstart,mend), Alg. 1 has a finite number of iterations.
Proof: The proof is given by contradiction. Assume that the
number of iterations is infinite, i.e., the final marking is never
reached. But, it contradicts the soundness property of the
given model, given that the observed trace is finite. Therefore,
the final marking mend is reachable from every intermediate
markings. Moreover, if at any intermediate step there is no
observed event that can be replayable in the unfolding, then
the final marking will be reached by using the alternative cost
function (4). 2

Lemma 4.2: Given the unfolding model π of a system
net (N,mstart,mend), the solution provided by Alg. 1 is
executable, i.e., (N,mstart)[σX〉(N,mend).
Proof: Let us suppose that there are k iterations, thus, σ̂X is
the sequence of k Parikh vectors, i.e., σ̂X = X1X2 . . . Xk,
where, Xi is the solution of Eq. (2) for ith iteration, and,
Xi precedes Xj for i < j. Notice that by Theorem 3.1,



Figure 4. Unfolding example.

any solution to the marking equation on the unfolding is
executable, and therefore, any of the vectors Xi is executable
in the unfolding and corresponds to a sequence in the original
Petri net. We only need to observed that between any contigu-
ous vectors, the recharging of the unfolding does not harm
replayability since it preserves the corresponding marking in
the Petri net. 2

An example helps to drive the concept home. Consider the
unfolding in Fig. 4, and the observed trace σ = a1a3a2a6a7a8
and let us assume that for the original model ∀ti ∈ T, `(ti) =
ai. The first iteration using Eq. (2), produces the sequence
t1t2t3t4 and marked c8. Since, B(c8) = B(c3) = p6, for the
second iteration, c3 is marked and considered as the initial
marking. This iteration using Eq. (2), produces the sequence
t6t7 and marks c7 and due to B(c7) = B(c1) = p3, c1 is
marked and considered as the next initial marking. The third
iteration, produces t5t8 which marks the final marking. The
final produced sequence is t1t2t3t4t6t7t5t8.

V. EXPERIMENTS

The approach presented in this paper is implemented in
Python 2.7 and Gurobi [23] was used as the ILP solver.
The experiments are done over different datasets with various
characteristics, including different sizes, nested loops, and
duplicate transitions. Tables I and II describes the benchmarks.
The presented approach in this paper is compared with well-
known methods in the literature [2] and [4], on different
perspectives that come up next.

Table I
BPM2013 ARTIFICIAL BENCHMARK DATASETS [9], AND SYNTHETIC

DATASETS [24]

.

Model |P | |T | |Arc| Cases Fit. σ

prAm6 363 347 846 1200 No 31
prBm6 317 317 752 1200 Yes 43
prCm6 317 317 752 500 No 43
prDm6 529 429 1140 1200 No 248
prEm6 277 275 652 1200 No 98
prFm6 362 299 772 1200 No 240
prGm6 357 335 826 1200 No 143
M1 40 39 92 500 No 13
M2 34 34 80 500 No 17
M3 108 123 276 500 No 37
M4 36 52 106 500 No 26
M5 35 33 78 500 No 34
M6 69 72 168 500 No 53
M7 65 62 148 500 No 37
M8 17 15 36 500 No 17
M9 47 55 120 500 No 44
M10 150 146 354 500 No 58
Bank. 121 114 272 2000 No 58
Road. 15 23 48 10000 No 3

Table II
MODELS WITH DUPLICATE TRANSITION NAMES [24]

Model |P | |T | |Arc| Cases Fit. σ Dup.
Trans.

ML1 27 35 74 500 No 28 2
ML2 165 177 404 500 No 87 12
ML3 45 45 106 500 No 26 2
ML4 36 33 80 500 No 28 6
ML5 159 172 390 500 No 42 14

a) Unfolding model size:: Table III shows the ratio
between the unfolding and the original models in terms of
number of places, transitions and arcs. One can see that,
unfolding models in general have a slightly greater number
of places than the respective original models. This table
illustrates that working with unfolding models is not more
much expensive than working with original models, and more
importantly, contrasts with the aforementioned works that
compute alignments at the state-space level.

b) Number of iterations:: Table IV provides in average
the number of iterations that each dataset requires to con-
verge. It is clear that, larger models like prDm6, prEm6 and
prFm6 need more iterations. Also, the number of iterations
increases for longer traces, and models having many duplicate
transitions and including nested loops, see ML2, M3 and M6.

c) Percentage of reproduced events:: This is one of the
crucial properties of the approach presented in this paper. Table
V demonstrates in average the percentage of observed events
that can be reproduced by the model using the approach in this
paper, and state of the art techniques. As this table shows,
the method in this paper can often replay more events than
the other approaches1. For some of the benchmarks (see M4,
ML3 and ML4), the difference is quite significant.

1For some datasets, state of the art was unable to produce any results due
to lack of memory, hence NA is shown instead.



Figure 5. Execution time for the approach in this paper and state of the art techniques



Table III
RATIO OF TRANSITIONS, PLACES AND ARCS NUMBERS BETWEEN

UNFOLDING AND THE ORIGINAL MODELS

Model |Pun.|
|Por.|

|Tun.|
|Tor.|

|Arcun.|
|Arcor.|

prAm6 422/363 363/343 842/846
prBm6 317/317 375/317 748/752
prCm6 317/317 375/317 748/752
prDm6 569/529 429/429 1136/1140
prEm6 325/277 275/275 648/652
prFm6 385/362 299/299 768/772
prGm6 412/357 335/335 822/826
M1 47/ 40 39/39 92/92
M2 41/34 34/34 80/80
M3 139/108 123/123 276/276
M4 54/36 52/52 106/106
M5 40/35 33/33 78/78
M6 85/69 72/72 168/168
M7 75/65 62/62 148/148
M8 19/17 15/15 36/36
M9 61/47 55/55 120/120
M10 178/150 146/146 354/354
ML1 38/27 35 /35 74/74
ML2 203/165 177/177 404/404
ML3 54/45 45/45 106/106
ML4 41/36 33/33 80/80
ML5 196/159 172/172 390/390
Road. 25/15 23/23 48/48
Bank. 137/121 114/114 272/272

d) Execution time:: Fig. 5, illustrates the required execu-
tion times between the approach in this paper and state of the
art techniques. In all models except one (Road), the method in
this paper is faster than other techniques in magnitude of time.
Also, state of the art techniques are unable to produce solutions
for medium and large instance or models with nested loops and
duplicate transitions, whereas the presented technique is not
very sensitive to these issues.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we provide a novel technique for computing
alignments, which both significantly alleviates the computa-
tional effort, but also provides often better results when the
focus is to explain as much observed events as possible. A
prototype implementation has been tested over a well-known
set of benchmarks, and initial conclusions show the capabili-
ties of the approach, specially for large problem instance where
often the state-of-the-art techniques cannot handle.

As future work, we plan to explore more the role of
partial order representations for the problem of alignment
computation. In particular, to investigate alternative strategies
to the one described in this paper, so that different goals can
be defined, depending on the user requirements.

Table IV
AVERAGE NUMBER OF ITERATIONS FOR A MODELED TRACE

COMPUTATION

Model It. Model It.

prAm6 4.15 M1 3.96
prBm6 5.07 M2 4.14
prCm6 5.08 M3 10.27
prDm6 28.42 M4 7.49
prEm6 10.34 M5 5.92
prFm6 15.61 M6 10.42
prGm6 9.49 M7 8.39
Bank. 8.11 M8 3.81
ML1 5.14 M9 4.44
ML2 20.11 M10 10.27
ML3 9.54 ML4 9.67
ML5 2.78 Road. 8.18

Table V
PERCENTAGE OF REPRODUCED EVENTS

Model Unfolding A∗ Model Unfolding A∗
prAm6 0.91 0.95 M1 1.00 0.77
prBm6 0.84 1.00 M2 1.00 0.71
prCm6 0.86 0.71 M3 0.98 0.92
prDm6 0.89 NA M4 0.92 0.50
prEm6 0.78 0.98 M5 0.98 0.77
prFm6 0.95 NA M6 0.98 NA
prGm6 0.83 NA M7 0.97 NA
Bank. 0.78 0.99 M8 1.00 0.71
ML1 0.69 0.63 M9 0.63 0.73
ML2 0.96 NA M10 0.95 NA
ML3 0.97 0.47 ML4 0.99 0.48
ML5 0.90 NA Traffic. 0.68 0.58
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