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SUMMARY

It is well known that model order reduction techniques that project the solution of the problem at hand onto a
low-dimensional subspace present difficulties when this solution lies on a non-linear manifold. To overcome
these difficulties—notably, an undesirable augment in the number of required modes in the solution—several
solutions have been suggested. Among them we can cite the use of non-linear dimensionality reduction
techniques or, alternatively, the employ of local linear reduced order approaches. These last approaches
usually present the difficulty of ensuring continuity between these local models. Here, a new method is
presented that ensures this continuity by resorting to the paradigm of the partition of unity, while employing
Proper Generalized Decompositions at each local patch.
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1. INTRODUCTION

The finite element method is the ubiquitous technique for the approximation of partial differential
equations (PDE). Its generality has led it to succeed in many areas of engineering interest.
However, when real time or many-query applications are envisaged, it is well known to be a
technique somewhat slow. In recent years, model order reduction (MOR) techniques have shown
that a minimum number of carefully-chosen degrees of freedom may be enough for an accurate
solution of these same PDE. Instead of choosing general-purpose piecewise polynomials as basis
functions, MOR techniques construct ad hoc basis functions following different techniques. For
instance, Proper Orthogonal Decomposition (POD) [1–5] constructs an efficient basis from a set of
precomputed snapshots of the full-order PDE solution,

u(x, t) =

N∑
i=1

αi(t)φi(x), (1)

where, very much like in the finite element context, αi are a set of time-dependent coefficients
that evolve in time, and φi(x) are time-independent basis functions obtained by some algebraic
treatment of the system snapshots. For instance, many MOR techniques employ the most energetic
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eigenfunctions of the snapshot autocorrelation matrix to construct these φi(x). These play a similar
role to the finite element shape functions, albeit they are global instead of local. Other techniques,
such as Reduced Basis methods, for instance [6–8], employ some snapshots of the full-order solution
as basis for the approximate solution of the system. These snapshots are calculated in a greedy
fashion, at time (or parameter) instants at which the error in the approximation is maximal.

It is important to note that Eq. (1) constitutes in fact a separated expression of the solution—
note the space-time separation, which also holds in finite element approximations—. Assuming
this separate or affine decomposition of the solution is also on the origin of another family of MOR
techniques coined as Proper Generalized Decomposition (PGD) [9–12]. These methods compute the
basis function on the fly, that is to say, by means of a greedy algorithm that enriches successively
the basis until the desired precision is achieved. This methodology has proven to be very effective
from a wide variety of high dimensional problems ranging from the resolution of Fokker-Planck
equation [13], to patient-specific liver responses [14, 15], structural dynamics [16], computational
rheology [17] or, more generally, to any parametric problem that could be written in separate
form [13].

There are situations, however, when the solution is highly non-separable. In other words, the
solution of the problem lives on a non-linear manifold. In this situation, what MOR techniques do is
to project the solution on the tangent space to the manifold at a given (time or parameter) point [18].
This leads to poor approximation properties far from the tangency point, unless special techniques
are chosen, as in [19], for instance, where asymptotic expansions were used.

A way to alleviate this problem is to follow the same philosophy than non-linear-dimensionality
reduction methods. For instance, Locally-Linear-Embedding (LLE) [20] tries to unveil the latent
variables by means of imposing a local linear variation on the function, which will change from
neighborhood to neighborhood. Another technique which deals with non-linear problems is the so-
called kernel Principal Component Analysis (k-PCA) [21]. In this particular case, the definition of
an efficient kernel function allows to project the snapshots to high dimensional spaces (potentially,
infinite dimensional) in which the solution manifold is flat. In this particular situation, standard
interpolation techniques work well.

A. Badı́as et al. [22] studied the case of a moving source in a transient heat transfer problem. The
problem of the non-separability of the solution was circumvented by means of making a partition
of the time domain, dedicating a different PGD for each partition. However, the imposition of the
interface conditions will become a tedious task when dealing with partitions involving variables
other than time.

The main objective of this paper is to develop a generalized PGD formulation in which continuity
between subdomains is guaranteed. This will be achieved by resorting to the Partition of Unity (PU)
paradigm [23, 24]. By employing the partition of unity, continuity of the solution is guaranteed if
the chosen PU is continuous. This will allow us to glue different PGD approximations defined at
particular regions of the space, time or parameter spaces, thus ensuring a global solution with a
minimum of degrees of freedom.

The structure of the paper is organized as follows: the second section depicts the general aspects
of the proposed methodology, the third section shows the capability of the method to approximate
highly non-linear functions, the fourth section shows applications for different PDEs from fully
diffusive to transient equations. The fifth section will be devoted to the conclusions. All details
related to the variational form will be given in the appendix.

2. BASICS OF THE METHOD

The method here proposed is based, as mentioned earlier, in the application of the Partition of
Unity (PU) paradigm [23, 24]. In essence, the PU method states that, given a collection of non-
overlapping patches defined over the domain Ω, Ωi, i = 1, . . . , npatch, a partition of unity ϕi defined
on these patches (i.e.,

∑
i ϕi = 1 everywhere in the domain), and function spaces Vi, associated to
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each patch, the approximation obtained by

V =

npatch∑
i=1

ϕiVi

inherits the approximation properties of the spaces Vi and the continuity properties of ϕi.
For the sake of simplicity but without loosing generality, the local PGD method here presented is

illustrated by starting with a weak form related to a general two-dimensional PDE

L(u∗(x, y), u(x, y);µ) = F(u∗(x, y), f(x, y)) in Ω.

Normally, solving the weak form (2) requires an approximation space for the essential variable
u(x, y) and its associated variation u∗(x, y). The classical finite element approximation,

u(x, y) =
∑
i∈I

Ni(x, y)ui

where I is the entire set of shape functions defined over the integration domain, Ω, satisfies the
partition of unity and linear consistency properties,∑

i∈I

Ni(x, y) = 1, ∀ x, y ∈ Ω,∑
i∈I

Ni(x, y)xi = x, ∀ x, y ∈ Ω,∑
i∈I

Ni(x, y)yi = y, ∀ x, y ∈ Ω.

The main ingredient of the method here proposed is the combination of the finite element shape
functions, Ni(x, y), as an example of very convenient partition of unity, enriched with low rank
PGD approximations. Therefore, each degree of freedom ui associated to the FEM shape function
Ni(x, y) will be enriched with a PGD approximation, aiming to capture the details of the solution
which are not captured by the standard low-order FE meshes. Therefore, the approximation of the
solution will read

u(x, y) =
∑
i∈I

Ni(x, y)

M∑
k=1

Xi
k(x)Y i

k (y),

where Xi
k(x) and Y i

k (x) functions are the k-th one-dimensional modes related to the i-th PGD.
Several approaches can be adopted to define the trial function. In this particular case, a Bubnov-

Galerkin projection is selected. Hence, the same approximating space is chosen for u(x, y) and
u∗(x, y),

u∗(x, y) =
∑
i∈I

Ni(x, y)
(
Xi∗

M (x)Y i
M (y) +Xi

M (x)Y i∗
M (y)

)
. (2)

It is worth noting the greedy nature of the PGD algorithm, since the variation only takes into
account the last, M -th, PGD mode. Previous modes are considered as known, and therefore do not
appear in Eq. (2). Furthermore, a non-linear problem, which has been created due to the separation
of variables—note that we solve for a pair of functions, XM , YM—, is solved using an alternate
direction scheme. Conceptually speaking, it is not necessary to have the same number of modes
(M ) for each macro shape function in I. A possible strategy would be to stop enriching with new
modes in areas where the residual of the equation is low enough. In this first work, all PGDs are
enriched with the same number of modes (M ) as the main focus is placed on the methology itself
and proving that combining different PGDs within a continuous framework could be useful to obtain
separated solutions in complex scenarios where standard PGD performance is decimated. That being
said, the definition of mode adopted herein is the number of separated functions (1 per element in
the set I) that has to be given to the macro partition to reproduce the solution, or in other words, the
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Figure 1. Left, piecewise constant FE approximation. Center, domain of influence of i-th PGD. Right,
domain of influence of k-th PGD. As can be noticed, no overlapping exists between different PGD

approximations.

Figure 2. Left, piecewise linear partition of unity. Center, domain of influence of i-th PGD. Right, domain
of influence of k-th PGD.

number of modes equal to M . It is also important to reckon that the size of the mode will increase
according to the number of elements in I, since the mode involves as many separated functions per
direction as number of degrees of freedom in I.

The properties of the method will change depending on the way finite element shape functions
are defined. Fig. (1) exemplifies the partition when piecewise constant shape functions are used.
As it can be seen, no overlapping between different PGDs exists. Therefore, extra effort has to
be done to set proper interface conditions along the red lines appearing in the same figure. This
situation would be equivalent to the method described in [22]. This is in sharp contrast with the
purely additive approach to couple FE and PGD proposed in [25] or in [26], for instance. In that
case, the method resembled the s-version of the FEM [27] or the multiscale FEM proposed by Rank
and coworkers [28]. In that case, a single PGD approximation was enriched by FE in order to capture
high-gradient details of the solution, that usually provoke an increase in the number of PGD modes.
Here, on the contrary, we develop an approximation by means of multiple PGD approximations,
glued together by means of the Partition of Unity paradigm. We have coined this method the PU -
PGD.

Fig. (2) depicts a piecewise linear partition of the domain. As it can be noticed, a quadrilateral
element has contributions coming from four different PGDs. The coupling conditions between
different PGDs are automatically taken into account in the elemental contributions. Indeed, this
kind of partition imposes a smooth transition between PGDs, which vary continuously along the
domain in accordance with the partition of the domain.

It is worth mentioning that the full potential of PGD approximation resides in the capability of
writing the integral form in a separated manner. By doing that, all integrals in a high dimensional
space will be split into a product of integrals related to each one of the subspaces. For the sake
of simplicity, we will assume that the shape functions Ni(x, y) are exactly separable in one single
mode

Ni(x, y) = Nx
i (x)Ny

i (y).
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Figure 3. In the case of bi-linear finite elements, there is one PGD enrichment per node.

It is important to notice that this will be the case, for instance, of 2D quadrilateral elements with
straight and parallel sides.

Even though this assumption may be seen as a limitation, it is important to notice that there are
some variables such as time or parameters, that naturally admit cartesian decompositions. Therefore,
when dealing with a complex spatial geometry that evolves in time, a smart partition would be to
keep the space variable as is. Nevertheless, this very first work is meant to provide an insight of
the method, thus, all results presented in the sequel will be related to piecewise linear FE shape
functions based on squared elements.

3. PU -PGD FOR APPROXIMATION PROBLEMS

3.1. Basics of the method

In this section, we analyze the capability of the proposed methodology in approximation problems
of the form ∫

Ω

u∗(x, y) (u(x, y)− f(x, y)) dΩ = 0, (3)

where a function f(x, y) is to be approximated in an PU -PGD framework. As it can be noticed,
there are no partial derivatives involved in this type of problems. Instead just a compact expression
of the function f(x, y) is sought. It is important to highlight that continuity is not a requirement as
no differential equation is involved this particular case. Indeed, considering a broken approximation
space with a much more local procedure will provide better results if the function to be captured
presents high gradients or even discontinuities. However, this very first example is included as an
initial point to illustrate the continuous approach which is mandatory to solve PDEs

Following the spirit of standard finite element approximation, the integral over the entire domain
Ω is split into a sum of integrals for each one of the finite elements Ωe appearing in the domain.
Recall that piecewise bi-linear shape functions present contributions from four different PGDs per
element (one for each corner), as shown in Fig. (3).

It is important to notice that the i-th PGD, thanks to the partition of unity, affects the support of
each finite element node, and thus four elements in a regular lattice.

Omitting the dependence with respect to space variables, x and y, and thanks to the separability
of the FE shape function (if defined in a regular lattice as a tensorial product of one-dimensional
functions), the first term in the integral form of Eq. (3) particularized for a element Ωe reads∫

Ωe

u∗udxdy =

4∑
i=1

4∑
j=1

∫
Ωe

Nx
i N

y
i

(
Xi

MY
i
M

)∗(
Nx

j N
y
j

M∑
k=1

Xj
kY

j
k

)
dxdy.
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The next step is to split the 2D integral form into a tensorial product of 1D integrals as∫
Ωe

u∗udxdy

=

4∑
i=1

4∑
j=1

M∑
k=1

∫
x

Xi∗

MN
x
i N

x
j X

j
kdx

∫
y

Y i
MN

y
i N

y
j Y

j
k dy +

4∑
i=1

4∑
j=1

M∑
k=1

∫
x

Xi
MN

x
i N

x
j X

j
kdx

∫
y

Y i∗
MNy

i N
y
j Y

j
k dy.

(4)

As can be noticed, the variation along the x direction shares all the operators with the variation
along the y direction. Indeed, this property arises naturally from the alternate directions scheme that
is used to solve the non-linear system of the PGD.

Indeed, the efficiency of the PU -PGD algorithm is maximized when all operators related to Eq.
(4) are precomputed in an off-line phase as

αijk
x =

∫
x

Xi
MN

x
i N

x
j X

j
kdx,

αijk
y =

∫
y

Y i
MN

y
i N

y
j Y

j
k dy.

With the source term f(x, y) expressed in a separated format (e.g., by invoking the SVD) as

f(x, y) =

Z∑
z=1

fxz (x)fyz (y),

the right hand side term appearing in Eq. (3) reads∫
Ωe

u∗fdxdy =

4∑
i=1

Z∑
z=1

∫
x

Xi∗

MN
x
i f

x
z dx

∫
y

Y i
MN

y
i f

y
z dy +

4∑
i=1

Z∑
z=1

∫
x

Xi
MN

x
i f

x
z dx

∫
y

Y i∗
MNy

i f
y
z dy,

for x and y systems respectively.
Once more, all operators related to the integration of the source term can be precomputed off-line

as
εizx =

∫
x

Xi
MN

x
i f

x
z dx,

εizy =

∫
y

Y i
MN

y
i f

y
z dy.

3.2. A preliminar example

Let us illustrate the methodology by analyzing a highly non separable function,

f1(x, y) =
10

σ
√

2π
e−

(x−(vy+x0))2

2σ2 ,

where σ = 0.05, v = 0.5 and x0 = 0.2.
Fig. (4) depicts the resulting u(x, y) = f1(x, y) scalar field from different perspectives. As it can

be seen, the source term is going through the diagonal of the domain, generating a highly non-
separable function. Indeed, a standard PGD algorithm encounters many problems to capture such
kind of solution.

Two different partitions of the domain has been tested, as shown in Fig. (5). Along the right and
left sides of the domain no enrichment is added to the FE approximation as the seeked solution is
already zero along this boundary. It is important to reckon that right and left sides of the domain
could have been enriched, since no boundary conditions need to be imposed in this approximation
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Figure 4. Left, 3D view of f1(x, y). Right, top view of f1(x, y).

Figure 5. Left, domain enriched with 8 PGDs. Right, domain enriched with 24 PGDs. Red points, centroid
of each PGD. The legend shows the number of PGD enrichments affecting each element.

problem. However, the fact that compatible boundary conditions, (i.e. zero along right and left sides)
can be imposed was used as a validation point for the next numerical examples involving PDEs. The
elements are colored in accordance with the number of active PGDs acting in each element.

Fig. (6) shows the reconstructed solution using 4 modes per local PGD, when the domain has 8
active PGDs (left) and 24 PGDs (right). As it can be seen, even though both approximations capture
the main features of the solution, the solution using 24 PGDs is slightly better than the one with 8
PGDs.

Fig. (7) shows the convergence error for the approximation of f1(x, y). The relative error is
measured as

Em =
||uref − um||
||uref ||

,

where um is the reconstructed solution using m modes. uref represents the ground truth, that is
calculated in this case with the help of a dense enough finite element mesh. As can be noticed,
singular value decomposition (SVD) method suffers from separating this kind of solutions, having
a slow decay of the relative error with respect to the number of modes. As it is well-known from the
literature, standard PGD in two dimensions is exactly equivalent to SVD when an identity operator
is employed (the so-called PGD in approximation [29, 30]). On the other hand, using the PU -
PGD algorithm the relative error decays much faster than the one related to standard SVD or PGD
approximations.

It is important to notice that the more a domain is partitioned the smaller the relative error is. This
behavior is expected since the smaller the elements are, the easier is to capture a local behavior.
However, the price to pay is that the cost of computing one mode per PGD will increase just like
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Figure 6. Left, solution with 8 PGDs. Right, solution with 24 PGDs. Every PGD enrichment incorporates
four modes.

Figure 7. Convergence error for the approximation problem. Comparison between SVD, standard PGD, and
two different local strategies.

the storage cost as well. Certainly, the systems that are solved in the fixed point iteration are not
local due to the fact that macro shape functions are overlapped between them. If the macro partition
involves #I shape functions and each local PGD is discretized using nx and ny degrees of freedom,
the number of unkowns in each PGD fixed point are #I · nx and #I · ny for x and y directions,
respectively. Therefore, it is important to keep in mind that refining the macro mesh would reduce
the number of modes (M ) to represent the solution, but it would also increase the computational
cost for obtaining one mode. However, the main focus of this work was to prove that the proposed
methodology was able to obtain separated solutions in scenarios where standard PGD performance
was not good enough.

4. PU -PGD FOR THE SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

The aim of this section is to show the potential of the proposed methodology when applied to the
solution of different PDEs. We consider examples of increasing complexity. Therefore, the first
test case is a pure diffusion equation. The second case is a convection-reaction-diffusion equation.
Finally, the last example relates to a transient thermal problem with a moving source term. Even
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Figure 8. Left, 3D view of u(x, y). Right, planar view of u(x, y) for the diffusion equation.

Figure 9. Left, problem solved with four PGDs. Right, problem solved with 16 PGDs. Red points represent
finite element nodes enriched with PGD. The legend represents the number of PGDs per element.

though the construction of the operators for each PDE follows the same trend than the ones presented
in the PU -PGD in approximation, further details are given in the appendix.

4.1. Diffusion PDE

We first consider the following weak form corresponding to a diffusion problem:∫
Ω

η∇u∗ · ∇udxdy =

∫
Ω

u∗f1dxdy.

Vanishing Dirichlet boundary conditions are imposed on the entire boundary. The source term is
equal to the function f1(x, y) defined in the previous section and the diffusion parameter, η, is set to
1.

Fig. (8) depicts the reference u(x, y) scalar field for the diffusion equation from different
perspectives. It has been obtained with a 80× 80 finite element discretization. As it can be seen,
the solution diffuses the source term through the diagonal of the domain.

Two different PGD enrichments has been tested as shown in Fig. (9). The PGDs acting on top,
bottom, left and right sides are set to zero to be consistent with the problem statement where
zero Dirichlet boundary conditions are imposed along the entire boundary domain. The red points
indicate the enriched nodal supports. The elements are colored in accordance with the number of
enriching PGDs. Elements on the corners have only one active PGD, whereas elements on the sides
have two active PGDs and interior elements have four active PGDs.

The reconstructed solution using 4 modes per PGD, when the domain has 4 active PGDs (left)
and 16 PGDs (right) are in perfect agreement with the reference solution appearing in Fig.9.
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Figure 10. Convergence error for the diffusion problem. Comparison between the number of modes provided
by SVD, standard PGD, and two different enrichment strategies considered so far.

Fig. (10) shows the convergence error for the diffusive equation. As it can be noticed, all methods
converge monotonically, being the SVD the one that presents the slower convergence with respect
the number of modes. Standard PGD shows a similar convergence rate to SVD, as expected. Even if
no formal proof exists of this behavior for operators other than the identity, this is the observed rate
for all the experiments did so far. Finally, using the multi PGD algorithm presents a faster decay in
the relative error.

4.2. Convection-Reaction-Diffusion PDE

In this subsection a convection-reaction-diffusion equation is studied. Indeed, the major novelty is
the introduction of the convective term since it will involve a non-symmetric operator. The weak
form related to the this equation is∫

Ω

u∗v · ∇u+ η∇u∗ · ∇u+ σu∗u dxdy =

∫
Ω

u∗f2dxdy, (5)

where vanishing Dirichlet boundary conditions are considered on the entire boundary. The
integration domain is Ω = [0, 1]× [0, 1]. The convective velocity field is assumed to be v = 500(y −
0.5, 0.5− x)T . The reaction term is set to σ = 10 and the diffusion coefficient to η = 1. Regarding
the source term, a Gaussian located in [x0, y0] = [0.75, 0.75] as

f2(x, y) =
800√

2π
e−

(x−x0)2+(y−y0)2

0.005 ,

is considered.
Fig. (11) depicts the reference u(x, y) scalar field for Eq. (5)—computed by employing an 80× 80

finite element mesh, thus with no need for stabilization—from different perspectives. Note how the
Gaussian source term is convected circularly according to the prescribed velocity field. Moreover,
the diffusion term makes the Gaussian to be smoothed along its convection path.

The same partitions than in the diffusive case have been tested as shown in Fig. (9), since also null
Dirichlet boundary conditions are imposed along the entire boundary of the domain. Fig. (12) shows
the reconstructed solution using 4 modes per local PGD, when the problem has been approximated
by four PGDs (left) and sixteen PGDs (right). Notice how the approximation related to four PGDs
does not capture the solution well. Indeed, a higher number of modes will be needed to converge to
the reference solution. On the other hand, the solution involving 16 PGDs is in perfect accordance
with the reference solution, capturing all the features of the scalar field without any perceptible
oscillation.
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Figure 11. Left, 3D view of the reference solution u(x, y). Right, planar view of u(x, y) for convection-
reaction-diffusion equation.

Figure 12. Solution of the convection-diffusion-reaction equation. Left, 4 PGDs. Right, 16 PGDs. Both
solutions have four modes per PGD.

Fig. (13) shows the convergence of the relative error in logarithmic scale for the SVD and the
two different partitions proposed for the CDR equation. It can be clearly seen that the convergence
related to the 4 PGD partition is the slowest one. Indeed, this problematic is derived from the fact
that the first PGD modes have to capture a highly non-linear behavior, meaning that this partition
will require a high amount of modes to converge to the real solution. On the other hand, the 16 PGD
partition convergence is quite fast compared with the other two methods.

4.3. Transient Heat Transfer Equation

This last example is devoted to the analysis of a transient 1D heat transfer problem, a test proposed
by S. Idelsohn [31] to verify the compactness of different model order reduction techniques:∫

Ω

u∗
∂u

∂t
+ η

∂u∗

∂x

∂u∗

∂x
dx dt =

∫
Ω

u∗f3dx dt,

where the diffusion coefficient is set to η = 0.01.
The domain of study is Ω = Ωx × Ωt = [0, 1]× [0, 1]. The set of boundary conditions imposed

for the field u(x, t) are u(x, 0) = 0, u(0, t) = 0 and u(1, t) = 0. The source term f3(x, y) is

f3(x, t) =
10

σ
√

2π
e−

(x−(vt+x0))2

2σ2 ,

where σ = 0.05, v = 0.5 and x0 = 0.1.
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Figure 13. Convergence plot for the convection-diffusion-reaction problem. Comparison between SVD,
standard PGD, and two different enrichment strategies.

Figure 14. Left, 3D view of u(x, t). Right, top view of u(x, t) for the transient heat transfer equation.

Fig. (14) depicts the reference u(x, y) scalar field for the transient heat equation from different
perspectives. Again, a 80× 80 finite element mesh of bi-linear elements has been employed. This
kind of PDE creates a boundary layer along the diagonal of the space-time domain which is very
hard to capture when using standard separate approximations like POD and classical PGD.

Two different enrichment strategies have been tested as shown in Fig. (15). It is important to
highlight that PGDs acting on x = 0, x = 1 and t = 0 are set to zero to satisfy the null Dirichlet and
initial boundary conditions in this portion of the boundary. However, the PGD acting on the interior
nodes of the line t = 1 are not set to zero. This fact is a direct consequence of the pure convective
behavior that present the time variable. Indeed, the line t = 1 acts like an outflow boundary, thus,
no condition should be imposed there to ensure the well-possedness of the problem.

Fig. (16) shows the reconstructed solution using four modes per local PGD, when the domain has
six active PGDs (left) and twenty PGDs (right). Notice how both approximations capture the main
features of the reference solution. However, the approximation with 6 active PGD presents small
oscillations due to the lack of PGD modes to converge to the reference solution.

Fig. (17) shows the convergence plot for the SVD and the two different enrichments proposed for
the transient heat equation. It can be stated that both partitions present a faster convergence than the
SVD convergence. However, the convergence slope of the PGD partitions tend to be flatter than the
SVD one in the last part of the convergence plot.
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Figure 15. Left, problem solved with 6 PGDs. Right, problem solved with 20 PGDs. Red points represent the
finite element nodes that incorporate an enrichment. The legend indicates the number of PGDs per element.

Figure 16. Solution of the transient heat equation. Left, 6 PGDs. Right, 20 PGDs. Both solutions have four
modes per PGD.

Figure 17. Convergence error for transient heat problem in logarithmic scale for different number of modes.
Comparison between SVD, standard PGD, and two different partitions of the domain.

To establish a fair comparison between the methods presented so far, it is interesting to perform
a comparison on a per-degree-of-freedom basis. Fig. (18) shows the convergence plot related to
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Figure 18. Convergence plot for Idelsohn problem using different partitions of the domain. All
approximations have the same number of degrees of freedom.

the transient thermal problem in which the standard PGD approximation has the same degrees of
freedom than the PU -PGD approximation. It is worth noting the fast convergence of the PU -PGD,
that comes from the fact that it takes profit of the locality of the solution, avoiding problem of highly
non-linear global functions.

5. DISCUSSION. FUTURE WORK

The method presented overcomes some of the most important limitations of standard PGD
approximations. These, which are indeed common to every model order reduction technique, are
related to the non-linearity of the solution map. As in previous works in the literature, an appealing
strategy is to develop local approximations. This approach comes from the well-known fact that a
manifold is flat in the neighborhood of every point.

The local, multiple approximations here developed have shown to reconstruct the solution up to a
certain tolerance without using a moderate number of modes. However, as previously stated, the size
of the mode will increase according to the macro partition of the domain. Therefore, the choice of
the macro partition constitutes one of the central keypoints of this approach. A macro partition such
that it minimizes the number of macro elements while it reduces the number of modes to represent
the solution would be the optimal one. Certainly, a possible future route is to mimic the element
refinement in FEM, starting with a coarse macro partition and perform only macro refinement in
areas where the residual of the equation is high enough.

One drawback, however, of the proposed technique, is related to the curse of dimensionality in
high-dimensional problems. The PU -PGD approach introduces a mesh to construct the partition of
unity. This may result in prohibitive computational costs if the number of dimensions of the solution
grows.

However, as in previous local approaches of PGD [22], there is no need to partition every
dimension into elements. Instead, only those parameter interval of interest can be partitioned that
provoke the most non-linear response of the solution. Knowing in advance the non-linear shape of
the solution manifold is by no means straightforward. This constitutes our current effort of research.
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A. ELEMENTAL OPERATORS

In this appendix we give exhaustive details about the construction of the operators required to make
the PU -PGD approximation for the different PDEs studied in the paper. Detailed information was
given for the case of the PU -PGD in approximation. Hence, further details will be shown related to
the diffusive and convective terms.

A.1. Diffusive Operator

In this subsection a diffusion of a scalar field u(x, y) along the x direction is developed. The
derivation for the diffusion along the y direction follows similar guidelines. For the sake of
simplicity but without loosing generality, we will also assume that a new mode in the x direction is
sought. Therefore, all variations related to the y direction are set to zero.∫
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It can be highlighted that four different contributions are appearing due to the application of the
chain rule. Furthermore, all terms appearing in the last part of Eq. (6) present already a separated
format.

A.2. Convective Operator

In this subsection a pure convection of a scalar field u(x, y) along the x direction is derived. It is
important to notice that this case is a particular case of a general convection given by the velocity
field v, where a separated representation of the velocity field would be required. The derivation for
the convection along the y direction follows similar guidelines. For the sake of simplicity but without
loosing generality, we will also assume that a new mode in the x direction is desired. Therefore, all
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variations related to the y direction are set to zero.∫
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Once again all integrals appearing in the last part of Eq. (7) are written already in a separated
way, improving the efficiency of the algorithm.
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