

DEVELOPMENT OF AN ANGULAR LIBRARY FOR
DYNAMIC LOADING OF WEB COMPONENTS

A Degree Thesis

Submitted to the Faculty of the

Escola Tècnica d'Enginyeria de Telecomunicació de

Barcelona

Universitat Politècnica de Catalunya

by

Jaume Armengol Barahona

In partial fulfilment

of the requirements for the degree in

TELECOMMUNICATION TECHNOLOGIES AND

SERVICES ENGINEERING

Advisor: Jose Luis Muñoz Tapia

Barcelona, February 2020

 1

Abstract

This project is based on the development of a library capable of loading components with

dynamic content. The library allows users to manage web components easy and

comfortable way.

It originated as the study of technologies for web design and development. In this case, the

Angular framework has been used, which mainly employs programming languages like

Typescript and HTML.

The ultimate goal is that it contains a wide range of different components so that the user,

simply by using a JSON file and without the necessary programming knowledge, is able to

create a functional web application to his or her liking.

 2

Resum

Aquest projecte es basa en el desenvolupament d’una llibreria capaç de carregar

components amb contingut dinàmic. La llibreria permet als usuaris gestionar components

web de manera ràpida i còmode.

Es va originar com l’estudi de tecnologies per el disseny i desenvolupament web. En

aquest cas s’ha utilitzat el framework Angular, que empra principalment llenguatges de

programació com Typescript i HTML.

L’objectiu final es que contingui un gran llista de components diferents per a que l’usuari,

simplement utilitzant un arxiu JSON i sense coneixements de programació necessaris,

sigui capaç de crear una aplicació web funcional al seu gust.

 3

Resumen

Este proyecto se basa en el desarrollo de una librería capaz de cargar componentes con

contenido dinámico. La librería permite a los usuarios gestionar componentes web de

forma rápida y cómoda.

Se originó como el estudio de tecnologías para el diseño y desarrollo web. En este caso

se ha utilizado el framework Angular, que emplea principalmente lenguajes de

programación como Typescript y HTML.

El objetivo final es que contenga un amplio rango de componentes diferentes para que el
usuario, simplemente usando un archivo JSON y sin conocimientos de programación
necesarios, sea capaz de crear una aplicación web funcional a su gusto.

 4

Acknowledgements

First of all, I would like to thank my family for all the support I have received over the years

as the career comes to an end.

I would also like to thank my group of university friends for always being there, always

willing to help me in whatever way is necessary, countless times. Thank you.

Finally, I would like to thank Alejandro Perez Ujaque and his everis team for giving me the

opportunity to practice with them and make me feel part of their team. And to Jose Luis

Muñoz, my supervisor, for helping me in whatever is necessary for the development of TFG

and helping me to get this project right.

 5

Revision history and approval record

Revision Date Purpose

0 20/12/2019 Document creation

1 22/01/2020 Document revision

DOCUMENT DISTRIBUTION LIST

 Name e-mail

 Jaume Armengol Barahona jaume1997_2@hotmail.com

 Jose Luis Muñoz Tapia jose.luis.munoz@upc.edu

Written by: Reviewed and approved by:

Date 20/12/2019 Date 22/01/2020

Name Jaume Armengol Barahona Name Jose Luis Muñoz Tapia

Position Project Author Position Project Supervisor

 6

Table of contents

Abstract .. 1

Resum .. 2

Resumen .. 3

Acknowledgements... 4

Revision history and approval record .. 5

Table of contents .. 6

List of Figures ... 8

List of Tables: ... 10

1. Introduction .. 11

1.1. Objectives... 11

1.2. Requirements and specifications .. 11

1.3. Project background ... 12

1.4. Utility .. 12

1.5. Who is it for .. 12

1.6. Time plan.. 13

1.7. Modifications from initial plan .. 13

2. State of the art of the technology used or applied in this thesis: 14

2.1. Angular framework ... 14

2.2. JSON format ... 14

2.3. Visual Studio Code ... 14

2.4. Bitbucket... 14

3. Methodology / project development: .. 15

3.1. Setting up the Local Environment and Workspace .. 15

3.2. App Initializer (local storage)... 17

3.3. Configuration JSON format ... 20

3.4. Angular Web Elements ... 20

3.5. Library Components ... 23

3.5.1. Webform Component .. 24

3.5.2. Image Displayer Component ... 30

3.5.3. Scheduler Component ... 32

3.5.4. Default Component.. 34

3.6. Pack the library ... 34

4. Results .. 35

 7

4.1. Webform Component ... 35

4.2. Image Displayer Component .. 45

4.3. Scheduler Component .. 48

4.4. Default Component ... 51

5. Budget ... 52

5.1. Equipment .. 52

5.2. Staff .. 53

5.3. Total ... 53

6. Conclusions and future development: .. 54

Bibliography: ... 55

Appendix 1 ... 56

Appendix 2 ... 59

Glossary ... 62

 8

List of Figures

Figure 1.1 - Gantt Diagram ... 13

Figure 3.1 - App folder distribution .. 16

Figure 3.2 - Lib folder distribution.. 16

Figure 3.3 - public-api.ts file .. 17

Figure 3.4 - App Initializer function call ... 18

Figure 3.5 - Providers of app.module.ts .. 18

Figure 3.6 - App Initializar function .. 18

Figure 3.7 - Get json file from localstorage ... 19

Figure 3.8 - Open library with json input info ... 19

Figure 3.9 - Localstorage information in browser .. 19

Figure 3.10 - Create Custom Element .. 21

Figure 3.11 - Configuration of app-lib.module.ts ... 22

Figure 3.12 - Definition of Custom Elements ... 23

Figure 3.13 - Component rendering according to the compType 23

Figure 3.14 - Saving config params in a reactive form .. 26

Figure 3.15 - Custom validator creation phoneNumberValidator 26

Figure 3.16 - OnSubmit and updateParams functions... 27

Figure 3.17 - ClearButton functionality .. 27

Figure 3.18 - Html file of webform component... 29

Figure 3.19 - Common part of all forms... 30

Figure 3.20 - Saving config params in local variables ... 31

Figure 3.21 - Getting the image url from the API ... 31

Figure 3.22 - Html file of image displayer component ... 31

Figure 3.23 - Saving config params in an aux variable.. 33

Figure 3.24 - Passing the info as input to create the scheduler 33

Figure 4.1 - Webform json file example (all the fields)... 37

Figure 4.2 - Webform view in browser... 39

Figure 4.3 - User data view ... 39

Figure 4.4 - Error message for invalid form ... 40

Figure 4.5 - Error messages from empty fields in the form .. 41

Figure 4.6 - Error messages from fields with custom validations 42

file:///C:/Users/jarmengb/Downloads/Memoria_TFG-Jaume_Armengol.docx%23_Toc30421167

 9

Figure 4.7 - Webform json file example (not all the fields) ... 43

Figure 4.8 - Webform view in browser (with this json file config) 44

Figure 4.9 - Image displayer json file example .. 45

Figure 4.10 - Image displayer view in browser .. 45

Figure 4.11 - Image displayer view in browser (refreshed) .. 46

Figure 4.12 - Image displayer json file example (changed config) 46

Figure 4.13 - Image displayer view in browser with new example 47

Figure 4.14 - Scheduler json file example ... 48

Figure 4.15 - Scheduler view in browser ... 49

Figure 4.16 - Scheduler view with Week mode (part 1) ... 49

Figure 4.17 - Scheduler view with Week mode (part 2) ... 50

Figure 4.18 - New events configuration panel ... 50

Figure 4.19 - Error component type json file example ... 51

Figure 4.20 - Default component view in browser ... 51

 10

List of Tables:

Table 1.1 - Pros and cons ... 12

Table 3.1 - Browsers supporting Angular Elements .. 22

Table 5.1 - Equipment cost ... 52

Table 5.2 - Personal salaries .. 53

Table 5.3 - Total cost of the project ... 53

Table A1. 1 - Work Package 1 .. 56

Table A1. 2 - Work Package 2 .. 57

Table A1. 3 - Work Package 3 .. 57

Table A1. 4 - Work Package 4 .. 58

 11

1. Introduction

In this project I make a study and a practical development of different functionalities with a

frontend framework called angular.

In particular, the functionalities consist in using dynamic rendering of components, creating

components in a lazy loaded module and creating a web component with angular elements.

Finally, I apply these functionalities to a web application.

1.1. Objectives

The project main goals are:

 Rendering of Angular components with logic, following a JSON file that indicates
the type of component and its configuration parameters

 Use of lazy loaded modules for component loading

 Creation of WebComponents with different functionalities (form with validations,
sample of images ...)

 Creation of the library with these functionalities that we later integrate in our spa

A final goal could be to have a SPA that searches for dynamic content (news, events,
images, forms…) through a request and be able to render the components that show that
information dynamically.

1.2. Requirements and specifications

Project requirements:

- Use and exploit of all the new advantages provided by the latest angular version

- Being able to understand how the web page requested should be and structure it

- Get the configuration parameters from a JSON file

- Create a library that can be used on any computer through its installation

Project specifications:

- Different number of types of web pages that can be configured

- The library must be able to be installed on any computer and download the

requested components

 12

1.3. Project background

This is an innovation project that starts from the scratch. What was wanted from the

beginning was to investigate the new functionalities and features of Angular 8. See how

the updates help to improve the render of dynamic components, the use of lazy loaded

modules…

The main project initial ideas are provided by the company supervisor. Although as it is

done, the author can contribute new ideas, possible changes and modifications that he

considers.

1.4. Utility

The main utility of this library is the creation of a web page quickly and that does not need

programming knowledge. The deployment of a web app requires long processes of ideation,

development, tests, etc... With this library it is achieved that through the use of the

components that are already implemented these processes disappear, and you only have

to choose which ones are going to be used and their configuration. Another advantage is

the ease to learn how to use it, you just need to know what fields are available for each

component and choose which ones we want the web app.

These are the main pros and cons of the library:

1.5. Who is it for

The people to whom this library is addressed are those who do not have programming

knowledge that is looking for a quick and easy way to create a personalized web page. A

professional case could be the example of a worker in the marketing sector who intends to

sell an idea, or create a simple website and thus saves contacting the technology

department that would make the development, explain the idea you have and take

conducted, follow-up meetings and tests, etc...

Pros Cons

 Automation of the process of

creating a web page

 Saving of development, ideation

and testing processes

 Easy to add new components

 Security. Only the input parameters

are set, the code is not changed

 Easy to correct errors and does not

affect the other components

 There is no total freedom to create

the desired website

 The configuration fields are

bounded to those that the library is

able to interpret

 Must conform with the design

created

Table 1.1 - Pros and cons

 13

1.6. Time plan

The time plan followed during this project development is shown in Figure 1.1 Gantt

Diagram. The developed work has been split in 4 work packages. A detailed description of

each work package and the internal tasks developed can be found on Appendix 1.

Figure 1.1 - Gantt Diagram

Introduction to Angular 8 16/09/2019 10/10/2019

Dynamic render of components 10/10/2019 14/10/2019

Lazy Loaded Modules 11/10/2019 14/10/2019

Learn and implement Reactive Forms 15/10/2019 11/11/2019

Convert SPA to a Web Component 04/11/2019 15/11/2019

Get the html config from json file 15/11/2019 09/12/2019

Build and pack the components to create a library 06/12/2019 20/12/2019

Implement calendar component 20/12/2019 15/01/2019

Integrate the component to the library 15/01/2019 21/01/2020

1.7. Modifications from initial plan

- The creation of dynamic components in Angular has been ruled out

- Rejected the creation of a directive that distinguishes the showed components

- Add validations to the form parameters

- Not using the changeDetectionOnPush strategy

- Add a new component (Scheduler)

 14

2. State of the art of the technology used or applied in this

thesis:

For the development of the project, I used the Angular framework. It is a new and widely

used tool in the workplace in the front-end department. For the part of the data input at the

external level I have used the JSON format, mainly because it is independent of any

programming language, the services that share information by this method, do not need to

speak the same language, that is, the sender can be Java and the receiver PHP. Each

language has its own library to encode and decode JSON strings.

2.1. Angular framework

Angular is a free and Open Source JavaScript framework, created by Google and designed

to facilitate the creation of modern web applications of the SPA type (Single Page

Application).

The Angular programming is done using TypeScript, a language that is a superset of

JavaScript that adds static typing capabilities. This gives us the advantage of being able to

type things like variables, functions, returns, in addition to being able to create Interfaces.

TypeScript also gives us the ability to use enumerators, modules, namespaces, decorators

and generics. And last but not least is this import system, which we will use daily to atomize

and modularize all our code.

The continuation of the more detailed explanation of the Angular technology is in Appendix

2.

2.2. JSON format

JSON (JavaScript Object Notation) is a lightweight data exchange format, which is easy to

read and write for programmers and simple to interpret and generate for machines. In fact,

it is a standard based on plain text for the exchange of information, so it is used in many

systems that require displaying or sending information to be interpreted by other systems.

The advantage of JSON, being a format independent of any programming language, is that

the services that share information by this method do not need to speak the same language,

that is, the sender can be Java and the PHP receiver. Each language has its own library to

encode and decode JSON strings. The rest of the explanation is found in Appendix 2

2.3. Visual Studio Code

In the development of this project, the Visual Studio Code text editor has been used to

define the files of necessary configuration and to develop the software. For more

information see Appendix 2.

2.4. Bitbucket

Bitbucket is a web-based hosting service, for projects that use the Mercurial and Git version

control system. It is a free service with an unlimited number of private repositories that are

not displayed on profile pages - if a user has only private deposits, the website will give the

message "This user has no repositories". The service is written in Python. It is similar to

GitHub, which uses Git.

The rest of the explanation is found in Appendix 2.

 15

3. Methodology / project development:

As I said in the introduction, the project is based on the creation of a library capable of

rendering components dynamically through the information provided by a json file. The

components implemented in this library are:

 Webform

 Random image displayer

 Scheduler

 And one by default in case of introducing a non-implemented component type or an

empty file

3.1. Setting up the Local Environment and Workspace

Before starting to develop the project we must take into account all the necessary

prerequisites and install the angular environment.

Prerequisites

Angular requires Node.js version 10.9.0 or later

Angular, the Angular CLI, and Angular apps depend on features and functionality provided

by libraries that are available as npm packages. To download and install npm packages,

you must have an npm package manager.

Once we meet the requirements we must install the CLI:

npm install -g @angular/cli

Now we have to create the project:

ng new init-app

The ng new command prompts you for information about features to include in the initial

app. The Angular CLI installs the necessary Angular npm packages and other

dependencies. The CLI creates a new workspace and a simple Welcome app, ready to run.

To create the components you must use the command:

ng generate component component-name

To create the library you must use the command:

ng generate library app-lib

 16

Once we know this, we create our folder of projects where we will create the library.

Figure 3.1 - App folder distribution

Inside the library, we will add the components that we want to implement.

Figure 3.2 - Lib folder distribution

 17

To be able to install the library from another project and to be able to use its components,

you have to export them in the public-api.ts file.

Figure 3.3 - public-api.ts file

3.2. App Initializer (local storage)

To obtain the json file with the configuration of our web app we use the Local Storage tool.

LocalStorage allows you to store data in the web browser. And that these persist and are

available while browsing the web application, until this information is deleted from the

browser. To save data in localStorage we will use the following instruction:

localStorage.setItem('tutorial', How to use localStorage in Angular');

To recover the data stored in the localStorage we will use the following instruction to which

we will pass the key of the data we want to recover:

this.data = localStorage.getItem('tutorial');

In the case of our project, we will set the json file that we will have locally, but the file could

be obtained even if it comes from another site, provided it is in the localstorage. When

setting, it is convenient to do before the application starts. Since we want to set the json

file before the application is initialized, we will use App Initializer. Angular has a hook in its

process of initialization called App Initializer. An App Initializer is a special kind of Injection

Token — identifier of a dependency — of type Array of Functions that is executed when an

application is initialized.

 18

In order for our library to set the json file in the local storage before initializing the app you

have to modify the app-module.ts file:

Figure 3.4 - App Initializer function call

Figure 3.5 - Providers of app.module.ts

We import the App Initializer module, and call the function that our service will perform in

the app-load.service.ts file:

Figure 3.6 - App Initializar function

As we can see in the figure, we obtain our local json file through an http client and then set

it in the localstorage with the name "initial". If in a timeout of 500 ms you could not perform

the action, an error in the app is skipped.

 19

Now that we have the JSON file with the configuration of our web app in the local storage,

we must get it in the main activity of our project. Consequently, we can call the library by

inputting the configuration so that it can render the necessary components. To do this, in

the app.component.ts file:

Figure 3.7 - Get json file from localstorage

And in the app.component.html file:

Figure 3.8 - Open library with json input info

This is an example of what we would be saving in the local storage when we set the json

file.

Figure 3.9 - Localstorage information in browser

 20

3.3. Configuration JSON format

To fill the json file with the configuration of the application, you have to follow some rules

according to the established sketch. It is necessary to indicate:

- Component ID

- Component Type that we want to render

- Component configuration

This is a simple example of the sketch:

{

 "compType": "NameType”,

 "compId": 1,

 "compConfig": [

 {}

]

 }

3.4. Angular Web Elements

The components that we have implemented in our library are called web components. Web

components are a series of web APIs that allow us to create customizable, encapsulated

and reusable HTML tags. They can be used on any page and web application without the

need to import external JavaScript libraries. In order to use them, our browser must support

a series of Web APIs:

 Custom Elements: Allows the creation of new types of elements in the DOM

 Shadow DOM: Define how styles and language are encapsulated

 HTML Imports: Defines the inclusion of HTML in other HTML documents

 HTML Template: Defines how HTML fragments are declared when the page loads,

but which can be used later during execution

Angular elements are Angular components packaged as custom elements (also called Web

Components), a web standard for defining new HTML elements in an independent way.

Custom elements are a Web Platform feature currently supported by Chrome, Firefox,

Opera, and Safari, and available in other browsers through polyfills. The

@angular/elements package exports a createCustomElement() API that provides a bridge

from Angular's component interface and change detection functionality to the built-in DOM

API.

Custom elements are automatically started when they are added to the DOM and

automatically destroyed when they are removed from the DOM. Once a custom element is

added to the DOM for any page, it looks and behaves like any other HTML element, no

special knowledge of Angular terms is necessary.

 21

 Easy dynamic content in an angular application. Transforming a component into

a custom element provides an easy path to create dynamic HTML content in your

Angular application. HTML content that you add directly to the DOM in an Angular

application is usually displayed without Angular processing, unless you define a

dynamic component, add your own code to connect the HTML tag to your

application data and participate in the detection of changes. With a custom element,

all that wiring is done automatically.

 Content rich applications. The customized elements allow its suppliers to use

sophisticated Angular functionalities without requiring knowledge of it. All you need

to tell your content provider is the syntax of your custom item. They don't need to

know anything about Angular, or anything about data structures or the

implementation of their components.

Angular provides the createCustomElement() function to convert an angular component,

along with its dependencies, into a custom element. The function collects the observable

properties of the component, along with the angular functionality that the browser needs to

create and destroy instances, and to detect and respond to changes.

The customElements.define() function is used to register the configured constructor and its

custom element label associated with the browser. When the browser finds the tag for the

registered item, it uses the constructor to create a custom item instance.

Figure 3.10 - Create Custom Element

 22
Figure 3.11 - Configuration of app-lib.module.ts

The browsers that support the use of web components are:

BROWSER CUSTOM ELEMENT SUPPORT

CHROME Supported natively

SAFARI Supported natively

FIREFOX Supported natively as of version 63

OPERA Supported natively

MICROSOFT EDGE In process

Table 3.1 - Browsers supporting Angular Elements

In order to use the web components in our project, it is necessary to add and import the

dependency of angular elements, with the following command:

ng add @angular/elements

Once we have added the dependency, we must create the web components, using the
createCustomElement() method, in the app.lib.module.ts file:

 23

As we can see in the figure, we must import the components that we want to create as web

components, declare them and add them to the array of entry components, since this

component is not part of a parent component and is a component that must be part of the

bootstrapping of the application.

Figure 3.12 - Definition of Custom Elements

In this part we see how we use the function customElements().define, which creates a web

component with the HTML tag with which later, when used, it will be referenced.

3.5. Library Components

In the app-lib.component.ts file we have as input the configuration of the web app, which

we have called initial, which will tell us which components we have implemented we want

to use, and the respective fields of each one. In case the initial file is empty, our application

will render the component by default. Otherwise, we will go through the entire file to see

how many components we should load and what type they are, according to their

compType parameter in the json file. For each type of component, we will pass as input

the configuration to be able to render them with the necessary information. If the compType

does not correspond to any of the components implemented in the library, the default

component will be loaded.

Figure 3.13 - Component rendering according to the compType

 24

Next we will explain the development of each of the components of our library.

3.5.1. Webform Component

The webform component, as the name implies, is a reactive form, created from the fields

indicated in the configuration parameter called rForm. It is created with the information

passed as input to the app-lib.component.ts file seen previously. The fields created in the

form and that can be used as we want are:

1) Email

2) Password

3) Text

4) Phone number

5) Date

6) Time

7) Week

8) Option

9) Radio button

10) Checkbox

11) Button

The email refers to an input field in which only one string with an email format is allowed,

that is, with the @ separator and expressing the domain (.com, .es, etc.)

The password refers to an input field that indicates a hidden string that corresponds to the

email key. The user who writes it will not be able to see it on the screen, like any password,

and it must have a minimum of 8 characters to be accepted. Otherwise, an error would

appear indicating the length requirement.

The text field is an input that we can use, whatever data we want to know about the user,

be it name, surname, gender, profession... In the case of first name, a minimum of 2

characters, if not, shows an error message.

The phone number is an input field that collects the value of the telephone number of the

user who completes the form. Like any phone number, it must have 9 values and the first

one must be 6, to be correct.

The date field is an entry that can refer to any day you want to ask, such as the date of

birth, expiration date, date of obtaining the driving license ... If required, a minimum and a

maximum date can be added. That will make the calendar we see to choose the date, is

limited to specific values.

The time entry field lets us choose a specific time, which corresponds to what is requested

in the form, whether it is the time of delivery of something, meeting time, current time,

whatever.

The week entry field is similar to the date field but instead of choosing a specific day, an

entire week of the year is selected.

 25

The option corresponds to an entry field in which we can choose between several options,

previously indicated, such as the case of nationality, profession, brand... We can put as

many options as we want. In this case at the time of choosing, a list with all the options is

broken down.

The radio button refers to a field similar to the option, but in this we can see all the options

with a selection button next to it. We can only choose one of the buttons, each time we

select one, the one that was previously selected will not be.

The checkbox is a field that we can select or not, it is like marking an option in case it is

correct or we want to mark it as achieved or done. It is independent of the other component

checkboxes. We can select or unselect it by clicking on it.

The button is a field that refers to a function if it is clicked. In the case of this component,

it refers to the clear() function that deletes all other fields contained in the form.

All fields described above are required, except checkboxes. It is necessary to fill them in

order to submit. If any of the required fields is empty, the form submission cannot be

completed. If we click the submit button with one or more empty fields, an error message

will appear saying that all the fields are required, and another one below each one that has

not been filled. In addition, error messages corresponding to the validations of each field

may also appear, such as the email format, password length, phone number...

 26

In the webform.component.ts file is where we perform all this configuration. We keep in the

form variable the information that corresponds to the fields that we are going to show in our

form. To do this, the reactive form and a series of flags must be created so that the

component does not appear on the screen before it is created correctly. At the moment it

detects the data input, it goes through the form variable and adds the fields it contains to

the reactive form. All these fields that you add make them required (except the checkbox)

and then depending on the type of field, add some or other validations.

Figure 3.14 - Saving config params in a reactive form

Some of the validations that we add to the form fields are already implemented in the

Angular language, such as required or maximum or minimum, but not all. In that case we

can create them the way we want. An example of this is the phone number requirement.

We have to create a validation so that an error message appears in case it doesn't start

with 6.

Figure 3.15 - Custom validator creation phoneNumberValidator

 27

In addition to the fields that we can choose for our form, there are some fixed buttons that

will always appear, there are more or less fields. These are the submit button, which refers

to the sending of data (although in this case it shows the entered values per console) and

the update params button, which modifies the values of the variables we want (in this case,

the time and name).

Figure 3.16 - OnSubmit and updateParams functions

The clearButton, although optional, should normally be on all forms. Call the clear() function,

which deletes the values of all existing fields and in the case of radio buttons, deselect the

button that was selected when we clicked on another.

Figure 3.17 - ClearButton functionality

In the webform.component.html file is where we perform the view of the component. Before

talking about it, we must mention Angular material.

 28

Angular Material

Angular Material is a style library (like Bootstrap) based on the design guide Material

Design, made by the Angular team to integrate seamlessly with Angular. To use it, we must

add the dependency to our project with the following command:

ng add @angular/material

The ng add command will install Angular Material, the Component Dev Kit (CDK), Angular

Animations and ask you the following questions to determine which features to include:

1. Choose a prebuilt theme name, or "custom" for a custom theme:

You can choose from prebuilt material design themes or set up an extensible

custom theme.

2. Set up HammerJS for gesture recognition:

HammerJS provides gesture recognition capabilities required by some components

(mat-slide-toggle, mat-slider, matToolTip).

3. Set up browser animations for Angular Material:

Importing the BrowserAnimationsModule into your application enables Angular's

animation system. Declining this will disable most of Angular Material's animations.

The ng add command will additionally perform the following configurations:

 Add project dependencies to package.json

 Add the Roboto font to your index.html

 Add the Material Design icon font to your index.html

 Add a few global CSS styles to:

o Remove margins from body

o Set height: 100% on html and body

o Set Roboto as the default application font

 29

Now that we know Angular Material, we can see the development of the component view.

Figure 3.18 - Html file of webform component

First of all, we have a flag that does not display the page until you have added all the fields

to the form, which is activated in the webform.component.ts file that we have seen

previously. Then we create the layout where we will show the form, with its title in the

header. For the body, we go through the form variable that contains all the fields that the

user has entered, and depending on the type, we will create one content or another. All

have associated the name, type and value of the field in the form, and some in addition to

that have the minimum or maximum associated, whether checked or not, the function you

call in the case of the button, etc. Finally, we can see in the figure the messages that will

appear on the screen in case there is an error in the requirements at the time of submitting.

Depending on the type of error, one message or another is displayed.

 30

Figure 3.19 - Common part of all forms

At the bottom of the page, a message will appear telling us if the current status of the form

is valid or not, depending on whether all the requirements are met. In case they are not

met and the submit button is clicked, an error message will appear indicating that all the

fields are necessary, in addition to the one that already appears below the fields that do

not meet the requirements. There are also two buttons that will always appear on all forms,

the Submit and the UpdateParams. Submit prints the form data in console, and allows the

data to be viewed in json format at the bottom of the page. UpdateParams changes the

name and time, if any, of the form, whether written or not.

3.5.2. Image Displayer Component

This component shows on the screen an image that comes from an API and a message

that we choose. It is created with the information passed as input to the app-

lib.component.ts file seen previously. The input fields that we can configure are:

1) API

2) Message

3) Image Height

4) Image Width

5) Font API

The API is the web address from which we will receive a random image, which will then be

the one displayed on the page. In the API there is a huge image bank and every time we

make a request it will return a different image.

In the message we can write what we want. It is a simple phrase that appears on the image.

We can also set the image size. To do this you must indicate the height and width of the

image in pixels.

In the font API field we can indicate the typeface we want for our message.

In the webdogs.component.ts file is where we perform all this configuration. We receive the

configuration information through an input and save it in the dogsInfo variable. At the

moment it receives the data, it saves them in their respective variables and activates the

flag, so that it shows the image once it has the necessary data.

 31

Figure 3.20 - Saving config params in local variables

To obtain the image, we use the getImage() function, which uses a variable of type
httpClient to obtain the API response URL, with the random image address.

Figure 3.21 - Getting the image URL from the API

The development of the view is very simple. First we must refer to the font api to be able

to use the typeface that we have entered in the configuration. Then we will use the flag to

only show the component when all the necessary fields have been saved to display the

image. We will also add a refresh button, so that each time it is clicked it changes the image

that is displayed, although they all come from the same API. Finally, we show the image

with the size specified in the configuration.

Figure 3.22 - Html file of image displayer component

 32

3.5.3. Scheduler Component

This component shows a calendar in which appear the different tasks and events that we

have entered in the json configuration file. It is created with the information passed as input

to the app-lib.component.ts file seen previously. The input fields that we can configure are:

1) Id

2) Subject

3) Start time

4) End time

The Id is simply an identifier to refer to a task or event.

The subject field is a brief description of the event or task that we want to appear on the

calendar.

StartTime and endTime are the fields that correspond to the start and end of the event.

They are written in the following format:

StartTime/EndTime: “Year, Month, Day, Hour, Minute”

In the scheduler.component.ts file is where we perform all this configuration. We receive

the configuration information through an input and save it in the eventInfo variable. We

create the eventShow variable, which is what we will pass as input to the view to show the

calendar, and the flag that will allow you to see the page when all the events have been

collected.

 33

To save all the tasks in a list, we go through the eventInfo variable and store the events in

an auxiliary variable. In this variable they are saved with the necessary format to be able
to show them, with their Id, their subject, their start time and their end time. We will add this
auxiliary variable to eventShow, so that the scheduler can understand the data.

Figure 3.23 - Saving config params in an aux variable

For the development of the component view we have used a Syncfusion tool. The

scheduler used in this project is created from the `ej2-angular-schedule` package. To use

it, you have to install the package dependency with this command:

npm install @syncfusion/ej2-angular-schedule –save

Once installed, the scheduleModule must be imported into app-lib.module.ts together with

the following providers: AgendaService, DayService, WeekService, WorkWeekService,

MonthService (can be seen in figure 3.11).

You also have to add the CSS reference link inside the index.html file:

<link href="https://cdn.syncfusion.com/ej2/material.css" rel="stylesheet" />

And now that we have followed this process, we can define the code in the

scheduler.component.html file that will show the calendar with all the tasks and events that

we pass as input.

Figure 3.24 - Passing the info as input to create the scheduler

 34

3.5.4. Default Component

The default component is a simple page that displays the error message:

“You have not entered any component or your component type is not registered”

This component has virtually no configuration, it only shows that message. It appears in

two possible cases:

- The initial file that comes from the localstorage with the web page configuration is

empty, does not contain any components

- The type of component indicated in the initial file is not implemented in the library

3.6. Pack the library

To make our library possible to install and use in another project we must package it. To

do this you have to build the project and use the following command:

npm pack on dist/app-lib

The dist folder is created after build the project. Now we can give the library a name, which

we will use to import all its components from other projects where we want to use it.

npm init -scope=@libname

This command will create a .tgz file with the name of the library, which will be the one we

will use from another project to install it and thus be able to import all the modules.

 35

4. Results

The results of this TFG project are detailed below. The final result obtained is a library that
dynamically renders and loads the components that it has implemented, the webform, the
image displayer and the scheduler.

4.1. Webform Component

In this section we will see a real example of how this component works. How it reacts to

different input configurations and to the validations of the form fields.

A case in which the initial.json file has all the fields that we can configure in the form and

all filled in would be:

 36

 37

Figure 4.1 - Webform json file example (all the fields)

 38

And with this configuration, the result of the website would be:

 39

Figure 4.2 - Webform view in browser

As we can see, all the fields that we have entered in the component configuration appear

in the json file. All appear with their default value. We can also see that the password field

is hidden, and the selection buttons are clicked or not according to what we have specified.

In the case of radio buttons, if we want one to be clicked, we must set the value parameter

to true, if not false. We must remember that of the existing radio buttons there can only be

one selected. In the case of checkboxes, if we want them to be selected, we must set the

value of checked to true, but if we do not want it, we must leave it blank. The parameters

Week and Birthdate, being of type date, we can modify them using a small calendar that

appears. The Country field is of type options, and its value can be changed using the list

of countries that appear when we click on the parameter.

If we click the submit button, as in this case the form format is valid, the user data will

appear in json format at the bottom of the page.

Figure 4.3 - User data view

 40

If the format is not valid, clicking on the submit button will not display the data, but an error

message will appear.

Figure 4.4 - Error message for invalid form

If we now use the "ClearButton" button, we will erase the value of all the fields in the form

and the different error messages of each field will appear.

 41

Figure 4.5 - Error messages from empty fields in the form

As the fields are filled in, the error messages will disappear. Having deleted all the values,

the error messages that appear correspond to the requirement of required, which indicates

whether the field is mandatory or not. Now we are going to see the errors in the fields that

have some more requirements.

 42

Figure 4.6 - Error messages from fields with custom validations

The form is still invalid, therefore we cannot submit, even if the fields are not empty. This

is due to the requirements of some fields that are not met. We can see the case of the

firstname and the password that asks us for a minimum number of characters; the input

format of the email field, which has to be of the style: example@dom.com; the phone

number must have 9 digits and start with 6; All errors are explained in the message.

Once these errors are corrected, the form format will be valid again and we can see the

user data in json format at the bottom of the page.

 43

It is not necessary to use all possible fields of the component. A simpler example with fewer

configured webform fields and without setting a default value would be:

Figure 4.7 - Webform json file example (not all the fields)

 44

And with this configuration, the result of the website would be:

Figure 4.8 - Webform view in browser (with this json file config)

As we can see, there are empty fields, so it indicates that the format is invalid. But the error

messages do not appear because we have not clicked the submit button yet. If we do it

with the empty fields, the error messages will appear as in the previous case, if we do it

with the fields filled in, we will be able to see the user data also as in the case explained

before.

 45

4.2. Image Displayer Component

In the case of this component, the input parameters are less and more limited. Let's see

an example of how the image displayer component works. To do this, the initial.json file

should have the following configuration:

Figure 4.9 - Image displayer json file example

As we can see, we must indicate the type of component (webdogs corresponds to the

image displayer component), an identifier and its configuration. We have chosen an image

of size 100x100, which comes from the API https://source.unsplash.com/category/nature,

with the message "Pic of the day" and the font of the address indicated by the font api

parameter. The result on the screen is:

Figure 4.10 - Image displayer view in browser

 46

We can use the refresh button and it will automatically show us another random image.

Figure 4.11 - Image displayer view in browser (refreshed)

And we can also change the size, the API and the message, changing the configuration
parameters of the json file.

Figure 4.12 - Image displayer json file example (changed config)

 47

And the result would be:

Figure 4.13 - Image displayer view in browser with new example

 48

4.3. Scheduler Component

In the case of the scheduler, as already mentioned, we can indicate in the initial.json file

the different events that we want to appear in our calendar. A configuration example would

be:

Figure 4.14 - Scheduler json file example

As we can see, we had 4 events:

Board Meeting – 27/10/2019 *09:00* 27/10/2019 *11:00*

Training session – 27/10/2019 *15:00* 27/10/2019 *17:00*

Sprint planning with team members – 29/10/2019 *09:30* 29/10/2019 *11:00*

Stack point with supervisor – 20/10/2019 *11:00* 20/10/2019 *14:00*

 49

The result on the calendar would be:

Figure 4.15 - Scheduler view in browser

For the visualization of the tasks there are four types of view:

1. Day

2. Week

3. Month

4. Work Week

The Work Week mode is the same as Week but only from Monday to Friday, and the Day

mode is the same as Week but just seeing the schedule of that day. The previous example

corresponds to the month view. We can also see the calendar in week mode.

Figure 4.16 - Scheduler view with Week mode (part 1)

 50

Figure 4.17 - Scheduler view with Week mode (part 2)

If we wish, we can add events when we have already created the scheduler, directly in the

calendar. Just click on the time we want task to elapse, fill in the fields of the pop-up window

that appears and create the task.

Figure 4.18 - New events configuration panel

We can also add, delete or modify the tasks once they are written in the calendar.

 51

4.4. Default Component

The default component is only shown in case the initial.json configuration file is empty or

the type of component that we specify in the file is not implemented in the library. An

example of a json file where we indicate a different type of component to the three

implemented so far (webform, webdogs or scheduler) would be this:

Figure 4.19 - Error component type json file example

And the result on the screen would be the next:

Figure 4.20 - Default component view in browser

 52

5. Budget

This project is based on software development, no prototype or hardware has been used
to create the library.

The software used is free, so nothing has been invested in licenses. All software used and
implemented has been made with free or open source tools, so no cost related to this has
been considered in the budget.

Therefore, the budget will only take into account the costs of the computers that have been
used for the development of the project and personal salaries according to the time spent.

5.1. Equipment

For the development of the project no virtual payment tool has been used. The repository

used (Bitbucket) is free and the management and code development programs (Angular,

Visual Studio Code, etc.) as well.

What is necessary for the creation of the library is a computer. In this case we have used

a personal laptop, with its basic accessories: mouse, charger and network cable. The

laptop is a DELL model Latitude E5550. The average price in the market is 650€. The

Ethernet cable could cost around 6€ and the mouse about 30€.

Equipment Price Quantity Total

Laptop Dell E5550 650.00 € 1 650.00 €

Mouse 30.00 € 1 30.00 €

Ethernet cable 6.00 € 2 12.00 €

 Total 692.00 €

Table 5.1 - Equipment cost

 53

5.2. Staff

The table includes the salary per hour corresponding to each worker, as well as the total

worked hours and the final salary.

I count myself as a junior engineer. The project is valued at 18 ECTS credits, each one

with 30 hours. To calculate the salary, we assume that a junior engineer can collect around

9€/h.

𝑇𝑜𝑡𝑎𝑙 𝐻𝑜𝑢𝑟𝑠 𝑇𝐹𝐺 𝑝𝑟𝑜𝑗𝑒𝑐𝑡: 18 𝐸𝐶𝑇𝑆 ×
30 ℎ𝑜𝑢𝑟𝑠

𝐸𝐶𝑇𝑆
= 540 ℎ

Staff Salary/hour Total Hours Cost

Junior Engineer 9.00 € 540 4,860.00 €

Table 5.2 - Personal salaries

5.3. Total

Concept Cost

Equipment 692.00 €

Staff 4,860.00 €

Total 5,552.00 €

Table 5.3 - Total cost of the project

The total cost of the project has needed an investment of 5,552.00 €.

 54

6. Conclusions and future development:

First of all, we have to look back at the objective I had at the beginning, and determine

whether I accomplished it or not. The main goal was to create an app-library that render

dynamic components and learn how to use the Angular framework. Although there are lots

of improvements that can be done, I consider that I have successfully accomplished the

objective.

The components that have been implemented I think are very useful at a professional level

and widely used in general. I think this project can be a good tool for many people and

there are many use cases. It is also an application that can be in continuous growth; that

you could add new components to the library without modifying or altering the existing ones,

or modify some of them without affecting the rest. Regarding the implemented components,

I think they could include more fields but those that can be configured are already enough

to load a functional web with a minimum of basic content.

On a personal level, I think this TFG has helped me to understand and manage a project

in a similar way to a professional project. The way to structure times, break down work into

tasks, documentation, etc. I also think that thanks to this TFG I have learned a new

programming language and how a framework widely used at a business level works, such

as Angular.

As for future developments, as already mentioned, it is a library of components, we could

implement as many components as we want, whatever we can think of or there is a need

in the market. There is also an idea that came up in the company at the beginning of this

project, which would be to join it with a project that transforms the hand-drawn wireframes

into digital design files and front-end code. That is, we make a drawing of a web page in a

notebook or on a touch screen, through a program with machine learning we identify the

fields that appear in the image and we save the information in a json file. That json file

could become the one we pass as an entry to our library, but there is still a long way to go

in the case of this future development.

 55

Bibliography:

[1] “Angular”. Google, 2019. [Online] Available: https://angular.io/

[2] Stephen Fluin. “Why Developers and Companies Choose Angular”. Medium, 2017.
[Online] Available: https://medium.com/angular-japan-user-group/why-developers-and-
companies-choose-angular-4c9ba6098e1c

[3] “Las 5 principales ventajas de usar Angular para crear aplicaciones web”. Campus
MVP, 2017. [Online] Available: https://www.campusmvp.es/recursos/post/las-5-
principales-ventajas-de-usar-angular-para-crear-aplicaciones-web.aspx

[4] Jordi Torres. “Las 7 razones para utilizar Angular en tus proyectos de desarrollo de

web”. Offing, 2017. [Online] Available: https://offing.es/las-7-razones-para-utilizar-angular-

4-en-tus-proyectos-de-desarrollo-web/

[5] Arturo Barrera. “JSON: ¿Qué es y para qué sirve?”. Next-u, 2015. [Online] Available:

https://www.nextu.com/blog/que-es-json/

[6] Victor Garibay. “JSON marcando tendencias”. Medium, 2016. [Online] Available:

https://medium.com/@victor.garibayy/qu%C3%A9-es-y-para-qu%C3%A9-sirve-json-

be05fe02e67d

[7] Nicolás Avila. “Web Components con Angular Elements”. Medium, 2018. [Online]
Available: https://medium.com/angular-chile/web-components-con-angular-elements-
9bc6efd1265f

[8] Sandy Veliz. “Angular + Material Design | Instalación Angular Material”. Medium,
2019. [Online] Available: https://medium.com/@sandy.e.veliz/angular-material-design-
instalaci%C3%B3n-angular-material-790caca5677b

[9] Prashank Jauhari. “Creating forms in angular 2 using json schema at run time”.
Oodles Technologies, 2017. [Online] Available:
https://www.oodlestechnologies.com/blogs/Creating-forms-in-angular-2-using-json-
schema-at-run-time/

[10] Kevin Kreuzer. “The ultimate guide to set up your Angular library project”. Medium,
2019. [Online] Available: https://medium.com/angular-in-depth/the-ultimate-guide-to-set-
up-your-angular-library-project-399d95b63500

[11] “How to get started easily with Syncfusion Angular 6 Scheduler?”. Syncfusion, 2018.
[Online] Available: https://www.syncfusion.com/kb/9720/how-to-get-started-easily-with-
syncfusion-angular-6-scheduler

[12] Esther Vaati. “Validación de formulario Angular con formularios reactivos y
controlados por plantillas”. Envato tuts+, 2018. [Online] Available:
https://code.tutsplus.com/es/tutorials/angular-form-validation-with-reactive-and-template-
driven-forms--cms-32131

[13] Web StackOverflow. [Online] Available: https://stackoverflow.com/

[14] “Creating Custom Validators in Angular 7|8|9 Reactive Forms”. PositronX, 2019.
[Online] Available: https://www.positronx.io/custom-validators-angular-7-reactive-forms/

[15] “Introduction to localStorage and sessionStorage”. Alligator, 2018. [Online] Available:
https://alligator.io/js/introduction-localstorage-sessionstorage/

https://angular.io/
https://medium.com/angular-japan-user-group/why-developers-and-companies-choose-angular-4c9ba6098e1c
https://medium.com/angular-japan-user-group/why-developers-and-companies-choose-angular-4c9ba6098e1c
https://www.campusmvp.es/recursos/post/las-5-principales-ventajas-de-usar-angular-para-crear-aplicaciones-web.aspx
https://www.campusmvp.es/recursos/post/las-5-principales-ventajas-de-usar-angular-para-crear-aplicaciones-web.aspx
https://offing.es/las-7-razones-para-utilizar-angular-4-en-tus-proyectos-de-desarrollo-web/
https://offing.es/las-7-razones-para-utilizar-angular-4-en-tus-proyectos-de-desarrollo-web/
https://www.nextu.com/blog/que-es-json/
https://medium.com/@victor.garibayy/qu%C3%A9-es-y-para-qu%C3%A9-sirve-json-be05fe02e67d
https://medium.com/@victor.garibayy/qu%C3%A9-es-y-para-qu%C3%A9-sirve-json-be05fe02e67d
https://medium.com/@sandy.e.veliz/angular-material-design-instalaci%C3%B3n-angular-material-790caca5677b
https://medium.com/@sandy.e.veliz/angular-material-design-instalaci%C3%B3n-angular-material-790caca5677b
https://www.oodlestechnologies.com/blogs/Creating-forms-in-angular-2-using-json-schema-at-run-time/
https://www.oodlestechnologies.com/blogs/Creating-forms-in-angular-2-using-json-schema-at-run-time/
https://medium.com/angular-in-depth/the-ultimate-guide-to-set-up-your-angular-library-project-399d95b63500
https://medium.com/angular-in-depth/the-ultimate-guide-to-set-up-your-angular-library-project-399d95b63500
https://www.syncfusion.com/kb/9720/how-to-get-started-easily-with-syncfusion-angular-6-scheduler
https://www.syncfusion.com/kb/9720/how-to-get-started-easily-with-syncfusion-angular-6-scheduler
https://code.tutsplus.com/es/tutorials/angular-form-validation-with-reactive-and-template-driven-forms--cms-32131
https://code.tutsplus.com/es/tutorials/angular-form-validation-with-reactive-and-template-driven-forms--cms-32131
https://stackoverflow.com/
https://www.positronx.io/custom-validators-angular-7-reactive-forms/
https://alligator.io/js/introduction-localstorage-sessionstorage/

 56

Appendix 1

Work Packages:

Project: Introduction to Angular 8 WP ref: (WP1)

Major constituent: Software Sheet 1 of 1

Short description:

The main focus of this activity is to understand all the

basic concepts and how angular 8 works.

Planned start date

16/09/2019

Planned end date:

14/10/2019

Start event: 16/09/2019

End event: 14/10/2019

Internal task T1: How to render dynamic components

Internal task T2: Create and build lazy loaded modules

Internal task T3: Investigate about web components

advantages

Deliverables: Dates:

Table A1. 1 - Work Package 1

Project: Learn and implement Reactive Forms WP ref: (WP2)

Major constituent: Software Sheet 1 of 1

Short description:

This work package will focus on learning the

functionalities that we will use later to realize the final

objective. The web format that we will create from the

json file will be based mainly on reactive forms and web

components.

Planned start date

15/10/2019

Planned end date:

15/11/2019

Start event: 15/10/2019

End event: 15/11/2019

Internal task T1: Build a simple reactive form with some

fields like name, last name, mail, phone number…

Deliverables: Dates:

 57

Internal task T2: Create a web component that shows

a random image or similar.

Table A1. 2 - Work Package 2

Project: Get the html config from json file WP ref: (WP3)

Major constituent: Software Sheet 1 of 1

Short description:

In this part of the project we will try that the configuration

parameters from json file build the web app with the

fields that we want. Once the goal is achieved, we will

package and publish the library so that anyone can

download, install and use it.

Planned start date

18/11/2019

Planned end date:

20/12/2019

Start event: 18/11/2019

End event: 20/12/2019

Internal task T1: Get the configuration from the json file

and be interpreted by the both components we have

created (form and web image).

Internal task T2: Verify that the fields of the forms and

the web components belong to the file configuration.

Internal task T3: Pack the project and create the

library.

Deliverables: Dates:

Table A1. 3 - Work Package 3

 58

Project: Implement calendar component WP ref: (WP4)

Major constituent: Software Sheet 1 of 1

Short description:

To finalize the project we will implement a new type of

component, the calendar. This component will

complement the form and the image web component. In

the json file we can indicate tasks and events,

associated with its start and end date, which will be

recorded in the calendar once the component is

rendered.

Planned start date

23/12/2019

Planned end date:

21/01/2020

Start event: 23/12/2019

End event: 21/01/2020

Internal task T1: Establish a sketch with the input data:

start date, end date, description...

Internal task T2: Integrate this component to the

existing library with the rest.

Internal task T3: Check that the data coming from the

json corresponds to the tasks that appear in the

calendar.

Internal task T4: Pack the project again and rebuild the

library to add the new scheduler component

Deliverables: Dates:

Table A1. 4 - Work Package 4

 59

Appendix 2

Angular Framework

One of the big differences between a framework and a library is that the framework is a lot

of “generic” functionalities prepared for us to do specific functionality. Instead, a library is a

single generic function. Based on this definition we can say that a framework consists of

several libraries written to be managed together. Under this thought, we can say that

Angular prepared everything so that our application only uses the modules (or libraries)

that we are going to need in our WebApp.

With this thought, when we start building our application with Angular, we will only have the

main module called “core”, with it we will be able to run our application and write each of

our components. If our application needs to generate routes we have to add the routing

module, which Angular already provides us, and if we need to add forms, Angular also has

an incredible module for that.

To build Angular applications we create:

 HTML templates that contain special Angular tags

 Class components that manage these templates

 Services that encapsulate application logic

 Modules that organize the components and services

Another of the great advantages of angular is its scalability. It allows to separate the roles
that could be in a team of workers, such as engineers, designers, quality control, testers ...
All this thanks to its component-based model.

Also, when maintaining applications, Angular covers this need. The fact of using Typescript

allows to find bugs and errors with ease, and a quick and simple adaptation to the code of

developers who are not familiar with it, due to its ability to immediately see the data that is

manipulated in the application. Finally, Angular focuses on the ability to test and be tested.

Angular is reliable. Because it belongs to Google, it takes advantage of all its testing

resources to help improve the framework. Each version of Angular, before being published,

is already being used in hundreds of projects, and every change that is made, is validated

against each Angular project within Google. That minimizes the possibility of errors or

changes.

It is also good to note that Angular has a huge environment and there are thousands of

tools at our disposal, such as libraries, code samples, consultation forums...

 60

JSON format

JSON is able to define 6 types of values, 4 primitives (numbers, strings, nulls and booleans),

and 2 structured (objects and matrices). JSON main features:

 JSON is just a data format.

 Requires using double quotes for strings and property names. Single quotes are

not valid

 A comma or two points badly placed may cause a JSON file to not work

 It can take the form of any type of data that is valid to be included in a JSON, not

just arrays or objects. For example, a string or a unique number could be valid

JSON objects

 Unlike the JavaScript code, in which the object's properties may not be in quotes,

in JSON only strings in quotes can be used as properties

An example of JSON format would be the storage of data related to a person, like this:

var person={

"name":"Jaume Armengol",

"age":22,

"height":"184 cm",

"weight":77

}

This creates the object named "person", since we indicate its value in keys. Inside the
object we indicate its properties, with their respective name and value, separated by
commas. All as many as we want. To access the information of an object, we can refer to
its properties in this way:

console.log(‘Age of person: ’ + person.age) Age of person: 22

JSON format have some advantages and disadvantages.

Advantage:

 It is self-descriptive and easy to understand

 It is faster in any browser

 It is easier to read than XML

 It is lighter (bytes) in transmissions

 It parses faster

 High processing speed

 It can be understood natively by JavaScript parsers

Disadvantages:

 Some developers could find their brief notation confusing.

 It does not have the XML extensibility.

 It does not support large loads, only common data.

 For security it requires external mechanisms such as regular expressions.

 61

Visual Studio Code

Visual Studio Code is a cross-platform programming editor developed by Microsoft. The

first beta version of Visual Studio Code was published in November 2015 and the first

stable version, Visual Studio Code 1.0, was published in April 2016. Since its inception,

Visual Studio Code has maintained a very rapid development pace, and has publishes a

new version at the beginning of each month. In addition, secondary versions that correct

last minute failures are published almost every month.

Visual Studio Code is an application based on Electron. Electron is a framework for

programming desktop graphic applications using web technologies, and includes

Chromium (the free version of Google Chrome) as a graphics engine and the Node.js

environment to run JavaScript.

Bitbucket

With this tool you can control all the changes that are made in the code. Thus, in a work

team, if each one develops a different function, they can independently modify their

respective lines of code to later mix all the work in a single branch. In the case of only one

person working on the project (as is the case here), different versions can be saved in

different branches as the project progresses. They also function as backups, the project is

saved and if at any time you want to return to the point where we were in a branch, you

can return without problems.

To perform all these functions bitbucket provides Sourcetree. Source Tree is a tool for both

Git and Mercurial to work with these systems graphically. This way it is easier to make the

commits (or changes) in the code, update it, undo what we do not want, upload the files to

one or another branch ... It is a more visual way to use the repository.

 62

Glossary

Framework: A framework or work environment is a standardized set of concepts, practices

and criteria to focus on a particular type of problem that serves as a reference, to face and

solve new problems of a similar nature.

SPA: A single-page application (SPA) is a web application or web site that interacts with

the user by dynamically rewriting the current page rather than loading entire new pages

from a server.

CSS: Cascading Style Sheets (CSS) is a graphic design language to define and create the

presentation of a structured document written in a markup language.

URL: A uniform resource locator (URL) is a Uniform Resource Identifier (URI) whose

referred resources can change, that is, the address can point to time-varying resources.

They are formed by a sequence of characters according to a model and standard format

that designates resources in a network such as the Internet.

Bootstrapping: Bootstrapping is generally a term used to describe the boot, or startup

process of any computer.

DOM: Document Object Model (DOM) is essentially a platform interface that provides a

standard set of objects to represent HTML, XHTML and XML documents, a standard model

on how these objects can be combined, and a standard interface to access and manipulate

them. Through the DOM, programs can access and modify the content, structure and style

of HTML and XML documents, which is what it was primarily designed for.

API: The application programming interface (API) is a set of subroutines, functions and

procedures (or methods, in object-oriented programming) that offers a certain library to be

used by other software as an abstraction layer. They are generally used in programming

libraries.

