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Abstract

Based on the jet transport technique, this paper proposes a novel nonlinear
Kalman filter for simultaneously estimating the spacecraft state vector and
uncertain parameters, either physically related with the spacecraft or with
the measurement procedure. Two different coordinate representations, in-
cluding Cartesian and hybrid geostationary orbital elements, are exploited
in the new nonlinear estimators. The performance and sensitivity analyses
of the proposed jet transport-based nonlinear estimators are assessed by nu-
merical simulations and compared with the classical extended Kalman filter.

Keywords: jet transport, parameter estimation, nonlinear estimator,
geostationary spacecraft

1. Introduction

Geostationary or geosynchronous Earth Orbit (GEO) regime has the valu-
able characteristic that keeps the spacecraft at rest relative to the Earth-
centered Earth-fixed (ECEF) frame. This particular feature reduces the dif-
ficulty for providing long-time continuous direct broadcast, communication,
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and observation services for a certain fixed region of the Earth’s surface. A
precise initial GEO orbit determination (IOD) is of extreme importance for
these space-related missions and, in particular, emerging high-accuracy GEO
applications are being proposed to monitor the land stability subjected to
natural hazards, like volcanic activities and earthquakes (future GEOSAR
missions [1]), as well as to implement meso-scale measurements of sea al-
timetry using TV signals from GEO satellites which, being much stronger
than the GPS ones, provide several advantages [2].

Currently, various filtering algorithms have been proposed and extensively
exploited in the IOD problems [3–7]. A complete discussion of the pros and
cons of these filtering algorithms can be found in [3, 8]. The well-known
extended Kalman filter (EKF) behaves well in the linear or weak nonlinear
estimation problem [9]. However, it loses accuracy, or even diverges, in some
certain cases such as: when the problem of state estimation is highly nonlin-
ear, in systems with low frequency measurements, or when the initial state
estimation errors are large. The unscented Kalman filter (UKF) overcomes
this drawback by removing the linearization assumption but with a higher
computational cost [6].

A better nonlinear extended Kalman filtering algorithm was proposed by
Park and Scheeres [7] by means of a semi-analytic uncertainty prediction
technique to describe the localized nonlinear motion around the nominal
trajectory, and carrying out a high order Taylor expansion of the nonlinear
measurements. The bottleneck of these high order Kalman filters (HEKF)
is the computational complexity of the required high order derivatives that
limits its applications.

Making use of the fact that Differential Algebra (DA) techniques deter-
mine high order derivatives in an accurate and efficient way, Valli et al. [3]
developed a high order EKF algorithm with the use of DA for orbit de-
termination in two simple cases: Sun-Earth halo orbit determination, and
Keplerian orbit determination around the Earth. Further usages of this high
order EKF in the angles-only initial orbit determination problem [4] and
spacecraft relative state estimation problem [5] also validated its effective-
ness. However, most of the references only consider the state estimation and
leave aside the estimation of parameter uncertainties in inaccurate dynamical
models or in measurement models, such as the spacecraft area-to-mass ratio,
or the uncertain location of a removable ground tracking station. A simul-
taneous estimation of these additional parameters is meaningful to further
improve the estimation accuracy of trajectories; for instance reference [10]
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underlined that the solar radiation pressure (SRP) modeling error is the
largest dynamical error source in the process of the geosynchronous navi-
gation satellites orbit determination problem, a precise area-to-mass ratio
estimation can provide good a priori information for the subsequent accurate
trajectory determination.

The purpose of this paper is to implement a precise geostationary or
geosynchronous orbit determination, taking into account the dominant per-
turbations in the GEO regime. At the same time, the procedure enables to
estimate additional uncertain parameters in the equations of motion or in
the measurement equations, which allows to further improve the accuracy
of the models and of the orbit determination solution. The methodology is
systematically implemented and can be easily extended for any parameter
estimation or orbit determination problem in another regime.

The paper is organized as follows: Section 2 describes the equations of
motion used in this work, including a Cartesian representation and a hybrid
GEO element representation. In Section 3 we develop the jet transport-based
HEKF algorithms for a spacecraft physical parameters estimation, and for a
ground tracking station position estimation, using both kinds of coordinates.
Section 4 contains some of the simulations done to validate the efficiency of
the estimators. The conclusions are given in Section 5.

2. Dynamical model

Several coordinate representations were proposed in the past to describe
the motion of GEO satellites [11]. However, the particularity of GEO orbits
leads specially to two main representations for the description of its motion
without singularities. They are the usual Cartesian representation and the
particular GEO element representation [12], that will be both considered in
this work.

2.1. Cartesian representation

Consider the motion of a spacecraft close to the GEO regime subjected
to the central gravitational acceleration of an homogeneous spherical Earth

acen =
(−µ
r3
x, −µ

r3
y, −µ

r3
z
)T

and to the four main perturbing accelerations:
anon, aSRP , as, and am, that respectively denote perturbing Earth’s non-
spherical gravitational acceleration, solar radiation pressure, Sun and Moon
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gravitational accelerations [9]. The equations of motion in Cartesian coordi-
nates are

r̈ = acen + ap,
ap = anon + aSRP + as + am,

(1)

where r indicates the spacecraft position vector in the Earth-centered inertial
(ECI) frame, and r is its norm, the notation ap indicates the total perturbing
acceleration.

The adopted formulae for the dominant perturbing accelerations can be
found in detail in [9]. The SRP, Sun and Moon gravitational accelerations
can be expressed in the ECI reference frame as,

aECISRP = −νP Cr
A

m

r�
r3
�
AU2, (2)

aECIM = GM

(
rM − r
|rM − r|3

− rM
|rM |3

)
, (3)

where r� is the relative position vector pointing from the Sun to the space-
craft, P indicates the SRP force at a distance of 1 AU, ν denotes the Earth’s
shadow function and M represents the mass of the Sun or Moon, rM is the
position vector of the mass M relative to the Earth. Additional parameters,
including the radiation pressure coefficient Cr, the spacecraft mass m, and
the cross sectional area A, are related to the individual spacecraft properties.
Note that all these spacecraft physical parameters can be affected by some
uncertainties, and can be estimated by the nonlinear filters introduced in this
work.

The adopted Earth’s non-spherical gravity is expressed in the ECEF
frame as,

aECEFnon =

( ∑
n,m

ax,nm +
µ

r3
x,

∑
n,m

ay,nm +
µ

r3
y, ,

∑
n,m

az,nm +
µ

r3
z,
)
,

4



where

ax,nm =
µ

2R2
⊕
{(−CnmVn+1,m+1 − SnmWn+1,m+1)+

(n−m+ 2)!

(n−m)!
(CnmVn+1,m−1 + SnmWn+1,m−1)},

ay,nm =
µ

2R2
⊕
{(−CnmWn+1,m+1 + SnmVn+1,m+1)+

(n−m+ 2)!

(n−m)!
(−CnmWn+1,m−1 + SnmVn+1,m−1)},

az,nm =
µ

R2
⊕
{(n−m+ 1)(−CnmVn+1,m − SnmWn+1,m)}.

In these equations the Earth’s equatorial radius R⊕, and the geopotential
coefficients Cnm, Snm are provided by the 5× 5 EGM96S gravity model. In
particular, m = n = 0 corresponds to the situation in which only the central
gravitational acceleration is considered. The values of Vnm and Wnm are
recursively given by

V00 =
R⊕

r
, Vm−1,m = 0 ,

Vmm = (2m− 1)
R⊕

r2
{xVm−1,m−1 − yWm−1,m−1} ,

Vnm =

(
2n− 1

n−m

)
zR⊕

r2
Vn−1,m −

(
n+m− 1

n−m

)
R2

⊕

r2
Vn−2,m,

W00 = 0 , Wm−1,m = 0 ,

Wmm = (2m− 1)
R⊕

r2
{xWm−1,m−1 + yVm−1,m−1} ,

Wnm =

(
2n− 1

n−m

)
zR⊕

r2
Wn−1,m −

(
n+m− 1

n−m

)
R2

⊕

r2
Wn−2,m.

Besides, the time-dependent coordinate transformation from the ECEF
frame to the ECI frame can be obtained via the use of average angular speed
of the Earth’s rotation ωe = 7.292115× 10−5 rad/s, thus

T ECIECEF =

 cos (ωet) − sin (ωet) 0
sin (ωet) cos (ωet) 0

0 0 1

 .
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Therefore, the perturbing Earth’s non-spherical gravitational accelera-
tion is expressed in the ECI reference frame as

aECInon = T ECIECEF · aECEFnon . (4)

2.2. GEO representation

In [13], Tombasco introduced a non-dimensional GEO element set in
terms of the classical Keplerian elements {a, e, i, ω,Ω, θ}, which consists of
the Earth-fixed sub-spacecraft longitude λ, the longitudinal drift rate δā,
two eccentricity vector components (ex, ey), and two equinoctial elements
(Q1, Q2). The expressions of the GEO elements, as well as four intermediate
variables, can be written as follows,

λ , (ω + Ω + θ)−GA (t) ,

δā ,
a− An
An

,

ex , e cos (ω + Ω) ,

ey , e sin (ω + Ω) ,

Q1 , tan

(
i

2

)
sin (Ω) ,

Q2 , tan

(
i

2

)
cos (Ω) ,

r =
An (δā+ 1)

(
1− e2

x − e2
y

)
1 + ex cos s+ ey sin s

,

s = λ+GA (t) = ω + Ω + θ,
p = An (δā+ 1)

(
1− e2

x − e2
y

)
,

h =
√
pµ,

where An = 42164.2 km indicates a nominal GEO semi-major axis, GA (t) =
GA(t0)+ωe (t− t0) stands for the Greenwich sidereal angle at t. The notation
s denotes the spacecraft sidereal angle, p represents the semi-latus rectum
of the orbit, and h is the norm of the angular momentum. With the above
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variables, the equations of motion using GEO element representation are

λ̇ =
h

r2
+
r

h

[
Q2 sin s−Q1 cos s

]
ah − ωe,

δ ˙̄a =
2(δā+ 1)2

hAn

[
(ex sin s− ey cos s)ar +

p

r
aθ
]
,

ėx =
r

h

{p
r

sin s · ar +
[
ex + (1 +

p

r
) cos s

]
aθ + ey

[
Q1 cos s

−Q2 sin s
]
ah

}
,

ėy =
r

h

{
− p

r
cos s · ar +

[
ey + (1 +

p

r
) sin s

]
aθ − ex

[
Q1 cos s

−Q2 sin s
]
ah

}
,

Q̇1 =
r

2h
(1 +Q2

1 +Q2
2) sin s · ah,

Q̇2 =
r

2h
(1 +Q2

1 +Q2
2) cos s · ah.

(5)

We note that, using Cartesian coordinates, the perturbing accelerations
in (1) can be easily computed through (2), (3), and (4). However, when we
implement the nonlinear estimation using GEO elements, a series of conver-
sions have to be done for computing ap = (ar, aθ, ah)

T in (5). It is as follows:
i) at a certain epoch transform the known GEO elements into Cartesian
coordinates (the transformation is given in [14]); ii) compute the dominant
perturbing accelerations using the Cartesian coordinates through (2), (3),
and (4); iii) project all the perturbations into the Local Vertical Local Hori-
zontal reference frame (LVLH). For the transformation of accelerations from
the ECI into to the LVLH frame we make use of the cosines matrix

T LV LHECI =

 I · i I · j I · k
J · i J · j J · k
K · i K · j K · k

 , (6)

where I,J ,K and i, j,k are the unitary vector sets defining the ECI and
LVLH reference frames respectively. Using the spacecraft state (r,v) in the
ECI frame, we have,

i =
r

‖r‖
, k =

r × v
‖r × v‖

, j = k × i.

Thus, the four dominant perturbations we consider can be rotated into
the LVLH frame by means of

aLV LHp = T LV LHECI · aECIp . (7)
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Finally, a jet transport-based numerical integrator is developed using
κth order Taylor expansions (JT-HEKF-κ algorithm) in subsection 3.2. It
is used to propagate both dynamic models and produce the spacecraft state
and parameter predictions at a new epoch; then, the JT-HEKF-κ filtering
algorithms do the state and parameter updates by incorporating the new
measurements. The proposed JT-HEKF-κ filtering algorithms make an in-
tensive use of this procedure to estimate the state vector and parameters in
the GEO element space.

3. Jet transport technique

The DA technique, as a way for doing efficient symbolic computations,
was first proposed by Berz and Makino [15] in 1999 for the study of parti-
cle beam accelerators, and implemented by the same authors in the COSY
Infinity package. With similar ideas, Pérez-Palau [16] studied the applica-
tion of JT technique in the structure detection of astrodynamics problem.
Essentially, either DA method or JT method is an automatic differentiation
technique that enables to derive high order Taylor expansions (or other kind
of expansions) of general nonlinear functions and, in particular, of the flow
associated to an ODE in an accurate and efficient way. For convenience of
the reader, some vital informations on jet transport technique are reviewed
in this section. More fundamental details about Jet Transport formulation,
as well as its computer implementation can be found in [16, 17].

3.1. Jet transport nonlinear expansion

Consider an ODE system ẋ = f (x,p, t), such as the ones given by (1)
or (5), with a n-dimensional state vector x, and a l-dimensional parameter
vector p, as well as the initial conditions x (t0) = x0, and p (t0) = p0. The
JT method performs the propagation of a neighborhood N0 around x0 and
p0 from t0 up to a final time td.

A sketch of the procedure is the following: first parameterize the ini-
tial neighborhood N0 by a pair of polynomial vectors [x0] = x̄0 + δx0 and
[p0] = p̄0+δp0, where x̄0 and p̄0 are the initial nominal values, while δx0 and
δp0 are their initial uncertainties. Then, the initial state and parameter un-
certainty neighborhood N0 is integrated in the accurate nonlinear vectorfield,
that includes the Earth potential and perturbations, from the initial epoch
t0 up to a final epoch td, using a JT-based eighth order variable step Runge
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Kutta method, or by means of any other numerical integrator. The result is
a κ-th order state polynomial vector, [x1]κ = x̄d + Pκxd

(δx0, δp0), which ap-
proximates the state uncertainty neighborhood Φ (td; t0,x0 + δx0,p0 + δp0),
where Φ denotes the flow associated to the differential equation, and a similar
representation, [pd] = p̄d + Pκpd

(δp0), that approximates the parameter un-
certainty neighborhood at time td. In particular, we note that the truncated
state Taylor series at time td can be written as

[xd]
κ = x̄d + Pκxd

(δx0, δp0)
=

∑
0≤γ1+···+γn+l≤κ

aγ1···γn+l
δxγ10,1 · · · δx

γn
0,n δp

γn+1

0,1 · · · δp
γn+l

0,l , (8)

where δx0 = (δx0,1, . . . , δx0,n)T , δp0 = (δp0,1, . . . , δp0,l)
T , while

aγ1...γn+l
=

1

γ!

∂γΦxd

∂δxγ10,1 · · · ∂δx
γn
0,n ∂δp

γn+1

0,1 · · · ∂δp
γn+l

0,l

,

are the coefficients of the Taylor expansion of the solution flow, and γ =
γ1+· · ·+γn+l. Clearly, the accuracy of (8) is mainly affected by the expansion
order κ, the size of δx0 and δp0, and the total propagation time ∆t = td −
t0. In principle, for a given uncertainty neighborhood, the approximation
accuracy can reach a given desired tolerance by tuning the expansion orders;
a detailed analysis about the procedure is given in [14]. Note that if κ = 1,
the JT method degrades to the linear approximation of the flow around
the nominal orbit, and the usual state transition matrix is given by the
coefficients aγ1...γn+l

associated to the first order of the expansion (γ1 + · · ·+
γn+l = 1).

3.2. JT-based Runge Kutta integrator

In order to perform a JT-based numerical integration, all the arithmetic
operations of the usual numerical propagator must be replaced with the cor-
responding polynomial algebra in the JT scheme. After each time step, the
state x and the right hand side of the ODE system ẋ = f(x, t) is expressed
as a kth-order expansion around a certain point of the nominal solution. At
this point, it is worth to remark a particularity of the JT-based numerical in-
tegrators with adaptive step size control, such as the Runge-Kutta-Fehlberg
procedures.

The Runge-Kutta methods implemented in the JT shceme (JTRK) are
the only ones we consider in our study. These methods can be divided in two
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categories, including fixed or variable stepsize. In general, a JTRK integrator
with variable stepsize, such as JTRK45 and JTRK78 of respective orders 5
and 8, gives a better performance but, some care has to be taken in the
stepsize control when doing JT propagations. In the following we discuss
some remarks about the implementation of a JTRK78 algorithm. Other
implementations, like the one of JTRK45, can be performed using similar
error estimation and stepsize control strategy.

Consider the initial value problem in a vectorfield with n variables. As-
sume a well approximated JT-state [xj]

k at time tj is known. For a given
time step h, two estimates of the real state x(tj+1) at tj+1 = tj + h, are
provided by the seventh and eighth order JTRK, respectively:

[x̄j+1]k = [xj]
k+hφ7(tj, [xj]

k, h), [x̂j+1]k = [xj]
k+hφ8(tj, [xj]

k, h). (9)

The fundamental idea underlying a JTRK method with variable stepsize
control is that when the two estimations are close enough (this is, a suitable
norm of their difference is below a selected threshold value ε), the propagation
with stepsize h is considered successful, while when they differ, the stepsize
must be recomputed and adjusted. A trade-off between a fixed accuracy
and the computational time, requires also to look for the maximum stepsize
which could be suitable to obtain a good estimation the real state x(tj+1)
when the estimators differ, as well as for the computation of x(tj+2) at time
tj+2 that will follow in the propagation.

Note that, at time step j, the difference between the two estimations is
an expansion of the form,

[x̄ij+1]k − [x̂ij+1]k =
∑

0≤m≤k

ajmδxm =
∑

0≤k1+···+kn≤k

ajk1...knδx
k1
1 . . . δxknn . (10)

The classical pointwise propagation algorithms estimate this difference
considering some norm of the n-vector aj0...0, but in our case (10) is a kth-
order expansion in n variables and all terms must be taken into account.
Assuming a threshold for each order, ε = (ε1 . . . εk) we can define a norm
by1:

Ajm = max
k1+...+kn=m

‖ajk1...kn‖, ‖ajk1...kn‖ = max
1≤i≤n

|aji,k1...kn|. (11)

1Other definitions of Aj
m like scaled Euclidean norms or average of absolute values

among components could be also considered.
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The accuracy condition for a successful time step h at time tj would be
Ajm < εm for m = 0 . . . k. In order to further determine the optimal stepsize
for a given accuracy ε, let us first introduce:

∆(t,x, h) =
x(t+ h)− x(t)

h
.

Since the JTRK7 integrator has a 7th-order local truncation error, we
can write:

−∆(tj,xj, h) + φ7(tj, [xj]
k, h) = N7(tj)h

7 +O(h8). (12)

Analogously, the JTRK8 integrator has 8th order accuracy and thus:

−∆(tj,xj, h) + φ8(tj, [xj]
k, h) = N8(tj)h

8 +O(h9). (13)

Subtracting the estimations given by (9), and using (12-13), we get:

[x̄j+1]k − [x̂j+1]k = h (φ7 − φ8) = N7(tj)h
8 +O(h9). (14)

Neglecting the O(h9) term we obtain the following estimate of the leading
coefficient in the truncation:

N7(tj) '
[x̄j+1]k − [x̂j+1]k

h8
,

and, according to (11), we have the following estimation for the size of the
different orders of N7(tj):

N j
7,m =

Ajm
h8

, m = 0, . . . , k. (15)

Let us now assume a new optimal time step hN at time tj+1. According
to (15) together with the successful condition, we get:

Aj+1
m = h8

NN
j+1
7,m ≤ εm, m = 0, . . . , k. (16)

Expanding N7(tj+1) around tj yields N7(tj+1) = N7(tj +hN) = N7(tj)+
O(hN), and so (16) can be written as:

Aj+1
m = h8

NN
j
7,m +O(h9

N) ≤ εm, m = 0, . . . , k. (17)
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Then, neglecting the O(h9
N) term, and substituting (15) into (17), we

obtain:

hN,m ≤ 8

√
εm

N j
7,m

= h 8

√
εm

Ajm
, m = 0, . . . , k.

The value of hN advised for the next step propagation is the minimum
of these k + 1 values. Usually hN is multiplied by a safety factor of 0.9,
since, in practice, this avoids re-computations of the stepsize and increases
performance.

3.3. Jet transport-based high order extended Kalman filters

In this subsection we propose JT-HEKF-κ filters for the simultaneous
nonlinear estimation of the spacecraft state and parameter vectors. Using
either (1) or (5), the state equations of the GEO spacecraft can be discretized
as

xk+1 = Φx,k+1 (tk+1; tk,xk + δxk,pk + δpk) +wk, (18)

where xk and pk respectively indicate the nominal spacecraft state and pa-
rameters at time tk, δxk, δpk are their uncertainty deviations, and wk is
the process noise vector, assumed as a Gaussian white noise process, i.e.,
E{wk} = 0, E{wkw

T
k } = Qx

n×n. We assume the initial state estimates
being a multivariable Gaussian distribution with mean x+,0 and covariance
E{(x0 − x+,0)(x0 − x+,0)T} = P x

+,0. Moreover, it is reasonable to suppose
that the spacecraft physical parameters, or the uncertain position vector of
the ground tracking station, only depend on time or on the parameters them-
selves, in this case the discretized parameter equations are

pk+1 = Φp,k+1 (tk+1; tk,pk + δpk) + vk, (19)

where vk denotes the process noise vector, assumed again to be a Gaussian
white noise process, i.e., E{vk} = 0, E{vkvTk } = Qp

l×l. It will also be
assumed that the process noise vectors wk and vk are non-correlated, i.e.
E{wk,vk} = 0.

Note that the parameters can be merged into the spacecraft state vector
and form an augmented state vector X = [x,p]. Thus, (18) and (19) are
augmented as

Xk+1 = Φk+1 (tk+1; tk,Xk + δXk) + ŵk, (20)
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where ŵk = [wT
k ,v

T
k ]T , and the complete covariance matrix of the process

noise is a (n+ l)× (n+ l) block diagonal matrix consisting of Qx
n×n and Qp

l×l,
this is

Q =

(
Qx
n×n 0n×l

0l×n Qp
l×l

)
.

Assume that a measurement is obtained from the sensors in a ground
tracking station at time tk+1. The nonlinear measurement equations are
written as

zk+1 = Ξk+1 (tk+1; tk,Xk+1) + uk+1, (21)

where zk+1 is a m-dimensional measurement vector, and the measurement
noise vector uk+1 is assumed to be a Gaussian white noise with mean and
covariance given by E{uk+1} = 0, and E{uk+1u

T
k+1} = R. It is also as-

sumed that the process and measurement noises are non-correlated, i.e.,
E{wk,uk} = 0, E{vk,uk} = 0.

Consider the system model equations (20) and (21), the filtering algo-
rithms can be defined as follows:

• Prediction equations: at time tk+1,

X i
−,k+1 = E{Φi

k+1 (tk+1; tk,X+,k + δXk) + ŵi
k},

P i1i2
−,k+1 = E{[Φi1

k+1 (tk+1; tk,X+,k + δXk)−X i1
−,k+1 + ŵi1

k ]·
[Φi2

k+1 (tk+1; tk,X+,k + δXk)−X i2
−,k+1 + ŵi2

k ]},
zd−,k+1 = E{Ξd

k+1 (tk+1; tk,X−,k+1) + udk+1},

(22)

where E{} represents the expectation operator; i, i1, i2 = 1, · · · , n,
d = 1, · · · ,m. X i

−,k+1 and P i1i2
−,k+1 indicate the components of the mean

and covariance matrix of the state; zd−,k+1 denotes the components of
the mean of the measurements.

• Update equations: we incorporate the new measurement zk+1 at time
tk+1 into the estimation algorithm,

P d1d2
zz,k+1 = E{[Ξd1

k+1 (tk+1; tk,X−,k+1)− zd1−,k+1 + ud1k+1]·
[Ξd2

k+1 (tk+1; tk,X−,k+1)− zd2−,k+1 + ud2k+1]},
P id
Xz,k+1 = E{[Φi

k+1 (tk+1; tk,X+,k + δXk)−X i
−,k+1 + ŵi

k]·
[Ξd

k+1 (tk+1; tk,X−,k+1)− zd−,k+1 + udk+1]},
Kk+1 = PXz,k+1 (Pzz,k+1)−1 ,
X+,k+1 = X−,k+1 +Kk+1 (zk+1 − z−,k+1) ,
P+,k+1 = P−,k+1 −Kk+1Pzz,k+1K

T
k+1.

(23)
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where d, d1, d2 = 1, · · · ,m, i = 1, · · · , n. P d1d2
zz,k+1 indicates the com-

ponents of the covariance matrix of the measurements and P id
Xz,k+1 de-

notes the components of the cross-covariance matrix between the state
and the measurements.

Note that nonlinear JT-HEKF filters are based on the aforementioned
filtering process and implemented in the JT scheme. The main properties
of JT-HEKF-κ algorithms include: 1) to retain the nonlinear information of
the dynamical and measurement models during the filtering process; 2) to
save computational time.

Let us assume that the mean and covariance of the state and parameter
vectors are known at time tk, this is: the n-dimensional state vector x+,k,
the l-dimensional parameter vector p+,k, and the complete covariance matrix
P+,k are provided. In particular, P+,k includes the state covariance sub-
matrix P x

+,k, the parameter covariance sub-matrix P p
+,k, and the covariance

sub-matrix P xp
+,k associated to the state and parameter vectors,

P+,k =

(
P x

+,k P xp
+,k

P px
+,k P p

+,k

)
, with P px

+,k = (P xp
+,k)

T .

Expanding (20) around the mean of the augmented state up to order κ,
in terms of (8), we obtain the prediction of the augmented state at time tk+1

by computing the expectation of the polynomial gives

X i
−,k+1 = E{X̄ i

k+1 + Pκ
X̄i

k+1
(δXk)}

=
∑

0≤γ1+···+γn+l≤κ
aiγ1...γn+l

E
{
δXγ1

k,1 · · · δX
γn+l

k,N+l

}
, (24)

where the superscript i ∈ [1, n+l] gives the index of the augmented state vec-
tor, δXk = [δxTk , δp

T
k ]T indicates the deviations on the spacecraft state and

parameters respectively, X̄ i
k+1 = Φi

k+1 (tk+1; tk,X+,k) indicates the nominal
state prediction, and

aiγ1...γn+l
=

1

γ!

∂γΦi
k+1

∂δXγ1
k,1 · · · ∂δX

γn+l

k,n+l

.

Although the estimated paramters are merged into the augmented state,
it is worth to mention two special cases for the parameter prediction. In the
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first case it is assumed that the estimated parameters are fixed, this is, (19)
is invariable and degraded into

pj−,k+1 = pj+,k. (25)

In essence, one does not need to propagate the parameters together with
the spacecraft state in this case, which can save computational time since it
reduces the dimension of the estimation problem. This case will be further
discussed when the position of the tracking station is estimated.

In the second case, we consider that the parameter equations (19) are
nonlinear. A formulation similar to (8) is used to predict the parameter
vector

pj−,k+1 = E{p̄jk+1 + Pκ
p̄j
k+1

(δpk)}
=

∑
0≤γn+1+···+γn+l≤κ

bjγn+1...γn+l
E
{
δp

γn+1

k,1 . . . δp
γn+l

k,l

}
, (26)

where the coefficients of the Taylor expansions are

bjγn+1...γn+l
=

1

γ!

∂γΦj
p,k+1

∂δp
γn+1

k,1 · · · ∂δp
γn+l

k,l

.

Analogously, the prediction of the d-th measurement can be obtained
through the computation of the expectations of the polynomial results,

zd−,k+1 = E{z̄dk+1 + Pκ
z̄d
k+1

(δXk)}
=

∑
0≤γ1+···+γn+l≤κ

cdγ1...γn+l
E
{
δXγ1

k,1 · · · δX
γn+l

k,n+l

}
, (27)

where d ∈ [1,m] indicates the index of the measurement equations, z̄dk+1 =
Ξd
k+1 (tk+1; tk,X−,k+1), and

cdγ1...γn+l
=

1

γ!

∂γΞd
k+1

∂δXγ1
k,1 · · · ∂δX

γn+l

k,n+l

.

Inserting Taylor polynomials (24), (26) and (27) into the filtering process
(22) and (23), one can obtain the detailed JT-HKEF-κ filtering algorithms:

• Prediction equations: at time tk+1,

X i
−,k+1 =

∑
0≤γ1+···+γn+l≤κ

aiγ1...γn+l
E
{
δXγ1

k,1 · · · δX
γn+l

k,N+l

}
,
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zd−,k+1 =
∑

0≤γ1+···+γn+l≤κ

cdγ1...γn+l
E
{
δXγ1

k,1 · · · δX
γn+l

k,n+l

}
,

P x,i1i2
−,k+1 =

∑
1≤γ1+···+γn+l≤κ

∑
1≤γ̃1+···+γ̃n+l≤κ

ai1γ1...γn+l
ai2γ̃1...γ̃n+l

·

E
{
δxγ1+γ̃1

k,1 · · · δxγn+γ̃n
k,n δp

γn+1+γ̃n+1

k,1 · · · δpγn+l+γ̃n+l

k,l

}
−δmx,i1

k+1δm
x,i2
k+1 + E

{
wi1
k w

i2
k

}
, i1 , i2 ∈ [1, n],

P xp,ij
−,k+1 =

∑
1≤γ1+···+γn+l≤κ

∑
1≤γ̃n+1+···+γ̃n+l≤κ

aiγ1...γn+l
bjγ̃n+1...γ̃n+l

·

E
{
δxγ1k,1 · · · δx

γn
k,nδp

γn+1+γ̃n+1

k,1 · · · δpγn+l+γ̃n+l

k,l

}
−δmx,i

k+1δm
p,j
k+1, i ∈ [1, n] , j ∈ [1, l],

P p,j1j2
−,k+1 =

∑
1≤γn+1+···+γn+l≤κ

∑
1≤γ̃n+1+···+γ̃n+l≤κ

bj1γn+1...γn+l
bj2γ̃n+1...γ̃n+l

·

E
{
δp

γn+1+γ̃n+1

k,1 · · · δpγn+l+γ̃n+l

k,l

}
− δmp,j1

k+1δm
p,j2
k+1

+E
{
vj1k v

j2
k

}
, j1 , j2 ∈ [1, l],

where

δmx,i
k+1 = x̄ik+1 − xi−,k+1, δmp,i

k+1 = p̄ik+1 − pi−,k+1,

and the covariance matrix of the augmented state is

P−,k+1 =

(
P x

−,k+1 P xp
−,k+1

P px
−,k+1 P p

−,k+1

)
.

• Update equations: incorporting the new measurement zk+1 at time tk+1

into the estimation algorithm,

P d1d2
zz,k+1 =

∑
1≤γ1+···+γn+l≤κ

∑
1≤γ̃1+···+γ̃n+l≤κ

cd1γ1...γn+l
cd2γ1...γn+l

·

E
{
δxγ1+γ̃1

k,1 · · · δxγn+γ̃n
k,n δp

γn+1+γ̃n+1

k,1 · · · δpγn+l+γ̃n+l

k,l

}
−δnd1k+1δn

d2
k+1 + E

{
ud1k+1u

d2
k+1

}
, d1 , d2 ∈ [1, m],

(28)
P id
xz,k+1 =

∑
1≤γ1+···+γn+l≤κ

∑
1≤γ̃1+···+γ̃n+l≤κ

aiγ1...γn+l
cdγ̃1...γ̃n+l

·

E
{
δxγ1+γ̃1

k,1 · · · δxγn+γ̃n
k,n δp

γn+1+γ̃n+1

k,1 · · · δpγn+l+γ̃n+l

k,l

}
−δmx,i

k+1δn
d
k+1, i ∈ [1, n] , d ∈ [1, m],

(29)
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P jd
pz,k+1 =

∑
1≤γn+1+···+γn+l≤κ

∑
1≤γ̃1+···+γ̃n+l≤κ

bjγn+1...γn+l
cdγ̃1...γ̃n+l

·

E
{
δxγ̃1k,1 · · · δx

γ̃n
k,nδp

γn+1+γ̃n+1

k,1 · · · δpγn+l+γ̃n+l

k,l

}
−δmp,j

k+1δn
d
k+1, j ∈ [1, l] , d ∈ [1, m],

(30)

where δndk+1 = z̄dk+1 − zd−,k+1. Using (29) and (30), we can obtain an
augmented matrix PXz,k+1 = [P T

xz,k+1P
T
pz,k+1]T .

Finally, we can update the estimated state and parameter vectors, as
well as the covariance matrix, incorporating the measurement informa-
tion at time tk+1. So, at time tk+1

Kk+1 = PXz,k+1 (Pzz,k+1)−1 ,
X+,k+1 = X−,k+1 +Kk+1 (zk+1 − z−,k+1) ,
P+,k+1 = P−,k+1 −Kk+1Pzz,k+1K

T
k+1.

It is clear that, due to the nonlinearity of the system, at time tk+1 the
distributions of the state and parameter vectors in the JT-HEKF-κ filters
(excluding JT-HEKF-1) are no longer Gaussian, even that their distributions
at time tk were Gaussian. Although reference [7] showed that the Gaussian
assumption is accurate enough in the orbit determination application using
the proposed JT-HEKF-κ filters, in a forthcomming work we will remove this
assumption. Under the Gaussian assumption, Isserlis’s formula [18] provides
an analytical way to compute the associated expectation values in the JT-
HEKF-κ algorithms.

As it has already been said, the purpose of this paper is to show how
some parameters can be accurately estimated jointly with the spacecraft
state. The nature of the parameters can be very different, from physical
ones related with the spacecraft to the uncertain ones associated with the
measurement procedure. Without loss of generality, and in order to show the
behavior of the developed methodology, here we only present two illustrative
cases: one physically affected by the time-varying area-to-mass ratio, and
another one related with an uncertain tracking station position.

3.3.1. Case study A: spacecraft state and physical parameter estimation

Although many spacecraft physical parameters are pre-designed and pre-
cisely manufactured for concrete missions, still some of them may be deter-
mined or adjusted during the mission, and need to be estimated in real time.
Examples of such ones could be the spacecraft mass and the illuminated
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cross sectional area. The uncertainty on the mass is mainly originated from
unaccurate operations of the propulsion system, while the uncertainty on the
illuminated cross sectional area is affected by the shape and attitude of the
spacecraft, as well as the relative position between the spacecraft and the
Sun.

In general, the modeling error of the SRP acceleration is the largest dy-
namical error source in the GEO regime [10]. Morever, due to maneuvers, the
area-to-mass ratio η = A/m changes with time and needs refitting. In this
case study we assume that we are inside a period of time without maneuvers,
but we have a time varying η because the non-spherical GEO spacecraft is
rotating with respect to the Sun in a diurnal basis, and so, its cross sec-
tional area varies accordingly. The nonlinear variation law considered in the
simulation is assumed to be

η̇ = η0 sin(ωet)

where ωe stands for the average angular speed of the Earth’s rotation.

3.3.2. Case study B: spacecraft state and tracking station position estimation

For usual data collection techniques, underlying systematic biases and
unmodeled observation errors significantly degrade the measurement quality.
These facts limit the orbit determination accuracy, especially for the GEO
case, where one arcsecond of angular error from the ground tracking station
position, corresponds to approximately 200 meters of the spacecraft position
observational error.

Therefore, the precise estimation of these systematic biases and unmod-
eled observation errors, as well as the offset to remove them, is of significant
interest and importance. In particular, the accurate estimation of the height
of a removable ground tracking station is meaningful, since it is difficult to be
accurately determined via the GPS services. In this case study we attempt
to precisely estimate the uncertain position of a ground tracking station. In
general, the position of the ground tracking station is provided by specify-
ing its east longitude Λ, geodetic latitude φ, and an elevation H above the
WGS84 ellipsoidal surface, and the position vector has to be converted into
the ECI frame. Unlike the previous case, (19) is now fixed and simplifies
into (25). Therefore, assuming that the height of the ground tracking station
is denoted by H and its corresponding uncertainty by δH, the parameter
equation can be expressed as

Hk+1 = Hk + δHk + vk. (31)
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3.3.3. Sensitivity analysis

Complementing the previous discussions for the case studies A and B,
we focus on the sensitivity analysis of the JT-HEKF-κ filters with respect
to initial estimation errors, measurement acquisition frequencies, and the
observation geometry between the spacecraft and the ground tracking sta-
tion (i.e., ∆Λr = λ − Λ). In general, the classical EKF filtering algorithms
lose accuracy in the low measurement acquisition frequency case. Therefore,
three different measurement acquisition frequencies are considered in order
to produce some significant conclusions. On the other hand, we analyze the
sensitivity of JT-HEKF-κ algorithms with respect to the initial simulation
conditions subjected to a large estimation error distribution (i.e., large values
of σr, σv, and σp) via Monte Carlo (MC) simulations. It is worth mentioning
that we omit the simulation with small initial estimation error distribution
case, since both the usual EKF and the JT-HEKF proposed in this paper
work very well for the simultaneous estimation of the spacecraft state and ad-
ditional parameters in the GEO regime. Finally, a sensitivity analysis with
respect to the observational geometry (25 uniformly distributed sampling
points are taken from the interval ∆Λr ∈ [−60◦, −60◦]) is also implemented
via MC simulations.

In order to assess the sensitivity tests of the JT-HEKF-κ filtering algo-
rithms, some statistical indices are defined as follows,

κε̄
Np

i =

∑Np

j=1 ε
j
i

Np

, τκ2κ1 =
κ2 ε̄

Np

i

κ1 ε̄
Np

i

,

ε̄
κσ

Np

i =

√∑Np

j=1(εji − κε̄
Np

i )2

Np − 1
, ζκ2κ1 =

ε̄
κ2
σ
Np

i

ε̄
κ1
σ
Np

i

.

where εji , i = r, v, p indicates the position error, velocity error and parameter
error of the jth Monte Carlo simulation calculated at the steady stage of the
filtering process, κε̄

Np

i and ε̄
κσ

Np

i denote the mean and the standard deviation
of εji accounting for the expansion order κ, Np is the total number of Monte
Carlo simulations. Note that τκ2κ1 reveal the error ratio between JT-HEKF-κ2

and JT-HEKF-κ1 filtering algorithms. if 0 < τκ2κ1 < 1, JT-HEKF-κ2 algo-
rithm features the better accuracy than JT-HEKF-κ1 algorithm, otherwise
is worse. The ratio ζκ2κ1 shows the dispersion of the estimation error around
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the mean. If ζκ2κ1 > 1, JT-HEKF-κ2 algorithm possesses a higher dispersion
than JT-HEKF-κ1 algorithm, otherwise is smaller.

4. Results

Currently, optical telescopes are typically exploited to track the GEO
objects. As a passive data collection technique, optical telescopes enable to
efficiently track numerous objects surreptitiously. The recent development
of more powerful wide-field-of-view optical sensors possesses sub-arcsecond
observation accuracy for the near-geosynchronous objects [12]. In particu-
lar, the state of the art accuracy of the most sophisticated optical sensors
enables to reach 20 milli-arcseconds [19]. In the following simulations, we
assume that the measurement errors on the topocentric right ascension (RA,
α) and declination (δ) are Gaussian white noises with the same standard
deviation 66.6 milli-arcseconds (corresponding to σm = 3.232× 10−7 rad and
14 m in the GEO regime). The position of the ground tracking station is
known by specifying its east longitude Λ, geodetic latitude φ, and an ele-
vation H above the WGS84 ellipsoidal surface. The local sidereal time of
the ground tracking station is so = Λ + GA(t). After the coordinate trans-
formation, the position of the ground tracking station is expressed in the
ECI frame as ro = (xo, yo, zo) = (Rc cosφ cos so, Rc cosφ sin so, Rs sinφ) ,
where ro indicates the inertial position vector of the tracking station, while
Rc and Rs are two intermediate values depending on the equatorial ra-
dius, Re, flattening, f , and height of the tracking station, H. The space-
craft position vector relative to the ground tracking station is expressed as
% = r − ro = (x − xo , y − yo , z − zo). Therefore, the measurement vector
z = (α, δ) can be computed by the corresponding measurement equations,

α = arctan

(
y − yo
x− xo

)
+ u1,

δ = arcsin

(
z − zo
||%||2

)
+ u2.

(32)

In practice, these measurements are provided by optical telescopes or
radars; here we numerically generate such inputs according to the following
procedure: we assume a true nominal trajectory of the higher fidelity dy-
namical model (including 10× 10 EGM96S gravity model, SRP, albedo, Sun
and Moon gravitational perturbations) that is propagated forward to time tk,
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Table 1: True initial values including spacecraft state, parameters, and the ground tracking
station position

Parameter Nominal value Initial state Nominal value

Epoch 15 November 2015, 0:0:0 UTC x0 24487.8 km
η = A/m 74/3300 m2/kg y0 34324.4 km

Cr 1.3 z0 0 km
Λ 42.0516528◦ ẋ0 -2.50298 km/s
φ 0.7293472◦ ẏ0 1.78568 km/s
H 1620 m ż0 0 km/s

where the observational measurement is done; then, numerical measurement
at this epoch is generated by adding some Guassian white noises into the
spacecraft topocentric right ascension RA (α) and declination (δ), which is
calculated in terms of the true spacecraft state from the above state prop-
agation and the true position of the tracking station (32). Table 1 shows
the true initial spacecraft state vector and parameters, as well as the true
tracking station position considered in the simulations.

In order to compare the performances of the Cartesian and GEO rep-
resentations, the JT-HEKF-κ filtering algorithms are implemented in both
models with the same simulation conditions. The performance of a JT-
HEKF-κ filter includes the estimation accuracy, computational burden and
its robustness. In particular, the estimation error is defined as the differ-
ence between the estimated state and parameter vectors (i.e., x+,k, p+,k),
computed by the JT-HEKF-κ filtering algorithms, and the true state and
parameter vectors (i.e., xk, pk), obtained by the numerical integration of the
state and parameter equations, this is, εx = x+,k − xk, and εp = p+,k − pk.
Furthermore, we define the position error εr =

√
ε2
x + ε2

y + ε2
z and velocity

error εv =
√
ε2
ẋ + ε2

ẏ + ε2
ż. For reasons of space and clarity, only the sensitiv-

ity analysis results for case study A are given, the same conclusions are also
valid for case study B. All the codes are written in C++ compiled with gcc
version 5.5.0 and implemented with a laptop processor Intel(R) Core(TM)
i5-7300HQ under Linux.

4.1. Spacecraft physical parameter estimation

In this study case we consider all the spacecraft physical parameter equa-
tions, the state and measurement equations are nonlinear. The performances
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of the JT-HEKF-κ filtering algorithms, implemented in both coordinate rep-
resentations, are assessed by the simultaneous estimation of the state x and
the time-varying area-to-mass ratio η.

We assume that the initial guess of the area-to-mass ratio is 0.1 m2/kg
off from the true value given in Table 1, and its initial standard deviation is
ση = 0.1 m2/kg. The initial estimation errors are of 100 km in the position
vector components, and of 0.5 m/s2 in the velocity vector components. The
adopted initial covariance matrix is

P+,0 =

(
P x

+,0 0
0 σ2

η

)
, where P x

+,0 =

(
1010 I3×3 0

0 0.25 I3×3

)
.

The total simulation time is 4 days, provided that 7 measurements can
be done per night (10 hours per day), separated by regular time intervals.
Let the angle measurement noise be a zero mean white noise with standard
deviation σm = 3.232×10−7 rad (corresponding to 14 m in the GEO regime).
The measurement noise matrix R is

R =

(
σ2
m 0
0 σ2

m

)
. (33)

Figures 1 and 2 exhibit the results of the simultaneous estimation of the
area-to-mass ratio and the spacecraft state, respectively implemented in the
Cartesian and GEO representations. Both figures show that the JT-HEKF-2
filter outputs a better accuracy than the JT-HEKF-1 filter (i.e., the classic
EKF filter). For both JT-HEKF-2 and JT-HEKF-3 filters, the position and
velocity estimation errors are respectively less than 10 m and 5× 10−4 m/s.
The estimation error of the area-to-mass ratio converges to 2× 10−4 m2/kg,
which is around 0.1% of the nominal value. In contrast, the JT-HEKF-1 filter
produces the worse estimation errors of the spacecraft position, velocity, and
area-to-mass ratio: respectively, 100 m, 3 × 10−3 m/s and 3 × 10−3 m2/kg
(14%). In essence, the JT-HEKF-1 algorithm fails in the estimation of the
area-to-mass ratio, as is shown in the bottom line sub-figures of Figs. 1 and
2. Both sub-figures illustrate that the area-to-mass ratio estimation error is
almost 14% of the initial error, so the filter does not work properly. From
this simulation, it follows that we can at least obtain one order of magnitude
accuracy gain replacing the linear EKF (i.e., JT-HEKF-1 filter) by the JT-
HEKF-2 filter. Furthermore, due to normality hypothesis, the expectations
of the third order terms vanish, thus no accuracy gain is obtained replacing
the JT-HEKF-2 algorithm by the JT-HEKF-3 one.
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Figure 1: Case A: State and area-to-mass ratio estimation errors with a measurement
frequency 7 times/night. Implemented in the GEO representation.
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Figure 2: Case A: State and area-to-mass ratio estimation errors with a measurement
frequency 7 times/night. Implemented in the Cartesian representation.
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Comparing Fig. 1 with Fig. 2, it follows that the accuracies of both rep-
resentations are of the same order of magnitude but, in general, the accuracy
of GEO representation is a little better than that of the Cartesian represen-
tation if the algorithms are convergent (i.e., JT-HEKF-2 and JT-HEKF-3).
This phenomenon originates from the more accurate prediction of the GEO
representation in the time-update step. Although the Cartesian representa-
tion behaves better than GEO representation in the JT-HEKF-1 algorithm,
it makes no sense since the 1st order algorithm is essentially failing.

Another important issue to be pointed out here is related with the compu-
tational efficiency. Table 2 shows the computational cost of the simulations
corresponding to Figs. 1 and 2 (without including the computational cost for
generating the measurements). It underlines that the GEO representation
is much faster than the Cartesian one, since the GEO elements vary much
slower than the classical Cartesian ones in the propagation of GEO orbits.
Then, a larger integration step size is adopted in the prediction process, re-
sulting in less computational time and in a higher efficiency. Therefore, one
can conclude that GEO representation possesses a better performance (in-
cluding a superior estimation accuracy and less computational burden) than
the Cartesian representation. This conclusion is also validated in the case
study B. But, for brevity, in what follows we only show the results of the
GEO representation for the case study B, while the ones corresponding to
the Cartesian representation are omitted.

Table 2: Computational time (s)

Model
JT-HEKF-κ

κ = 1 κ = 2 κ = 3

GEO 24 44 114
Cartesian 144 149 197

4.1.1. Sensitivity analysis with respect to the observational geometry

Clearly, in order to estimate the spacecraft state and area-to-mass ratio,
the GEO spacecraft must be in the visible region from the ground tracking
station. The sensitivity analysis of the JT-HEKF-κ algorithms with respect
to the observational geometry is implemented, in particular with respect to
the longitude difference ∆Λr between the spacecraft and the tracking sta-
tion. For this purpose, we take 25 uniform sampling points in the interval
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Figure 3: Case A: Sensitivity analysis with respect to the observational geometry with a
measurement frequency of 7 times/night. Implemented in the GEO representation.

Table 3: Case A: Sensitivity analysis to the observational geometry

Indices i = r i = v i = η

Unit m 10−4 m/s 10−4 m2/kg

JT-HEKF-1
1ε̄

25
i 36.7 27.6 7.96

ε̄
1σ

25
i 24.1 421.9 438.5

JT-HEKF-2
2ε̄

25
i 7.88 6.45 1.50

ε̄
2σ

25
i 2.08 76.8 81.7

Ratio
τ 2

1 = 2ε̄
25
i /1ε̄

25
i 0.215 0.234 0.188

ζ2
1 = ε̄

2σ
25
i /

ε̄
1σ

25
i 0.086 0.182 0.186
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∆Λr ∈ [−60◦, −60◦]) to implement a MC simulation. Apart from the dif-
ferent initial longitude of the spacecraft, the same initial conditions and the
same measurements are used.

Figure 3 summarizes the results and provides a deep insight into the
sensitivity of the JT-HEKF-κ algorithms with respect to the observational
geometry. The results of JT-HEKF-3 filter are omitted, since no accuracy
improvement is obtained relative to the JT-HEKF-2 filter. It is clear that the
mean accuracy of the JT-HEKF-2 filter is better than the one of JT-HEKF-1
filter, also the standard deviation of the estimation errors at the steady stage
of the JT-HEKF-2 filter is much smaller than the one of the JT-HEKF-1
filter, as shown in Table 3. Therefore, we can conclude the accuracy of the
JT-HEKF-1 filter is more strongly dependent on the observational geometry
than the one of the JT-HEKF-2 filter, being less robust.

4.1.2. Sensitivity analysis with respect to the initial estimation errors

To analyze the sensitivity with respect to initial estimation errors, we
carry out a Monte Carlo simulation with 2000 sampling points generated
around the initial nominal state subjected to multivariable Guassian distri-
bution. The furthest 25 sampling points, where the nonlinearities play a
prominent role, are taken as initial state estimates. Both Fig. 4 and Table 4
exhibit the mean and the standard deviation of the estimation errors, com-
puted by means of JT-HEKF-1 and JT-HEKF-2 filtering algorithms. It is
apparent that the JT-HEKF-2 filter outputs a better accuracy and a smaller
error dispersion, displaying a much more robust performance with respect to
initial estimation errors.

Using radar measurements (including the range information and the line
of sight directions of the spacecraft), we can introduce the range information
into the measurement models (32) and explore if it improves the perfor-
mances of the JT-HEKF-κ procedures. The simulation results indicate that
the addition of range measurement leads to a more severe divergence for the
original divergent filter (this is, for JT-HEKF-1), while it produces an accu-
racy improvement for the original convergent ones (this is, for JT-HEKF-2
and JT-HEKF-3), as shown in the Appendix.

4.1.3. Sensitivity analysis with respect to the measurement acquisition fre-
quency

To illustrate this sensitivity we consider three different measurement ac-
quisition frequencies: 7, 14 and 21 times per night. In principle, high mea-
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Figure 4: Case A: Sensitivity analysis with respect to initial estimation errors with a
measurement frequency of 7 times/night. Implemented in the GEO representation.

Table 4: Case A: Sensitivity analysis with respect to initial estimation errors

Indices i = r i = v i = η

Unit m 10−4 m/s 10−4 m2/kg

JT-HEKF-1
1ε̄

25
i 296.9 79.0 101.2

ε̄
1σ

25
i 117.7 317.6 315.5

JT-HEKF-2
2ε̄

25
i 7.76 7.25 1.82

ε̄
2σ

25
i 0.176 71.8 77.4

Ratio
τ 2

1 = 2ε̄
25
i /1ε̄

25
i 0.026 0.092 0.018

ζ2
1 = ε̄

2σ
25
i /

ε̄
1σ

25
i 0.001 0.226 0.245
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surement acquisition frequency is in favor of the accuracy improvement of
the JT-HEKF-κ filters, especially for the low order filter JT-HEKF-1 since
the linearization of the state equations always tend to lose accuracy for long
integration time spans(i.e., in the low frequency acquisition case). Generally
speaking, high order nonlinear approximations of the state equations are ca-
pable of maintaining a highly precise uncertainty propagation describing the
localized motion around the nominal trajectory.
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Figure 5: Case A: State and area-to-mass ratio estimation errors with a measurement
frequency 14 times/night. Implemented in GEO representation.

Figures 5 and 6 respectively display the simulation results with measure-
ment frequencies of 14 and 21 times per night, separated by regular time
intervals. The comparison among Figs. 1, 5, and 6 illustrates that a high
measurement acquisition frequency benefits for the accuracy improvement
in all JT-HEKF algorithms at all orders. We also note that the low order
JT-HEKF filter can obtain a larger accuracy gain than the high order ones.
This is, high order JT-HEKF algorithms have a stronger robustness when
the tracking sensors encounter functional degradation (i.e., when the mea-
surement acquisition frequency decreases significantly). Finally, we mention
that the corresponding sensitivity analyses implemented in the Cartesian
representation produce the similar results, but omitted here for brevity.
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Figure 6: Case A: State and area-to-mass ratio estimation errors with a measurement
frequency 21 times/night. Implemented in GEO representation.
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Figure 7: Case B: State and height estimation errors with a measurement frequency 7
times/night. Implemented in the GEO representation.
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4.2. Tracking station position estimation

The preceding discussions indicate that the JT-HEKF-κ algorithms are
capable of estimating the spacecraft state and parameters simultaneously. In
this subsection we discuss the feasibility to estimate an uncertain position
of a ground tracking station. Clearly, the underlying systematic biases and
unmodeled observational errors always lead to a significant degeneration of
the measurement quality. In this simulation we manage to estimate system-
atic biases of a ground tracking station and, subsequently, remove them in
order to improve the accuracy of the measurement equations. In general,
accurate GPS services provide very accurate values of the longitude Λ and
the geodetic latitude φ, but not so accurate for the height H. Therefore,
this issue is specially meaningful in cases where the tracking stations are not
fixed. In the following simulation, we try to determine both the spacecraft
state x and an uncertain height H of the tracking station. The true initial
state and parameters of the spacecraft, as well as the precise position of the
tracking station, are given in Table 1.

Assume that the initial estimation error of the ground tracking station
height is 50 m off from the true height assumed in Table 1, this is, δH0 =
50 m, and that the standard deviation of the initial height error is σH = 50 m.
The initial state estimation errors are of 100 km in all the components of the
position vector, and of 0.5 m/s in velocity vector components. We consider
no errors on the longitude and latitude of the tracking station. Thus, the
adopted initial covariance matrix is,

P+,0 =

(
P x

+,0 0
0 σ2

H

)
, where P x

+,0 =

(
1010 I3×3 0

0 0.25 I3×3

)
.

The measurement acquisition frequency is taken again as 7 times per
night separated by regular time intervals. The measurement equations (32)
are still adopted and the corresponding measurement noise covariance matrix
is (33). The accuracy comparison of the first, second and third orders JT-
HEKF filters, for estimating the spacecraft state and the uncertain height of
the ground tracking station, are shown in Fig. 7. It shows that the nonlinear
JT-HEKF-κ algorithms (κ > 1) work very well in the estimation process
of both state and parameter. For the JT-HEKF-2 and JT-HEKF-3 filters,
the position and velocity estimation errors are respectively around 5 m and
3 × 10−4 m/s. The estimation error of the height converges to 2 m, which
is around 4% of the initial estimation error. Again, the JT-HEKF-1 filter
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produces worse estimation errors for position, velocity, and height, respec-
tively: 70 m, 0.003 m/s and 5 m (10%). In principle, the JT-HEKF-2 and
JT-HEKF-3 algorithms are capable of extracting more nonlinear information
from the dynamical system improving the estimation accuracy, at least one
order of magnitude, relative to the JT-HEKF-1 filter. In addition, the results
implemented in the Cartesian representation produce the same conclusions
as for the GEO representation, but omitted for brevity.

5. Conclusions

This paper studies jet transport-based high order extended Kalman filter-
ing algorithms, implemented both in Cartesian and hybrid geosynchronous
orbit element representations, for the simultaneous estimation of spacecraft
state and additional parameters in the geosynchronous regime. These pa-
rameters describe either the spacecraft physical features or the position in-
formation of the ground tracking station. The effectiveness of the proposed
nonlinear filtering estimators has been validated considering two case exam-
ples.

The comparisons between the two implementations underline that the
implementation of hybrid geosynchronous orbit elements not only possesses
better estimation accuracy, but also needs of less computational cost than the
Cartesian one. Letting aside the performance comparisons between the two
coordinate representations, the simulations also confirm that both coordinate
implementations are effective to achieve real-time simultaneous spacecraft
state and parameter estimation via the proposed nonlinear Kalman filtering
algorithms.

The performance comparisons of the nonlinear filtering estimators at dif-
ferent orders are also investigated. The results show that higher order filters
provide a superior accuracy estimation, and usually, one order of magni-
tude accuracy gain can be easily obtained in the two case studies considered,
just by tuning the filters from 1st to 2nd order. Furthermore, a series of
detailed sensitivity analyses of the proposed nonlinear filters with respect
to the observational geometry, the initial estimation errors, and the mea-
surement acquisition frequency are carried out. One can conclude that the
nonlinear jet transport-based high order filters (i.e., κ > 1) output a smaller
estimation error dispersion relative to the classical extended Kalman filter,
pointing to that the proposed nonlinear filters are more robust than the usual
extended Kalman filter. Finally, it should be mentioned that the proposed jet
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transport-based high order filtering algorithms could be suitable to carry out
future applications related with high precise geostationary or geosynchronous
orbit determination.

Appendix

To incorporate more measurement information, the range from the space-
craft to the tracking station is assumed to be available. The standard de-
viation of the measurement error for the range is supposed to be 1 meter.
A Monte Carlo simulation is implemented to assess its performance. To
compare the results with Figure 4, the JT-HEKF-κ algorithms are fed with
the same measurements (excluding the range information), and initialized
with the same initial estimates of the state and area-to-mass ratio. Figure 8
shows that the supplement of the range measurement information decreases
the performance of JT-HEKF-1 filter, while improves the performances of the
JT-HEKF-2 and JT-HEKF-3 filters. Tables 4 and 5 provide more detailed
information. Their comparison further reveals that more measurement infor-
mation makes the original divergent algorithm, this is JT-HEKF-1, diverge
now more severely, but it improves the estimation accuracy of the original
convergent methods (i.e. the JT-HEKF-2 and JT-HEKF-3 filters).

Table 5: Case A: Sensitivity analysis with respect to initial estimation errors incorporating
the range measurement information

Indices i = r i = v i = η

Unit m 10−3 m/s 10−4 m2/kg

JT-HEKF-1
1ε̄

25
i 204.5 288.0 83.2

ε̄
1σ

25
i 77.5 1953.0 2147.0

JT-HEKF-2
2ε̄

25
i 1.22 0.80 0.18

ε̄
2σ

25
i 0.07 11.64 12.27

Ratio
τ 2

1 = 2ε̄
25
i /1ε̄

25
i 0.006 0.003 0.002

ζ2
1 = ε̄

2σ
25
i /

ε̄
1σ

25
i 0.001 0.006 0.006
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Figure 8: Case A: Sensitivity analysis with respect to initial estimation errors with a
measurement frequency of 7 times/night. Implemented in the GEO representation and
incorporating the range measurement information.
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