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Abstract

We consider several charged spacecraft configurations around a leader spacecraft

provided with an artificial magnetic field. In all configurations the nominal

orbits are chosen to be about the relative equilibrium points of the reference

model. Using a linear quadratic regulator controller, we find that controllability

is possible in most of the cases, and it is strongly related to the stability of the

equilibrium point which, in turn, depends on the orbit of the leader and the

rotation rate of its magnetic dipole.

The dynamical model considered shows a great potential for future forma-

tion flying applications since both, the establishment and maintenance of the

configurations, can be managed by merely adjusting the charge on the follower

spacecraft. No additional control variables are needed.
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1. Introduction

The Lorentz force experienced by a charged spacecraft moving within a mag-

netic field, due to either a natural planetary magnetic filed or an artificial one

induced by space-borne superconducting wires, provides a novel and propellant

less way for the orbital control of charged spacecrafts. Compared with the tra-

ditional chemical propulsion, Lorentz force offers more advantages in fuel saving

and, consequently, more capability for scientific payload, making it a promising

technology for future space missions, including formation flying.

The use of Lorentz forces for spacecraft propulsion was first proposed in [16],

inspired by the fact that the ballistic trajectory of a charged missile is affected

by the geomagnetic field [8], and also because the Lorentz force perturbation

on the dust grains, induced by the planetary magnetic fields, contributes to

the formation of Jupiter and Saturn rings [26]. Without providing a detailed

exploration, in [16] the authors proposed various applications for a ”Lorentz

spacecraft”, including stable satellite formations using equilibrium locations,

inclination change control for non-equatorial orbits, and Jovian capture using

the Jupiter’s strong magnetic field for spacecraft braking from a parabolic orbit.

A number of researches have been triggered by the Lorentz force actuated

missions. For instance, in [29] the authors analytically determine new polar and

equatorial Earth-synchronous orbits using the geomagnetic field, they also anal-

yse the effect of the Lorentz force on equatorial gravity-assist manoeuvres [31].

They conclude that not only the Lorentz force can extend the influence of a

planetary flyby, but it can also provide more flexibility in flyby timing through

temporary capture. Anot

In [5] the authors found an analytical control law for the charge of the space-

craft to accomplish propellant less station-keeping at the Saturn-Enceladus L1

Lagrange point, which is a suitable location for constant observation of Ence-

ladus. Later, they developed an analytical expression of the evolution of the

orbital elements during Jupiter capture using the Lorentz force as the only per-

turbation, as well as the actuation force [7]. The Lorentz force assisted Jupiter
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capture problem has been explored both numerically in [1], and analytically

in [31, 7], considering only the equatorial capture case. Other Lorentz force

applications include inclination change [20], rendezvous [21] and planetary es-

cape [16, 6], just to mention a few.

Formation flying using Lorentz forces has also been investigated by several

authors. This idea was first introduced in [17], that explored the possibility, us-

ing this force, of doing reconfiguration manoeuvres for low Earth orbit proximity

(25m) formations. The J2-invariant formations, using the Lorentz force induced

by the geomagnetic field, was considered in [22], while in [39] the dynamics and

control of Lorentz force spacecraft for missions of hovering, formation flying,

and rendezvous was studied.

In [34] the authors found that the linearised system of a LEO formation is

not controllable when the Lorentz force is the only source of propulsion; they

developed a step wise charge control law for formation reconfiguration trans-

fers. Due to the uncontrollability, in [32] Sobiesiak and Damaren investigated

the formation keeping problem, taking into account the J2 perturbation, us-

ing hybrid propulsion that combines the Lorentz force with impulsive thrust;

they extended their study to optimal formation reconfigurations [33]. While

the aforementioned researches mainly focused on the orbital control using the

Lorentz force induced by the geomagnetic field, in [35, 36] the authors found that

the lack of controllability also exists in the attitude control of spacecraft moving

in the Earth’s magnetic field using magnetic torque. To address this problem,

Yang [37] proposed an efficient algorithm to solve the periodic discrete-time

Riccati equations, taking full advantage of the fact that the Earth’s magnetic

field can be approximated as periodic function for the spacecraft.

However, the previous researches have mainly considered natural planetary

magnetic fields, such as the geomagnetic one and Jupiter’s magnetic field. We

recall that the Lorentz force is perpendicular to the instantaneous velocity of

the charged spacecraft with respect to the magnetic filed and the magnetic field

itself. This inherent property puts limitations on the direction of the force it can

provide, and also restricts the motion of the spacecraft to certain regions within
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the planetary magnetic field. The idea of artificial Electro Magnetic Formation

Flight (EMFF) was introduced in [12] to avoid the aforementioned domain re-

strictions. With this idea, each satellite can produce its own electromagnetic

field, the interacting forces and torques can be used to control the size, orienta-

tion, and rotation of the configuration. In this area, Umair et al.[38] addressed

the control strategy for electromagnetic formation maintenance and reconfigu-

ration on near-Earth orbits, taking into account the effect of the geomagnetic

field. In [13] the capability of EMFF for close proximity inspection missions was

explored, and concluded that EMFF combined with reaction wheels can provide

the forces and torques required for translation and attitude control needed for

the formation maintenance. In [19] the feasibility of electromagnetic formation

flight was tested in a microgravity environment for the first time, showing that

axial attraction force can be generated between two electromagnets, however the

main purpose was the hardware check and no control algorithm was considered.

Unlike EMFF, that uses the interaction between different electromagnetic

fields as actuator, Peng[24] proposed a new formation flying scenario that uses

as actuator the Lorentz force on a charged spacecraft induced by an artificial

magnetic field deployed on the leader spacecraft of the formation. In their model,

the leader can produce an artificial magnetic dipole by three concentric high-

temperature super-conducting coils (HTSC) [24]; the three orthogonal coils are

such that any orientation of the dipole can be achieved by tuning the current

in the three HTSC. However, in the above reference, only a radially pointed

magnetic dipole was considered, and for this configuration the study was focused

in the equilibrium points and their stability, as well as in the periodic orbits

emanating in the centre manifold of the equilibrium point. Later, in [25], a

normally directed magnetic dipole was considered, in this case, the relative

dynamics of the follower spacecraft was studied in order to construct bounded

periodic orbits around the leader moving in the same orbital plane of the leader.

In [3, 4] Cheng et al. extended the above study to three orientations of the

dipole: normal, radial and tangential, and performed an extensive dynamical

analysis, including the symmetries of the system, the equilibrium points and
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their stability, and the periodic and the quasi-periodic orbits emanating from

these elliptic equilibria.

Concerning the technical issues for the accomplishment of Lorentz force ac-

tuated missions, the two main challenges are the spacecraft surface charging[15],

and the thermal control system of the HTSC (see [4, 13, 2]). According to [27],

with the current technology, the charge-to-mass ratio of the spacecraft is feasi-

ble in the range 10−6 to 10−3 C/kg, while [16] states that the value 10−2 C/kg

will be feasible in a near future.

Most of the existing literature on Lorentz force formation flying uses the

Lorentz force as a control force or a mean of propulsion, this is, the Lorentz

force is used to perform the transfer manoeuvres to reach the orbits solution

of the HCW differential equations of relative motion, see, for instance, [34,

32, 33]. Several researchers have computed the relative equilibrium points with

respect to the leader spacecraft in presence of the Lorentz force ([17, 34]), as well

as some periodic orbits constructed by continuous charge variation [34]. Few

studies (to the authors’ best knowledge) have considered the station-keeping

for those motions, one exception is [34], in which the considered equilibria are

uncontrollable, thus the formation flying is not achievable using only the Lorentz

force.

In a paper already mentioned [4], Cheng et al. analysed, using Dynami-

cal Systems methods, the relative dynamics of a constantly charged follower

spacecraft moving in the artificial magnetic dipole produced by the leader. Us-

ing these tools, all the equilibrium points, and several families of periodic or-

bits and quasi-periodic invariant tori were accurately determined, together with

their stability properties. In the current paper we explore the application of

those results to formation flying. Selecting suitable nominal locations around

the equilibrium points, several formation flying configurations are designed and

analysed. A linear feedback control law is applied for the formation keeping

using only the Lorentz force. We note that the technical limitations already

mentioned are not the concerns of this paper, and we assume that the charge-

to-mass ratio, as well as the magnetic field required for close-proximity formation
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keeping, can be achieved.

The paper is organized as follows: the dynamical model is briefly introduced

in Section 2, including the differential equations of motion for the three orien-

tations of the dipole considered. Several configurations about the equilibrium

points computed in [4] (consisting of a single or multiple spacecrafts, with either

the same or different charges), are analysed in Section 3, including the effects

of initial errors in their location. In Section 4, we consider the controllability

of the linearised system around the equilibrium points, and we propose a lin-

ear quadratic regulator (LQR) feedback control law for the formation keeping,

where the charge of the spacecraft is the only control variable.

The capability of self-maintenance of the formation is also examined for

different stability types of the reference equilibria and different values of the

initial displacements. Some discussions on the potential of the proposed forma-

tion flying model are also included, as well as some suggestions for future work.

The conclusions are given in the last section of the paper. More possible for-

mation flying configurations using as reference trajectories some periodic orbits

computed in [4], will be discussed in a forthcoming paper.

We emphasize that in this paper, the artificial magnetic field is used to

maintain the formation configuration, and the effect of the Earth’s magnetic

field on the charged follower is neglected, under the assumption that the orbit

of the leader is supposed to be high enough (for instance, geostationary orbit).

2. Reference model and equations of motion

We consider a relative motion scenario where an electrostatically charged

spacecraft (follower) moves about a leader spacecraft that produces a rotating

artificial magnetic dipole (see [4] for details). We assume that the dipole is gen-

erated by three concentric and orthogonal superconducting wires, such that the

orientation of the dipole can be in any direction by adjusting the current in the

wires. Moreover, the follower has a negligible mass compared to the one of the

leader and, thus, no influence is caused by the follower on the leader. Therefore,
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the follower is subject to the gravitational force of the Earth together with the

Lorentz force induced by the dipole of the leader, while only the gravitational

force of the Earth acts on the leader.

The reference system considered is the usual local-vertical-local-horizontal

(LVLH) one (see Fig. 1): the origin is located at the leader, the x-axis (er)

is along the leader’s position vector along its circular orbit, the z-axis (en) is

perpendicular to the orbital plane, and the y-axis (et) completes a right-hand

coordinate frame.

 (e  )   rx

 (e   )   nz

Leader

r

 y    t(e )

Follower

Figure 1: The Local-Vertical-Local-Horizontal (LVLH) reference system[4].

The equations of relative motion of the follower can be derived from the

well-known Hill-Clohessy-Wiltshire (HCW) equations, adding an additional ac-

celeration due to the Lorentz force acting on the follower. So the HCW equations

become:

ẍ− 2nẏ − 3n2x = fx,

ÿ + 2nẋ = fy, (1)

z̈ + n2z = fz,

where n is the mean motion of the leader’s orbit around the Earth, and the

Lorentz force fL = (fx, fy, fz)
⊤ is given by:

fL =
q

m
vr ×B,

where vr is the charged follower’s velocity relative to the leader’s rotating mag-

netic dipole, B is the leader’s rotating magnetic dipole, and q/m is the charge-
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to-mass ratio, which is a key parameter to determine the magnitude of the

Lorentz force.

According to the orientation of the dipole producing the magnetic field, we

consider three cases:

• normal: the axis of the dipole B is parallel to en,

• radial: the axis of the dipole B is parallel to the radius vector er, and

• tangential: the axis of the dipole B is parallel to et.

To simplify the equations of motion, we introduce the following units [4]:

the dimensionless time unit τ⋆, and the distance unit a⋆ are such that:

τ⋆ = n t, a⋆ =

∣∣∣∣B0

n

q

m

1

β

∣∣∣∣1/3 , (2)

where B0 is the magnetic moment of the dipole, and the parameter β = n/ωc

is the ratio between the mean motion n of the leader in its circular orbit about

the Earth and the angular velocity of the dipole, that is denoted by ωc.

Let τ = t/τ⋆ be the adimensional time, the time derivative with respect to

τ is denoted by a prime (′ = d/dτ). Using the above units and notation, and

defining the new position vector as (X = x/a⋆, Y = y/a⋆, Z = z/a⋆), we can

write the normalized equations of motion (see [4] for the details) as:

X ′′ − 2Y ′ − 3X = fX ,

Y ′′ + 2X ′ = fY ,

Z ′′ + Z = fZ ,

(3)

where the right-hand side terms are the components of normalized Lorentz force,

that can be expressed as:

fX =
σ

R5
g∗x, fY =

σ

R5
g∗y , fZ =

σ

R5
g∗z , (4)

where the components of the force-field (g∗x, g
∗
y , g

∗
z) are: (gNx , gNy , gNz ) in the

normal case, in which the dipole axis B is parallel to en; (gRx , g
R
y , g

R
z ) in the

radial case, in which the dipole axis B is parallel to the radius vector er, and
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(gTx , g
T
y , g

T
z ) in the tangential case, in which the dipole axis B is parallel to et.

The expressions of (g∗x, g∗y , g∗z) for the three cases are given in Eqs. (5).

gNx = −β(X2 + Y 2 − 2Z2)Y ′ − 3βY ZZ ′ +X(X2 + Y 2 − 2Z2),

gNy = β(X2 + Y 2 − 2Z2)X ′ + 3βXZZ ′ + Y (X2 + Y 2 − 2Z2),

gNz = 3Z
[
βY X ′ − βXY ′ + (X2 + Y 2)

]
,

gRx = 3X
[
βZY ′ − βY Z ′ + (Y 2 + Z2)

]
,

gRy = −β(Y 2 + Z2 − 2X2)Z ′ − 3βXZX ′ + Y (Y 2 + Z2 − 2X2),

gRz = −β(Y 2 + Z2 − 2X2)Y ′ + 3βXY X ′ + Z(Y 2 + Z2 − 2X2),

gTx = β(X2 + Z2 − 2Y 2)Z ′ + 3βY ZY ′ +X(X2 + Z2 − 2Y 2),

gTy = 3Y
[
βXZ ′ − βZX ′ + (X2 + Z2)

]
,

gTz = −β(X2 + Z2 − 2Y 2)X ′ − 3βXY Y ′ + Z(X2 + Z2 − 2Y 2).

(5)

In the above equations σ is the sign of the charge of the follower, and R =
√
X2 + Y 2 + Z2.

Recall that the artificial magnetic field is generated by self-rotating HTSC

coils, and, according to [13], the value of the magnetic moment B0 is:

B0 =
µ0

4
ncicR

2
c ,

where µ0 = 4π × 10−7 N/A2 is the vacuum permeability, nc is the number of

loops in the coil, ic is the current in the coil, and Rc is the coil radius.

Note that once the size (nc, Rc) of the HTSC is fixed, the strength of the

magnetic filed is determined by the value of current ic flown in it, which is

mainly limited by the working temperature and the critical current density of

the material of the HTSC.

For the computations that follow, we assume that the leader spacecraft moves

on a geostationary orbit with a radius of 42, 164 km, thus the mean motion is

n = 7.2940 × 10−5 rad/s. Using the current launch ability, the state-of-art

technology for HTSC wires [18] could provide a space-based magnetic field with

the magnetic dipole momentum up to 17.1 Tesla·m3. As for the charge-to-

mass ratio, q/m, the available values that the existing charging technologies
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can achieve are 10−6 ∼ 10−3 (C/kg) [27], while a maximum of 0.03 C/kg seems

feasible with the best materials [16]. Table 1 lists the values of the unit length

for different values of β and q/m.

Table 1: Values of the length unit a⋆ (in meters) for different values of β and q/m.

β

q/m (C/kg)
1× 10−6 1× 10−4 1× 10−2 1

1× 10−5 1.1958 5.5505 25.7631 119.5819

1 0.025763 0.119582 0.555050 2.576313

Taking into account that the Debye length for the GEO is of the order of

10 m, in order to neglect the Coulomb force between charged spacecrafts, we will

assume q/m > 10−2 C/kg, and also that the distance between charged deputies

will be larger than the Debye length.

3. Formation flying configurations using equilibria

In this section we define several formation flying configurations for a set

of charged spacecrafts moving in the vicinity of one leader spacecraft provided

with a magnetic field. We assume the the follower satellites are identical, both

in mass and charge, and that the strength of the magnetic field is such that

the distance unit a⋆ is of the order of several tenths of meters. In this way, the

separation between two equilibrium points can be larger than the Debye length

(10 m), and the Coulomb forces between two deputies can be neglected.

In the LVLH reference frame, the equilibria of the equations of motion (3) are

stationary solutions relative to the leader. Many formation flight configurations

can be defined using them as nominal locations for the spacecraft; furthermore,

using different values for the charge q of the deputies enlarges the number of

possible configurations. In the normal and tangential case, there are 10 different

equilibrium points, while the radial case system (3) has an infinite number of

them. Fig. 2 shows their location in the normal, radial, and tangential case.
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The coordinates (X,Y, Z) of the equilibrium points of these three systems of

differential equations, are given in Table 2 as a function of the sign σ of the

charge q.

Table 2: Location of the equilibrium points i n the normal (N), radial (R), and tangential case

(T) as a function of the sign σ of the charge ( see [4] for detail).

Label σ X Y Z

1N +1 0 ±
√
2Z ±

(
2

3
√
3

)1/3

2N +1 ±
(

1
12

√
6

)1/3

0 ±
√
5X

3N −1 ±
(
1
3

)1/3 0 0

1R +1 0 0 ±1

2R −1 ±
(

2
9
√
3

)1/3

±
√
2X 0

3R −1 ±
(

1
4
√
2

)1/3

0 ±X

1T +1 0 0 ±1

2T −1 ±
(
1
3

)1/3 0 0

3T ±1 0 ̸= 0 0

-1

 0

 1 -1.5

 0

 1.5
-1

 0

 1

X Y

Z

-1

 0

 1 -1
 0

 1

-1.2

 0

 1.2

X
Y

Z

-1
 0

 1 -1

 0

 1

-1.5

 0

 1.5

X

Y

Z

Figure 2: Some configurations, with the nominal locations of the spacecraft at the equilibria,

in the normal case (left), the radial case (middle), and the tangential case (right). In each

configuration, the followers (marked with small triangles) are located at the equilibria, while

the segments link the adjacent satellites of a formation.

Recall that the distance unit is determined by the values of q/m and β, and

we have assumed that both B0 and β are fixed once we design the HTSC. In

this way we can construct multi-satellite configurations using spacecraft with

different charges q. For instance, using one of the rectangle configurations shown

in Fig. 2, we can build a configuration with 3× 4 = 12 spacecraft composed of

11



3 similar rectangles, with a size ratio m1/3 : n1/3 : p1/3, when the charges of

the spacecraft of each rectangle are q1, q2, and q3, with q1 = m q⋆, q2 = n q⋆,

q3 = p q⋆.

Another option is to consider a string configuration, with several spacecraft

of different charges along the same line,that goes from the origin (the leader)

to one equilibrium point. Fig. 3 shows these two types of configurations using

the 1N equilibrium points, that are located at the four vertex of the magenta

rectangle in the Y − Z plane, as shown in Fig.2. In this way, we have four

spacecrafts with m = 1 (in magenta), n = 3.375(1.53) (in blue) and p = 8(23)

(in green) respectively, such that the three rectangles are resembled, and their

sizes satisfy the ratio 1 : 1.5 : 2.

-2

-1

 0

 1

 2

-3 -2 -1  0  1  2  3

Z

Y

Figure 3: Two kinds of formation flying configurations with multiple spacecraft (marked with

triangles), using the equilibria 1N as nominal locations, which are all on the Y − Z plane.

The four magenta triangles denote the spacecraft with charge q⋆, while the blue and the green

ones have charge 3.375q⋆ and 8q⋆, respectively. The black point at the origin corresponds to

the leader, while the segments display the adjacent follower spacecraft. The first configuration

consists of three resemble rectangles, while the second configuration is constructed with three

spacecrafts with different charges, that are located along the black line going from the origin

to the equilibrium point 1N (with Y > 0 and Z > 0).

As stated in [4], we remember that the linear stability of the equilibria is only

affected by the angular parameter β. Fig.4 shows the behaviour, as a function of

β, of the six eigenvalues associated to the equilibrium point 3R. It follows that

the two 3R with (X = Z) are totally elliptic for β ∈ (−∞,−3.4525)∪(0.9516,∞).

For a detailed stability analysis of other equilibrium points see [4].
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R
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Figure 4: Behaviour, as a function of β, of the real part (left) and the imaginary part (right)

of the eigenvalues associated to the equilibria 3R with Z = X (top), and 3R with Z = −X

(bottom) [4]. Only the non-zero eigenvalues are shown.

We have chosen β = 10 to explore the evolution of the green rectangular

configuration shown in Fig. 2 which locates each spacecraft at one of the four

3R equilibria, all of them on the Y = 0 plane. According to their stability

(Fig. 4), the four equilibrium points 3R are the most stable ones (with six

purely imaginary eigenvalues) for this value of β.

When the four satellites are relatively close to each other, and when com-

paring their mutual distances with respect to the distance to a tracking sta-

tion, it is reasonable to assume that the tracking errors are the same for all

them. We have considered an uncertainty in the position and velocity vectors

of ∆X = (1, 0, 1, 1, 0, 1)⊤ × 10−3 adimensional units. With this uncertainty,

the satellites no longer stay at the equilibrium points but move along invariant

tori of very small size around the equilibria, as is shown in Fig. 5. If only the

positions are perturbed (∆X = (1, 0, 1, 0, 0, 0)⊤×10−3), the results are similar,

and the trajectories followed by the spacecraft are on slightly smaller tori than
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 0.6
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Figure 5: For β = 10, trajectories of satellites located at two of the four 3R equilibria (the ones

with X > 0) when they are slightly displaced from their location (∆X = (1, 0, 1, 1, 0, 1)⊤ ×

10−3). The results for the other two 3R equilibria (X < 0) are symmetric w.r.t. the origin.

the ones obtained when both positions and velocities are perturbed. From now

on we will take ∆X = (1, 0, 1, 1, 0, 1)⊤ × 10−3.

Due to the neutral stability of the 3R equilibria with β = 10, the invariant

tori are bounded in a region whose size is of the same order as the perturbation

∆X, that is, 1 × 10−3. A short-time time evolution of the four 3R points is

shown in Fig. 6. Clearly, the tight rectangular configuration no longer subsists,

however, considering that the deviation is of the order of 1 × 10−3, we can

conclude that the configuration is not completely destroyed.

Fig. 7 displays the evolution of the relative distances between any two satel-

lites of the above formation for a very long time interval, τ ∈ [0, 1000]. This

is, for 1000 orbital periods of the leader satellite around the Earth. From the

figure, it follows that the mutual distances display a quasi-periodic behaviour,

and the distances between adjacent satellites fluctuate within the interval [1.115

: 1.13]. So the deviations in distance are one order of magnitude larger than

the size of the perturbation. Note also that the distance between non-adjacent

satellites is almost constant, in fact, of the order of 1 × 10−4, which is one or-

der of magnitude smaller than the one of the perturbation. In all the figures

the satellites are always labelled as S1 (purple), S2 (blue), S3 (brown) and S4

(green) and sequenced in a counter-clockwise manner along the rectangle.
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Figure 6: Time evolution of a configuration with four satellites deployed at the four equilibria

3R and under perturbation ∆X = (1, 0, 1, 1, 0, 1)⊤ × 10−3. The six configurations displayed

correspond to the epochs ti = 0, 80, 160, 240, 320, 400 adimensional time-units. The grey

segments are the orbits of the spacecraft along the invariant tori around the 3R points, and

the black segments connect adjacent satellites (marked as triangles). The colour code for the

spacecraft is: S1 in purple, S2 in blue, S3 in brown, and S4 in green.
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Figure 7: Evolution of the relative distance between any two satellites for τ ∈ [0, 1000] (left

column) and τ ∈ [0 : 80] (right column). The top row displays the evolution of the distances

between adjacent satellites: S1 − S2 in purple, S2 − S3 in green, S3 − S4 in brown, and

S4− S1 in blue. The bottom row show the evolution of the distances S1− S3 in purple, and

S2− S4 in green. The colour code for the spacecraft is the same as in Fig. 6.

The time evolution of the distances from the satellites, moving along the

invariant tori, to the equilibrium point is shown in Fig. 8 for τ ∈ [0, 1000]. One

can see that distances display a quasi-periodic behaviour, since the spacecraft

are moving on a torus, and that the deviation is of the order of the perturbation

1×10−3, which is the size of the torus. Moreover, the two curves corresponding

to S1 and S3 almost overlap, and the same happens with the ones related with

S2 and S4. This is because the two equilibria 3R with Z =
√
X have the same

stability behaviour and are symmetric w.r.t. the origin, while the other two

points with Z = −
√
X have slightly different stability behaviour, as is shown in

Fig. 4.

We remark that, under the perturbation, the four satellites remain almost

16



 0.002

 0.004

 0.006

 0  200  400  600  800  1000

ds

τ

 0.002

 0.004

 0.006

 0  20  40  60  80

ds

τ

Figure 8: Time evolution of the distance from each satellite to the associated equilibrium

point. The right hand side plot is a magnification for τ ∈ [0, 80]. The colour code for the

spacecraft is the same as in Fig. 6.

on the same plane. Fig. 9 shows the evolution with time of the angle between

the normals to the planes defined by S1− S2− S3 and S1− S2− S4. One can

see that this angle is always very small, less than 0.8◦ ≈ 0.014 rad. The angle

between the Y -axis and the normal to the S1− S2− S3 plane is also displayed

in Fig. 9 and, as it follows from this figure, it is almost always aligned with the

Y -axis (with a deviation less than 0.6◦).
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Figure 9: Left plot: Time evolution of the angle between the normal to the S1−S2−S3-plane

and the one to the S1− S2− S4-plane. Right plot: time evolution of the angle between the

normal to the S1− S2− S3-plane and the Y -axis.

The other kinds of equilibrium points, except 3R, are always hyperbolic for

all values of β (see [4] for details). This means there will always be eigenvalues

with non-zero real part. Due to this hyperbolic component, the spacecraft
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departing from those reference equilibria will escape soon even with very small

initial displacement, as it will be seen in Fig. 10. This is a case for which

control strategies are required to keep a formation using the equilibria as nominal

locations for the spacecraft; it will be studied in the following section. Another

case where formation keeping control has to be used is when the initial error is

large, in this case the spacecraft will escape, even if the reference equilibrium

point is totally elliptic.

4. Formation keeping at the equilibrium points using a linear feedback

control

In this section we study the formation keeping using the charge q as the

only control parameter, this is: the self-maintenance capability of the formation

configuration. The study is done assuming that the spacecraft of the forma-

tion can be controlled independently, which means that, in principle, different

spacecrafts would require different controls.

4.1. Controllability of the linearised system and the LQR feedback control law

We denote the state vector of the follower by X = (X,Y, Z,X ′, Y ′, Z ′)⊤,

and study the controllability, under small perturbations, of the linearised system

about the equilibrium point, which is given by:

∆X ′ = A∆X +Bq

(
q

q∗
− 1

)
, (6)

where ∆X = (X−X∗) is the small perturbation from the reference equilibrium

point, whose coordinates are X⋆ = (X⋆, Y ⋆, Z⋆, X ′⋆, Y ′⋆, Z ′⋆)⊤, and q⋆ is

the nominal charge of the follower spacecraft; the 6 × 6 matrix A and the row

vector Bq are given in the Appendix.

We note that in this paper the charge q is treated equivalently to the charge-

to-mass ration q/m, which is more commonly used when referring to the space-

craft surface charge. This is reasonable since the mass m of the spacecraft

is assumed to be constant when the propellent-less Lorentz force is used for

actuation.
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The controllability matrix of the linearised system is:

C = [A ABq A2Bq A3Bq A4Bq A5Bq]. (7)

Using the Matlab function ”ctrb”, for the computation of the rank of the matrix

C, it follows that it is maximal (equal to 6) for all the equilibrium points, except

for the two points 3N , located along the X-axis. These points have the same

location as the equilibrium points 2T of the tangential case (see Table 2), which

are linearly controllable, since in this case the rank of C is maximal. Therefore,

the control of a formation using these locations for the spacecraft could only be

achieved in the tangential case, and so only the points 1T , 2T , and 3T can be

used.

Using the charge as the sole control input, a linear quadratic regulator is

designed for the formation keeping at the equilibrium points, the performance

index to be minimized is given by:

J =
1

2

∫ ∞

0

[
(X(τ)−X∗)TQ (X(τ)−X∗) +Ru2

]
dτ, (8)

where u = q/q⋆ − 1 is the adimensional control charge, Q is a 6 × 6 semi-

positive symmetric matrix, that penalizes the state error, while R is a positive

real number that penalizes the variations of the charge. The performance of

the LQR can be tuned by varying carefully the values of Q and R. Without

losing generality, we have used as initial guess Q = 1000 ·I, where I is the 6×6

identity matrix, and R = 1. Their values will be adjusted during the simulation

according to the actual performance of the feedback control.

To minimize the performance index given by Eq. (8), the optimal control is

given by:

u(τ) = −K∗(τ)(X(τ)−X∗), (9)

where K is the 6-dimensional feedback gain vector given by

K(τ) = R−1B⊤
q P (τ), (10)

and where P (τ) is the solution of the Riccati equation

P (τ)A+A⊤P (τ) +Q− P (τ)BqR
−1B⊤

q P (τ) = 0. (11)
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The Matlab function ’lqr’ has been used to compute the feedback gain vector

K, which is actually constant since the linearised system (6) is time invariant

with constant coefficients A and Bq. Then, we have P (τ) also time independent.

According to the current technical limitations of the spacecraft surface charg-

ing, the bound of the total charge has been set to [−10, 10] · q⋆ in the following

simulations. The total charge of the spacecraft, which is the sum of the control

and the nominal charge, is given by:

q(τ) =
(
u(τ) + 1

)
· q⋆ (12)

where the control charge u(τ) is given by Eq. (9). We also remark that u(τ)

should be constrained to make sure the total charge q(τ) satisfies the prescribed

bound [−10, 10] · q⋆, by the following rule:u(τ) = −11, if u(τ) < −11

u(τ) = 9, if u(τ) > 9
(13)

4.2. Formation keeping of single follower configuration

We first consider the leader-follower configuration, where only one single fol-

lower is included. If the follower spacecraft is located at an unstable equilibrium

point, it will escape from it even with a very small perturbation. As an example,

the dot-dashed line in Fig. 10 shows the propagation, in the non-linear system

defined by Eq. (3) in the radial case, of the perturbed equilibrium point 3R (with

X > 0 and Z > 0) when the perturbation (1, 0, 1, 1, 0, 1)⊤× 10−3 is added. The

value of the ratio between the mean motion of the leader around the Earth and

the angular velocity of the dipole, β, in (5) is one for this simulation.

For this same value of β, and departing from the same perturbed initial

condition, Fig. 10 displays the results of the linear feedback control, defined by

Eq. (9), using q as the unique control parameter.With β = 1, the values of A
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Figure 10: 3D representation (top left) and X-Y (top right), Y -Z(bottom left), X-Z(bottom

right) coordinate projections of trajectories departing from the 3R equilibrium (X > 0, Z > 0)

with a displacement equal to (1, 0, 1, 1, 0, 1)⊤ × 10−3 (red square). The black dot-dashed line,

which deviates very fast from the initial condition, is the radio-controlled trajectory; the

dashed line is the controlled trajectory of the linearised system defined by (6), and the solid

line the controlled trajectory of the non-linear system defined by (3) and (5) in the radial case,

with β = 1.

and Bq in the linearised system (6) are:

A =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

7.5 0 1.5 0 −1 0

0 1 0 1 0 −1

1.5 0 −4.5 0 1 0


, Bq =



0

0

0

−1.6837

0

0.5612


.

and the feedback gain vector is K = (114.69, −147.24, −113.07, 0.62, −138.13, 22.82).

As it is shown in the same figure, one can see that the follower spacecraft
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escapes fast from the initial condition when no control is applied. If the control is

on, then it requires less than 10 time units (10 times the leader’s orbital period)

to return to the nominal location, which is set at the 3R point. Moreover, the

controlled trajectories both in the linearised system 6 and in the non-linear one

3 are very close.

Figure 11: Time evolution of the control input u(τ) (left), and distance of the spacecraft to

the target equilibrium point 3R (right). The dashed line corresponds to the simulation in

linearised system, while the solid line to the one in the non-linear system, with β = 1.

The time history of the control charge u(τ), and the distance to the target

point 3R, are displayed in Fig. 11. The curves of the controlled linear and non-

linear systems nearly coincide. This is because the non-linear terms are very

small due to the small initial error considered (of the order of 0.001), and the

maximum deviation of the spacecraft from its target less than 0.005. Note that

the unit of the charge control is q⋆, and the total charge variation required for

the control is less than 3% of the nominal charge q⋆.

4.3. Formation keeping of a multiple-follower configuration with spacecraft of

same charge

We consider now a configuration with four satellites, each one set at one of

the four 3R equilibria, this is, the square formation on the green plane displayed

in Fig. 2. The four 3R equilibria are labelled as: 31R (X > 0, Z > 0), 32R

(X > 0, Z < 0), 33R (X < 0, Z < 0), and 34R (X < 0, Z > 0). The feedback gain
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for each equilibrium, with Q = 10 · I and R = 1, is:

K1 = ( 114.69, −147.24, −113.07, 0.62, −138.13, 22.82 ),

K2 = ( 7.21, 7.72, 5.59, −6.61, 5.25, 2.43 ),

K3 = (−114.69, 147.24, 113.07, −0.62, 138.13, −22.82 ),

K4 = ( −7.21, −7.72, −5.59, 6.61, −5.25, −2.43 ).

Note that the gains of the two equilibria with X = Z, (31R and 33R), and (32R
and 34R), which are symmetric with respect to the origin, are the opposite of

each other. This is: K1 = −K3, and K2 = −K4, while they are different from

the two equilibria with X = −Z. This fact is coherent with the stability of the

four equilibria 3R (see Fig. 4). The same symmetry can also be observed in the

trajectories of the satellites when they are set at the displaced equilibria.

Each satellite is controlled changing its own charge q. Taking the same

value of Q and R as in Section 4.2, as well as the same initial displacement,

(1, 0, 1, 1, 0, 1)×10−3, for the four satellites, Fig. 12 shows the time history of the

control input u(τ), and the distance of each spacecraft to its target equilibrium

point.

Figure 12: Time evolution of the control inputs u(τ) (left), and distance of the spacecraft to

their target 3R equilibrium points (right). The colour code for the equilibria is: 31R green,

32R brown, 33R orange, and 34R purple. The computations are done in the non-linear system

defined by (3) and (5), with β = 1.

From Fig. 12 it follows that the controls have a nearly symmetric evolution

when the equilibria are symmetric with respect to the origin, this is for 31R
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and 33R, and for 32R and 34R. The fact that the two curves giving the distance

associated to 31R and 33R do not coincide is because their initial states are not

symmetric with respect to the origin. Note that in all the cases the total charge

variation required for the control is about 3% of the nominal charge q⋆, and that

the charge control of the two 3R equilibria with X = Z is slightly larger than

the one required for the two with X = −Z. This is due to the instability (given

by the value of their real eigenvalues shown in Fig. 4) of 31R and 33R is slightly

larger than the one of 32R and 34R. We also remark that for all the spacecraft

their maximum deviation from their target point is of the order of the initial

displacement (1× 10−3). Moreover, the trajectories of the linear and non-linear

systems are quite close to each other. We remark that the controllability, using

the LQR control law given by Eq. (9), with q as the unique control parameter,

cannot be achieved when the initial displacement is of the order 1× 10−2 (this

is, one order of magnitude larger than the one shown in Fig. 10); in this case

the controlled trajectories escape fast due to the strong instability caused by

the large saddle component of the equilibrium point.

When the value of β is increased, the equilibrium points become more stable.

Table 3 lists the three pairs of eigenvalues associated to the equilibria 3R with

β = 1, 2, 10. It can be seen that the topological type of the two equilibria 3R

with X = Z goes from saddle × saddle × centre (for β = 1), to complex saddle

× centre (for β = 2), and to centre × centre × centre, (for β = 10), while the

other 3R equilibria with X = −Z are always totally elliptic, this is: centre ×

centre × centre.

When β = 2, the instability of the 31,3R equilibria is very mild (the modulus

of the saddle eigenvalues is small) and controllability can be achieved even for

an initial displacement from the equilibrium point as large as (1, 0, 1, 1, 0, 1)⊤ ×

10−1. As Fig. 13 shows, the maximum charge variation required for the control is

of the same order of the nominal charge (< −1.2q⋆), and the maximum distance

of the spacecraft to the target equilibrium point is of the order of the initial

error (≈ 0.25). In all cases, the trajectories of the linear and non-linear systems

are relatively close to each other, due to the fact that the two equilibria 31,3R
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Table 3: Eigenvalues associated to the equilibria 3R for different values of β.

3R β λ1,2 λ3,4 λ5,6

1 ±2.6263 ±0.9488 ±2.4079i

31,3R 2 0.9895± 0.6898i −0.9895± 0.6898i ±4.1239i

(X = Z) 10 ±29.6282i ±1.4666i ±0.1381i

1 ±4.3723i ±1.3723i ±i

32,4R 2 ±7.8175i ±1.6327i ±0.4701i

(X = −Z) 10 ±33.4281i ±1.5973i ±0.1124i

are hyperbolic, and the stability behaviour of the linear and non-linear system

resemble each other very well. We also remark that the rate of convergence

to the equilibrium points of the perturbed trajectories mainly depends on the

stability of the equilibria. As it is seen in Fig. 13, the two trajectories (of the

linear and non-linear systems) associated to 31,3R converge to the equilibrium

point almost simultaneously; the same phenomena can be seen in Fig. 13 for

β = 10 and an initial displacement (1, 0, 1, 1, 0, 1)⊤ × 10−2. Although in this

latter case the convergence is not so fast, it takes about 12 time units to the

distance the equilibrium point to become almost zero, in front of the 8 time

units required for β = 2 and a displacement equal to (1, 0, 1, 1, 0, 1)⊤ × 10−2.

For the other two equilibria 32,4R (X = −Z) the behaviour of the control is

different. Now the equilibria are purely elliptic (they have three pairs of purely

imaginary eigenvalues). The ellipticity leads to a very weak controllability using

the linear feedback control law. For beta = 2, Fig. 13 shows the time evolution

of the control charge, and distance to the target equilibrium points. One can see

that for these target points the spacecraft oscillate around the equilibrium points

during a long-time interval without converging to them. The displacement of

the spacecraft from the target equilibria is still of the order of 1 × 10−5, even

after 200 time-units, with a maximum distance (≈ 1) about 3 times larger than

that of the two equilibria 31,3R . The required charge control also exhibits an

osculating behaviour, with a maximum as large as −5.2q⋆, this is: 5.2 times the
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Figure 13: Time evolution of the control input u(τ) (left), and distance of the spacecraft

to its target equilibrium point (right). The top row corresponds to the equilibrium points

31,3R , and the bottom row to 32,4R . The computations are performed in the non-linear system

defined by (3) and (5), with β = 2 and with an initial displacement of the spacecraft equal to

(1, 0, 1, 1, 0, 1)⊤ × 10−1.

nominal charge. We can conclude that, in these cases, the rate of convergence

of the control procedure is too slow for practical applications.

Fig. 14 displays the trajectories of the spacecraft departing from the four

equilibria 3R with the same initial error (1, 0, 1, 1, 0, 1)⊤ × 10−1 and the same

value of β = 2. From this figure it follows that for the two hyperbolic equilibria

(31R and 33R) the controlled trajectories of the linear and non-linear systems are

not too far from each other, and converge fast to their target equilibrium point.

This can be explained by Hartman-Grobman theorem since, according to it,

the linearised and non-linear system around a hyperbolic equilibrium point are

topologically equivalent to each other. For the two elliptic equilibria (32R and

34R), the controlled trajectories for the linear and non-linear systems differ very

much from each other since the stability of the non-linear system cannot be
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represented by the linear one when the equilibria is totally elliptic. In this case,

the non-linear terms may lead to growth or decay of the displacement from the

equilibrium point [9].

Figure 14: Trajectories departing from the equilibrium point 31R (top left), 32R (top right), 33R
(bottom left) and 34R (bottom right), with β = 2, and an initial displacement (square) equal

to (1, 0, 1, 1, 0, 1) × 10−1. The dot-dashed lines, which deviate from the initial conditions,

are the non-controlled trajectories, the dashed lines correspond to the controlled ones of the

linearised system defined by (6), and the solid lines are the controlled trajectories of the

non-linear system defined by (3).

For the complex saddle × centre equilibrium point 31R (with β = 2), the

displacement applied to the initial conditions can be increased up to a very

large value, (1, 0, 1, 1, 0, 1)⊤ × 0.25, without losing controllability when we take

Q = 10 · I. These conditions are referred to as case 1. Fig. 15(top) shows the

trajectories of the spacecraft departing from 31R with this error, obviously the

controlled non-linear trajectory is far from the linear one, since most probably

the linear approximation is no longer valid for these large deviations. The

time evolutions of the corresponding control charge and displacement from the
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target point are shown in Fig. 16 as purple lines. In this case, the maximum

distance to the target point is very large (≈ 0.75), which is as large as the

distance (= 0.7937) of 31R from the origin (note that the location of 31R is at

[0.5612, 0, 0.5612]). We remark that the initial error is considered up to the

second digit after the decimal, and the charge control reaches its lower bound

(−11) at τ = 4.28, as seen in Fig. 16 (purple). It must be noted that the

controllability is lost with initial displacement larger than (1, 0, 1, 1, 0, 1)⊤×0.25

if the charge control variations are limited to [−11, 9] · q⋆, such that the total

charge is bounded within [−10, 10] · q⋆.

However, when we tune change the value of Q as in control Eq. (9), better

controllability can be achieved when a larger initial error is considered. Fig. 15

(bottom line) shows also the trajectories of two other cases:

• case 2: Q = 500 · I and initial error (1, 0, 1, 1, 0, 1)⊤ × 0.25;

• case 3: Q = 500 · I and initial error (1, 0, 1, 1, 0, 1)⊤ × 0.44.

while the associated charge control and displacement are displayed in Fig. 16. It

follows that the value of Q not only affects the rate of converge but also the con-

trollability of the system. With the same initial error ((1, 0, 1, 1, 0, 1)⊤ × 0.25),

the controlled linear and non-linear trajectories are closer in case 2 (Q = 500·I),

which implies stronger controllability and rate of convergence. The maximum

charge variation is also much smaller (4.01q⋆) than the one required in case 1

−11q⋆, while the displacement is only 76% of the one in case 1. With Q = 500·I,

the system shows extremely strong controllability, the maximum controlled er-

ror can be as large as (1, 0, 1, 1, 0, 1)⊤×0.44, with the maximum deviation as far

as 1.06 length units, much larger than the distance of the reference equilibrium

point from the origin. We note that no larger initial error can be controlled

when β = 2, when the value of Q has been optimized, since the required control

charge reaches its upper bound in several intervals (τ ∈ [0, 2]), which implies

that the charge, which is the unique control parameter, has reached its maxi-

mum, according to the considered bound constraint.
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Comparing these results of case 1 with the ones corresponding to a smaller

initial displacement ((1, 0, 1, 1, 0, 1)⊤ × 10−1), and shown in Fig. 13, we can

conclude that increasing the initial displacement slows down the rate of the

convergence of the control method. Moreover, the required charge control vari-

ation increases (−11q⋆ vs −1.2q⋆) when the initial error also does. The same

phenomena can also be found when we compare the results of case 2 and case

3 (see Fig. 16).

./

Figure 15: Uncontrolled trajectory (black dot dashed) and controlled one for a spacecraft

using the linear (coloured dashed) and non-linear (coloured solid) systems, and coordinate

projections (grey) of the controlled trajectories. The computations are performed with β =

2, and the initial errors departing from the equilibrium point 31R (circle) and value of Q

correspond to case 1 (top), case 2 (bottom left) and case 3 (bottom right).

According to Table 3, when β = 10 the four 3R equilibrium points are

totally elliptic (all the eigenvalues are purely imaginary) and, as it was already
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Figure 16: Time evolution of the control input u(τ) (left), and distance of the spacecraft to

their target equilibrium points (right). Computations are performed in the non-linear system

defined by (3) and (5), with β = 2, and coloured according to the three defined condition

cases: purple (case 1), brown (case 2) and cyan (case 3).

mentioned for the 33,4R points with β = 2, in this case it is difficult to maintain

the configuration using only the charge as control parameter.

Figure 17 shows the results obtained for this value of β with an initial dis-

placement for all the spacecraft of (1, 0, 1, 1, 0, 1)⊤ × 10−2. In this example, the

maximum charge variation required for the control of the spacecraft located at

32R and 34R is about four times larger than the one required for spacecraft located

at 31R and 33R.

It must be also mentioned that, even with an initial displacement of the

order of 0.01, the time required to reach the vicinity of the target equilibria is

very large, about 80 time units.

For the other equilibrium points the controllability results are similar to the

ones discussed for the 3R points and mainly depend on the characteristics of

their eigenvalues. We recall that all the other points are hyperbolic regardless

of the value of β so, for better controllability, the best values of β correspond

to those such that the associated eigenvalues have real as small as possible. In

particular, in Fig. 18 we display the results of formations with two spacecraft

deployed at each of the two 2T points (21T with X > 0 and 21T with X < 0),

initial conditions have been taken as (1, 0, 1, 1, 0, 1)⊤ × 10−1 for initial error,

β = 1 and Q = 100 · I. As stated in Section 4.1, these points are the only
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Figure 17: Time evolution of the control input u(τ) (left), and distance of the spacecraft to

their target equilibrium points (right). Computations are performed in the non-linear system

defined by (3) and (5), with β = 10, and with an initial displacement for all the spacecraft of

(1, 0, 1, 1, 0, 1)⊤ × 10−2. The colour code is the same one as in Fig. 12.

option if the nominal locations of the 3N points are required. We recall that

the 2T points (with the same location as the 3N ) are controllable while the 3N

are not, as stated in Section 4.1.

In Fig. 18 we notice the symmetry of the trajectories with respect to the

Y − Z; control charges and deviations also exhibit symmetries similar to the

ones in Fig. 12.

4.4. Formation keeping of a multiple-follower configuration with spacecraft of

different charges

The previous configurations are designed based on the assumption that the

satellites are identical in mass and charge, so they have the same charge-to-mass

ratio. If we adjust the charge in one or more satellites of the configuration, for

instance by means of an electron beam, new equilibrium points are obtained

along the same axis, but at different distances. As a consequence, once a simple

configuration is designed in adimensional units, a similar configuration of dif-

ferent size, or a combination based on the original configuration of any number

and any size can be easily obtained.

In this section we consider multi-follower configurations in which all the

follower spacecraft have different charges. While the reference equilibrium point

is the same, the charge defines the length unit, and so the real physical location
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Figure 18: The trajectories of two spacecraft departing from the equilibrium point 21T (top

left) and 21T (top right), both with a displacement equal to (1, 0, 1, 1, 0, 1)⊤ × 10−1 (circle),

and the time evolution of the required control charge (bottom left) and deviation from the

target 2T (bottom right). The black dot dashed lines are the perturbed trajectory without

control, while the controlled trajectories are shown in dashed lines (linear system defined by

Eq. (6)) and solid lines (non-linear system defined by Eq. (3) in the tangential case, and in

grey are the 2D coordinate projections of the controlled trajectories.

of the equilibrium points differ from each other. An example is the string

configuration shown in Fig. 3, with the reference location on the line passing

through the 1N equilibrium point and the origin.

For simplicity, we introduce the charge ratio η = q
q⋆ , where q is the charge

of the spacecraft and q⋆ is the reference nominal charge. Using the equilibrium

point 3R as nominal location, we design a configuration of three deputies with

charges qi = ηi · q⋆, i = 1, 2, 3 and η1 = 1, η2 = 3.375, η3 = 8. Their nominal

positions are given in Table 4, where the length unit is chosen to be the same,

that is a⋆, the one associated to q⋆.
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Table 4: The actual position of three deputies with different charges ηq⋆ using 31R as the

nominal location.

η X Y Z

1 0.5612 0 0.5612

3.375 0.8418 0 0.8418

8 1.1225 0 1.1225

We consider the same initial error (1, 0, 1, 1, 0, 1)⊤ × 0.05, and Q = 100 · I,

R = 1 for all three spacecraft. During the simulations we have used different

length units for different charges. Thus, all the equations can be kept the same

without any modification, and the feedback gain vectors K are also the same

regardless of the value of the charge; this is the advantage of using dimensional

units. However, special attention must be paid to transform the initial error

to the one corresponding to qi (i=1,2,3), which is a⋆ · η 1
3 , before we start the

propagation of the controlled trajectory. Also, the inverse transformation on

position and velocity needs to be performed after the integration to obtain the

results in the same units for comparison.

We remark that the control charge given by Eq. (9) has always the unit

associated to qi, and if the total charge q(τ) = (u + 1) ∗ η · q⋆ violates the

bound [−10, 10] · q⋆, then the adimensional control charge is determined by the

following rule: u(τ) = −10/η − 1, if
(
u(τ) + 1

)
· η < −10

u(τ) = 10/η − 1, if
(
u(τ) + 1

)
· η > 10

(14)

When the unit of charge is chosen to be the one of q⋆, the control and total

charge is u(τ) · η and q(τ) =
(
u(τ) + 1

)
· η, respectively. We remark that the

controllability is strongly affected by the nominal charge η · q⋆ of the spacecraft,

as can be clearly seen from equation (14). A large value of η leads to a small

range of values of the control charge u(τ).

The trajectories of the linear and non-linear systems, as well as the time

evolution of the control charge and displacement with respect to the reference
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equilibrium point, are shown in Fig. 19. In this figure we can see that, with

same initial error of the order of 0.05, the trajectories of the three spacecraft with

different charges exhibit the same behaviour, and the curves of their deviations

almost overlap each other. It is obvious that the controllability is not affected by

the charge of spacecraft when the initial error is small. The rate of convergence

is almost the same, due to the fact that the reference equilibrium point is the

same one, and so is the stability, which plays the dominant role in controllability

of the system. The different maximum values of control charge are caused by

the initial errors; although they are the same in a⋆ units, they are different in

a⋆ ·η 1
3 units. Again, since the initial error is relatively small, the linear and non-

linear controlled trajectories are very close to each other. The spacecraft moves

within the vicinity of its reference equilibrium point, with the displacement less

than 0.12, almost 2.5 times the initial error. Due to the large distance between

the three nominal locations considered, there is no collision risk between the

deputies.

However, as stated in Section. 4.3, when the initial error is increased, the

trajectory, if still controllable without escaping, can depart at a large distance

from the reference equilibrium point. This fact introduces a collision risk in the

above string configuration, since the distance between two equilibria is a linear

function of the cubic root of the charge ratio η, which could be small with the

bound η ∈ [−10, 10].

To explore this case with collision risk we consider a large initial error for

each spacecraft, while the values of Q are tuned for each spacecraft for the

best control performance with R = 1 (see Table 5 for the values of the related

parameters). The values of the feedback gain vector K are the same for charges

q1 and q2, since we consider the same Q for both cases and, as explained in

Section 4.1, the value of K is determined by Q and R for the linear time invariant

system. The initial errors for different spacecraft are chosen to be maximal in

the controllable sense, this is, the trajectory escapes when we increase these

errors.

From Table 5, it follows that the larger the nominal charge, the smaller the
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Figure 19: 3D view (coloured) and the three projections (grey) of the controlled trajectories

of three spacecrafts in the linear (solid line) and non-linear (dashed line) systems (top row),

time evolution of the control input η · u(τ) (bottom left), and distance of the spacecraft to

the target equilibrium point (bottom right) in the non-linear system. The colour code for

the charge is q1 in purple, q2 and q3 in green and brown, respectively. The computations are

done with β = 2, and departing from the equilibrium point 31R (star) with a displacement

equal to (1, 0, 1, 1, 0, 1)⊤ × 0.05 (circle) .

Table 5: The values of initial error (modulus along the vector (1, 0, 1, 1, 0, 1)⊤), weight Q, and

gain vector K for the three spacecrafts with different charges ηq⋆.

η Initial error Q K

1 0.44 500 · I (132.4507, -82.0925, -105.7247, -28.3316, -75.3198, -1.5383)

3.375 0.26 500 · I (132.4507, -82.0925, -105.7247, -28.3316, -75.3198, -1.5383)

8 0.06 100 · I (59.0463, -38.3293, -49.2730, -14.5141, -33.9759, -0.0887)

maximal initial error that can be controlled. The maximum controllable initial

error for η = 3.375 and η = 8 are about 60% and 14% of the one associated
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to η = 1. The difference in the maximal initial error is caused by the charge

ratio η, as it is shown in Eq. (14). The ranges [umin, umax] of the adimensional

control charge for the three spacecraft are shown in Table 6, while the ones used

for the computation of the control input and the integration of the controlled

trajectories are in the second column. We see that the range of u(τ) for η = 1

is [-11, 9], which is coherent with the ones given in Eq. (13), while the ones

for η = 3.375 and η = 8 are only 30% and 12.5% of the ones associated to

η = 1. The controllability has a monotonic (yet not linear) dependence on the

range [umin, umax], which is determined by the value of η. We remark that if

the bound restriction on the total charge is removed, and the control input is

applied by means of Eq. (9), the maximal controllable initial errors could be the

same for different values of η, however, this is not realistic from the practical

technical point of view.

Table 6: Ranges of the adimensional control input for the three spacecraft with different

charges; both in the units of qi (for integration) and of q⋆(for comparison).

η [umin, umax] (unit:qi) [umin, umax] (unit:q⋆)

1 [-11, 9] [-11, 9]

3.375 [-3.963, 1.963] [-13.375, 6.625]

8 [-2.25, 0.25] [-18, 2]

Figure 20 displays the controlled trajectories of the three considered space-

craft, together with the time evolution of the distance between either two space-

craft, the control charge η ·u(τ), and the displacements of each spacecrafts rela-

tive to the leader at the origin. It can be clearly seen that the three trajectories

of the non-linear systems overlap each other and may exist collision risk between

the spacecrafts, while the ones of the linear systems are separated. Due to the

large initial errors considered, the controlled non-linear trajectories can move

very far from the linear one (maximum values being 1.06, 0.6 and 0.14 for the

q1, q2 and q3 charges respectively), and are almost 2.5 times the order of the

initial errors (resp. 0.44, 0.26 and 0.06). The same phenomena appeared in
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Fig. 16 as explained in Section. 4.3. No larger initial errors can be endured for

controllability, as can be seen in Fig. 20 (bottom left). The required charges

reach the lower bound in the time interval [0, 3], when the spacecraft also reach

their maximum deviation. We remark that the controllability, as well as the

rate of converge of the system, mainly depend on the stability of the reference

equilibrium point, rather than on the charges and initial errors. This can be

seen at the second row of Fig. 20, where all the evolution curves for the control

input and displacements display similar behaviour for spacecrafts with different

charges.

From figure 20 we can also see that, although there seems to appear a col-

lision between trajectories (top left), actually no collision happens, since the

distances between any two spacecraft are larger than 0.04 length units during

the whole controlled process of formation keeping. However, we remark that col-

lision risk may increase when more spacecraft, with smaller charge difference,

are deployed or when different initial errors are considered.
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Figure 20: (Top left) 3D view and coordinate projections of the controlled trajectories of

three spacecraft in the linear and non-linear systems. (Top right), time evolution of the

distance between spacecraft pairs. (Bottom left), the control input u(τ). (Bottom right),

distance of the spacecraft to the target equilibrium point. All them in the non-linear system

defined by (3) and (5). The colour code for the trajectories is as follows: q1 purple, q2 green

and q3 brown. Computations are performed with β = 2 departing from the equilibrium point

31R (marked with a star) with the displacement specified in Table 5 (marked with a circle) .

5. Discussion

In this paper we have used adimensional units. According to Eq. (2), the

physical distance unit is determined by the value of charge-to-mass ratio q
m ,

the magnetic field moment B0, and the angular ratio β, while the time unit is

independent of these parameters. The magnetic field strength B0, as well as β,

are considered fixed once the HTSC coil is designed, but q
m remains adjustable.

The advantage of using adimensional units for the cases considered becomes

clear since, with each value of β, we just need to compute one time the location

of equilibria and the size of periodic orbits. Then, a simple scaling by the real
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distance unit provides orbits of different sizes. Therefore, once a simple con-

figuration is designed in adimensional units, more configurations can be easily

considered, just by means of adding spacecrafts with different charges, as shown

in Fig. 3. Other options consist in the combinations of several simple configu-

rations of any number and size. The flexibility of the proposed configurations

provides a vast potential in multi-follower formation flying of the model studied

by the authors in [3, 4].

However, collision risk arises when we have many follower spacecraft. We

notice that when the spacecraft are of the same charge in the multi-follower con-

figurations, the risk of collision is very small and can be neglected. In this case

each spacecraft is located at different equilibrium point, the distance between

any two equilibria are large, while each spacecraft move in a close region around

its reference equilibrium point, even when an initial displacement is added.

However, when the reference equilibrium point is the same and the charges of

the deputies are different, the possibility of collision arises when the initial error

is large. In this case, even if the spacecraft are independently controllable, the

trajectory may depart far away from the reference equilibrium point as seen in

Fig. 16. The collision avoidance requires more complicated control strategies

than the one presented in the present paper; relative distances need to be mon-

itored and more path constraints have to be considered. The control strategy

including collision avoidance, as the one developed in [23], will be the focus of

our future work.

6. Conclusions

In this paper we have explored the application to formation flying in a dy-

namical reference model that was thoroughly studied in [4]. Several charged

follower spacecraft move around a leader in a high Earth orbit (such as GEO)

that is provided with an artificial magnetic field, so the followers are subjected

to the gravitational force from the Earth and to the Lorentz force produced by

the leader’s magnetic dipole.
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The proposed formation flying configurations consider the equilibrium points

of the model as nominal locations for the deputies. In the ideal case, where no

perturbations are considered, those kinds of configurations can be achieved with

merely the assumption that the nominal charge q⋆ of the follower is electrostat-

ically constant. Taking into account possible tracking or injection errors, the

paper aims to examine the capacity of the self-maintenance of the formation con-

figurations in the reference model, that is the Lorentz force is the only source

of propulsion, which means that the charge of the follower will be the unique

control parameter.

For this purpose, we have studied and analysed the evolution of the config-

urations in presence of initial errors, such as tracking errors or initial injection

errors. If the equilibrium point has hyperbolic part, this is, at least one asso-

ciated eigenvalue has non-zero real part, the spacecraft will escape soon after

departing from this reference point, even if the initial error is as small as 1×10−3;

while for the totally elliptic equilibrium points, the configuration could persist

for a long time with the same initial error (with each spacecraft moving on an

invariant tori bounded in a region of the size in the same order of the initial

displacement). However, a control strategy has to be included to avoid escaping

if the initial error is increased, and also for the case when the equilibrium point

has hyperbolic component.

The controllability of the linearised system around the nine kinds of equi-

libria has been explored. It has been shown that all but one kind (3N ) of the

equilibria are controllable. Using the charge of the spacecraft as the unique con-

trol input, a LQR feedback control law has been developed for the maintenance

of configurations, including either single or multiple spacecraft. By means of

varying the value of the initial error and the angular ratio β between the mean

motion of the leader’s orbit and the rotation rate of the magnetic dipole, the

controllability of the system has been examined. Different kinds of configu-

rations, including one-follower and multiple deputies with the same charge or

different charges, are considered. By means of tuning the value of Q in the

feedback control law, the performance of the controllability has been optimized
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for the several configurations studied.

Numerical simulations show that the controllability is strongly related to the

stability of the reference equilibrium point, which in turn depends on the value

of β . When the reference equilibrium point is hyperbolic, the stability of the

linearised and non-linear systems around this point are topologically the same

and the configuration maintenance can be achieved using the linear feedback

control. In this case, when the real part of the eigenvalues have very small

amplitude, the controllability is very robust handling initial displacements as

large as the order of 0.44. No larger initial errors can be cancelled using only

the charge control since, taking into account the current technical limitations

on the spacecraft surface charge, we have set the bound of the total charge to

be −[10, 10] ∗ q⋆.

Moreover, from a practical point of view, the totally elliptic equilibrium

point (this is, when it has three pairs of purely imaginary eigenvalues), are not

favourable if we want better controllability, since the trajectories dwindle around

the reference equilibrium point for very long times. It is noted that the collision

risk arises when the number of deputies, or the initial errors, increase; specially

in the case where only one kind of equilibrium points is chosen as nominal loca-

tion and multiple spacecrafts with different charges are deployed. However, one

may avoid collisions by carefully choosing the charges to get nominal locations

that are separated relatively far from each other.

We can conclude that, both the establishment and maintenance of the for-

mation flying configurations can be implemented by merely adjusting the charge

on the follower spacecraft; no additional propulsions are needed, which makes

the Lorentz force coming from an artificial magnetic field a novel and promising

way for future formation flying missions.
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Appendix

The matrix A and the vector Bq of the linearised equations

We denote the state vector as X = (X, Y, Z, X ′, Y ′, Z ′)⊤, and treat the

charge q of the follower as control input that is time varying, and the equations

of motion (3) can be rewritten in the form of the first-order differential equation,

given by

X ′ = F (X, q) (15)

and the components in the above equations are

X ′ = X ′

Y ′ = Y ′

Z ′ = Z ′

X ′′ = 3X − 2Y ′ + fX(X, q)

Y ′′ = 2X ′ + fY (X, q)

Z ′′ = −Z + fZ(X, q)

(16)

where (fX , fY , fZ) are the adimensional components of the Lorentz force fL .

To study the controllability of the system around the equilibrium point, which

is denoted as X⋆, we introduce the small perturbation ∆X = (X − X∗) and

the adimensional variation of the charge ∆q = ( q
q⋆ − 1), and linearise Eq.(15)

around the the equilibrium point X⋆ and the nominal charge q⋆,

∆X ′ = A∆X +Bq∆q, (17)

which is the same as Eq.(6), and the coefficient matrix A = df(X,q)
dX |X⋆ is

the derivative of the vector function f(X, q) with respect to the state vector,
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evaluated at X⋆, and vector coefficient Bq = df(X,q)
dq |q⋆ is the derivative of

f(X, q) with respect to the nominal charge q⋆. We note that if the charge q of

the follower is fixed as q = q⋆, the second term in the right-hand side of Eq.(17)

will be zero, the follower will stay at the reference equilibrium point, and the

linear equation will be the same as in [24].

Next, we will give the detailed expression of A and Bq. From Eq. (16), it

is obvious that the coefficient matrix A of the linear system (6) is of the form,

A =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

a41 a42 a43 a44 a45 a46

a51 a52 a53 a54 a55 a56

a61 a62 a63 a64 a65 a66


(18)

where the first three rows are constants independent on the orientation of the

magnetic dipole and the last three rows can be written as,

A([4, 5, 6], :) =
dfL

dX
+


3 0 0 0 2 0

0 0 0 −2 0 0

0 0 −1 0 0 0


where dfL

dX
is the derivative of the Lorentz force fL = (fX , fX , fZ)

⊤ with

respect to the state vector X = (X, Y, Z, X ′, Y ′, Z ′)⊤, this is,

dfL

dX
=



∂fX
∂X

∂fX
∂Y

∂fX
∂Z

∂fX
∂X ′

∂fX
∂Y ′

∂fX
∂Z ′

∂fY
∂X

∂fY
∂Y

∂fY
∂Z

∂fY
∂X ′

∂fY
∂Y ′

∂fY
∂Z ′

∂fZ
∂X

∂fZ
∂Y

∂fZ
∂Z

∂fZ
∂X ′

∂fZ
∂Y ′

∂fZ
∂Z ′


.

We note that the Lorentz force in components (fX , fY , fZ)
⊤ is adimensional,

while the one with subscripts {x, y, z} correspond to real units.

Since the three components of Lorentz force (fx, fy, fz) in Eq. (2) share a

similar pattern for all the three cases (normal, radial and tangential) considered,
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they can be written in a general form,

fxi =
q

m

B0

r3


3(N · r̂)(ẋir̂i+1 − ẋi+1r̂i) + ẋi+1Ni − ẋiNi+1

−ωc(xi+2Ni+1 − xi+1Ni+2)
(
3(N · r̂)r̂i+1 −Ni+1

)
+ωc(xiNi+2 − xi+2Ni)

(
3(N · r̂)r̂i −Ni

)


where N is the unit vector along the dipole orientation, and r̂ = (xr ,
y
r ,

z
r )

⊤

with r =
√
x2 + y2 + z2 is the normalized position vector of the spacecraft. The

position components denoted by the subscripts follow the rules given in Table 7,

which also hold for the velocity components ẋ, ẏ, ż. We remark that the three

basic X, Y and Z axes are aligned with the x, y and z axes, respectively, thus

the position and velocity vector associated to {Xi, Xi+1, Xi+2} follow the same

rule defined in the same table.

Table 7: Position components denoted by xi, xi+1 and xi+2 for the different orientation cases

of the magnetic dipole N .

N xi xi+1 xi+2

Normal case [0 0 1] z x y

Radial case [1 0 0] x y z

Tangential case [0 1 0] y z x

Using this nomenclature, the dipole’s orientation can be expressed as (Ni =

±1, Ni+1 = 0 = Ni+2 = 0), and the general form of the Lorentz force acceler-

ation can be written as,

fXi =
q

m

B0

r5
· 3xi

[
xi+2ẋi+1 − xi+1ẋi+2 ± (x2

i+1 + x2
i+2)

]
fXi+1

=
q

m

B0

r5

−(x2
i+1 + x2

i+2 − 2x2
i )ẋi+2 − 3xi+2xiẋi

±ωcxi+1(x
2
i+1 + x2

i+2 − 2x2
i )


fXi+2

=
q

m

B0

r5

(x2
i+1 + x2

i+2 − 2x2
i )ẋi+1 + 3xi+1xiẋi

±ωcxi+2(x
2
i+1 + x2

i+2 − 2x2
i )


Then, rescaling by the set of units defined in Eq. (2), the Lorentz-force
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acceleration can be rewritten as,

fXi
=

1

R5
· 3Xi

[
βXi+2X

′
i+1 −Xi+1X

′
i+2 ± (X2

i+1 +X2
i+2)

]
fXi+1 =

1

R5

−β(X2
i+1 +X2

i+2 − 2X2
i )X

′
i+2 − 3βXi+2XiX

′
i

±ωcXi+1(X
2
i+1 +X2

i+2 − 2X2
i )


fXi+2 =

1

R5

(X2
i+1 +X2

i+2 − 2X2
i )X

′
i+1 + 3Xi+1xiX

′
i

±ωcXi+2(X
2
i+1 +X2

i+2 − 2X2
i )


(19)

Finally, the partial derivatives of the Lorentz force fL = (fXi
, fXi+1

, fXi+2
)⊤

with respect to the state vector X = (Xi, Xi+1, Xi+2, X
′
i, X

′
i+1, X

′
i+2)

⊤, both

expressed in general form, are given by,

∂fXi

∂Xi
= ±A1 ·

3

R5

(
1− 5Xi

R2

)
∂fXi

∂Xi+1
= ±A1

3Xi

R5

(
−βX ′

i+2 + 2Xi+1 −A1
5Xi+1

R2

)
∂fXi

∂Xi+2
= ±A1

3Xi

R5

(
βX ′

i+1 + 2Xi+2 −A1
5Xi+2

R2

)
∂fXi

∂X ′
i

= 0

∂fXi

∂X ′
i+1

= ± 1

R5
(3βXiXi+2)

∂fXi

∂X ′
i+2

= ± 1

R5
(−3βXiXi+1)

(20)

where A1 = βXi+2X
′
i+1 − βXi+1X

′
i+2 + ωc

(
X2

i+1 −X2
i+2

)
.

∂fXi+1

∂Xi
= ± 1

R5

(
4βXiX

′
i+2 − 3βXi+2X

′
i − 4XiXi+1 −A2 ·

5Xi

R2

)
∂fXi+1

∂Xi+1
= ± 1

R5

(
−2βXi+1X

′
i+2 + 3X2

i+1 +X2
i+2 − 2X2

i −A2 ·
5Xi+1

R2

)
∂fXi+1

∂Xi+2
= ± 1

R5

(
−2βXi+2X

′
i+2 − 3βXiX

′
i + 2Xi+1Xi+2 −A2 ·

5Xi+2

R2

)
∂fXi+1

∂X ′
i

= ± 1

R5
(−3βXiXi+2)

∂fXi+1

∂X ′
i+1

= 0

∂fXi+1

∂X ′
i+2

= ± 1

R5

[
−β(X2

i+1 +X2
i+2 − 2X2

i )
]

(21)
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where A2 = −β(X2
i+1+X2

i+2−2X2
i )X

′
i+2−3βXi+2XiX

′
i+Xi+1

(
X2

i+1 +X2
i+2 − 2X2

i

)
.

∂fXi+2

∂Xi
= ± 1

R5

(
−4βXiX

′
i+1 + 3βXi+1X

′
i − 4XiXi+2 −A3 ·

5Xi

R2

)
∂fXi+2

∂Xi+1
= ± 1

R5

(
2βXi+1X

′
i+1 + 3βXiX

′
i + 2Xi+1Xi+2 −A3 ·

5Xi+1

R2

)
∂fXi+2

∂Xi+1
= ± 1

R5

(
2βXi+2X

′
i+1 + 3X2

i+2 +X2
i+1 − 2X2

i −A3 ·
5Xi+2

R2

)
∂fXi+2

∂X ′
i

= ± 1

R5
(−3βXiXi+1)

∂fXi+2

∂X ′
i+1

= ± 1

R5

[
β(X2

i+1 +X2
i+2 − 2X2

i )
]

∂fXi+2

∂X ′
i+2

= 0

(22)

where A3 = β(X2
i+1+X2

i+2−2X2
i )X

′
i+1−3βXi+1XiX

′
i+Xi+2

(
X2

i+1 +X2
i+2 − 2X2

i

)
.

If we follow the sequence Xi → Xi+1 → Xi+2 to compute the above par-

tial derivatives, we get exactly the ones for the radial case. However, for the

tangential case with N = (0, 1, 0)⊤, the equations (20),(21) and (22) give us,

dfLT

dXT
=



∂fY
∂Y

∂fY
∂Z

∂fY
∂X

∂fY
∂Y ′

∂fY
∂Z ′

∂fY
∂X ′

∂fZ
∂Y

∂fZ
∂Z

∂fZ
∂X

∂fZ
∂Y ′

∂fZ
∂Z ′

∂fZ
∂X ′

∂fX
∂Y

∂fX
∂Z

∂fX
∂X

∂fX
∂Y ′

∂fX
∂Z ′

∂fX
∂X ′


where the subscript T stands for the tangential case.

In order to get the real form of dfL

dX , we need to perform a row switch-

ing transformation (R1, R2, R3) → (R2, R3, R1), followed by a column switch-

ing transformation (C1, C2, C3, C4, C5, C6) → (C2, R3, R1, C5, C6, C4), where

Ri, Ci(i ∈ {1, 2, 3, 4, 5, 6}) stands for the line and the row numbers, respectively.

For the normal case with N = (0, 0, 1)⊤, using the equations (20), (21)
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and (22), we obtain,

dfLN

dXN
=



∂fZ
∂Z

∂fZ
∂X

∂fZ
∂Y

∂fZ
∂Z ′

∂fZ
∂X ′

∂fZ
∂Y ′

∂fX
∂Z

∂fX
∂X

∂fX
∂Y

∂fX
∂Z ′

∂fX
∂X ′

∂fX
∂Y ′

∂fY
∂Z

∂fY
∂X

∂fY
∂Y

∂fY
∂Z ′

∂fY
∂X ′

∂fY
∂Y ′


where the subscript N stands for the normal case.

Two transformation steps are required to obtain the real form of dfL

dX . The

first one is a row switching transformation (R1, R2, R3) → (R3, R1, R2), while

the second one is a column switching transformation (C1, C2, C3, C4, C5, C6) →

(C3, R1, R2, C6, C4, C5).

Then, the matrix A can be obtained by substituting the partial derivative
dfL

dX into Eq. (18).

To compute the coefficient vector Bq, we first rewrite the Lorentz force as a

function of the charge q and the nominal charge q⋆, given by

fX =
σ

R5
g⋆x · q

q⋆

fY =
σ

R5
g⋆y · q

q⋆

fZ =
σ

R5
g⋆z · q

q⋆

(23)

where R =
√
X2 + Y 2 + Z2 is the distance between the follower and the leader,

and σ is the sign of the charge of the follower, and (g⋆x, g
⋆
y , g

⋆
z) are given in

Eqs.(5). We note that if the charge of the follower is kept fixed as the nominal

one such that q = q⋆, the follower will stay at the reference equilibrium point.

Using the same nomenclature as in the computation of matrix A, we can

obtain the coefficient vector Bq from Eq.(16) and (23), which can be expressed

in a general form,

Bq = (0, 0, 0,
∂fX
∂q

,
∂fY
∂q

,
∂fZ
∂q

)⊤

= (0, 0, 0,
σ

R5
g⋆x,

σ

R5
g⋆y ,

σ

R5
g⋆z)

⊤
(24)

where the adimensional nominal charge q⋆ = 1, and the last three components
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are the Lorentz force given in Eq.(4) that corresponds to q = q⋆, the definition

of each parameter in the above equation (24) is referred therein.
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