Estudio de un sistema de iluminación natural para edificios

MEMORIA

Autor: Alejandro Mor Herrera
Director: Joaquín Fernández Sánchez
Codirectora: Alba Ramos Cabal
Convocatoria: Enero 2020

Escola Tècnica Superior d'Enginyeria Industrial de Barcelona
Resumen

En este trabajo se lleva a cabo un estudio de los sistemas de iluminación natural disponibles en el mercado, y se analiza cómo, mediante la combinación de diferentes componentes, es posible plantear una solución propia para iluminar un espacio concreto.

En primer lugar, se realiza una revisión bibliográfica sobre el estado del arte, y se analiza la importancia del Sol como la fuente de luz conocida más importante. También se lleva a cabo un estudio de mercado del que se analizan las diferentes soluciones disponibles actualmente.

A continuación, se describe detalladamente el caso de estudio elegido para la implantación de la solución propuesta. Y, posteriormente, se plantea un estudio de las posibles alternativas en función de las características, orientación, espacio a iluminar y entorno del caso concreto elegido.

Conocido y presentado el espacio que se desea iluminar, se realiza un primer estudio preliminar basado en un producto real y comercializado por una empresa de iluminación solar. Apoyándose en esta solución, se procede al diseño preliminar de un sistema de iluminación, se plantean posibles modificaciones y mejoras y se procede a su análisis. El diseño preliminar es validado estructuralmente mediante el software SolidWorks. Seguidamente se procede a la definición final del sistema identificando proveedores para los diferentes componentes necesarios, y se realizan los pertinentes cálculos de iluminancia, que permitirán evaluar la validez de la solución propuesta.

Por último, se lleva a cabo un estudio de la solución de iluminación propuesta tanto a nivel medioambiental como económico. Se analiza el impacto de la solución sobre el medioambiente y presenta el presupuesto aproximado.
ÍNDICE

RESUMEN .. 3

ÍNDICE ... 4

1. PREFACIO .. 8

2. INTRODUCCIÓN ... 9
 2.1. Objetivos del proyecto ... 9
 2.2. Alcance y limitaciones del proyecto ... 9

3. ESTADO DEL ARTE .. 10
 3.1. Luz solar .. 10
 3.1.1. Movimiento del Sol .. 10
 3.1.2. Fotometría ... 12
 3.1.3. Aprovechamiento de la luz solar .. 14
 3.2. Reflección especular ... 16
 3.2.1. Espejo uestoio (Arquímedes) .. 16
 3.2.2. Telescopios reflectores (Newton) .. 17
 3.2.3. Concentradores solares ... 18
 3.3. Helióstatos solares ... 20
 3.4. Sistema Himawari .. 20
 3.5. Tubos solares ... 21
 3.6. SerraLux .. 23

4. CASO DE ESTUDIO .. 25
 4.1. Situación .. 25
 4.2. Localización del espacio interior ... 25
 4.2.1. Perfil ... 26
 4.2.2. Alzado ... 26
 4.2.3. Planta .. 28

5. ESTUDIO DE ALTERNATIVAS ... 30
 5.1. Conductos verticales ... 31
 5.2. Conductos horizontales (Sur) ... 32
 5.3. Conductos horizontales (Norte) ... 33
 5.4. Selección de la alternativa ... 35

6. ESTUDIO PRELIMINAR ... 36
 6.1. Brighten Up® Series .. 36
6.2. Conducto reflectante ... 38
 6.2.1. Especificaciones previas .. 38
 6.2.2. Selección de materiales y diámetros 39
 6.2.3. Geometría y ubicación en el espacio 44
6.3. Captador .. 45
 6.3.1. Selección de materiales ... 45
 6.3.2. Geometría y unión con el conducto 49
 6.3.3. Sistema de seguimiento solar .. 50
6.4. Difusor ... 52
 6.4.1. Selección del material ... 52
 6.4.2. Geometría y unión con el conducto 52
6.5. Control de salida de la luz ... 53
 6.5.1. Electroválvula de mariposa .. 54
 6.5.2. Cristal inteligente ... 54
6.6. Sistema eléctrico complementario ... 55
 6.6.1. Solatube Integrated Solar Electric NightLight 55
 6.6.2. Iluminación LED ... 56

7. ESTUDIO DEFINITIVO ... 57
 7.1. Captador ... 57
 7.1.1. Lente Fresnel y diámetro de la esfera 57
 7.1.2. Espejo de desvío ... 59
 7.1.3. Tubo intermedio ... 60
 7.1.4. Movimiento sobre eje vertical ... 62
 7.1.5. Movimiento sobre el eje horizontal 62
 7.1.6. Esfera .. 65
 7.1.7. Sensor de radiación solar .. 65
 7.1.8. Motores ... 66
 7.2. Conducto reflectante ... 66
 7.2.1. Tubería y codos ... 66
 7.2.2. Abrazaderas ... 68
 7.2.3. Revestimiento de aluminio ... 70
 7.3. Difusor ... 70
 7.3.1. Cristal inteligente ... 70
 7.3.2. Lente del difusor ... 71
 7.3.3. Elementos de unión .. 72
 7.4. Eficiencia del sistema ... 72
 7.5. Validación del estudio .. 73
 7.5.1. Datos de entrada y ecuaciones ... 73
7.5.2. Validación del sistema de iluminación natural .. 78
7.5.3. Validación del sistema de iluminación artificial ... 79

8. IMPACTO MEDIOAMBIENTAL ... 82
 8.1. Plásticos ... 82
 8.2. Aluminio .. 83
 8.3. Vidrio .. 83
 8.4. Acero inoxidable .. 83
 8.5. Componentes electrónicos ... 84

9. PRESUPUESTO .. 85
 CONCLUSIONES .. 88
 AGRADECIMIENTOS .. 89
 BIBLIOGRAFÍA ... 90
1. Prefacio

La iluminación natural consiste en el aprovechamiento de la luz solar para iluminar espacios interiores. La luz solar, en contraposición a la iluminación artificial, contribuye a mejorar la calidad y el bienestar visual dentro de un espacio arquitectónico. Es un hecho probado que los espacios iluminados con luz de día son más estimulantes y de efectos psicológicos más positivos que los iluminados con la luz artificial. Obteniéndose en aquellos incluso un rendimiento mayor en el trabajo.

Desde la antigüedad el hombre ha tratado de iluminar de forma natural los espacios donde vive, no solo “abriendo huecos” en los muros, sino también facilitando dicha iluminación mediante la propia configuración arquitectónica. Este es el caso de las secciones escalonadas que permiten que los rayos solares alcancen las zonas más profundas de los edificios al elevarse los espacios centrales sobre los laterales.

Sin embargo, hay espacios a los cuales, hoy en día, no es posible hacer llegar la luz de manera directa habilitando ventanas.

Tradicionalmente para estos espacios se ha utilizado la iluminación artificial, pero en los últimos años, se han asentado en el mercado diferentes sistemas que pretenden captar la luz del Sol en el exterior y transportarla al interior del espacio a iluminar sin necesidad de transformarla en electricidad.

Entonces, se considera que mediante un análisis de este mercado y seleccionando los componentes adecuados, es posible diseñar un sistema propio con mejores prestaciones.
2. Introducción

Este trabajo está enfocado como un estudio de viabilidad o un anteproyecto. No se pretende hacer un diseño elaborado de todos los componentes necesarios para elaborar un sistema de iluminación natural, sino planear un primer estudio de las alternativas que ofrece el mercado y evaluar si es posible un futuro proyect que diseñe debidamente cada uno de los elementos que forman parte un proyecto de estas características.

2.1. Objetivos del proyecto

El objetivo principal del proyecto es definir un sistema que permita iluminar con luz natural un espacio concreto, en el cual no sea posible iluminarlo mediante luz natural directa. Se pretende que el sistema sea capaz de:

- Captar la luz.
- Transportar la luz.
- Difundir la luz.

Además, con la finalidad de aportarle mayor valor al proyecto, se consideran dos objetivos secundarios:

- Implementar un complemento para el sistema que permita regular la entrada de luz al espacio (de manera que también impida la entrada de luz cuando no se desee).
- Estudiar un sistema de almacenamiento de la luz o disponer de un sistema eléctrico complementario, para iluminar cuando no se disponga de luz natural.

2.2. Alcance y limitaciones del proyecto

Se hará un estudio de los sistemas de iluminación ya existentes, con la intención de obtener un diseño mejorado/propio mediante la combinación/mejora de los componentes que serán considerados más adecuados. Se resolverán aspectos formales y funcionales, ya que el trabajo se centra en resolver las necesidades concretas.

Por lo tanto, se considera que quedan fuera del alcance del proyecto los siguientes puntos:

- La posibilidad de aplicarlo a espacios de diferentes características.
- El planteamiento del modelo de negocio.
- La comparación con otras soluciones (solo se realizará desde el punto de vista de las características funcionales de la solución propuesta).
3. Estado del arte

3.1. Luz solar

La luz solar es el espectro total de radiación electromagnética proveniente del Sol. Este es la fuente de luz y calor más importante y constante que se conoce, gracias a la cual el planeta Tierra tiene las condiciones idóneas para la vida.

3.1.1. Movimiento del Sol

Los dos movimientos principales que realiza la Tierra, la traslación y la rotación, van a determinar la distribución de la radiación solar incidente en la superficie terrestre.

El primer movimiento, la traslación, la Tierra se mueve alrededor del Sol describiendo una órbita elíptica en uno de cuyos focos se sitúa el Sol, tardando 365,25 días en completarla.

![Imagen 3.1: Movimiento de traslación de la Tierra](https://www.portaleducativo.net/)

El segundo movimiento, consiste en la rotación de la Tierra alrededor de su eje polar Norte-Sur, completando un giro cada 24 horas.

1 Fuente: https://www.portaleducativo.net/
El eje de la tierra está inclinado 23,45 ° y en consecuencia el ángulo entre el plano ecuatorial de la Tierra y el plano de la elíptica varía a lo largo del año dando lugar a las distintas estaciones del año y a los periodos día-noche. Dicho ángulo se denomina declinación, siendo nulo en los equinoccios (el 21 de marzo y el 21 de septiembre), máximo el 21 de junio (solsticio de verano): + 23,45 °, y mínimo el 21 de diciembre (solsticio de invierno): - 23,45 °.

Para latitudes intermedias, que es el caso del Sur de Europa, es necesario diferenciar el movimiento del Sol entre el hemisferio norte y el sur. El ecuador y los polos, son casos especiales que no cumplen esta diferenciación [1].

Tal como muestra la Imagen 3.3 y sabiendo que España se encuentra en el hemisferio norte, se observa que el Sol alcanza una mayor elevación en junio debido a la inclinación del eje terrestre y el movimiento de traslación y, por lo tanto, los días se alargan. Mientras que en diciembre los días son más cortos debido a que el Sol se encuentra haciendo un recorrido más bajo.

2 Fuente: https://www.portaleductivo.net/
3.1.2. Fotometría

Aunque la fotometría es la parte de la óptica que estudia y mide todas las radiaciones, en este proyecto se tratan solo las radiaciones visibles.

La fotometría visual mide fundamentalmente la potencia lumínica emitida por los distintos focos de luz, así como el nivel de iluminación que producen en distintas superficies. El sistema visual-luminico más simple consiste en: un foco de luz, una superficie iluminada y el ojo (que percibe tanto el foco como la luz reflejada por dicha superficie).

A continuación, se exponen las principales magnitudes fotométricas y sus unidades [1]:

- **Flujo luminoso, \(F \) [lumen]**: Todo foco puntual radiante emite un flujo energético, que es la cantidad de energía que pasa en la unidad de tiempo a través de la superficie cerrada que lo contiene.

 La unidad del flujo luminoso es el lumen (lm), que es el flujo asociado a la radiación electromagnética de 555 nm con una potencia radiante de \(\frac{1}{683} \) W. Así para una potencia radiante de 1 W y la misma longitud de onda, el flujo luminoso sería de 683 lm.

- **Ángulo sólido, \(\omega \) [sr]**: Un ángulo sólido \(\omega \), es el coeficiente entre el área de la superficie esférica delimitada \(A \), y el área correspondiente al cuadrado del radio \(R^2 \).

 ![Imagen 3.4: \(\omega = \frac{A}{R^2} \), ángulo sólido⁴.](http://hyperphysics.phy-astr.gsu.edu/hbasees/vision/photom.html)

 La unidad de ángulo sólido es el estereorradián, sr, que teniendo su vértice en el centro de una esfera corresponde al área, delimitada sobre dicha superficie, que es

⁴ Fuente: http://hyperphysics.phy-astr.gsu.edu/hbasees/vision/photom.html
equivalente a la de un cuadrado de lado R.

- **Intensidad luminosa, I [candela]**: La intensidad luminosa de un foco puntual, en una determinada dirección, es la relación entre el flujo luminoso \(F\) emitido que pasa a través de la unidad de ángulo sólido \(\omega\), es decir, \(I = dF/d\omega\). Si el flujo es uniforme en todas las direcciones se puede escribir:

\[
I = F/\omega
\]

La unidad de la intensidad luminosa es la **candela** o \(cd\), que equivale al flujo de un lumen por unidad de ángulo sólido, es decir: \(1 \text{ cd} = 1 \text{ lm} \cdot \text{sr}^{-1}\).

- **Iluminancia, \(E [\text{lux}]\)**: Es el concepto fotométrico más importante que mide el nivel de iluminación, y se define como el flujo luminoso, \(F\), que recibe una unidad de superficie: \(E = dF/dA\). Cuando el flujo recibido es uniforme:

\[
E = F/A
\]

La unidad correspondiente es el lumen por metro cuadrado, llamado también lux, es decir, \(1 \text{ lux} = 1 \text{ lm} \cdot \text{m}^{-2}\). De la misma manera, el lux puede definirse como la iluminación que produce un foco de una candela sobre una superficie de 1 m\(^2\) situada a la distancia de un metro, cuando la luz incide normalmente sobre dicha superficie.

Además, el lux tiene las mismas dimensiones que la irradiancia, W·m\(^{-2}\).

<table>
<thead>
<tr>
<th>Áreas y clases de local</th>
<th>Mínimo (lux)</th>
<th>Óptimo (lux)</th>
<th>Máximo (lux)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viviendas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dormitorios</td>
<td>100</td>
<td>150</td>
<td>200</td>
</tr>
<tr>
<td>Cuartos de aseo</td>
<td>100</td>
<td>150</td>
<td>200</td>
</tr>
<tr>
<td>Cuartos de estar</td>
<td>200</td>
<td>300</td>
<td>500</td>
</tr>
<tr>
<td>Cocinas</td>
<td>100</td>
<td>150</td>
<td>200</td>
</tr>
<tr>
<td>Zonas generales de edificios</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zonas de circulación y pasillos</td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>Escaleras, roperos, lavabos, almacenes y archivos</td>
<td>100</td>
<td>150</td>
<td>200</td>
</tr>
</tbody>
</table>
Tabla 3.1: Iluminancias recomendadas según la actividad y el tipo de local

<table>
<thead>
<tr>
<th></th>
<th>200</th>
<th>300</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trabajos con requerimientos visuales limitados</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trabajos con requerimientos visuales normales</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trabajos con requerimientos visuales especiales</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aulas y laboratorios</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bibliotecas y salas de estudio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oficinas, mecanografiado, salas de proceso, conferencia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grandes oficinas, CAD, CAM, CAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comercio tradicional</td>
<td>300</td>
<td>500</td>
<td>750</td>
</tr>
<tr>
<td>Grandes superficies, supermercados, muestras</td>
<td>500</td>
<td>750</td>
<td>1000</td>
</tr>
</tbody>
</table>

3.1.3. Aprovechamiento de la luz solar

El aprovechamiento solar tiene cuatro limitaciones principales [1]:

- **La duración del día**: Cuantas más horas de Sol tenga el día más luz solar se podrá aprovechar, dependiendo de la latitud y la estación del año. Por encima de la latitud de 55° (países nórdicos como Suecia o Noruega, entre otros) el aprovechamiento de la luz natural es deficiente ya que comienza a haber días enteros en los que el Sol no supera el horizonte, pero a cambio habrá días en los que el Sol nunca se ponga.

5 [Fuente: https://recursos.citcea.upc.edu/llum/interior/iluint1.html#sist_al](https://recursos.citcea.upc.edu/llum/interior/iluint1.html#sist_al)
La iluminancia horizontal exterior E_{h}: Depende de la latitud, la estación y la hora del día. En latitudes medias, con cielo despejado, tenemos más del doble de iluminancia en verano que en invierno debido principalmente al distinto espesor de atmósfera que el rayo solar tiene que atravesar. Por la misma razón la iluminancia baja mucho al amanecer y al atardecer.

Luz solar (directa más difusa)	100.000 lux
Luz solar con cielo cubierto (dic)	10.000 lux
Luz solar con cielo cubierto (jun)	50.000 lux
Interior junto a la ventana	2.000-1.000 lux

La orientación de la fachada: La fachada más favorable es la horizontal, que “ve” toda la bóveda celeste y recibe más radiación solar, durante todo el año, que cualquier plano vertical. Los huecos que se abran permiten la iluminación cenital. En cuanto a las fachadas verticales, la mejor es la orientada al Sur por ser la fachada que tiene más horas de Sol. La fachada Norte tiene el menor número de horas de Sol, aunque ofrece a lo largo del año una luz difusa que no deslumba y no se ve tan afectada por la nubosidad o la climatología local.

Obstáculos externos: Los edificios, los árboles e incluso la topografía del terreno, pueden impedir parcialmente la iluminación desde el cielo, reduciendo la iluminancia en la ventana de forma variable, siendo dicha reducción, cuando se trata de edificios, mayor en invierno que en verano.

3.2. Reflexión especular

El componente principal de cualquier sistema de iluminación natural es el espejo. Ya que este permite hacer rebotar la luz para darle una dirección distinta a la que llega proveniente del Sol.

La reflexión especular se produce cuando un rayo de luz incide sobre una superficie pulida (espejo) y cambia su dirección sin cambiar el medio por donde se propaga. Cuando un rayo incide sobre una superficie pulida y lisa, y rebota hacia el mismo medio, se dice que se refleja y cumple las “leyes de la reflexión” [2]:

- El rayo incidente forma con la normal un ángulo de incidencia que es igual al ángulo que forma el rayo reflejado con la normal (llamado rayo reflejado).
- El rayo incidente, el rayo reflejado y la normal están en el mismo plano.

![Reflexión especular](Imagen 3.6: Comportamiento de la reflexión especular).

Para poder entender el funcionamiento de los sistemas actuales, antes se debe hacer una explicación del contexto histórico de la óptica mediante espejos. A continuación, se presentan varios casos que ayudan a entender la importancia del espejo en la reflexión de la luz natural.

3.2.1. Espejo ustorio (Arquímedes)

Según Luciano de Samosata, Arquímedes inventó un artefacto con espejos reflectantes, conocido como *El rayo de la muerte de Arquímedes*, que servía para enfocar la luz en barcos que se acercaban, haciendo que estos ardieran.

8 Fuente: https://www.emaze.com/@AWZCOQQQ
Este se trata del primer caso documentado en el que se usa un espejo para hacer cambiar la dirección del Sol. Cuenta la historia, que Arquímedes repelió un ataque llevado a cabo por soldados romanos durante el sitio de Siracusa (213-211 a.C.) [3].

3.2.2. **Telescopios reflectores (Newton)**

Un telescopio reflector es un telescopio óptico que utiliza espejos en lugar de lentes para enfocar la luz y formar imágenes. La idea de la utilización de espejos cóncavos y convexos se le atribuye a Leonard Digges en su libro *Pantometria* (aunque sería su hijo Tommas Digges el que completaría y publicaría el libro en 1571).

Sin embargo, en 1636 Marin Mersenne ideó un telescopio reflector que consistía en un espejo parabólico con un pequeño orificio frente a otro de menor tamaño de modo que la luz se reflejase hacia el ojo a través del orificio.

Seguidamente, en 1663 James Gregory perfeccionó la idea agregando un pequeño espejo secundario cóncavo y elipsoidal que reflejase la luz procedente del espejo primario al segundo plano focal de la elipse, situado en el centro del agujero de este, y de ahí al ocular.

Aunque sería finalmente Isaac Newton, el que en 1670 perfeccionaría definitivamente el sistema. El reflector clásico formado por dos espejos y un ocular se conoce como **Reflector Newtoniano**.

9 Fuente: https://es.slideshare.net/forcasa/arquimedes-de-siracusa-6079967
Observando la Imagen 3.8, el funcionamiento es muy sencillo. La luz entra en el tubo desde un extremo, en el extremo opuesto se encuentra el espejo principal cuya forma es esférica o parabólica. El espejo devuelve la luz. Para evitar que el foco del espejo se cree por delante de la abertura del tubo, cuenta con un espejo secundario en la parte anterior del tubo. Se trata de un espejo plano diagonal que desvía el haz de luz y lo saca lateralmente. En este lateral se encuentra el porta ocular, que aloja el ocular durante la observación [4].

3.2.3. Concentradores solares

Un concentrador solar es un tipo de colector solar capaz de concentrar la energía solar en un área reducida, aumentando la intensidad energética. Similar a una lupa enfocando su luz en un punto, los concentradores reflejan la luz solar por medio de un conjunto de espejos alineados hacia un objetivo capaz de captar dicha energía para su aprovechamiento.

En general se conoce como concentradores solares (colectores), a elementos capaces de recolectar luz solar, concentrarla y, dirigirla. Y se distinguen dos grupos de concentradores: los de tipo reflectante (que usan espejos), y, los de tipo refractivo (que usan lentes de transmisión).

10 Fuente: https://www.omegon.eu/es/asesoramiento/telescopios/conocimiento-de-telescopios/
Constructivamente, un colector puede incluir un espejo (generalmente cóncavo), lentes Fresnel, sistemas rotativos de doble placa prismática, helióstatos, o simplemente, una cúpula transparente [5].

Lente de Fresnel

Llamada así por su inventor, es un diseño que permite la construcción de lentes de gran apertura y una corta distancia focal sin el peso y volumen de material que debería usarse en una lente de diseño convencional.

Fuente: https://www.researchgate.net/
Cuando las lentes son grandes, su grosor puede hacerse excesivo, haciendo la lente muy pesada y cara. En vez de ello, se pueden mantener los radios de curvatura de las lentes separándolas en anillos circulares. El grosor de la lente en cada anillo es diferente, eliminando el enorme espesor que tendría la lente de ser sus superfi cies continuas, mientras que la superfi cie presenta un aspecto escalonado [6].

3.3. Héliostatos solares

Un héliostate solar es un espejo montado sobre un eje que permite orientarlo en función de la posición del Sol (mediante un reloj o una computadora), para reflejar un rayo del Sol de manera constante en una dirección deseada [7].

![Imagen 3.11: Héliostato solar](http://www.dforcesolar.com/energia-solar/que-son-los-heliostatos/)

Al rastrear el movimiento del Sol a través de espejos, la luz del Sol se redirige a lo largo de un eje fijo hacia un blanco estacionario o fijo. Dependiendo de la aplicación final de esta luz natural, el tratamiento posterior de este haz variará. Se pueden añadir reflectores secundarios para redireccionamiento, materiales difusores para crear una mejor distribución o conductos para transportar la luz por dentro del edificio.

3.4. Sistema Himawari

Este sistema se basa en una unidad de lentes que enfocan la luz solar a unos terminales de cables de fibra óptica. Esta fibra transmite la luz solar hasta donde se necesite y cuenta con un sistema de seguimiento automático que detecta la posición del Sol para conseguir el máximo rendimiento.
Ofrece colectores con 198, 90, 36 o 12 lentes, que operan mediante alimentación eléctrica o módulos fotovoltaicos, y suministran luz a 33, 25, 6 o 2 terminales respectivamente. Además, al ser los cables de fibra óptica delgados y flexibles, permiten transportar libremente la luz hasta cualquier habitación o estancia del edificio. Hasta 150 metros de distancia [8].

3.5. Tubos solares

Consiste en colocar una cúpula transparente hecha de un material acrílico resistente a la radiación ultravioleta, para que de esta manera la luz solar caiga en un plano perpendicular a la bóveda a cualquier hora del día.

Los tubos solares pueden ser de sección cuadrada o circular, y presentan en su interior un material reflectante [7].

14 Fuente: https://www.interempresas.net/Construccion/FeriaVirtual/Producto-Sistema-de-captacion-y-transporte-de-luz-natural-Himawari-126316.html
Por último, en la parte inferior se instala un difusor de vidrio doble, con propiedades de aislamiento térmico, que dispersa la luz en el área a iluminar.

Es interesante remarcar, que hay una empresa española, Espacio Solar, que utiliza una variante de los tubos solares.

Como se puede observar en la Imagen 3.14, el sistema es prácticamente idéntico que el de los tubos solares, a excepción del captador, que presenta una tecnología propia de la empresa.

16 Fuente: https://espaciosolar.com/
La cúpula aloja el lucernario de cristal propiamente dicho y una malla reflectante orientada hacia el Sur, para captar eficientemente los rayos del Sol y dirigirlos hacia el interior del conducto de luz.

Según Espacio Solar, su tecnología permite aumentar casi el doble la aportación de luz natural respecto a un sistema de tuberías convencional durante los meses de Sol bajo, y al mismo tiempo consigue regular la entrada de calor en los meses de Sol más altos. No dispone de motores ni de piezas móviles [9].

3.6. SerraLux

SerraLux es una empresa estadounidense con un sistema de iluminación natural propio. El cual se basa en añadirle a una ventana lateral una capa de PET (Tereftalato de polietileno) que contiene multitud de “estantes” con la finalidad de hacer rebotar la luz 45° hacia el techo del espacio a iluminar.

17 Fuente: https://espaciosolar.com/
Imagen 3.16: Funcionamiento de la capa de PET, dependiendo de la incidencia de la luz solar\(^{18}\).

Además, en el techo de la habitación se coloca un reflector para conseguir que la luz proveniente de la capa de PET colocada en la ventana se distribuya por todo el espacio \([10]\).

Imagen 3.17: Sistema de iluminación de SerraLux\(^{19}\).

\(^{18}\) Fuente: https://serraluxinc.com/
\(^{19}\) Fuente: https://serraluxinc.com/
4. Caso de estudio

En este proyecto, se ha escogido como caso de estudio la vivienda familiar del autor, en la cual hay intención de construir un sótano, y se pretende analizar las posibles soluciones de iluminación natural y proponer la que se considere más adecuada para su futura implementación. Cabe destacar que el hecho de que el caso de estudio sea la vivienda del autor permite el fácil acceso a los planos de la vivienda.

4.1. Situación

La vivienda está situada en el municipio de l’Ametlla del Vallès, Cataluña, España, y fue diseñada por el arquitecto Ignacio Herrera González en el año 2001 con la idea de proporcionarle el máximo de entrada de luz natural mediante grandes ventanales situados por todo el domicilio.

Debido al conocimiento del posible proyecto del sótano, se planteó una oportunidad para poder diseñar un sistema de iluminación natural para este espacio. Además, se tuvo en cuenta la facilidad para la obtención de los planos de la estructura de la vivienda y para la recopilación de información adicional por parte del arquitecto.

A continuación, se procede a detallar la ubicación del espacio concreto, que dispone de unas medidas aproximadas de 8x4 metros cuadrados de superficie y 2 metros de altura.

4.2. Localización del espacio interior

Con el fin de situar exactamente la ubicación y las dimensiones de esta habitación, se solicitó al arquitecto de la vivienda los planos de la casa (los planos completos se encuentran en los anexos). Del análisis de dichos planos se obtienen las dimensiones y datos necesarios para la consecución del objetivo de este proyecto.

A continuación, se detalla en las vistas de perfil, alzado y planta la ubicación del espacio respecto la vivienda. Identificando las diferentes vistas de la habitación mediante un rectángulo de color rojo.
4.2.1. Perfil

Como se puede observar en la **Imagen 4.1**, la habitación estaría situada a la misma altura que el garaje, con una altura de 2 metros y una profundidad de 4 metros. También se puede apreciar que por encima de este espacio quedaría ubicada la sala de estar.

4.2.2. Alzado

Esta vista permite comprobar que la altura es efectivamente de 2 metros y también muestra que la longitud de la habitación es de 8 metros.

20 *Fuente:* Elaboración propia a partir de los planos de la vivienda.
Imagen 4.2: Vista de alzado (norte) de la ubicación de la habitación21.

Observando la Imagen 4.2, se comprueba como la habitación quedaría ubicada a la misma altura que el garaje.

Imagen 4.3: Vista de alzado (sur) de la ubicación de la habitación22.

Mientras que en la Imagen 4.3, se observa como la habitación quedaría ubicada justamente por debajo de la sala de estar.

21 Fuente: Elaboración propia a partir de los planos de la vivienda.

22 Fuente: Elaboración propia a partir de los planos de la vivienda.
4.2.3. Planta

Para la planta se proporcionan también dos vistas, y en ambas se puede comprobar claramente que la superficie del espacio es de 4x8 metros cuadrados.

![Imagen 4.4: Vista de planta (nivel de planta baja) de la ubicación de la habitación.](image)

La Imagen 4.4 muestra la vista al nivel de la planta baja, en la cual se puede apreciar como la habitación quedaría justo por debajo de la sala de estar.

23 Fuente: Elaboración propia a partir de los planos de la vivienda.
Por otro lado, la *Imagen 4.5* muestra la vista de la planta, pero a la altura del sótano, en esta se puede observar como el espacio estaría ubicado justo a su misma altura.

Imagen 4.5: Vista de planta (nivel del sótano) de la ubicación de la habitación.

Fuente: Elaboración propia a partir de los planos de la vivienda.
5. Estudio de alternativas

Una vez analizados los diferentes sistemas de iluminación que hay disponibles en el mercado e identificado el espacio al que se le desea aplicar la solución. Se procede a seleccionar los sistemas o componentes que se adapten de la mejor manera al caso concreto.

Debido a la particularidad de la ubicación de la habitación, se descartan fácilmente dos de los sistemas:

- **Sistema de SerraLux**: Debido a que es espacio de estudio no presenta ventanas laterales, y por lo tanto no se puede hacer uso del sistema propio que utiliza esta empresa.
- **Sistema con Heliostatos**: De la misma manera que en el caso anterior, al no haber entrada de luz directa, ni lateral ni vertical, no hay manera que la luz entre en el espacio haciéndola rebotar mediante heliostatos.

Por lo tanto, el sistema empleado deberá ser algo parecido a un sistema que capte la luz en el exterior y transporte la luz mediante tubos reflectantes o fibra óptica. Haciéndola llegar finalmente a un difusor, desde el que se reparte esta luz en la habitación.

Ante la complejidad y la particularidad de transportar la luz mediante fibra óptica y siguiendo la propuesta del arquitecto de la vivienda en una entrevista que puede encontrarse en el Anexo 2, se decide optar por las tuberías reflectantes. Ya que, al ser las dos alternativas de prestaciones muy parecidas, el alto coste de la fibra hace que se decante la balanza en favor de las tuberías.

Debido a la ubicación de la habitación, se plantean tres posibles alternativas en función de la dirección que tomaría el conducto por el que se transportaría la luz. Estas alternativas serán valoradas en función de una serie de parámetros que se definen a continuación:

- **Longitud del conducto**: A mayor longitud del conducto, se producirán más pérdidas en su interior.
- **Cambios de dirección**: Cuantos más codos tenga el sistema, menor será su rendimiento.
- **Ocupación de espacio**: Evaluación de si la alternativa propuesta interfiriere físicamente en otros espacios de la vivienda.
- **Ubicación y orientación**: Hace referencia a la ubicación del captador y a su orientación respecto al Sol, en función de si se ve condicionada por su movimiento.
- **Montaje y mantenimiento**: Se pretende asignar a cada alternativa una puntuación referente a la facilidad/dificultad para el montaje del sistema y su respectivo mantenimiento futuro.
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud del conducto (m)</td>
<td>≥12</td>
<td>[9 - 12)</td>
<td>[6 - 9)</td>
<td>[3 - 6)</td>
<td><3</td>
</tr>
<tr>
<td>Cambios de dirección</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Ocupación de espacio</td>
<td>Ocupa</td>
<td>-</td>
<td>Indiferente</td>
<td>-</td>
<td>No ocupa</td>
</tr>
<tr>
<td>Ubicación y orientación</td>
<td>Muy mala</td>
<td>Mala</td>
<td>Indiferente</td>
<td>Buena</td>
<td>Muy buena</td>
</tr>
<tr>
<td>Montaje y Mantenimiento</td>
<td>Muy difícil</td>
<td>Difícil</td>
<td>Indiferente</td>
<td>Fácil</td>
<td>Muy fácil</td>
</tr>
</tbody>
</table>

Tabla 5.1: Equivalencia de puntuaciones para cada factor\(^{25}\).

La **Tabla 5.1** muestra la equivalencia entre las características de cada parámetro con una puntuación establecida entre 1 y 5, siendo 5 la nota más positiva y siendo 1 la más negativa.

A continuación, se detallan las tres alternativas y se evalúan en función de los parámetros definidos anteriormente. Para cada alternativa se mostrará el recorrido teórico del conducto mediante una línea de color amarillo y se señalará la ubicación del espacio a iluminar, de la misma manera que se ha hecho en apartados, mediante un rectángulo rojo.

5.1. Conductos verticales

Se trata del caso más convencional o habitual, la gran mayoría de sistemas de iluminación natural con tuberías captan la luz desde un punto elevado en el edificio y la transportan verticalmente. Por lo tanto, el captador estaría situado en el techo de la cara Sur de la casa.

\(^{25}\) **Fuente:** Elaboración propia.
Como se observa en la Imagen 5.1, el conducto debería pasar por la Sala de Estar hasta llegar al espacio a iluminar.

Evaluación de los parámetros:

- **Longitud del conducto (m):** 4,5.
- **Cambios de dirección:** 0. El transporte de la luz sería realizado verticalmente en línea recta.
- **Ocupación de espacio:** Ocupa. Se observa cómo, de manera clara, los conductos deberían cruzar por medio de la Sala de Estar.
- **Ubicación y orientación:** Muy buena. Debido a que el captador quedaría situado en la cara Sur y en un punto elevado.
- **Montaje y mantenimiento:** Difícil. El captador estaría situado en un punto de difícil acceso (techo) y la tubería tendría tramos a una altura considerablemente elevada.

5.2. Conductos horizontales (Sur)

El arquitecto de la vivienda remarca en la entrevista (anexo) que esta se trata de una alternativa muy interesante. Consiste en tirar conductos horizontalmente desde la habitación hasta el jardín, que está situado en la cara Sur. Claramente, será necesaria la disposición de dos codos de 90° para poder adaptar los conductos a la trayectoria que debe seguir la luz.

26 *Fuente: Elaboración propia a partir de los planos de la vivienda.*
Estudio de un sistema de iluminación natural para edificios

Pág. 33

Imagen 5.2: Vista de perfil de como incidiría la luz con conductos horizontales desde el Sur27.

Tal como muestra la Imagen 5.2, se trata de captar la luz en el jardín y superar la verdugada estructural para llegar finalmente al espacio a iluminar.

Evaluación de los parámetros:

- **Longitud del conducto (m):** 5.
- **Cambios de dirección:** 2. Se deben diseñar dos codos (uno en el captador y otro en el difusor) para adaptar el transporte de la luz al recorrido que ha de realizar.
- **Ocupación de espacio:** No ocupa. Los conductos se ubicarían bajo tierra, se trata del parámetro clave de esta alternativa.
- **Ubicación y orientación:** Buena. Dispone de una buena orientación respecto al Sol (cara Sur), pero no ideal ya que el captador estaría situado al nivel del suelo.
- **Montaje y mantenimiento:** Muy difícil. La cara opuesta de enterrar los conductos, ya que supondría un difícil montaje y mantenimiento.

5.3. **Conductos horizontales (Norte)**

De manera parecida a la alternativa anterior, se podría plantear la alternativa de tirar conductos horizontales hacia el Norte (salida del garaje). A priori podría parecer una buena alternativa, ya que no se ocupa espacio en la casa y no se deben enterrar los conductos.

27 Fuente: Elaboración propia a partir de los planos de la vivienda.
En la Imagen 5.3 se puede apreciar como el captador quedaría situado a la salida del garaje (cara norte) y la luz sería transportada atravesando el garaje.

Evaluación de los parámetros:

- **Longitud del conducto (m)**: 10.
- **Cambios de dirección**: 4. Se deben diseñar dos de los codos iguales que en la alternativa anterior (uno en el captador y otro en el difusor), pero además se le ha de añadir dos más para adaptar el transporte de luz en el punto entre garaje y el espacio a iluminar (ya que presentan diferentes alturas).
- **Ocupación de espacio**: Indiferente. Ocuparían un espacio en el techo del garaje, pero este espacio se considera "prescindible".
- **Ubicación y orientación**: Muy mala. Debido a que el captador estaría colocado en la cara Norte de la casa y situado en un punto poco elevado.
- **Montaje y mantenimiento**: Fácil. Se considera que los conductos estarían situados a una altura alcanzable (2-2,5 metros) y por lo tanto fácilmente accesible para montar.

28 **Fuente**: Elaboración propia a partir de los planos de la vivienda.
5.4. Selección de la alternativa

A continuación, se muestra una tabla resumen con las puntuaciones obtenidas por las diferentes alternativas:

<table>
<thead>
<tr>
<th></th>
<th>Conductos verticales</th>
<th>Conductos horizontales (Sur)</th>
<th>Conductos horizontales (Norte)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud del conducto (m)</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Cambios de dirección</td>
<td>5</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Ocupación de espacio</td>
<td>1</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Orientación al Sol</td>
<td>5</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Montaje y Mantenimiento</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>17</td>
<td>17</td>
<td>11</td>
</tr>
<tr>
<td>TOTAL (sobre 5)</td>
<td>3,4</td>
<td>3,4</td>
<td>2,2</td>
</tr>
</tbody>
</table>

Tabla 5.2: Valoración de cada factor y puntuación total para cada alternativa.

En la Tabla 5.2 se puede apreciar que la alternativa **Conductos horizontales (Sur)** es la menor puntuada para el caso de estudio, con una puntuación de 2,2 sobre 5. Mientras que las otras dos alternativas se sitúan por encima con una puntuación elevada, la alternativa **Conductos verticales** con una puntuación de 3,4 sobre 5 y, de la misma manera, **Conductos horizontales (Norte)** con un 3,4 sobre 5.

Aunque ambas alternativas presentan la misma puntuación, se decide optar por la alternativa **Conductor horizontales (Sur)**. Ya que, citando al arquitecto en la entrevista (Anexo 2), “la innovación que representaría este sistema es poder iluminar con luz natural espacios de sótanos situados bajo edificios de plantas de altura, donde la rentabilidad sería mayor respecto a la situación actual de los tubos solares, que plantea tubos verticales hasta la cubierta.”

29 **Fuente:** Elaboración propia.
6. **Estudio preliminar**

Derivado del estado del arte y el estudio de los sistemas presentes actualmente en el mercado, se ha llegado a la conclusión que una de las series de la empresa *Solatube*, la serie *Brighten Up®,* se podría adaptar al caso concreto del proyecto mediante una serie de modificaciones.

A continuación, se describe detalladamente la serie *Brighten Up®* y se presenta un diseño preliminar sin tener en cuenta las limitaciones que aportaran los proveedores.

6.1. Brighten Up® Series

La serie *Brighten Up®* ofrece dos dispositivos diferentes de iluminación natural tubular (160 DS y 290 DS, tubos de 25 y 35 centímetros de diámetro, respectivamente, con longitudes de hasta 10 metros) para adaptarse a diferentes aplicaciones y tamaños de espacios.

En el captador, se incluyen sus patentes *Raybender® 3000* y *LightTracker™* que, según informa la empresa, permiten una Superficie Efectiva de Captura de Luz Natural (SECLN).

Imagen 6.1: Tecnologías patentadas de *Solatube*, incluidas en el captador de la serie *Brighten Up®*.

La tecnología *Raybender® 3000* proporciona lentes de domo para la mejor captura de la luz natural, redirige la luz con menor ángulo y rechaza la luz que incide con mayor intensidad. Por otro lado, el *LightTracker™* consiste en un reflector colocado en el interior del domo que intercepta y redirecciona la luz solar de menor ángulo [11].

Fuente: https://www.solatube.es/
Además, en los conductos se dispone de su también patentado sistema de recubrimiento reflectante Spectralight® Infinity, que les aporta a los tubos la capacidad de reflejar el 99,7 % la luz y permite transferir ésta hasta una distancia de 15 metros [11].

En cuanto al difusor, emplazado en la parte final del tubo y encargado de distribuir la luz recogida en el espacio deseado, Solatube ofrece varios tipos de difusores:

31 \textit{Fuente:} https://www.solatube.es/

32 \textit{Fuente:} https://www.solatube.es/
Tabla 6.1: Especificaciones de los dos modelos, 290 y 160 DS, de la serie Brighten Up®

<table>
<thead>
<tr>
<th></th>
<th>Solatube® 290 DS</th>
<th>Solatube® 160 DS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diámetro del tubo</td>
<td>350 mm</td>
<td>250 mm</td>
</tr>
<tr>
<td>SECLN</td>
<td>0,1871 cm²</td>
<td>0,1032 cm²</td>
</tr>
<tr>
<td>Tecnología Raybender® 3000</td>
<td>Sí</td>
<td>Sí</td>
</tr>
<tr>
<td>Reflector LightTracker™</td>
<td>Sí</td>
<td>Sí</td>
</tr>
<tr>
<td>Tubos Spectralight® Infinity</td>
<td>Sí</td>
<td>Sí</td>
</tr>
<tr>
<td>Distancia máxima aconsejable</td>
<td>9,1 m</td>
<td>6,1 m</td>
</tr>
</tbody>
</table>

En la Tabla 6.1, se observa claramente como las prestaciones del modelo (longitud máxima entre el captador y el difusor) van directamente relacionadas con el diámetro de los conductos.

6.2. Conducto reflectante

Debido a que el diámetro y la ubicación del conducto viene condicionado por la verdugada estructural, se decide empezar por la definición de la tubería reflectante.

6.2.1. Especificaciones previas

Además de la longitud del tramo horizontal especificada entre el captador y el difusor, de 5 metros, tal como se ha mostrado en el apartado del estudio de las alternativas. El diámetro máximo del tubo también estará condicionado debido a la presencia de una verdugada corrida, ubicada aproximadamente a medio camino de los conductos.

33 Fuente: https://www.solatube.es/
Se observa en la imagen 6.4 que la verdugada tiene una altura de 350 milímetros. Por lo tanto, el diámetro exterior del conducto deberá ser inferior a la altura de la verdugada, teniendo en cuenta que deberá dejarse un “margen de seguridad” a cada lado de la tubería.

6.2.2. Selección de materiales y diámetros

Para el conducto reflectante es necesario diferenciar entre la superficie interior, que es por donde la luz solar sería transportada, y la superficie exterior, que se encontrará en contacto con el subsuelo.

**Superficie interior

La superficie interior de la tubería deberá ser revestida de un material reflectante. Se escoge el aluminio debido a su alta reflectividad (superior al 90%) y su demostrada fiabilidad, debido a su bajo coste y su alta disponibilidad (es el tercer elemento más común encontrado en la corteza terrestre). Es por eso que todos los sistemas analizados basados en la reflexión especular utilizan este elemento para transportar la luz.

34 Fuente: Elaboración propia a partir de los planos de la vivienda.
Como se puede observar en la Imagen 6.5, aunque podría parecer que el oro (Au) o la plata (Ag) podrían tener propiedades parecidas de reflectancia al aluminio. A la longitud de onda de los rayos del Sol (100-400 nanómetros) se puede apreciar que tanto el Au como el Ag muestran mucha menor reflectancia, mientras que el aluminio se mantiene por encima del 90 % comentado anteriormente.

<table>
<thead>
<tr>
<th>Solatube® 290 DS</th>
<th>Sistema propio</th>
<th>Solatube® 160 DS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diámetro del tubo</td>
<td>350 mm</td>
<td>300 mm</td>
</tr>
<tr>
<td>Distancia máxima aconsejable</td>
<td>9,1 m</td>
<td>7,6 m</td>
</tr>
</tbody>
</table>

Tabla 6.2: Propiedades del conducto de 300 mm, extrapolando los valores de la serie Brighten Up.

Además, tomando como referencia las especificaciones de Solatube, se estima linealmente la distancia máxima aconsejable para el caso de estudio. Observando la Tabla 6.2 como referencia, se puede ver como para un diámetro de 300 milímetros la distancia obtenida son 7,6 metros. Teniendo en cuenta que la longitud teórica del tubo en el caso de estudio es de aproximadamente 5 metros, ésta es inferior a los 7,6 metros de la tabla.

Superficie exterior

Existen muchos tipos de tuberías, cada una con sus características y propiedades propias,

35 Fuente: https://es.wikipedia.org/wiki/Reflectividad
36 Fuente: Elaboración propia a partir de la Tabla 6.1.
enfocadas a diferentes usos dentro de la vivienda: calefacción, fontanería o saneamiento. La distinción principal se hace en dos grandes grupos: las tuberías plásticas y las tuberías metálicas, aunque también existen de otros tipos como de hormigón.

A continuación, se detallan las tuberías que se encuentran presentes en el mercado en mayor medida [12]:

- **Tuberías de PVC**: Están disponibles en diferentes tamaños para la industria de la fontanería y la construcción. De hecho, dominan el mercado en la industria hidráulica en el último medio siglo, esto se debe a su bajo coste y su excelente resistencia. En cuanto a sus inconvenientes, se trata de un material frágil por lo que si caen al suelo o ante algún otro impacto se pueden romper con facilidad.

 ![Imagen 6.6: Tuberías de PVC](https://eurocasa.es/fontaneria/tipos-de-tuberias/)

- **Tuberías de acero galvanizado**: Estas, en cambio, suelen estar presentes en redes de distribución de edificios, teniendo en cuenta siempre que no se superen los 55 ºC de temperatura. Destacan su facilidad de trabajo y sus buenas características mecánicas, además se tratan de tuberías soldables y de coste razonable. Por el contrario, son fácilmente corrosibles, propensas a sufrir incrustaciones y sensibles a ser atacadas por aguas ácidas y yeso húmedo.

37 *Fuente: https://eurocasa.es/fontaneria/tipos-de-tuberias/"
• **Tuberías de plomo**: Actualmente en desuso, aunque antiguamente la mayoría de los edificios tenían tuberías de plomo. Pero debido a que se descubrió que puede ser perjudicial para la salud, a partir de los años setenta se fueron sustituyendo por tuberías compuestas por otros materiales.

• **Tuberías de cobre**: Presentan alta resistencia frente a los materiales de obra ya que son maleables y adaptables a trazados complicados; además, aguantan muy bien el frío ya que son resistentes a la congelación. En cuanto a los inconvenientes, disponen de un alto coeficiente de dilatación que puede derivar en dilataciones, puede ser sensible a aguas amoniacales y puede conllevar a la formación de micropilas al estar en contacto con otros metales como el acero.

38 **Fuente:** https://eurocasa.es/fontaneria/tipos-de-tuberias/
39 **Fuente:** https://eurocasa.es/fontaneria/tipos-de-tuberias/
Para seleccionar el diámetro exterior de la tubería, ya que el interior viene delimitado por los 300 mm de diámetro del revestimiento de aluminio, se han realizado una serie de simulaciones mediante el Simulador de elementos finitos que incluye el pack del Software de SolidWorks (Anexo 1).

De este análisis, se deduce que con un espesor $e = 5$ mm una tubería hecha de cualquiera de los cuatro materiales soportaría sin problemas la presión del suelo.

Entonces, una vez fijada la dimensión de la tubería, se procede a escoger el material en función de algunos parámetros claves:

- Reciclable / reutilizable.
- Densidad.
- Precio.
- Resistencia a la corrosión.

A continuación, se puede ver una tabla comparativa con los cuatro materiales seleccionables, con los siguientes datos comparativos: reciclable (Sí/No), densidad (kg/m3), precio (€/m) y resistencia a corrosión.

40 Fuente: https://eurocasa.es/fontaneria/tipos-de-tuberias/
<table>
<thead>
<tr>
<th></th>
<th>Reciclable</th>
<th>Densidad</th>
<th>Precio</th>
<th>Resistencia a la corrosión</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC</td>
<td>Sí</td>
<td>1.300</td>
<td>7,72</td>
<td>Muy alta</td>
</tr>
<tr>
<td>Acero Galvanizado</td>
<td>Sí</td>
<td>7.870</td>
<td>87,47</td>
<td>Baja</td>
</tr>
<tr>
<td>Plomo</td>
<td>Sí</td>
<td>11.000</td>
<td>111,20</td>
<td>Muy alta</td>
</tr>
<tr>
<td>Cobre</td>
<td>Sí</td>
<td>8.900</td>
<td>233,66</td>
<td>Muy alta</td>
</tr>
</tbody>
</table>

Tabla 6.3: Tabla comparativa de materiales para el conducto⁴¹.

Inicialmente se descartan las tuberías de plomo, debido a que son potencialmente perjudiciales para la salud y presenta las peores propiedades; y el acero galvanizado, por ser el único que no presenta buenas propiedades frente a la corrosión.

En cuanto a la densidad y el precio destacan con mucha diferencia las propiedades del PVC en contra de las del cobre. Por lo tanto, se decide optar por el PVC como material para el conducto.

6.2.3. Geometría y ubicación en el espacio

En este apartado se definirá una geometría concreta para el conducto del sistema y se ubicará en relación a su posición respecto al espacio a iluminar.

Imagen 6.10: Vista isométrica del conducto (1: PVC Rígido y 2: Aluminio reflectante)⁴².

⁴¹ Fuente: Elaboración propia.
⁴² Fuente: Elaboración propia.
Se trata de una tubería de diámetro uniforme y sin pliegues, que en el extremo del captador y del difusor dispone de una arandela de PVC para que estos se acoplen con facilidad. Los planos del Anexo 3 muestran las cotas exactas del conducto.

Imagen 6.11: Vista de perfil de la tubería y la habitación⁴³.

En la Imagen 6.11 se observa como el conducto supera la verdugada de 0,35 metros de alto y 0,3 metros de ancho, y además se ve como se ha ubicado el centro del difusor en el punto medio de la habitación. De esta manera se busca que cuando la luz llegue al difusor se expanda por igual por todo el recinto.

6.3. Captador

Este constará de una cúpula compuesta de un material que tenga una alta transmisión de la luz y de un espejo reflectante para redirigir la luz más horizontal.

6.3.1. Selección de materiales

A continuación, se procede a seleccionar el material del que estará conformado cada parte del captador: la cúpula y el espejo reflectante.

Cúpula

Estará formada por una doble capa para evitar la condensación, que se produce por la diferencia de temperaturas entre el interior y el exterior. Además, a estas capas se les deberán

⁴³ Fuente: Elaboración propia.
añadir aditivos termoplásticos anti-UV para que no amarilleen ni se vuelvan frágiles.

En cuanto a los materiales de esta doble capa transparente, después de hacer un análisis del mercado de lucernarios, claraboyas o ventanas; se llega a la conclusión que los citados a continuación son los que presentan mejores propiedades [13]:

- **Metacrilato**: El PMMA es un plástico transparente y rígido que proporciona una buena difusión y transmisión de la luz. Además, es muy moldeable y fácil de reparar en caso de rayada superficial.

![Imagen 6.12: Claraboyas curvas de metacrilato](https://escayolasbedmar.com/productos/sistemas-para-cubiertas-y-fachadas/claraboyas-y-lucernarios/)

- **Policarbonato compacto**: El PC se trata, también, de un plástico transparente y rígido. De la misma manera, también es fácil de trabajar y es por eso que es ampliamente usado en la manufactura moderna.

![Imagen 6.13: Claraboya curva de policarbonato compacto](https://www.zafracom.com/claraboyas-de-policarbonato/)

45 **Fuente**: https://www.zafracom.com/claraboyas-de-policarbonato.
• **Vidrio**: La claraboya de cristal supone una alternativa a las tradicionales de plástico. El vidrio resiste las inclemencias meteorológicas, aísla acústicamente, no envejece y repele la suciedad.

Para poder comparar los materiales descritos, se decide fijar el grosor de la cúpula exterior en 4 milímetros, ya que esta deberá estar expuesta al exterior; y en 2 milímetros el grosor de la cúpula interior, ya que no es necesario que sea tan resistente y además de esta manera se aumenta su capacidad de transmisión de luz.

Una vez definidas las alternativas, se valorará cual es el mejor material para la construcción de la cúpula en función de una serie de propiedades:

• Reciclable/reutilizable.
• Densidad.
• Precio.
• Transmisión de la luz.
• Resistencia al impacto.

Y de la misma manera que con la tubería, se construye una tabla comparativa con los tres materiales seleccionables, con los siguientes datos comparativos: reciclable (Sí/No), densidad (kg/m3), precio (€/kg), transmisión de la luz y resistencia al impacto.

En cuanto a la transmisión de la luz y la reciclabilidad, se observa que todos los materiales propuestos (PMMA, PC y vidrio) podrían presentar buenas propiedades para conformar la cúpula del captador.

El primer material descartado se trata del vidrio, ya que su densidad es de más del doble de las otras dos propuestas y presenta una resistencia al impacto no tan buena como la del policarbonato.

Para elegir entre el PMMA y el PC será necesario fijarse en la resistencia al impacto y el precio. En cuanto a la resistencia al impacto, el policarbonato presenta unas propiedades ligeramente mejores a las del metacrilato.

Mientras que, en el precio, aunque pueda parecer que el metacrilato es mucho más barato, este material será utilizado para conformar una cúpula de metacrilato de aproximadamente 0,3 metros cuadrados de superficie. Lo que supone un precio de 17,54 € para la cúpula de metacrilato y de 27,56 € para la cúpula de policarbonato, en definitiva, una diferencia de unos 10 € por cúpula.

Debido a que se pretende obtener una cúpula que sea capaz de resistir por mucho tiempo y que estará expuesta a las inclemencias climatológicas, se decide optar por el policarbonato.

Espejo reflectante

Tendrá la función de recoger los rayos de luz que inciden de manera más horizontal cuando el Sol está más bajo. Este espejo será un elemento de la cúpula exterior, ya que estará pegado en su cara interior de manera que quede orientado de la forma más eficiente en la dirección de los rayos del sol.

De la misma manera que el revestimiento del conducto, el espejo estará hecho de aluminio.

Tabla 6.4: Tabla comparativa de materiales para la cúpula.}

<table>
<thead>
<tr>
<th>Reciclable</th>
<th>Densidad</th>
<th>Precio</th>
<th>Transmisión de luz</th>
<th>Resistencia al impacto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metacrilato</td>
<td>Sí</td>
<td>1.190</td>
<td>12,28</td>
<td>Muy alta</td>
</tr>
<tr>
<td>Policarbonato</td>
<td>Sí</td>
<td>1.190</td>
<td>19,30</td>
<td>Muy alta</td>
</tr>
<tr>
<td>Vidrio</td>
<td>Sí</td>
<td>2.457,6</td>
<td>6,77</td>
<td>Alta</td>
</tr>
</tbody>
</table>

47 Fuente: Elaboración propia.
reflectante. Ya que como se ha comentado anteriormente, aporta una reflectancia por encima del 90%.

6.3.2. Geometría y unión con el conducto

A continuación, se especificará una geometría concreta para el captador y se situará en relación al conducto definido anteriormente.

Se trata de una doble capa de policarbonato compacto, en el que la superficie interior de la cúpula grande tiene una parte recubierta de aluminio reflectante. Los planos del Anexo 3 muestran las cotas exactas del captador.

Fuente: Elaboración propia.
Se observa en la *Imagen 6.16* como las dos cúpulas encajan en las ranuras de la corona de PVC del conducto. De esta manera se pretende que mediante una unión sencilla (que podría ser reforzada con algún material anti-condensación para que no entre el agua ni el aire) las cúpulas del captador queden perfectamente unidas a la tubería.

6.3.3. Sistema de seguimiento solar

Un sistema de seguimiento solar maximiza la captación de luz mediante el movimiento del espejo para que siga la trayectoria del sol durante el día. Los seguidores solares son típicamente usados para grandes instalaciones solares y emplazadas sobre el terreno, e instalaciones solares autónomas como los árboles solares.

Lo habitual en el mercado es encontrar sistemas de seguimiento que hagan rotar la superficie en uno o dos ejes (norte-sur y este-oeste) en función de la precisión que se desee. Estos sistemas pueden ser eléctricos, que son los más utilizados; hidráulicos, más apropiados para seguidores solares de gran tamaño; y accionados por gravedad, que se trata de un sistema más original que no necesita electricidad, pero que pierde control más fácilmente de la posición del Sol [14].

Es necesario remarcar que en este apartado del proyecto únicamente se pretende definir la mecánica necesaria para aportarle al sistema un sistema de seguimiento solar, todo el trabajo más allá de lo que se indica anteriormente y que conllevaría este apartado se dejará como trabajo futuro.

49 *Fuente:* Elaboración propia.
Motor paso a paso

Un motor paso a paso es un dispositivo electromecánico que convierte una serie de pulsos eléctricos en desplazamientos angulares, lo que significa que es capaz de girar una cantidad de grados (desde 90° hasta pequeños movimientos de 1,8°) dependiendo de sus entradas de control [15].

![Imagen 6.17: Motor paso a paso](50.jpg)

Este motor tendrá como función ejecutar el movimiento de rotación del captador, que en principio no debería suponer una gran dificultad y se podría realizar mediante diferentes elementos mecánicos. Como por ejemplo un sistema de transmisión por engranajes situado al lado del captador.

Arduino y sensor de radiación solar

Arduino es una plataforma electrónica abierta para la creación de prototipos y aplicaciones basadas en microcontroladores, donde tanto el software como el hardware son libres, flexibles y fáciles de usar.

Mediante Arduino se puede programar una rutina de trayectoria preestablecida que ejecutará el seguidor solar para tomar lecturas del sensor de radiación solar. De esta manera se harán llegar las órdenes al motor paso a paso para que realice su recorrido en función del posicionamiento del Sol [16].

6.4. Difusor

De manera parecida al captador, este estará formado por una cúpula de algún material transparente con una alta transmisión de la luz.

6.4.1. Selección del material

Siguiendo los mismos pasos que en el apartado 6.3.1, se escoge el policarbonato compacto como el material con mejores prestaciones para la elaboración del difusor. Ya que este aporta una gran resistencia al impacto y unas muy buenas propiedades en cuanto a la transmisión de la luz.

6.4.2. Geometría y unión con el conducto

Aprovechando que el policarbonato permite que se le realicen agujeros sin que pierda sus propiedades mecánicas. Se ha elaborado un difusor de una única pieza, para que sea más cómodo de montar y de más fácil mantenimiento.

Se trata de una única capa de policarbonato compacto, atornillado directamente a la tubería de PVC. Los planos del Anexo 3 muestran las cotas exactas del difusor preliminar.

La Imagen 6.20 muestra cómo estaría situado el difusor preliminar respecto del conducto, mediante 3 tornillos sería posible fijarlo completamente.

6.5. Control de salida de la luz

Según se ha descrito anteriormente, es necesario que el sistema disponga de algún mecanismo para poder regular la entrada de luz. De tal manera que nos permita bloquear la

52 Fuente: Elaboración propia.

53 Fuente: Elaboración propia.
entrada de luz cuando no la deseamos.

Para este punto, se han considerado dos alternativas: una válvula de mariposa controlada por un actuator; o un cristal inteligente añadido al difusor. Cualquiera de los dos puede tratarse de una alternativa válida para controlar la luz solar que pasa por el conducto.

6.5.1. Electrovalvula de mariposa

Para este punto se ha tomado como referencia otra de las funcionalidades de la serie **Brighten Up®**. **Solatube** ofrece un regulador de luz en forma de mariposa, que permite al sistema de iluminación controlar la entrada de luz [17].

![Imagen 6.21: Regulador de luz de Solatube](https://www.solatube.es/)

Es una válvula, dentro del conducto, que se abre y/o cierra gradualmente para poder obtener el nivel de luz deseado. De esta manera, se consigue impedir la entrada de luz cuando no se desee o regularla en caso de necesitar una intensidad específica.

El regulador de luz del sistema propio estará formado por dos partes: una válvula de mariposa, que se encargará de regular la entrada de luz; y un actuator eléctrico, que accionará el movimiento de la válvula. En el mercado se pueden encontrar fácilmente electrovalvulas que ya incorporan el actuator eléctrico en su montaje.

6.5.2. Cristal inteligente

Se trata de una alternativa más novedosa y sofisticada. Consiste en añadirle una lámina autoadhesiva al difusor que permite conmutar de blanco opaco a transparente en respuesta a un determinado voltaje.

54 **Fuente:** https://www.solatube.es/
El vidrio está compuesto de nanocristales y matriz vítrea. Al aplicar sobre estos materiales un pequeño voltaje, en un rango de 2,5 voltios, los nanocristales absorben la radiación solar infrarroja y la matriz solar atrae la radiación solar visible. Variando el potencial eléctrico, se puede escoger que componente activar [18].

6.6. Sistema eléctrico complementario

Es una realidad que no hay luz solar las 24 horas del día. Es por eso que, cuando no se disponga de luz solar, será necesaria la presencia de un sistema complementario que ilumine la estancia. A continuación, se plantean dos posibles alternativas.

6.6.1. Solatube Integrated Solar Electric NightLight

Desde Solatube contemplan esta posibilidad, disponen de un modelo en el que integran un pequeño sistema solar-eléctrico que recolecta la energía solar durante el día para alimentar una batería que se enciende automáticamente en la oscuridad.

Fuente: https://www.nsh-ds.es/
Y una vez cargada la batería, ofrecen una serie de componentes para iluminar. Como un anillo de LEDs en la corona del difusor o una bombilla LED situada en el interior del tubo [17].

6.6.2. Iluminación LED

La otra alternativa consiste en estudiar la posibilidad de disponer de una serie de luminarias LED repartidas por todo el techo de la estancia, que permitan iluminarla completamente en caso de que no se disponga de suficiente luz natural.

En cuanto a la alimentación de estas, se puede disponer también de un módulo fotovoltaico que permita cargar unas baterías, o en su defecto se pueden conectar las luminarias a la corriente eléctrica.

56 Fuente: https://www.solatube.es
7. Estudio definitivo

Una vez planteado el diseño preliminar, se procede al diseño definitivo del sistema, escogiendo los componentes, materiales y geometría definitiva.

Es posible que algunos de los componentes del sistema definidos en el estudio preliminar sufran modificaciones, debido a la necesidad de adaptar el estudio final en función de sus componentes finales, materiales, etc., o por la mejora del estudio.

7.1. Captador

El captador es el componente que de manera general ha variado más respecto al preliminar, para este se decide optar finalmente por una alternativa más novedosa, que estará compuesta por dos componentes principales: una lente Fresnel incrustada en una cúpula esférica y un espejo que desvíe la luz la lente hacia el interior del tubo, situado en el centro de la esfera.

Además, para mover estos dos componentes serán necesarios tres motores: uno que gire sobre el eje vertical, que hará rotar el conjunto para seguir el sol de este a oeste; y dos que giren sobre el eje horizontal, uno encargado de adaptar el sistema a la altura del Sol y otro que sirva de rotar el espejo de desvío.

Un captador de estas características conlleva un desembolso de dinero muy elevado, para poder diseñar una alternativa así en la realidad se debería plantear una producción en serie y a menor coste. Aun así, se pretende explicar de la manera más ajustada posible todos los componentes necesarios para la construcción de un captador de este tipo.

De hecho, un diseño con estas especificaciones podría dar lugar a otro proyecto nuevo, por lo tanto, la ingeniería del captador y su producción en serie se dejará para trabajos futuros.

7.1.1. Lente Fresnel y diámetro de la esfera

Se ha seleccionado al proveedor estadounidense EdmundOptics, del cual se ha extraído un listado de las principales lentes Fresnel circulares que ofrecen con sus medidas:
Para seleccionar la lente adecuada se relacionará esta con el diámetro que debe tener la esfera que la sujeta. Mediante una relación trigonométrica sencilla se puede obtener el radio que debe tener la esfera que sujeta la lente.

Y utilizando el teorema de Pitágoras se puede calcular el radio de la esfera en función de las características de la lente:

\[R = \sqrt{f^2 + \frac{d^2}{4}} \]

57 Fuente: https://www.edmundoptics.com/f/fresnel-lenses/12434/

58 Fuente: Elaboración propia.
<table>
<thead>
<tr>
<th>#</th>
<th>Diámetro de la lente, d (mm)</th>
<th>Distancia focal, f (mm)</th>
<th>Radio de la esfera, R (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>264,16</td>
<td>317,5</td>
<td>343,88</td>
</tr>
<tr>
<td>2</td>
<td>264,16</td>
<td>493,3</td>
<td>510,68</td>
</tr>
<tr>
<td>3</td>
<td>317,5</td>
<td>213,36</td>
<td>265,94</td>
</tr>
<tr>
<td>4</td>
<td>317,5</td>
<td>584,2</td>
<td>605,39</td>
</tr>
<tr>
<td>5</td>
<td>355,6</td>
<td>609,6</td>
<td>635,00</td>
</tr>
<tr>
<td>6</td>
<td>463,55</td>
<td>457,2</td>
<td>512,59</td>
</tr>
</tbody>
</table>

Tabla 7.2: Diámetro de la esfera en función de la lente

Las lentes 2, 4, 5 y 6 se descartan debido a su elevado tamaño, ya que para todas ellas supondría disponer de una esfera de más de 1 metro de diámetro.

Y entre la lente 1 y la 3 se han de considerar dos aspectos:

- Cuanto mayor sea el diámetro de la lente, más luz captará la lente.
- Cuanto menor sea el diámetro de la esfera, el sistema será más fácil de manipular.

Teniendo en cuenta estas dos consideraciones, se decide escoger la lente número 3. Ya que, para las dos condiciones descritas, contempla mejores prestaciones. Por lo tanto, es sistema esfera-lente estará compuesto por una esfera de 265,94 milímetros de radio y una lente Fresnel de 317,5 milímetros de diámetro.

7.1.2. Espejo de desvío

Una vez se ha conseguido captar, concentrar y dirigir la luz que proviene del Sol. Es necesario establecer unas dimensiones para el espejo que desviará la luz hacia el interior del tubo.

Se trata de un espejo recto situado en el centro de la esfera, que se encarga de captar la luz concentrada proveniente de la lente y dirigirla lo más verticalmente posible hacia los conductos.

59 *Fuente:* Elaboración propia.
El proveedor SICK ofrece un modelo de espejo reflectante hecho de vidrio, que incluye un soporte giratorio para que el espejo pueda rotar en función del ángulo de incidencia de la luz.

El ancho del espejo está fijado en 73 milímetros, como muestra la Imagen 7.2, pero este modelo permite seleccionar la longitud:

<table>
<thead>
<tr>
<th>S</th>
<th>340</th>
<th>490</th>
<th>640</th>
<th>790</th>
<th>940</th>
<th>1.090</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>372</td>
<td>522</td>
<td>672</td>
<td>822</td>
<td>972</td>
<td>1.122</td>
</tr>
<tr>
<td>L2</td>
<td>396</td>
<td>546</td>
<td>696</td>
<td>846</td>
<td>996</td>
<td>1.146</td>
</tr>
<tr>
<td>L3</td>
<td>460</td>
<td>610</td>
<td>760</td>
<td>910</td>
<td>1.060</td>
<td>1.210</td>
</tr>
<tr>
<td>A</td>
<td>440</td>
<td>590</td>
<td>740</td>
<td>890</td>
<td>1.040</td>
<td>1.190</td>
</tr>
</tbody>
</table>

Tabla 7.3: Longitudes del montaje, modelo PN375.

Con la longitud de espejo mínima ofrecida (S = 340 mm) será suficiente para que se concentre en el espejo todo el haz de luz proveniente de la lente.

7.1.3. Tubo intermedio

La clave del movimiento del capador consiste en la presencia de un tubo intermedio entre la esfera y el tubo reflectante, y mediante la fuerza de un motor de eje vertical se consigue que el tubo intermedio y la esfera giren de forma solidaria en el plano horizontal.

60 Fuente: https://www.sick.com/es/
61 Fuente: https://www.sick.com/es/
Este tubo intermedio puede suministrarlo el proveedor **Grupo Hastinik** con su gama de tubos soldados según **ISO-1127** (ofrecen tubos de 300, 400, 500 mm de diámetro nominal). El diámetro exacto de este tubo viene especificado por las medidas de los cojinetes.

Unión entre tubos

La esfera debe girar de manera solidaria al tubo de unión, para que esto pueda ocurrir es necesario disponer de un rodamiento cilíndrico entre el tubo reflectante y el tubo intermedio.

El proveedor **Schaeffler** proporciona cojinetes de gran magnitud, y en concreto ofrecen el modelo **SL014864** con un diámetro interior de 320 milímetros y un diámetro exterior de 400 milímetros. De esta manera el tubo de PVC deberá pasar por el interior del rodamiento, y el diámetro exterior del rodamiento fijará el diámetro del tubo intermedio en 400 milímetros.

Unión entre esfera y el tubo intermedio

Para esta unión son necesarios dos componentes: un rodamiento esférico que permita a la esfera rotar sobre el tubo, y un mecanismo que permita a la esfera y el tubo girar de forma solidaria.

En cuanto al rodamiento esférico el componente lo proporciona **NSK** con su **serie 222**, de 220 mm de diámetro interior y 400 milímetros de diámetro exterior. Además, tanto para el rodamiento cilíndrico como para el esférico, es necesario añadir juntas de goma en los puntos

62 Fuente: Elaboración propia.
de estanquidad para evitar la entrada de agua o cualquier otro fluido.

Y en cuanto al mecanismo que se encargará de hacer girar la esfera y el tubo de manera solidaria, se considera que mediante la disposición de chavetas en el mismo encapsulado que deberá proteger el motor de eje horizontal (que también debe estar unido al tubo intermedio para girar de forma solidaria a él), se pueden unir la esfera y el tubo intermedio para que giren solidariamente y permita que la esfera gire sobre el eje horizontal.

7.1.4. Movimiento sobre eje vertical

Consiste en el movimiento que hace la esfera para seguir al Sol de este a oeste. Para que sea posible el movimiento será necesario la disposición de un sistema de engranajes entre el tubo intermedio y el motor sobre eje vertical.

La empresa Grindel S.A.L proporciona engranajes de un amplio abanico de diámetros y grosor. En concreto, se debería adquirir un primer engranaje de 400 milímetros de diámetro interior que envolvería el tubo intermedio, y un segundo engranaje (unido al extremo del eje vertical del motor) que debe tener un diámetro interior y las ranuras específicas para una correcta unión con el eje de su motor asociado.

7.1.5. Movimiento sobre el eje horizontal

Rotación horizontal de la cúpula

Para poder definir el perímetro adecuado de la correa que unirá el sistema de engranajes con la esfera, será necesario calcular cuál es el ángulo de incidencia de los rayos del Sol cuando

63 Fuente: Elaboración propia.
se encuentra a su máxima altura.

Conociendo que la latitud en la vivienda de estudio es de 41,66°, la declinación del Sol (ángulo que forma la línea Sol-Tierra y el plano del ecuador celeste) en el solsticio de verano (punto en que el Sol se encuentra más alto) es de +23,45° y usando la ecuación que define el ángulo de incidencia de los rayos del Sol en función de la latitud [1], se obtiene:

\[h_{c1} = (90 - 41,66) + 23,45 = 71,79° \]

Y a partir del ángulo de incidencia máximo se calcula la longitud de correa necesaria:

\[L = h_{c1} \cdot R = 71,79 \cdot \frac{\pi}{180} \cdot 265,94 = 333,22 \text{ mm} \]

Por lo tanto, únicamente será necesario que la esfera disponga de una correa dentada de 333,22 milímetros de longitud. Mediante la cual será posible controlar el giro de la esfera respecto del eje horizontal.

\[\text{Imagen 7.5: Componentes para mover la esfera sobre el eje horizontal}^{64}. \]

De la misma manera que el apartado anterior, el proveedor Grindel S.A.L pude proporcionar los componentes de transmisión mostrados en la Imagen 7.5.

Rotación horizontal del espejo direccionador

El espejo siempre deberá estar orientado de manera que el haz de luz proveniente del centro de la lente Fresnel rebote en vertical hacia el conducto reflectante.

64 Fuente: Elaboración propia.
La **Imagen 7.6** muestra tres de las configuraciones posibles para el espejo, dos de ellas se tratan de dos situaciones límite del sistema (incidencia de los rayos del Sol a nivel del suelo y cuando inciden con la máxima inclinación) y una intermedia de 35º de inclinación para la lente Fresnel.

![Imagen 7.6: Movimiento del espejo direccionador en función de la lente Fresnel65.](image)

De la misma manera que en los puntos anteriores, el eje encargado de rotar el espejo puede proporcionarlo el proveedor **Grindel S.A.L.**

Imagen 7.7: Componentes para mover el espejo de desvío66.

65* Fuente: Elaboración propia.
66* Fuente: Elaboración propia.
7.1.6. **Esfera**

Como se ha comentado anteriormente la esfera de radio $R = 265,94$ milímetros actúan como soporte para que la lente pueda orientarse perpendicularmente al Sol. De hecho, se ha definido una apertura de diámetro $317,5$ milímetros para que esta se pueda acoplar a ella. Pero para que la luz pueda llegar al tubo reflectante también será necesario abrir la esfera por la parte que este en contacto con el tubo intermedio.

![Imagen 7.8: Apertura inferior de la esfera](image)

En la **Imagen 7.8** se muestra la disposición de esta apertura (de aproximadamente 160°) de salida de la luz para los dos casos límite de la rotación de la esfera sobre el eje horizontal. De esta manera la esfera siempre estará abierta por debajo para poder hacer llegar la luz al sistema.

Ante la dificultad de encontrar un proveedor que suministre una esfera hueca justamente del tamaño propuesto, se tomará como referencia a **Modulor**, que ofrece esferas huecas de diversos tamaños.

7.1.7. **Sensor de radiación solar**

Se decide emplear un piranómetro fotovoltaico, en concreto el modelo **SP Lite2** del proveedor **Kipp&Zonen**, que está especialmente pensado para la monitorización de módulos fotovoltaicos y de energía solar.

Haciendo llegar a una placa Arduino los datos de radiación solar captados por este sensor, esta será capaz de controlar los motores paso a paso que accionan los movimientos de la

67 Fuente: Elaboración propia.
esfera y la rotación del espejo de desvío.

7.1.8. Motores

Se trata de tres motores paso a paso que deberán ir encapsulados junto a un controlador Arduino, y mediante un sistema de engranajes se relacionarán con los componentes que deben mover.

Placa Arduino y motores paso a paso

El movimiento del espejo de desvío, que se aproxima su peso en 1 kg, se considera que se puede conseguir con un motor unipolar 28BYJ-48 de bajo precio y una placa ULN2003 para controlarlo. Normalmente el motor se suministra con esta placa, y ambos dispositivos disponen clemas para una conexión sencilla.

Las características del 28BYJ-28 son modestas, pero incorpora un reductor integrado. Combinados, la precisión total es de 4096 pasos por vuelta, equivalente a un paso de 0,088º, una precisión más que suficiente para realizar los movimientos necesarios.

Para los motores de la esfera serán necesarios motores más potentes, ya que se estima el motor de eje vertical deberá mover un peso de 30 kg y el de eje horizontal deberá mover un peso aproximado de 10 kg.

Como proveedor de los motores y los controladores se escoge SANYO Denki, que ofrece gran variedad de motores paso a paso y controladores para este.

7.2. Conducto reflectante

El diseño del conducto reflectante ha variado poco respecto el diseño preliminar. La única variación significativa va relacionada con el revestimiento de aluminio, ya que ante la dificultad de encontrar un proveedor que aportase algún sistema para revestir una tubería de PVC, se ha decidido optar por la opción de introducir una tubería de aluminio dentro de la tubería de plástico.

7.2.1. Tubería y codos

La marca FerroPlast del proveedor Plásticos Ferro S.L proporciona una serie de tuberías y codos que se adaptan casi a la perfección al diseño previo realizado. En el punto 6.2 se había especificado un diámetro exterior para la tubería de PVC de 310 mm con un grosor de 5 milímetros.

Las tuberías y los accesorios que se expondrán a continuación presentan en sus dos
extremos dos aperturas diferentes para que se puedan empalmar con facilidad.

![Imagen 7.9: Codo con extremos macho y hembra](image)

- Extremo Macho: presenta un diámetro mayor al de la tubería.
- Extremo Hembra: presenta un diámetro igual al de la tubería.

Como se puede observar en la *Imagen 7.10*, los componentes están diseñados para que el extremo macho empalme con el extremo hembra. Todos los componentes del sistema estarán colocados con el extremo macho en el lado cercano al captador y el extremo hembra en el lado cercano al difusor.

Tuberías

Se ha escogido la *Serie “F” Standard* de Tuberías de PVC. Se trata de tubos hechos de PVC con un lado macho y otro lado hembra, de esta manera permite el acoplamiento con otras tuberías o accesorios con mayor facilidad.

<table>
<thead>
<tr>
<th>Diámetro ext./mm.</th>
<th>Espesor/mm.</th>
<th>Longitud total 5 m.</th>
<th>Código</th>
<th>€/tubo</th>
<th>Longitud total 3 m.</th>
<th>Código</th>
<th>€/tubo</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>1.8</td>
<td>202001</td>
<td>4.52</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>40</td>
<td>1.8</td>
<td>202003</td>
<td>5.77</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>50</td>
<td>1.8</td>
<td>202007</td>
<td>7.23</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>75</td>
<td>1.5</td>
<td>202011</td>
<td>9.67</td>
<td>202010</td>
<td>5.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>1.6</td>
<td>202015</td>
<td>12.37</td>
<td>202014</td>
<td>7.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>1.8</td>
<td>202019</td>
<td>16.93</td>
<td>202018</td>
<td>9.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>1.9</td>
<td>202023</td>
<td>20.26</td>
<td>202022</td>
<td>11.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>2.2</td>
<td>202032</td>
<td>29.86</td>
<td>202033</td>
<td>17.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>2.6</td>
<td>202036</td>
<td>43.88</td>
<td>202037</td>
<td>25.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>3.0</td>
<td>202044</td>
<td>64.35</td>
<td>202073</td>
<td>38.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>315</td>
<td>3.2</td>
<td>202050</td>
<td>99.20</td>
<td>202074</td>
<td>54.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>4.9</td>
<td>202051</td>
<td>177.32</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

* Indicadas para ventilación primaria y secundaria.
* Color RAL 7037.

Imagen 7.10: Tuberías de PVC, Serie “F” Standard[^69].

[^68]: [Fuente: https://arcashop.es/accesorios-fontaneria/](https://arcashop.es/accesorios-fontaneria/)
[^69]: [Fuente: Catálogo FerroPlast](https://www.ferroplast.es/).
En la *Imagen 7.11* se pueden observar las dos discrepancias respecto al diseño previo: el diámetro exterior más parecido es de 315 milímetros y el grosor que corresponde a este diámetro es de 3,2 milímetros.

Que el diámetro de la tubería sea 5 milímetros mayor no supone ningún problema. Ya que teniendo en cuenta que la zapata tiene 350 milímetros de altura, se sigue dejando suficiente margen a encima y debajo de la tubería. En concreto, 17,5 milímetros por cada lado.

Y en cuanto al espesor, como se ha explicado en el Anexo 1, se había especificado en 5 mm para dejando un margen de seguridad muy grande. De hecho, se ha visto en el análisis mediante *SolidWorks Simulation* que para espesores de 2,5 milímetros o superiores la tubería soporta la carga del suelo sin ninguna deformación ni sobrecarga de tensiones significativa.

Codos

Para la *Serie “F” Standard*, ofrecen una serie de accesorios para las tuberías. Entre los que se encuentran codos con diferentes inclinaciones para empalmarlos en las tuberías.

![Imagen 7.11: Codos de 90° de PVC, Serie “F” Standard](image)

Siguiendo la *Imagen 7.12*, serán necesarios 2 codos de 90° y 315 milímetros de diámetro exterior, para poder adaptar el recorrido de la tubería.

7.2.2. Abrazaderas

Aunque es cierto que una buena parte de la tubería se encuentra enterrada, y por lo tanto ese tramo no necesitará abrazaderas. Hay otro tramo importante de la tubería suspendido en el aire, y por lo tanto es necesario el uso de abrazaderas de sujeción para anclar la tubería al techo.

70 *Fuente*: Catálogo *FerroPlast*.
La empresa **Salvador Escoda S.A.** ofrece un modelo de abrazaderas metálicas que se adaptarían a los tubos de PVC seleccionados.

Como se muestra en la **Imagen 7.14**, la parte del conducto entre el captador y la zapata no será necesario que disponga de abrazaderas.

71 **Fuente:** Catálogo **Salvador Escoda S.A.**

72 **Fuente:** Elaboración propia.
Mientras que, en el tramo entre la zapata y el difusor, se ha decidido colocar dos abrazaderas de sujeción (señalizadas de color violeta), una en el punto donde se encuentra las uniones macho-hembra con el codo del difusor y la otra justamente después de superar la zapata.

7.2.3. Revestimiento de aluminio

TuboÓ fabrica tubos solares a medida, ajustando los precios a las necesidades de cada proyecto. Además, permiten ajustar todos los componentes, desde la tornillería hasta el tipo de adaptador del Tubo Solar, en grosores, colores, materiales…

Imagen 7.14: A la izquierda se muestra el extremo unido al captador, y a la derecha el extremo unido al difusor.

Por lo tanto, en este caso sería posible encargar una tubería reflectante de 300 milímetros de diámetro exterior, que iría por dentro de la tubería de PVC.

7.3. Difusor

De la misma manera que el conducto reflectante, el difusor tampoco ha variado significativamente. La principal novedad es que para regular la luz de salida de este se opta por incluir la tecnología de cristal inteligente.

7.3.1. Cristal inteligente

Se ha seleccionado el modelo *MagicFoil-Fix “MFP 70”* del proveedor **NSH digital signage**, que corresponde a una lámina autoadhesiva conmutable para un fácil enganche a superficies de vidrio o plástico existentes. Su espesor es de aproximadamente 0,5 mm y la superficie la hacen a medida con hasta un máximo de 3.000 x 1.200 milímetros cuadrados.

73 **Fuente:** Elaboración propia.
Cuando el interruptor está en la posición ON, la lámina se muestra transparente con una transparencia superior al 92%; y cuando se encuentra en la posición OFF, la lámina se muestra totalmente opaca y no deja pasar la luz. Además, la vida útil del sistema en (en posición ON) es superior a 100.000 horas.

7.3.2. Lente del difusor

Se ha escogido el **VITROFLEX PC UV** del proveedor **PolimerTecnic**, que consiste en una plancha de policarbonato transparente extruida con protección UV, muy ligera, con gran resistencia al impacto y una transmisión de la luz del 88%. Ofrece grosor desde los 2 hasta los 20 mm en placas de 2050x1250, 2050x1525 y 3050x2050 mm².

Si se obtiene un perfil circular de la plancha superior al diámetro interior del tubo de PVC, de 370 milímetros de diámetro, por ejemplo, mediante 3 tornillos y soldando una arandela de PVC en el final del tubo es posible fijar la lente al conducto.

Imagen 7.15: Ilustración que muestra las conexiones eléctricas con la lámina conmutable⁷⁴.

Imagen 7.16: Lente de policarbonato como componente del difusor⁷⁵.

⁷⁵ *Fuente:* Elaboración propia.
7.3.3. Elementos de unión

Tal como se muestra en la Imagen 7.17, será necesario una arandela de PVC de diámetro superior al del tubo de PVC soldada a este mismo y, mediante 3 tuercas, es posible fijar la lente al conducto. La arandela se puede extraer de una plancha comprada y posteriormente recortada en un taller.

Tanto la plancha de metacrilato como las tuercas se pueden obtener en una ferretería, se ha escogido Servei Estació como proveedor de estos componentes.

7.4. Eficiencia del sistema

Una vez definido el captador y sus componentes, se procede a la estimación de la luz que será posible captar y transportar, y asumiendo unas pérdidas similares a las de los modelos de Solatube, se obtendrá el valor estimado en lúmenes que se hacen llegar a la habitación.

En primer lugar, se calcula la Superficie Efectiva de Captación de Luz Natural (SECLN) para el sistema propio. Que se puede calcular fácilmente con el área de la lente Fresnel. La lente de Fresnel elegida es de 317,5 milímetros de diámetro, luego el área que capta la luz solar es de 0,079 metros cuadrados.

\[SECLN = \pi \cdot \frac{d^2}{4} = 0,07917 \, m^2 \]

Considerando este número como la Superficie Efectiva de Captación de Luz Natural (SECLN) del caso de estudio, se estima de forma lineal según los modelos de Solatube la emisión relativa de luz que se obtendría. En la Tabla 7.4 se muestra la SECLN y la emisión relativa de luz (en lúmenes) que se obtendría para una latitud similar a la del caso de estudio con los modelos de Solatube, así como también se muestra el estimado para el caso de estudio.
Cabe resaltar que el número obtenido para el caso de estudio debería ser inferior al real ya que la lente de Fresnel se ha diseñado colocada sobre un sistema de seguimiento en dos ejes, luego su posición será siempre perpendicular a los rayos del sol incidentes, concepto que no se considera en las soluciones de Solatube.

De hecho, la implementación del seguimiento solar de dos ejes se considera que incrementa las prestaciones del sistema en un 35% [19]; luego con esta consideración, 2.135 lum (3.302 lum máximos) pasarían a ser 2.882 lum (4.458 lum máximos) aproximadamente.

Para la validación siguiente se considerarán los 2.882 lum (4.458 lum máximos) como la emisión de luz obtenida para el caso de estudio, pero sin considerar un posible incremento debido a la concentración del haz de luz para analizar un caso conservador.

7.5. Validación del estudio

Se usa el método de los lúmenes [20] para calcular el valor medio en servicio de la iluminancia en una estancia iluminada con alumbrado general. Suele usarse en la iluminación de interiores cuando la precisión necesaria no es muy alta, como ocurre en la mayoría de los casos.

7.5.1. Datos de entrada y ecuaciones

Dimensiones del espacio y la altura del plano de trabajo

Habitualmente el plano de trabajo se sitúa en 0,85 m.

Fuente: Elaboración propia a partir de la Tabla 6.1.
Determinar el nivel de iluminancia media (E_m)

$E_{opt} = 150$ lux

Se considera que será lo necesario para iluminar el sótano, ya que es el óptimo establecido en la Tabla 3.1 para “Almacenes y archivos”.

Escoger el tipo de lámpara (incandescente, fluorescente, …) más adecuada de acuerdo con el tipo de actividad que se va a realizar

En el caso del sistema de iluminación natural, la lámpara viene condicionada por la geometría del sistema. Como se ha visto anteriormente, se trata de una lámpara circular de aproximadamente 300 mm de diámetro.

Mientras que, en el caso del sistema eléctrico complementario, se decide optar por lámparas fluorescentes. Ya se utilizan mucho en espacios de techos bajos por su economía y eficiencia luminosa.

Escoger el sistema de alumbrado que mejor se adapte a las necesidades del espacio y las luminarias correspondientes

En cuanto al sistema de alumbrado, se trata de un alumbrado general que proporciona una iluminación uniforme sobre toda el área iluminada.

Fuente: http://www.especificar.cl/fichas/tragaluz-tubular-solatube-
Estudio de un sistema de iluminación natural para edificios

Imagen 7.18: Clasificación CIE según la distribución de luz\(^7\)

Y en cuanto a las luminarias, en ambos casos se tratarán de luminarias directas. Que direccionan el 90-100 % de la luz hacia el espacio a iluminar, como muestra la Imagen 7.19.

Determinar la altura de suspensión de las luminarias según el sistema de iluminación escogido

Imagen 7.19: Variables asociadas al espacio de estudio\(^8\)

\[
h = 0,925; \quad h' = 2 \text{ m}; \quad d = 1,15 \text{ m}; \quad d' = 0,225 \text{ m}
\]

Calcular el índice del local (k) a partir de la geometría de este

En el caso de iluminación directa se calcula como:

\[
 k = \frac{a \cdot b}{h \cdot (a + b)} = \frac{4 \cdot 8}{1 \cdot (4 + 8)} = 2,47
\]

Donde k es un número comprendido entre 1 y 10. A pesar de que se pueden obtener valores

\(^7\) Fuente: https://recursos.citcea.upc.edu/lulum/lamparas/luminar1.html

\(^8\) Fuente: https://recursos.citcea.upc.edu/lulum/interior/iluint2.html
mayores de 10 con la fórmula, no se consideran pues la diferencia entre usar diez o un número mayor en los cálculos es despreciable.

Determinar los coeficientes de reflexión de techo, paredes y suelo

Estos valores se encuentran tabulados para los diferentes tipos de materiales, superficies y acabado. Si no se dispone de ellos, se pueden tomar de la siguiente tabla:

<table>
<thead>
<tr>
<th>Color</th>
<th>Factor de reflexión (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Techo</td>
<td></td>
</tr>
<tr>
<td>Blanco o muy claro</td>
<td>0,7</td>
</tr>
<tr>
<td>Claro</td>
<td>0,5</td>
</tr>
<tr>
<td>Medio</td>
<td>0,3</td>
</tr>
<tr>
<td>Paredes</td>
<td></td>
</tr>
<tr>
<td>Claro</td>
<td>0,5</td>
</tr>
<tr>
<td>Medio</td>
<td>0,3</td>
</tr>
<tr>
<td>Oscuro</td>
<td>0,1</td>
</tr>
<tr>
<td>Suelo</td>
<td></td>
</tr>
<tr>
<td>Claro</td>
<td>0,3</td>
</tr>
<tr>
<td>Oscuro</td>
<td>0,1</td>
</tr>
</tbody>
</table>

Tabla 7.5: Coeficientes de reflexión en función del espacio.

En su defecto se puede tomar 0,5 para el techo, 0,3 para las paredes y 0,1 para el suelo.

Determinar el factor de utilización (η, CU) a partir del índice del local y los factores de reflexión

En el caso del sistema de iluminación natural se ha considerado que se trata de un aparato de alumbrado circular de grandes dimensiones. Por lo tanto, se puede tomar como referencia la siguiente tabla:

80 *Fuente:* https://recursos.citcea.upc.edu/llum/interior/iluint2.html
Estudio de un sistema de iluminación natural para edificios

Siguiendo la Imagen 7.21, se considera que para el sistema de iluminación natural con $k = 2.47$, $\rho_{\text{techo}} = 0.5$ y $\rho_{\text{paredes}} = 0.3$; el factor de utilización es $\eta = 0.92$.

Y para el caso del sistema de iluminación artificial, siguiendo la Tabla 7.22, se obtiene un factor de utilización $\eta = 0.44$.

Determinar el factor de mantenimiento (f_m) o conservación de la instalación

Este coeficiente dependerá del grado de suciedad ambiental y de la frecuencia de la limpieza del local. Para una limpieza periódica anual se pueden tomar los siguientes valores:

- Ambiente: Limpio $\rightarrow f_m = 0.8$
- Ambiente: Sucio $\rightarrow f_m = 0.6$

Teniendo en cuenta que lo adecuado es mantener las luminarias limpias, se considerará que

81 Fuente: https://issuu.com/bryansala/docs/factor_de_utilizaci__n__-iluminaci_
82 Fuente: https://issuu.com/bryansala/docs/factor_de_utilizaci__n__-iluminaci_
el factor de mantenimiento para ambos sistemas es de 0,8.

Cálculo del flujo luminoso total necesario

Se trata de la cantidad de lúmenes que deberá aportar el sistema de iluminación (tanto el natural como el artificial) para poder iluminar la habitación.

$$F_{T,\text{opt}} = \frac{E_{\text{opt}} \cdot a \cdot b}{\eta \cdot f_m}$$

7.5.2. Validación del sistema de iluminación natural

Mediante la ecuación del flujo luminoso se obtiene:

$$F_{T,\text{opt}} = \frac{150 \cdot 4 \cdot 8}{0,8 \cdot 0,92} = 6.522 \text{ lum}$$

Teniendo en cuenta el rendimiento máximo del sistema propuesto en el apartado 7.4, $F_{L,\text{máx}} = 4.458$ lum. Se considera que con la disposición de dos de ellos ($N = 2$), es suficiente para iluminar la estancia:

$$F_{L,\text{máx}} \cdot N = 4.458 \cdot 2 = 8.916 \text{ lum} > 6.522 \text{ lum} = F_{T,\text{opt}}$$

![Imagen 7.22: Distribución de los difusores de luz natural en el sótano](image)

Además, si se tienen en cuenta los 100 lux mínimos requeridos de la Tabla 3.1 en lugar de los 150 lux óptimos. Se obtiene que sería suficiente con el flujo luminoso promedio calculado en el apartado 7.4:

83 *Fuente: Elaboración propia.*
\[F_{L,\text{prom}} \cdot N = 2.882 \cdot 2 = 5.764 \, \text{lux} > 4.348 \, \text{lux} = \frac{100 \cdot 4 \cdot 8}{0.8 \cdot 0.92} = F_{T,\text{min}} \]

Por lo tanto, mediante la implantación de dos sistemas de iluminación natural distribuidos de manera simétrica en la estancia, se considera que se iluminará la habitación correctamente, siempre y cuando la luz captada sea superior a:

\[E_{\text{Sol, min}} = \frac{F_{L,\text{prom}}}{S} = \frac{2.882 \, \text{lux}}{0.079 \, \text{m}^2} = 36.481 \, \text{lux} \]

7.5.3. **Validación del sistema de iluminación artificial**

Sustituyendo en la ecuación del cálculo de flujo luminoso total necesario, se obtiene:

\[F_T = \frac{150 \cdot 4 \cdot 8}{0.44 \cdot 0.8} = 13.636 \, \text{lux} \]

Se escoge el tubo LED T8 8718696687369 de **Philips**, con una potencia de 16 W y una iluminancia \(F_L = 2.300 \, \text{lux} \).

Considerando que cada luminaria contiene dos tubos (\(n = 2 \)), se calcula el número de luminarias, \(N \), necesarias para iluminar la habitación:

\[N = \frac{F_T}{n \cdot F_L} = \frac{2.67}{3} = 3 \]

Y se comprueba que cumplirá las condiciones óptimas de iluminación:

\[F_L \cdot N \cdot n = 2.300 \cdot 3 \cdot 2 = 13.800 \, \text{lux} > 13.636 \, \text{lux} = F_T \]
Estudio de un sistema de iluminación natural para edificios

Imagen 7.23: Distribución de las luminarias en el sótano84.

Mediante la disposición de tres luminarias (con dos tubos LED cada una) y distribuidas a lo largo de los 8 metros de la longitud de la habitación, se considera que la estancia se encontrará iluminada adecuadamente.

Requerimientos energéticos

Para el cálculo de la energía necesaria para abastecer el sistema de iluminación artificial que se plantea como apoyo al de iluminación natural, se procede a continuación a la estimación del número de horas al año durante las cuales este sistema de iluminarias LED sería necesario.

El espacio a iluminar será utilizado unas 3 horas al día, generalmente en el horario de tarde (de 16 a 19h). La iluminación natural será suficiente siempre que este horario coincida con horas de luz y el día sea soleado. En la latitud del caso de estudio según los parámetros climáticos promedio [21] únicamente hay 53 días de lluvia al año y unos 210 son soleados. Analizando la franja de horas de luz solar a lo largo del año, en este caso desde el 25 de marzo hasta el 15 de octubre el sol se pone a partir de las 19 h [22]. Esto corresponde a 7 meses (213 días). En los 5 meses restantes (152 días), en la franja de 16 a 19 h el sol se encuentra por encima del horizonte una media de 2,25 h. Con lo anterior sabemos que al menos 205,25 h (0,75 h x 152 días) será necesaria la iluminación artificial. Durante el resto del año, si consideramos que únicamente los días lluviosos no habría suficiente iluminación natural, distribuyendo estos días a lo largo de todo el año, el 14,5% del tiempo sería también necesaria la iluminación artificial. El 14,5% de las horas de luz al año en la franja de 16 a 19 h (3 h x 213 días + 2,25 h x 152 días = 981 h) es de unas 142, 25 h, que añadidas a las 205, 25 anteriores dan un total de 347,5 h.

Las luminarias LED consumen 16 W cada una, luego 3 luminarias encendidas durante 347,5

84 Fuente: Elaboración propia.
h consumirían 16,68 kWh/año, o lo que es lo mismo, una media de 45,7 Wh/día. Este consumo es despreciable frente al consumo de una vivienda, luego se considera que con el excedente de un sistema de abastecimiento energético autónomo (basado en energía solar) con el que cuenta la vivienda, sería más que suficiente para cubrir esta pequeña demanda.

Lo mismo se considera para los consumos de los motores del captador y de sistema eléctrico del cristal inteligente, cuyo cálculo se considera fuera del alcance de este proyecto.
8. Impacto medioambiental

En este apartado se evalúan el impacto medioambiental de la solución propuesta para un sistema de iluminación natural en el interior de una vivienda. Se pretende que este proyecto sea sostenible medioambientalmente y minimice el impacto medioambiental durante su ciclo de vida.

A continuación, se analizará el impacto de cada uno de los componentes del sistema planteado en el trabajo.

8.1. Plásticos

Los desechos plásticos no son susceptibles de asimilarse de nuevo en la naturaleza. Es por eso que, se ha establecido el reciclado de los productos de plástico [23], que consiste básicamente en recolectarlos, limpiarlos, seleccionarlos por tipo y fundirlos de nuevo para su uso como materia prima adicional, alternativa o sustituta, para el moldeo de otros productos. En este proyecto se puede plantear la utilización de materiales plásticos reciclados en la medida de lo posible.

Algunos de los componentes del sistema hechos de materiales plásticos son los siguientes:

- Lente Fresnel: PMMA acrílico.
- Tubos y accesorios del conducto reflectante: PVC rígido.
- Lente del difusor: policarbonato compacto.
- Carcasas, juntas de goma, soportes, lámina del cristal inteligente…

El reciclado de estos elementos es relativamente sencillo y tiene gran variedad de aplicaciones. Existen las siguientes variantes de reciclaje:

- **Reciclaje mecánico**: Consiste en seleccionar los residuos, molerlos, añadirles los aditivos necesarios y transformarlos en nuevos productos.
- **Reciclaje químico**: Los residuos se someten a procesos químicos bajo altas temperaturas y presiones, con el fin de descomponerlos en productos más elementales (aceites y gases) y poder emplear estos.
- **Reciclaje energético**: Se basa en la incineración de los residuos para la obtención de energía térmica.
- **Reciclaje por disolventes**: Se basa en la disolución química del plástico mediante solventes específicos que separan el plástico de otros componentes para, posteriormente, provocar su precipitación.
8.2. Aluminio

Como se ha comentado anteriormente, el aluminio es el tercer material más común en la Tierra, si bien la industria de producción del aluminio es contaminante. El aluminio también puede ser reciclado, y es por eso que en este proyecto se plantea utilizar este tipo de aluminio.

El reciclaje del aluminio consiste simplemente en refundir el metal, lo cual es relativamente económico y consume mucha menos energía que la producción del aluminio a partir de la electrólisis de la alúmina [24].

Los beneficios medioambientales de reciclar aluminio también son grandes. Únicamente se produce un 5% del dióxido de carbono durante el proceso de reciclado comparado con la producción de aluminio desde la materia prima.

Como elemento de aluminio destaca la tubería de aluminio de 300 milímetros de diámetro colocada por dentro de la tubería de plástico.

8.3. Vidrio

El vidrio es un material duro, frágil, transparente y amorfo que se encuentra en la naturaleza, aunque también puede ser producido por el ser humano. El vidrio artificial se usa para hacer ventanas, botellas, lentes y otra gran variedad de productos.

Para su adecuado reciclaje, el vidrio es separado y clasificado según su tipo, normalmente asociado a su color (verde, ámbar e incoloro). Seguidamente se tritura formando un polvo grueso denominado calcín, que, sometido a altas temperaturas en un horno, se funde junto con arena, hidróxido de sodio y caliza para fabricar nuevos productos que tendrán idénticas propiedades con respecto al vidrio fabricado directamente de los recursos naturales [25].

En esta clasificación se incluye únicamente el vidrio reflectante del espejo de desvío.

8.4. Acero inoxidable

El acero inoxidable es una aleación de hierro que contiene níquel y cromo para protegerlo contra la corrosión y el óxido. Este material es particularmente fuerte y resistente a las altas temperaturas brindando así un rendimiento óptimo en condiciones ambientales y químicas extremas. Sus propiedades físicas lo convierten en el material ideal para los sectores automotriz, de la construcción y el transporte.

Debido a que existen muchos tipos de acero inoxidable que no son magnéticos,
primeramente, se debe clasificar mediante tecnología avanzada de identificación. Todos los productos, una vez separados, se compactan en grandes bloques para facilitar su manipulación y posteriormente se cortan con cizalla en pequeñas piezas. Finalmente, se funden todos los materiales recuperados en un horno y, después, se determina el nivel de pureza necesario para las aplicaciones futuras de esta materia prima secundaria [26].

Como componentes de acero inoxidable pueden encontrarse los engranajes, rodamientos, tornillos, tuercas, el tubo intermedio del captador o incluso algunas carcasas como las que protegen los componentes de los motores.

8.5. Componentes electrónicos

Como RAEE se definen los residuos de los aparatos eléctricos y electrónicos, sus materiales, componentes, consumibles y subconjuntos que los componen, procedentes tanto de hogares particulares como de usos profesionales [27].

Los RAEE disponen de sistemas de recogida selectiva. Una vez recogidos, se canalizan a las distintas plantas de tratamiento en función de sus necesidades específicas, aunque en general siguen un proceso similar para la separación de los diferentes componentes.

Se pueden catalogar como RAEE los siguientes componentes del proyecto:

- Placas Arduino de los controladores.
- Piranómetro de radiación solar.
- Electrodes y componentes eléctricos del cristal inteligente.
- Tubos LED del sistema complementario.

Principalmente, existen cuatro métodos utilizados en el reciclaje de los RAEE:

- Desmontaje y separación manual de los componentes del aparato.
- Reciclaje mecánico, mediante la extracción y triturado de materiales.
- Fundición, para la recuperación de los metales.
- Reciclaje químico, aplicable a metales preciosos (oro, plata, etc.) contenidos en las placas de circuitos impresos.
9. Presupuesto

El presupuesto se realizará en base al estudio definitivo para el que se han aportado proveedores para todos los componentes.

Únicamente se pretende dar un precio aproximado del proyecto. Por lo que se ha visto previamente, es evidente que la solución propuesta no es viable para hacerlo solo para una vivienda, pero se considera que, si alguna empresa está dispuesta a producir el sistema en serie, es posible considerarlo como factible.

En primer lugar, se muestra el precio relacionado con los gastos del autor, considerando el suelo bruto de ingeniería de 25 € por hora, y teniendo en cuenta que los 12 créditos ECTS del Trabajo Final de Grado corresponden a 360 horas:

<table>
<thead>
<tr>
<th>Componente</th>
<th>Medidas</th>
<th>Proveedor</th>
<th>Unidades (u)</th>
<th>Precio (€/u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Técnico de proyecto</td>
<td></td>
<td></td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>360</td>
<td>9.000</td>
</tr>
</tbody>
</table>

Tabla 9.1: Gastos en elaboración del proyecto.

Seguidamente, se ha de tener en cuenta el precio de cada uno de los componentes del sistema. A continuación, se expone un desglose de las partes que componen el sistema, con su proveedor y sus precios aproximados:

<table>
<thead>
<tr>
<th>Componente</th>
<th>Medidas</th>
<th>Proveedor</th>
<th>Unidades (u)</th>
<th>Precio (€/u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Captador Lente Fresnel</td>
<td>d = 317,5 mm f = 213,36 mm</td>
<td>Edmund Optics</td>
<td>1</td>
<td>175,25</td>
</tr>
<tr>
<td>Espejo de desvío</td>
<td>73 x 340 mm²</td>
<td>SICK</td>
<td>1</td>
<td>9,08</td>
</tr>
<tr>
<td>Motor grande (con controlador)</td>
<td>aprox: capaz de mover 30 kg</td>
<td>SANYO Denki</td>
<td>1</td>
<td>212,96</td>
</tr>
<tr>
<td>Motor mediano (con controlador)</td>
<td>aprox: capaz de mover 10 kg</td>
<td>SANYO Denki</td>
<td>1</td>
<td>154,16</td>
</tr>
<tr>
<td>Motor pequeño (con controlador)</td>
<td>aprox: capaz de mover 1 kg</td>
<td>SANYO Denki</td>
<td>1</td>
<td>7,61</td>
</tr>
<tr>
<td>Piranómetro</td>
<td>-</td>
<td>Kipp&Zonen</td>
<td>1</td>
<td>970,4</td>
</tr>
<tr>
<td>Tubo intermedio</td>
<td>aprox: $D_{\text{ext}} = 400$ mm</td>
<td>Grupo Hastinik</td>
<td>1</td>
<td>6,49</td>
</tr>
<tr>
<td>Esfera</td>
<td>$R = 264,95$ mm</td>
<td>Modulor</td>
<td>1</td>
<td>51,70</td>
</tr>
<tr>
<td>Rodamiento cilíndrico</td>
<td>$D_{\text{int}} = 320$ mm, $D_{\text{ext}} = 400$ mm</td>
<td>Schaeffler</td>
<td>1</td>
<td>134,4</td>
</tr>
<tr>
<td>Rodamiento esférico</td>
<td>$D_{\text{int}} = 220$ mm, $D_{\text{ext}} = 400$ mm</td>
<td>NSK</td>
<td>1</td>
<td>165,6</td>
</tr>
<tr>
<td>Engranaje tubo intermedio</td>
<td>aprox: $D_{\text{int}} = 400$ mm</td>
<td>Grindel</td>
<td>1</td>
<td>165,49</td>
</tr>
</tbody>
</table>

Conducto reflectante

Tubo PVC	$D_{\text{ext}} = 315$ mm	**Plásticos Ferro**	1	54,12
Codo PVC	87°, $D_{\text{ext}} = 315$ mm	**Plásticos Ferro**	2	96,95
Abrazaderas	$D = 315$ mm	**Salvador Escoda**	2	9,2
Tubo Aluminio	$D_{\text{ext}} = 300$ mm	**TuboÓ**	1	485,21

Difusor

Lente policarbonato	aprox: $d = 370$ mm	**Polimer Tecnic**	1	5,95
Cristal Inteligente	aprox: $d = 370$ mm	**NSH**	1	1.241,3
Placa PVC	$S = 50 \times 50 \text{ cm}^2$, $e = 10$ mm	**Servei Estació**	1	33,25

Sistema eléctrico

| **Tubo LED** | 3.400 lum 24 W | **Philips** | 6 | 16,95 |

*Para los componentes que no se ha encontrado el precio exacto del proveedor, se ha incluido como precio aproximado, el de componentes similares en el mercado.

TOTAL = 4.186,87 €

Tabla 9.2: Gastos en componentes.
Además, al coste de la Tabla 9.2 se tendrían que añadir los gastos en componentes como la tornillería, los engranajes de menor tamaño, el sistema polea para mover la esfera sobre el eje horizontal, los ejes de unión con los motores, las juntas de goma entre elementos... Aun así, se suponen estos gastos despreciables comparados con el total.

Y, por último, se hace una aproximación del gasto derivado a técnicos responsables de la instalación de algunos de los componentes. Se tienen en cuenta un albañil durante cuatro semanas (80 horas), un lampista durante una semana (40 horas) y un programador durante una semanas y media (60 horas).

La siguiente tabla presenta el precio por hora y el gasto total bruto para cada uno de ellos:

<table>
<thead>
<tr>
<th>Precio unitario (€/h)</th>
<th>Horas dedicadas (h)</th>
<th>Gasto bruto (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albañil</td>
<td>20</td>
<td>160</td>
</tr>
<tr>
<td>Programador</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>Lampista</td>
<td>35</td>
<td>40</td>
</tr>
</tbody>
</table>

Tabla 9.3: Gastos en técnicos responsables.

Considerando que se deberán disponer de dos sistemas de iluminación natural y sumando todos los gastos se obtiene un gasto total aproximado de 23.773,74 €.
Conclusiones

Este trabajo está enfocado como un estudio de viabilidad o un anteproyecto, con el objetivo de llevar a cabo un estudio de un sistema de iluminación natural para una vivienda.

El objetivo principal propuesto al inicio, que consiste en el planteamiento de un sistema capaz de captar, transportar y difundir la luz en un espacio concreto, se ha logrado. Así se ha demostrado con la validación del sistema de iluminación natural.

Esto ha sido posible gracias al estudio minucioso del caso de estudio, que ha permitido definir las condiciones necesarias para adaptar los componentes seleccionados a la solución propuesta.

Además, este trabajo también aporta soluciones para los dos objetivos adicionales planteados. Tanto el cristal inteligente actuando como regulador de luz, como el estudio del sistema eléctrico complementario para iluminar el espacio cuando no se disponga de luz natural, se consideran válidos y aplicables a la solución propuesta.

Por otro lado, también se han evaluado las consecuencias medioambientales del proyecto. Considerándose sostenible y con un impacto mínimo sobre el medioambiente durante su ciclo de vida.

Finalmente, se ha llegado a la conclusión que, aunque un proyecto como este no es viable hacerlo específicamente para una vivienda unifamiliar, podría llegar a serlo si la solución propuesta se produjera en serie. Se plantea como trabajo futuro el diseño detallado de todos los componentes, y el estudio de la posibilidad de producción de los mismos a bajo coste.
Agradecimientos

Quiero agradecer a mis tutores, Joaquín Fernández y Alba Ramos, su implicación y dedicación, sin vuestra ayuda este trabajo no hubiera llevado a cabo satisfactoriamente.

Pero sobre todo quiero agradecer a mis padres, Sergio y Leticia, vuestro apoyo ha sido fundamental durante todo el Grado y, especialmente, durante la realización de este proyecto.
Bibliografía

[5] León Guarnizo, Cristian; Veintimilla, Juan Carlos; Jaramillo, Jorge Luis (2013) *Diseño de un concentrador solar experimental para sistemas de iluminación natural con fibra óptica, basado en la utilización de lentes de Fresnel*

