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Abstract

Due to high number of vehicles, the greenhouse gases in the atmosphere have reached the
highest level. If it is compared a Fuel Cell Hybrid Electric Vehicle (FCHEV) to conventional
Internal Combustion Engine (ICE) vehicles or Hybrid Electric Vehicles (HEVS), the first group
has zero greenhouse gas emissions, and for that reason is a better alternative. Regarding All
Electric Vehicles (AEVS) the charging time is longer which is a negative point. A fully charged
battery from an AEV for example gives less range if it is compared to a FCHEV with a full
hydrogen tank. So basically, the main advantages of FCHEV compared to AEV are: a quicker
filing in of the tank and more autonomy. The most common used fuel cell (FC) is the Proton
Electron Membrane Fuel Cell (PEMFC). The main problem of this type of FC is the slow current
dynamics which leads for not being suitable for the sole power source in a vehicle. Therefore,
the FCHEV is the best option, and by upgrading the power management system (PMS) in the
poper way, the carés performance can be i

This b ac h el or éuliestthe etegrasion of a neural network (NN) to a FCHEV. The
objective is to analyze the effect of integrating NN on the PMS of FCHEV and try to improve

its efficiency by predicting the driving profiles.

A model to simulate the physical behavior of FCHEV has been looked for in MathWorks
webpage by using MATLAB/Simulink software as a tool for simulation. All the parts of the
model have been studied for better comprehension on how it works and for future modifications

in order to implement the NN.

Results shows that by implementing NN using the Time Series app from MATLAB, a driving
profile can be predicted with an acceptable error, which means that after get prepared the NN
by training with lot of data, the power economy can be improved by modifying the controller

parameters. Moreover, this solution let to increase the life of the battery.
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1. Abbreviati ons

FCHEV

ICE

HEV

AEV

FC

PEMFC

PMS

NN

PHEV

FCV

DOE

ESS

DOH

SOC

EF

EMS

IGBT

PMSM

RBF

NARX

Fuel Cell Hybrid Electric Vehicle
Internal Combustion Engine
Hybrid Electric Vehicle

All electric Vehicle

Fuel Cell

Proton Electron Membrane Fuel Cell
Power Management System
Neural Network

Plug in Hybrid Electric Vehicle
Fuel Cell Vehicle

Department of Energy

Energy Storage System

Degree Of Hybridization

State of Charge

Equivalent Factor

Energy Management Subsystem

Insulated Gate Bipolar Transistor

Permanent Magnet Synchronous Machine

Radial Basis Function

Nonlinear autoregressive network with exogenous inputs
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2. Background

Lately, rapid advances and developments in the auto industry have occurred. The increasing
use of electric motors and the advances in their efficiency and capacity of high voltage energy
storage devices has opened new frontiers. Although these latest improvements in the electric
powertrain components, greenhouse gasesb6 |l evels hay
the automotive industry is looking for other solutions by doing research and development in
AEVs, HEVs and Plug in Hybrid Electric Vehicles (PHEVs). But the research is not limited only
for those types. Alternatively, FCHEV seem to have a promising future as they have the
advantage of going longer range in one complete hydrogen tank compared to AEVs which go
lesser range, and moreover, with a very heavy battery pack. The tank refiling time for the
hydrogen gas is about 3-5 minutes, while for AEVs can take hours to get the necessary amount
of energy for doing the same route. On the other hand, HEVs still use gasoline and so have
greenhouses gases coming out of the exhaust pipes.

In the current scenario of environmental crisis and stringent environmental laws and capping
of greenhouse gases, the advances in FCHEV vehicle research has made some people think
that FCHEV can be a viable substitute to ICE and a better alternative to AEVs if the

advancement and infrastructure reaches a level that it becomes convenient to have a FCHEV.

Although the FC has shown promising capabilities as a main power source in a vehicle, it has
some inherent characteristics that need to be taken care of in the power management strategy.
In order to make FCHEVs a commercial success, some obstacles that it faces need to be

discussed.

2.1. Impediments in the commercialization of Fuel Cell
Vehicles (FCV)

In order to make successful the FC commercialization, it is required a solid infrastructure:
hydrogen refueling stations, affordable price of Hydrogen gas, etc. Some of the main barriers

are discussed below.
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2.2. Hydrogen: availability, cost and quality

Social acceptance and economy viability of the FC technology go hand in hand in order to

success this kind of technology. One of the most important factors is the hydrogen fueling

stations availability. The map shows the locations of the hydrogen fueling stations across

Spain. According to the data provided by netinform.net [1], there are just 6 hydrogen gas

fueling stations in operation which are shown in the map in Figure 1. Three of them are in

Aragon, one in Albacete, one in Sevilla and the last one in Castilla La Mancha.
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2.3. Commercial features of the FCHEV

As explained above, lot of research and development is being done by the automotive
companies to bring the cost down. According to a report from the Department of Energy (DOE),
the goal on 2025 is to have a cost of FC system around 40 (0 / k W50@&00O0 units produced
per year [2]. This cost will only be possible with high volume production. Another institution,
The International Energy Agency, also considers the possibility of FCVs as a solution to a
cleaner transportation. An economic analysis done in [3], shows that by 2030, the cost of fuel
cell stacks produced would be 321 68 0 / k WFCoAccording to another study done in [4]
shows an expected technology learning curve between 0.78 i 0.85. This will bring down the
cost from 22% to 15% which will make FC technology more economical. As seen below, Table

1 includes powertrain cost prediction for 2030:

Table 1. Cost summary of the powertrains for 2030 [3]

Powertrain Cost Mi ni mum Ma x i mum Average
Fuel Cel | 35 70 50
Battery U 180 270 225
Electric drive train 1,085 1,835 1,460
Hydrogen Storage 810 1,805 1,310
Conventional (ICE) 2,165 2,285 2,225

The running cost is also an important factor which leads to make any technology viable.

Basically, the running cost would be the cost of the fuel. Table 2 below includes fuel cost

prediction for 2030:
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Table 2. Cost prediction of fuel for 2030 [3]

Fuel cost Mi ni mum Maxi mum| Aver ag e| Distance [km]
Gasoline 17 34 25.5 550
Hydrogen 13 51 32 1,100
Electric 24 41 325 2,200

The ambition of the auto makers is to make FCHEYV technology reach a similar level compared
to gasoline vehicles in terms of durability, safety, performance, etc. In order for doing that, it is
needed that the costs discussed above (powertrain cost and the fuel cost) decrease as much
as possible until make this kind of cars the main used. This will promote more production of

FCHEVs, which consequently will bring down cost even further.

2.4. Motivation for developing a PMS with NN

Regarding the scarcity of hydrogen refueling stations and the production cost of a FC stack,
by increasing the autonomy of the vehicle through controlling in an optimal way the power
demanded, will improve the reliability and the performance of this type of vehicles. The
combination of electric power provided by the battery and the energy provided by the FC, let
to have a one degree of freedom, giving flexibility to operate with the FC in its most optimum
region as well as with the battery. Thisb a ¢ h e | o r ibvestigatds d@vitosdesign a PMS
that distributes the necessary power among the two sources in an optimal way. Along with
satisfying the power demand while accelerating efficiently, taking profit from the regenerative
power efficiently with an added degree of freedom would be also an ambitious challenge on
designing an efficient PMS. Nevertheless, because the time and the complexity, it has been

decided to work only with one degree of freedom.

The effect of using NN is to make sure that the FC and the battery work in the most efficient

region.
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3. FCMpowertrain technol ogy

During the last years, lot of researches have focused on the development of towards non-
conventional powertrain vehicles. Cars like GM Volt and companies like Tesla have changed
the automotive industriimns, @ihalotofresearchfregavdingFZs, At t he s a
have emerged as an alternative to the ICEs. FCVs have almost no one real environmental
concern. The fuel used is hydrogen H; gas which undertakes a reaction with oxygen O, and

produces electricity, heat and water making all together a very environment friendly.

Regarding the advantages, the FCHEVs have quite simple structure compared to ICE
vehicles. In the FCHEYV there are no moving parts, being that most of it is electronics are solid
state devices. As a consequence, there are no vibration or noise issues with FCHEVSs.
Moreover, as ho moving parts contemplated, the maintenance cost comes down and no parts
require lubrication, which means no oil changes and no lubrication change in transmissions

and other parts.

The major automotive companies are investing for developing FCHEVs. Some of the reasons
are that the environmental laws are becoming stricter and at the same time FCHEVSs offers all
the benefits discussed above. Nowadays, can be find commercially available some FCHEVS:
Hyundai Tucson uses a 100kW FC stack with a range of 427 Km on a 0,95kWh battery. The
Toyota Mirai has a 114kW FC stack with a 1.6kWh battery and with a range of 502 Km.

Apart from improving the FC stack technology and efficiency, the type of components used for
the energy storage system (ESS), which is another name to call the battery, and the powertrain
types used in hybridization of the FCV play a tremendous role in its performance and range.
So, different types of configurations have been investigated at the moment. In Table 3 below
there is a list of projects from automotive companies trying to reach best configuration for
FCHEV:

Table 3. FCHEYV projects from Car Manufacturers [5]

Company System configuration

Daimler Chrysler Straight fuel cell i Fuel cell-battery hybrid
JER

ddxbb
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Ford Straight fuel cell
General Motors (GM) Fuel cell-battery hybrid
Honda Fuel cell i ultra capacitor hybrid
Mazda Fuel cell i ultra capacitor hybrid
Nissan Fuel cell-battery hybrid
Renault Fuel cell-battery hybrid
Toyota Fuel cell-battery hybrid
Volkswagen Straight fuel cell i Fuel cell-battery hybrid
ZeTech Fuel cell-battery hybrid
3.1. The FC

A FC is similar to a battery in that it generates electricity from an electrochemical reaction.
Both, batteries and FCs convert chemical energy into electrical energy and also, as a hy-
product of this process into heat. However, a battery holds a closed store of energy within it
and once this is consumed the battery must be thrown away or recharged by using an external
supply of electricity to drive the electrochemical reaction in the reverse direction.

On the other hand, a FC can run indefinitely as long as it is supplied with a source of hydrogen
fuel (hence the name) and is similar to an ICE in that it oxidizes fuel in order to create energy.
But rather than using combustion, a FC oxidizes H; electrochemically in a very efficient way.
During the reaction, hydrogen ions react with oxygen atoms to form water. In the process
electrons are released and flow through an external circuit as an electric current. The only

exhaust is water steam.

The FC type used in automotive industry is the PEMFC, a low-temperature, hydrogen fueled
cell containing a platinum catalyst. It is the most common type of FC and allows for variable

electrical output, ideal for vehicle use. The PEMFC is made up of two electrodes with a
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membrane acting as an insulator between the two electrodes. The electrodes along with the

membrane from the membrane electrode assembly. The chemical reaction which takes place
in this membrane is shown below [6]:

Anode: Oz ¢O0O cQ 1)

Cathode:

65 Q ¢O ¢Qz 006Q )

Global reaction: gfj "Q 0O "Qz OO0 Q (3)

Figure 2 represents the structure of a membrane electrode assembly:

Electric current

- 1]
Fuel in e 'I’ Airin
— t e’ =
- =- -
t .|
. H*
H—|:> "
e | |9,
H* ‘
I Unused
Excess air, water,
fuel out HED_and heat
=
== =
! i
Anode | Cathode
Electrolyte

Figure2.Me mbr ane ds [7]st

Another phenomenon which occurs in FCs, which is the biggest concern, is the starvation.
Parallelly to the

c at h o d®, there i aacther reaction whictetpke e s ent e d
place (4):

i
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6 ¢oGz 66 TO 10 ()

Starvation is negligible under normal conditions, but the problem appears when large power is
drawn from a FC stack under transient conditions: as a start/stop or rapid acceleration. A FC
produces insufficient power for make the vehicle works only with that, hence hybridization
becomes inevitable. The Figure 3 below shows the structure of PEMFC cell stack.

Electrons

Unused
hydrogen

Terminal bPlate Anade Cathode
(Au-coated) Pt(C) PY{C)
Bipolar Plate Gas-Diffusion Block
H2 (carbon) Layer (carbon) 02

Proton-Exchange
Membrane (PEM)

Figure 3. PEMFC structure [8]

One of the most important factors which affects the operating conditions of a FC is the
temperature. With a proper operating temperature, the oxygen reduction reaction is enhanced
which avoids major voltage loss. When the FC works at 1 atm pressure and 100 °C, water is
in vapor state, so it is transported through the membrane, catalyst and diffusion layer is easier.
Nevertheless, by working with temperatures above 100 °C, water will be completely vaporized.
As a consequence, that will trigger to a deficiency of water and dehydration of the membrane,
which reduces the proton conductivity in the membrane. Regarding the broad range of cells,
the operating temperature of PEMFCs is between 60-100 °C. That is the reason why the
PEMFC are the most preferred type of fuel cell for automotive industry.

Although PEMFC are better compared to other FCs, still needs a PMS in order to assure that
o,
Yooy

A
ETSEIB
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the PEMFC remains in a good range of temperature for working and appropriate amount of
current is drawn. That only can be achieved through the PMS. When high current is extracted
from the FC, the CO; liberated regarding to (4) can provoke permanent loss of carbon, and
therefore, reduces MEA membrane durability [9]. In order to avoid reaction (4) from becoming
intense, an efficient PMS is needed for having a better performance. For the PMS it has to
take into account the energy storage devices, which are used in the powertrain of FCVs to

facilitate and supply power in cases of high-power transient demand.

Another factor that prevents FC for being used as the only source of power in vehicles is
starvation. As said before, when a large amount of current is extracted from the FC in a vehicle
while driving, the membrane can easily be damaged. Hence, another device is needed to
complement the FC stack, and for this reason the existence of FCHEVs instead of FCVs. In
that case, battery packs are the preferred as ESSs in auto industry, which are widely used in
HEVs, PHEVs and AEVs. Some car models of nowadays could be for example the Toyota
Mirai or the Hyundai Tucson. There are still several challenges to face for developing and
implementing a hydrogen-fueling infrastructure. One of the most important is the fact of
reducing CO- emissions while producing hydrogen. The industry and the government are still

working on these issues trying to solve them as soon as possible.

As seen in the reaction shown in (3), oxygen is one of the two important parts of the reaction.
As long as more current is extracted from the fuel cell it means that the reaction must be done
at a faster rate. So, it is necessary to be refilled very quickly the O, used in the reaction in the
FC. If that does not happen, the partial pressure of O, drops at the cathode which provokes
that the voltage of the FC stack drops drastically damaging the membrane. This phenomenon
is the FC starvation explained in more detail. This will in turn lead to reduce the power response
of the FC stack. Apartfrom t he FCds inability to stand

cooling requirements and water balance of the FC are critical in maintaining the stability and
performance of the FC stack. These factors affect directly on the lifetime of the FC stack as
well. If FC was the only power source in a car, it would not be any alternative for controlling
the power demand. Nevertheless, when the ESSs as batteries are included, from one hand,
lets the system to have one degree of freedom provoking an improvement in the dynamic
behavior of the vehicle, and on the other hand, it prevents the extract of energy from the FC

during sudden variations in power demand. A powertrain configuration having both devices,

sudden

thesi s

var
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can be used to the best of their capabilities to make a system quite efficient. Hence, creating

an intelligent PMS for this kind of powertrains is the objective ofthisb ac hel or.6s t hesi
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4., Hy bri di zati on POMS FCHEYV

4.1. Powertrain topologies

Depending on the number of power sources, the powertrain topologies can be divided in full
power source with Battery, full power source with UC and Triple Hybrid power source. Figure
4, Figure 5 and Figure 6 shows a block diagram of the different topologies of power source:

Motor [« » Inverter |« » DC/DC « » Fuel Cell
» Battery
Figure 4. Full power source battery
Motor « » Inverter « » DC/DC [« » Fuel Cell
» DC/DC » Ultra-Capacitor
Figure 5. Full power source with UC
» Battery
Motor « » Inverter |« » DC/DC |« » Fuel Cell
» DC/DC |« » Ultra-Capacitor

Figure 6. Triple hybrid power source

and

thesi s
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Hybridization with various power resources makes more complex the control strategy for the
system by adding more degrees of freedom, but at the same time, it creates an opportunity for
optimizing the control strategy. Find below (5) which calculates the degree of Hybridization
(DOH):

000 00— (5)
V]

C-

Ca

: power from the electric motor

Ca

: power from the FC

The FC in FCHEVs works like an engine except the fact that it charges the ESS and at the
same time provides current to the motor. In exceptional cases, when the state of charge (SOC)
from the ESS is not enough, the FC can also be used to provide power to the wheels. The
DOH is wuseful in order to didiretherpowergainttiedC,p owe I
batteries and Ultracapacitor. As it can be checked on (5), by increasing the ESS the DOH is

higher. On contrary, by increasing the power generated from the FC, the DOH reduces.

4.2. FCHEV PMSs

The main goals to consider while developing a control strategy is to regulate the energy in
such a way that power demand is always satisfied, the battery is sufficiently charged at all time
and the overall system efficiency is maintained optimal [10]. In any FC vehicle powertrain
configurations, the energy exchanges from the FC to the ESS operates in three modes:

- Chargei The FC supplies energy to the battery and the load.

- Dischargei The FC and battery supply energy to the load.

- Recovery i The energy is supplied by recovering power through regenerative braking

and stored in the battery.

There are different technigues regarding control strategies. Those techniques are explained in
more detail in the next section. Depending on the type of algorithm and control logic, the power
management strategies can be categorized into two types:

- Rule based.

- Optimization based.
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4.2.1. Rule based control strategy

That rule is computationally less expensive compare to optimization based strategies. They
are good for real time problem solving. Basically, they are based on a set of rules on which
various decisions like power split are calculated. The rule based category includes two

subgroups for power management strategies which are exposed as follows:
4.2.1.1. Deterministic/Heuristic rule based

This method analyzes the amount of power that flows to each of the power sources in the
powertrain taking into account the efficiency map of the fuel cell. So, the rules which govern
this particular method are based in this previous information. While designing the PMS, there
are certain conditions that must to take into account. That conditions are [11]:

- The power demanded by the vehicle has always to be satisfied.

- Take care that the ESS devices always are remained between a maximum and

minimum limit operation. In order to make sure the health of those devices.
- The FC power and current is remained within its allowable limit for preventing

starvation.

As follows, a flow chart (Figure 7) is represented in order to make it clearer how it works the
rule based control strategy. It is shown the process of decision making regarding the conditions

and the rules exposed above:

Pcomm: commanded power

Pfc-rated: rated power of the fuel cell svstem

Pfc: nower of the fuel cell svstem

Pfc-min: minimum power of the fuel cell svstem
Pops-traction: traction power extracted from the PPS
Ppops-charaina: charaina power in to the PPS

E: enerav level of the PPS

Emin: Bottom line of the enerav storaae in the PPS

Emax: Top line of the enerav storaae in the PPS
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Braking Power  Traction Power
Command Command

Traction| No

Pfc = Pfc rated
Pppstraction = PcommPfc

If Pcomm > Pfc ratesd - -
Hybridtraction

PP&harging

A No
ortraction

. Yes Pfc=0
t ORcYaied> . | Pppstraction
PPS tractin
=Pcomm

PPSharging| Yes

LT

Pfc = Pfc rated
Pppscharging = PfePcomm

Yes Pfc = Pcomm
FC traction | Ppps=0

PP&hargirg

Pfc = Pfc rated
Pppscharging=PfcPcomm

Figure 7. Rule based flow chart

In this flow chart can be seen that through a set of pre-defined the command power is satisfied.

4.2.1.2. Assist management strategy

Assist control is another subcategory of PMS included in rule based category. The principal
parameters which depends this method are the stack voltage and the SOC of the battery. The
purpose of this strategy is to reduce load in the FC by requesting more power out of the battery
(as long as the SOC of the battery is above a certain limit [12]). This strategy can be split into
the following rules:

- Abetter proportion of power is provided by the battery as long as the SOC of the battery
is above a minimum limit. The rest of power comes from the FC. However, if the SOC
drops below the minimum limit value, the FC provides a higher proportion of power.

- A higher proportion of the power is extracted from the FC in case that the stack voltage
is higher than the maximum limit value. This condition remains valid until the first one

becomes true again.
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The limit values for the stack voltage and the SOC ofthe ESSdepend on the fuel cell
size and the ESS. In a report done by Aouzellag and Ghedamsi was found an improvement of
5-16% in the fuel economy [13].

Battery SOC
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1 T T & T T 1
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| | [} |
- . T |
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| | I} |
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Stack Voltage (“/fr )

Figure 8. Power split in assist
control strategy

4.2.1.3. Fuzzy logic

As seen in the report [13], the authors have designed a control strategy by using Fuzzy logic.
The extracted power from the FC dictates the current extracted from its, which then, is easy to
know the amount of hydrogen that is consumed. The main goal of this control strategy is to
reduce the consume of hydrogen. The fuel cell power, which does not depend on the SOC of
the ESS components, is used as a parameter in order to provide power requested by the
vehicle. The other parameter used in this control strategy is the vehicle speed. The Table 4

summarize how it works the Fuzzy Logic algorithm:

Table 4. Fuzzy Logic Energy Management [13]jError! No se encuentra el origen de
la referencia.

Condition Power from Ultracapacitor Power from the FC
47 OSOC 075 and Vv<60 Yes No
47 OSOC 075 and Vv>60 Yes No
:aAb\
ddxbb
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SOC>75 Yes No
SOC < 47 and 10 OVv 060 Yes Yes
SOC <47 and Vv > 60 No until charged, then Yes Yes

4.2.1.4. Load following management strategy

In this kind of control strategy, the power limit depending on the SOC dictates the ON/OFF
function of the FC. If the power requirement is higher than the limit maximum value, the
controller turns ON the FC in order to fulfill the power that it lacks. This control strategy
facilitates the maximum charge depletion of the battery pack [14]. Another thing to take into
account is the dynamics and the time response of the FC due to it is not as fast as ICE. Figure
9 represents the power split between FC and ESS:

Pruet cou-atax

V] ess

Fuel Cell

Power Demand

PT Treshold

585 590 595 600 605 610
Time

Figure 9. Power split between FC and ESS [14]
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4.2.1.5. Thermostatic control strategy

As seen in [15], the goal of this control strategy is to maintain the SOC of the battery between
SOCiow and SOCihigh, Which also supposed to extract the power from the FC between two
values Pecmin and Pecmax. The following Figure 10 shows a representation of thermostatic

control strategy in which it can be seen the limits of those parameters.

sacC

S0OC / l

high

s0C,

Figure 10. SOC vs Prc

The thermostatic control strategy is easy to be implemented in real time driving conditions and
let the battery an extended life of use by reducing the charge/discharge cycles. Some
experimental results in [16] show that this strategy is more efficient than the load following
management strategy at least in city driving. However, a negative point of this control strategy
is when the SOC of the battery is below the SOCi,w and the power demand is greater than

Pecmax, in that case the strategy is not able to cover the power requirements of the vehicle.

4.2.2. Optimized rule based management strategy

The difference between rule based and optimization based strategies is that the first one is
real time i mplementable but donét necessarily prov
other hand, the optimization rule based maximize the efficiency of the power train and at the
same time minimize the losses [15]. In this method the optimal reference torques for power
controllers are calculated by minimizing the hydrogen fuel consumption. When optimization is
performed over fixed drive cycles, a global minimum can be found. Some optimization methods
are computationally complex for processing and others also need the prediction of future paths

in order to optimize the power management. In the next sections is explained four energy
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management strategies which are included in optimized rule based control strategy: driver
pattern recognition, equivalent consumption minimization strategy and maximum power point

tracking energy control strategy.
4.2.2.1. Driver pattern recognition

Depending on the driver demand, the rule based control strategy will be different completely.

So, the advantage provided by driving pattern recognition is the ability to operate a vehicle in
606mmdded6 contr ol algorithm. The way of worKki
representative parameters of a drive cycle which describe driving pattern: speed, acceleration,
deceleration, slope of the road and others. Recognition of driving pattern is done by measuring

the data obtained in certain points. Aftrer t h
extracted from it. A feature vector is based on these feature members and is used for the

driving pattern identification. A feature vector "Qwould be the once defined in resource [17] and

is expressed as in (6):

"Q Qad FQ ) R B AQ ) (6)
: feature member
"Q: weight factor (depend on the feature parameter)
n: dimension of the feature vector

On the following Table 5 is shown an example of each feature parameter (¢) and its
corresponding weight (Q:

Table 5. Feature vector parameter [17]

Index number Feature Parameter (o) Weight
(R Factor (Q
1 Average speed (m/s) 10
2 Positive Average Acceleration (a > 0.1 m/s?) 1
3 Low Speed Time (15-30 Km/h)/Total Time (%) 10
ﬁb‘
\'!‘.“x“_’t'r
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4 Mid High Speed Time (70-90 Km/h)/Total Time (%) 100
5 High Speed Time (> 90 Km/h)/ Total Time (%) 10

6 Extreme Deceleration Time (a> -2.5 m/s?)/Total Time (%) 1000
7 High Deceleration Time (a<-2 & a>-2.5 m/s?)/Total Time (%) | 1

8 Maximum Cycle Acceleration (m/s?) 100
9 Maximum Cycle Speed (Km/h) 6

10 Standard Deviation of Cycle Speed (Km/h) 1

11 Mid Deceleration Time (a<-1 & a>-1.5 m/s?)/Total Time (%) | 1000
12 Mid High Deceleration (a>-2 & a<-1.5 m/s?)/Total Time (%) | 1000
13 Mid Acceleration Time (a>-2 & a<2 m/s?)/Total Time (%) 1

14 High Acceleration Time (a>2 & a<2.5 m/s?)/Total Time (%) | 1000
15 Extreme Acceleration Time (a>2.5 m/s?)/Total Time (%) 1000

Once the feature parameters are calculated, it is possible to proceed by creating the feature

vector (6). Normally standard driving cycles are usedforthes i mul at i on

After running the simulation, an output value tries to identify the driving cycle by assigning

numbers depending on the cycle. An example can be seen below (Figure 11) regarding the

effectiveness of the simulation for the driving pattern recognition:

NEDS,

thesi s

UL
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T T T

| — Pattern Recognition Results
Driving Cycle
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Figure 11. Efficiency of driving pattern recognition

After the driving cycle is identified, the fuel economy can be improved by modifying the

controller parameters.
4.2.2.2. Equivalent consumption minimization strategy

This strategy is an instantaneous optimization which does not depend on the drive cycle or on
the future route done by the vehicle. With an appropriate equivalence factor (EF) and
conditions, it can generate a close optimal solution. In the case of FCHEV, the power comes
from the FC and the battery. So, the following equation is used in this strategy for predicting
the future hydrogen consumed [20]:

|
a a a & S— (7)
8 L Ow

a  :equivalent total hydrogen consumption

(e}

: hydrogen consumption

a 8 . equivalent hydrogen consumption for rate from the battery or ESS
0 "Ow: Lower heating value of the hydrogen

i : equivalent factor

Once is calculated the equivalent hydrogen consumption from the battery, it is possible to

obtain the power split ratio between the FC and the battery.
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In equivalent consumption minimizationst r at egy, the batterybés SOC is <co
restriction and the goal of the strategy is to calculate an EF inwhichtheb at t er yéds SOC r emai n
between the limits in order to maintain the state restriction inactive. In case the SOC have
values out of the limit range, it becomes an active state restriction and then, the solution of the
eguivalent consumption minimization is not optimal at that point. In order to avoid this, a penalty
function can be added to the EF and provokes the adaptation of the equivalent consumption
minimization by avoiding the state restriction become active. This penalty function is really
useful for the energy management because prevents discharge of the battery in case of low
SOC, or on the other hand, prevents charging in case of maximum SOC by using for example
the normal braking instead of the regenerative ones. The penalty function is expressed in (8)

as follows:
Do o W> 60
(o i Qo 0MIifgo T B o<x<® (8)
Do o W< @

Q: penalty function

Q w  : penalty for SOC exceeding upper limit

Q @ w :penalty for SOC falling under below limit
Last but not least, this kind of strategy is heavy computationally, so is not the most used.

4.2.2.3. Maximum power point tracking energy control strategy

This control strategy is based by maximizing the efficiency of the FC and activate to the
maximum power when the power demand is quite high [19]. The efficiency graphic indicates
that the FC system has only one maximum power point, and is determined by operation
conditions of the FC. With that operating conditions, the control strategy put the focus on
calculating the maximum power that can be delivered to the wheels from the FC. The
maximum power point and the maximum efficiency are defined as a fixed points, but in reality,

these points may vary depending on the operating conditions of FC stack: pressure,



Using deejgarning methods to predict driving profiles Page31

t e mp e r a[i8LThesngaximum power point tracking energy management strategy tries to
avoid these disadvantage. The main goal of this strategy is to give a current reference to the
FC which corresponds with maximum power point. The following equation presented is used
in the algorithm of this strategy and determines the change of FC power with respect to change
of FC current. Being a derivative (9), by equaling to cero, will be possible to find the maximum

which corresponds with the Maximum power point:

Q0 QW ] 9
- ————————— 0 T %)
Q0 QOO M RY

0 : Power from the FC

‘O: FC current (perturbated in order to see in which direction the variation goes for finding

the maximum power point).
w : Voltage of FC

“Y : Temperature of FC

Ca

: Pressure of hydrogen

Ca

: Pressure of oxygen

The maximum power is provided by this strategy in order to reduce charge/discharge cycles
of the Battery. Last but not least, this strategy is best suited for low speed vehicles where the

fuel cell is used as a range extender.
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5. Modefbl approach and si mul

The tools used for modelling and doing the simulations are crucial for the implementation and
verification of these strategies in real applications. So, in this section, an effective vehicle
simulator used in the initial phase for strategy development of vehicles is presented. An
effective and trustworthy software tools play a critical role in the optimization of power

management approaches. Some of the most popular software used in the field of vehicle

research are: MATLAB/Simulink , ADVI SOR and PSAT. MATLAB

| aboratoryo) devel oped by MathWor ks | nrent
simulations and analyses in this project. The Simulink is a part of the package which has been
used for running the vehicle model simulation with its components and for developing the
power management strategy with the NN. Simulink contains different kind of toolboxes with
different functions associated to that. The toolboxes use blocks that represent kind of a
systems with a specific function. The blocks can be interconnected each other creating a block
diagram for modelling and simulating systems. Particularly, the model implemented uses the
Simscape Driveline and Simscape Electrical toolboxes.

The basic model has a PMS which determines the reference signals for the FC system, the
DC/DC converter and the electric motor drives for distributing the power accurately from the
two electrical sources, but taking care that the SOC is maintained between the 40 and 80%.
The new model would consist with a battery and a FC as well but with the particularity that a
NN has been implemented in order to looking for the optimal power management strategy.

The final model withthe NNhas not been able to complete

The basic model consists of three main blocks below:
1) Electrical subsystem
2) Vehicle dynamics

3) Energy management subsystem (EMS)

at

S
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Putting all these blocks together represent the FCHEV model (Figure 12):

Energy Management
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Mot lorgus®
Car Speed
Molor Spee
Fuel Cel

Ban

Fsel Gell current’ I

o
Car speed (ki) D
] > e e
——— - Poruer (Mo, Fae Gl Balery)
Car.

Vehicle Dynamics

DCIDE oo wartar T

Figure 12. FCHEV global model

5.1. Electrical subsystem

Malor speed (radis]

Fuel Cell Hybrid Electric Vehicle (FCHEV)

The Electrical Subsystem from the FCHEV is composed of four parts:

fuel cell current*

The FC Stack

The DC/DC converter

The battery

The electrical motor.

FC Stack
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Figure 13. Electrical Subsystem MATLAB model
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5.1.1. The FC Stack

The Fuel Cell Stack block, from electricdrivelib/Extra Sources library, implements a generic
model parametrized in order to represent in that case a Proton Exchange Membrane Fuel Cell
(PEMFC) stack [25]:

Flow rate regulator H2 F

™ m
max | Iraf flow rate » FuelFr A
O r— —t "

fuel cell current™ n_\,

e +Vic

Iref flow rate > niFr W —ﬁ-. i <«

= Ve
Fuel Cell Stack

Flow rate regulator Air

Figure 14. FC Stack MATLAB model

The inputs received by the FC stack system are: Fuel flow rate (FuelFr) and Air flow rate (AirFr).

The specifications of the FC stack are listed below in Table 6:

Table 6. FC Stack specifications

Description Value

Nominal: 85,500 [W]

Stack power
Maximal: 100,022.4 [W]

FC Resistance 0.17572[q]
Nernst voltage of one cell 1.1729 |V]
Voltage direct current 288 [Vvdc]

Hydrogen (H2): 95.24 %

Nominal utilization
Oxygen (O): 50.03 %

Fuel: 794.4 slpm

Nominal Consumption
Air: 1891 slpm

[Borel
ey
\'L_“ ".'\'1

ETSEIB

thesi s
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Nominal stack efficiency 57 %
Fuel (bar): 3
Nominal supply pressure
Air (bar): 3
Number of cells 400
Operating temperature 95C

In order to work in the most efficient way, a H> and an air flow regulator has been implemented.
The flow controller manages the consumption of hydrogen and air according to the highest
value between the direct measurement of the FC (<current>) and the estimated FC current
consumption (fuel cell current*) which is calculated in the power management system.

As seen in Figure 13, the FC Stack model is connected to a DC/DC converter in order to

charge the Li-ion battery inside the electrical subsystem.

5.1.2. The DC/DC converter

fuel cell currant*

iref {1 ]
Dty cycle
i pll——
Bus OC controller
Dty Cycle o

+ Wdc
®—=+w: +Vde {3y
(a2

+Wifc

e v
- Wic - Wdc

DC/DC converter

Figure 15. DC/DC converter MATLAB model

The DC/DC converter is a buck type and is regulated by current. It contains a Bus Duty Cycle

Controller block which controls the Insulated Gate Bipolar Transistor (IGBT) device.
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5.1.3. The battery

The main specifications of the 25 KW Lithium-lon battery used are in the Table 7 below:

Table 7. Battery specifications

Initial SOC

Description Value

Nominal voltage 288 [V]

Rated capacity 13.9 [Ah]
40.32 %

thesi s

Another interesting graphic to take into account when modelling with batteries is the nominal

current discharge curve (Figure 16):

NMominal Current Discharge Characteristic at 0.43478C (6.0435A)

350 Discharge curve | ]
[ IMominal area
& [ ]Exponential area
o 300 i
E "y
3 \
250 | \ i
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Figure 16. Nominal current discharge curve

5.1.4. The electrical motor

The electrical motor is a Permanent Magnet Synchronous Machine (PMSM). The motor has 8
poles and the magnets are buried (the rotor is the type of salient rotor). In order to reach a

maximum motor speed of 12,500 rpm, a flux weakening vector control is used.
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Figure 17. Electrical motor MATLAB model

5.2. Vehicle dynamics

The vehicle dynamics subsystem models all the mechanical parts of the vehicle. It represents
the motion influence on the overall system. A MATLAB model of the vehicle dynamics can be
seen below (Figure 18):

(&)
o -yt | Ll ,—_[:“:\2_,_35
—— [} «{7]
UL{:::}j.
Figure 18. Vehicle dynamics MATLAB model
On the one hand, the single reduction gear r e

torque. The function of the differential is to split the input torque into two equal torques. The

tires dynamics model the force applied to the ground. And finally, the viscous friction simulates
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all the losses of the mechanical system.

On the other hand, the longitudinal vehicle dynamics represents a two-axle vehicle body in
longitudinal motion. Some of the settings which have been configured for the simulation are

exposed in Table 8:

Table 8. Longitudinal Vehicle Dynamics specifications

Description Value

Mass 1,625 [Kg]

Number of wheels per axle 2

Horizontal distance from CG to front axle 1.4 [m]

Horizontal distance from CG to rear axle 1.4 [m]

CG height above ground 0.5 [m]

Gravitational acceleration 9.81 [m/s?]
Frontal area: 2.71 [m?]

Drag parameters Drag coefficient: 0.26

Air density: 1.18 [Kg/m?]

5.3. Energy management subsystem

The energy management subsystem determines the reference signals for the FC stack
system, the DC/DC converter and the electric motor drives in order to distribute accurately the
power from the two electrical sources. The signals are calculated depending mainly on the
position of the accelerator (between -100% and 100%) and the measured FCV speed. It is
important to be said that the negative accelerator position represents a positive brake position.

A representation of the energy management subsystem can be observed Figure 19:
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Figure 19. MES MATLAB model

Battery management system block controls that the SOC remains between 40 and 80%.
Moreover, it prevents against voltage collapse by controlling the power required from the
battery. Finally, the PMS block controls the reference power of the electrical motor by splitting
the power demand as a function of the available power of the battery and the FC. This power
is controlled by the DC/DC converter current. Some of the input signals to the PMS are the
accelerator pedal position (Pedal position) and the vehicle speed (Car speed). On the other
hand, the output signals are the reference motor torque (Motor torque*) and the reference
current of the FC (Fuel Cell current*).

The Battery management system block determines the battery limit and the battery power
according to battery state of charge (SOC).

5.4. Demonstration

In this section is shown how the FCHEV [ siock Parameters: Accelt %

. . . i k) (link
performs in different operating modes over one ™ (M (79
Generates a signal changing at specified times.
com plete CyCIe: cruisi ng’ aCCEIeratlng’ If a signal value is not specified at time zero, the output is kept at 0

. . . til the first ified t ition time.
recharging battery while accelerating and " T ren e

. . . Parameters
regenerative breaking. In Figure 21 can be seen .
thatthecar 6 s speed starts [04812] B
Amplitude:

90 Km/h at 12 seconds, and then there is a

[[0.7 0.25 0.85 -0.7]

diminution to 80 Km/h at 16 seconds. That is a

consequence of maintaining the accelerator Figure 20. Accelerator parameters

pedal constant to 70% for the first 4 seconds, configuration
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then the pedal is released to 25% for the next 4 seconds, after that the accelerator pedal is
pushed again but this time to 85% for another 4 seconds and finally there is a braking (-70%)
until the end of the simulation. Check Figure 20 for seeing the configuration of the acceleration

parameters for the demonstration.

4\ MATLAB R2019h - academic use - [m] x
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Figure 21. Car's scope

Showing up next, a more detailed explanation of what is happening in different intervals of
time:

- Att=0s, as mentioned before, the driver pushes the accelerator pedal to 70%. On
that moment, the battery provides the motor the power till the FC starts.

- Att=0.7 s, the FC begins to provide power (blue line in the Figure 18), nevertheless
is not able to reach the reference power due to its large timeconst ant . That 6 s why t |
battery continues to provide the electrical power to the motor (yellow line in Figure 18).

- Att=4s, because the accelerator pedal is released to 25%, the FC cannot reduce its
power instantaneously, therefore the battery absorbs the FC power in order to maintain
the required torque.

- Att=6s, the FC power is the same as the reference power. The battery is no more
needed.

- Att=8s, the accelerator pedal is pushed to 85%. In that case, the battery supports

the FC by providing an extra power of 25 kW.
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- Att=8.05s, the total power (FC + battery) cannot reach the required power due to the
FC response time.

- Att=8.45 s, the measured reaches the reference. The FC power increases so the
battery power is progressively reduced to 6 kW as seen in the graphic (Figure 18).

- Att=10.9 s, the state of charge of the battery is lower than 40% (out of the bounds)
which means then the battery needs to be recharged. The FC provides its power
between the battery and the motor. Can be observed that the power from the battery
is negative on this point, which means that the battery receives some power from the
FC and recharges while the FCHEV is accelerating.

- Att=12 s, the regenerative breaking is simulated (-70 % from the accelerator pedal).
The electrical motor acts like a generator drivenbythe v ehi cl ebs wheel s
energy is transformed in electrical energy and then stored in the battery. On the other
hand, the FC power decreases according to its response time.

- Att=15s, the FC power is at its minimum (2 kW).
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6. Impl ement ahe oNNof t

As mentioned before, the purpose of thisb a ¢ h e | o ridte develbpeas\NN and implement
it in the power management strategy for a FCHEV. So, first of all a short introduction about
NN is going to be exposed, and then will be explained the process of how has been created

and the way that could be implemented to the basic system modelled.

6.1. Introduction to the NN

A NN is a computational or mathematical model which tries to simulate a biological neural
network. The NN is composed of interconnected group of neurons that processes the
information through their connections. NN can be used for modelling complex relations

between inputs and outputs. The structure of a neuron is shown below (Figure 22):

Figure 22. Structure of a neuron

A neuron is a function that is nonlinear, parametrized and bounded. The inputs from the neuron
are variables (Xo, X1, € paX, ¥Ohd si a we i dlthe ippdts vetlu an addlifionahbias,
and t he yo y=Hf(p uig theivalue of the neuron. The output is produced based on the

input and the activation (basically is the f).

The goal of this structure is to ensure that the output and the target are so close enough that

by adjusting the weights (the difference between them or the error) is minimized.

In Figure 23 is represented the internal architecture of a heuron in more detail:

thesi s
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Input  General Neuron

r N ™
Where

'PJ
e, - R =number of
Py SHW f—®  clementsin
. Input vector

W b
pg 1LE l
AN S W A

a=Wp +b)

Figure 23. Detailed neuron architecture [26]

Each input | swoWwdiegh r e@d s W iefiwbufddenthe sumaomfithe fveighted

i nputs anish the bias

The f&i represents a par caliee traesferi funetioni Therchoice of this i o n
transfer function is dependent on the user based on his/her application and every neuron uses
any differentiable transfer function to be able to generate their output. T h e f fifctan be

expressed on two different forms:

w QU QU 0w (10)
0 : weight of the parameters
¢: number of inputs
The othertypeiswheniifo i s a radi al basi s sdleca conlinearrand( RBF)

asymptotically disperse in all directions of the input space. For example, the output of a
Gaussian RBF is:

B w 0
O Qo ———MM (11)

qL
where 0 and 0 represent the standard deviation and the position of the center of the

Gaussian, respectively.
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6.2. Types of NN

Generally, there are three types of NN:
1 Feedforward NN
1 Recurrent (Feedback) NN
I Radial Basis Function (RBF) NN

6.2.1. Feedforward NN

Is a NN where the connections between neurons do not conform a directed cycle. The
information flows from the inputs to the outputs in only one direction. Figure 24 represents the

structure of this type of NN:

Layer of logsig
Input Neurons Input Layer of logsig Neurons

a= logsig(Wp+b)
Where... R =number of
elements in
input vector

§ = number of
a= logsig (Wp +b) neurons in layer

Figure 24. Feedforward NN structure [26]

The simplest type of feedforward NN is a single-layer perceptron network, where the inputs
are directly connected to the outputs. Perceptron refers to networks which are formed only with

one of these neurons. The perceptron can be trained with the delta rule learning algorithm.

On the other hand, it exists the multi-layer perceptron NN, where inputs are connected to

outputs through hidden layers. The most common method to train this kind of perceptrons is

call ed fiback pr op aglaydr peocapdon AN gsiog badk propagatibhuatet i

useful to solve extremely complex problems like speech recognition, image recognition,

machine translation and computer security.

thesi s
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6.2.2. Recurrent (Feedback) NN

Is a NN where the connections between neurons conform a directed cycle, ergo, a path that if
the connections are followed leads back to the starting neuron. Figure 25 represents the
structure of this type of NN:

Inputs Layer 1 Layer 2
N0 N i
p'(6)=u(s vy a(y 2(= (1)
-[wl.l ’ Lwil nﬂ{f} & ’
. 1| 2'x1 - L' |
LT f XN e f:l
b' rx1 1+ K
' x'x1 5 ¥xt gt
T
-D L ol.3
L
L LN AN S

Figure 25. Recurrent NN structure [27]

As it can be seen in the figure above, new inputs are fed into the recurrent NN at each time
step. The previous information of the hidden layer is transferred to the context layer, then the

output of the context is fed back to the hidden layer.

The general linear system for recurrent neural networks is:

0 60Q p 8067 p
(12)

©Q 60Q p 060 p

6.2.3. Radial Basis Function (RBF) NN

Is a NN that employs radial basis functions as activation functions. An RBF is a real-valued
function whose value depends only on the distance from the origin or alternatively on the
distance from some other point called a center. Figure 14 represents the structure of this type
of NN:
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Input Hadial Basis Meuron

f"_"\.f': ™

a = radbas( || w-p |l &)

Figure 26. Radial basis NN [28]

The general equation for the RBF NN is:

& 6 on mo G (13)

Q1 input vector
o of : output of the network
0 : weight
Ay QA distance from the center
The Gaussian is the common RBF networked used. The output of the Gaussian RBF is:

. B & 0
& 6fv 6 FQaon = (14)

0 : number of neurons in the hidden layer (N+1 is the output neuron)
wi nput vector with fAnd inputs

0 : vector of (n+2)-N parameters

thesi s
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6.3. Learning methods

The learning of NN is the algorithm procedure where the parameters of the neurons are
calculated in order to make errors of the NN as small as possible. There are two classes of
learning methods:

1 Supervised learning

9 Unsupervised learning

6.3.1. Supervised learning

It is a machine learning technique for learning a function from training data. The pairs of input

vectors and desired output vectors are considered as the training data.

In NN is often used the mean-squared as cost function, with the aim of minimizing the average
squared error between the output of the network and the target value over all the example

pairs. The equation below represents the mean-squared error:

v0 £ o (15)
0
'Q: difference between the network output and the target value.
As mentioned before, the fiback propagationbo
gradient descent for multi-layer perceptronNNisus ed. What i s called as

examples of values of the inputs and of the corresponding values of the NN output. For
example, given the (m+1)th training pattern, the weight can be updated as:

0 o Yo (16)

v

Yo :related with the supervision of the fAteach

6.3.2. Unsupervised learning

It is a machine learning technique which determines how the data are organized. In this case,

the network is provided with inputs but not with desired outputs. Unsupervised learning is



Paged8 Bachel or 6s

closely related to density estimation in statistics. No teacher is present in this method since the
learning have to find similar patterns between elements of the database and translate them
into vicinities in the Amapo. One of the-

organizing map (SOM) and adaptive resonance theory (ART).

6.4. NN in vehicle power management

The driving patterns are the immediate decisions of the driver to deal with the environment.
This driving patterns have significant impact on emissions and fuel economy [21][22]. Standard
driving cycles, such as the NEDC, are useful to determine the emissions of the vehicle and the
fuel economy under a predefined driving pattern. It would not be possible for a driver to follow
a fixed driving cycle in real life driving. Hence, the driving patterns need to be predicted in real-

time driving of the automobile for better power management of it.

In recent years, pattern recognition has been used in helping power management of vehicles

by predicting the drive cycle char al@3f2dr i sti cs

The block diagram below (Figure 27) represents an overview of a NN that could be used to
predict the roadway type and traffic congestion levels. Then this system could be embedded

into an intelligent vehicle power management system controller (IPC).

IPC
Tttt
| i
i) |
— MH_RT&TC Enowledgs !
vehicle Polt) :
EEEEEEEE——i ] H
System Pit) | l l I
! |
i Intelligent Controller i
| i
| |

Tergue Compensation

Alternator Setpoint

Figure 27. IPC block diagram

v(t): vehicle speed

mo s t

thesi s
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P4: required driveline power
P:: required electric load power

The knowledge base existing in the IPC consists of the knowledge about the optimal alternator
set point and torque compensation leant from different drive cycles. If the prediction results are
used, the ideal values from the alternator set point and the torque compensation during the

time interval [t, t+qd] are the outputs obtained from the Intelligent Controller.

6.5. Development and implementation of the NN

The specific NN used for predicting the driving profile is from the type of feedback NN called
time series nonlinear autoregressive network with exogenous inputs (NARX). The defining

eguation for NARX model is:

©O0 0o phho cMRbe ¢ o cBio & (17)

where the next value of the dependent output signal & 0 is regressed on previous values of

the output signal and previous values of an independent (exogenous) input signal [27].

The N N dmsplementation with MATLAB is quite simple:

1) By typing in the MATLABOGSs newoimdow likelFigwé 28d o w

will appear:

4\ Neural Network Start (nnstart) — x

ﬁ‘ i;g Welcome to Neural Network Start

Learn how to solve problems with neural networks.

Getting Started Wizards  More Information

Each of these wizards helps you solve a different kind of problem. The last panel of
each wizard generates a MATLAR script for solving the same or similar problems.
Example datasets are provided if you do not have data of your own.

Input-output and curve fitting. & Fitting app (nftool
Pattern recognition and classification. & Pattern Recognition app (nprtool)

Clustering. & Clustering app (nctool)

Dynamic Time series. & Time Series app (ntstoel)

Figure 28. Neural Network Start

[
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After that, the nATi

me Series appo opti

2) Another window will be opened and NARX option is going to be selected (see Figure

3)

ek
ey
\'l‘_“ ".'\'1

ETSEIB

29 below). Then, the A Bixt buttondshould be pressed to proceed for the next step:

4\ Neural Time Series (ntstool)

e

Introduction

Prediction is a kind of dynamic filtering, in which past values of one or
more time series are used to predict future values. Dynamic neural
networks, which include tapped delay lines are used for nonlinear filtering
and prediction

There are many applications for prediction. For example, a financial analyst
might want to predict the future value of a stock, bond or other financial
instrument. An engineer might want to predict the impending failure of a
jet engine.

Predictive models are also used for system identification (or dynamic
modelling), in which you build dynamic models of physical systems, These
dynamic models are important for analysis, simulation, monitoring and
control of a variety of systems, including manufacturing systems, chemical
processes, robotics and aerospace systems.

This tool allows you to solve three kinds of nonlinear time series problems
shown in the right panel. Choose one and click [Next].

® To continue, dlick [Next].

&& Neural Network Start M4 Welcome

Figure 29.NARX selection

Next step is to sel

‘Welcome to the Neural Network Time Series app.

Solve a nonlinear time series problem with a dynamic neural network.

Select a Problem

@ Nonlinear Autoregressive with External (Exogenous) Input (NARX]

Predict series y(t) given d past values of y(t) and another series x(t).

x(t) H 'O_I YO = f(x(t-1),...3(0-d),
(_‘ yt-1),..y(t-d))

O Nonlinear Autoregressive (NAR)

Predict series y(t) given d past values of y{t).

@ 2| o =ty ywan

(O Nonlinear Input-Qutput

Predict series y(t) given d past values of series x(t).

Important Note: NARX solutions are more accurate than this solution. Only
use this solution if past values of y{t) will not be available when deployed.

x{t) U‘DD‘DLI Yit) = fx(t-1),..x(t-d))

& Next @ Cancel

" Back

ect the dat a: t he

this case, the NEDC driving cycle have been selected as data for the NN. As an input

value x(t) = [acceleration, duration] and as output value y(t) = [initial speed, final

speed]. See Figure 30 below for better comprehension:

4\ Neural Time Series (ntstocl)

Select Data

\’ What inputs and targets define your nonlinear autoregressive problem?

Get Data from Workspace
Input time series x(2).

B nputs: X_ace_dur v
Target time series, defining the desired output yi(t).

@ Targets: i

Select the time series format. (tonndata)

Time step:

Want to try out this tool with an example data set?

Load Example Data Set

@ To continue, click [Next].

& Neural Network Start 144 Welcome

Figure 30. Select Data

@ fui) Cell column O[] Matrix column O [E] Matrix row

Summary

Inputs 'X_acc_dur' is a 1x90 cell array of 21 matrices, representing dynamic
data: 90 timesteps of 2 elements.

Targets ‘T_veli_velf is a 1x30 cell array of 21 matrices, representing
dynamic data: 90 timesteps of 2 elements.

@ Back & Next @ cancel

or 6s

on i

nput
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4) Next step will be to define the number of hidden neurons and the input/feedback

A\ Neural Time Series (ntstool) - m] b
Network Architecture
Cheose the number of neurons and input/feedback delays.
Architecture Choices Recommendation

Define a NARX neural network.  (nancnet) Return to this panel and change the number of neurons or delays if the network does

not perform well after training.

Number of Hidden Neurons: 10
The network will be created and trained in open loop form as shown below. Open loop
Number of delays d: 2 (single-step) i more efficient than closed loop (multi-step) training. Open loop allows
us to supply the network with correct past outputs as we train it to produce the correct
Problem definition: ¥t} = fGelt-1),nx(-d)yit-1),..yG-d)) current outputs.

Aftertraining, the netwark may be converted to closed loop form, o any other form,
that the application requires.

Restore Defaults

Neural Network

x() Hidden Layer with Delays

Output Layer
3
2
y(® Py
2

$ Change settings if desired, then dick [Mext] to continue.

& Neural Network Start l welcome

@ cancel

Figure 31. Network architecture

5) Finally, the NN is created and can start to be trained, but first, a training algorithm has

to be selected. Levenberg-Marquardt training algorithm has been chosen on that case.

In the next section some of the results are discussed.
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7. Results and discussi on

On this section some important plots are commented:

Figure 32 and Figure 33 represent two
different ways of seeing the error.

On one hand, in Figure 32 the error is
represented by the yellow lines. Other
results as the training targets, training
outputs, validation targets, validation
outputs, test targets and test outputs are

shown.

) On the other hand, in Figure 33 can be
Figure 32. Response graph _ o
observed the error histogram, which is

4| Neural Network Training Error Histogram (ploterrhist), Epoch 12, Validati... — [m] et

calculated as targets minus outputs. The

File Edit View Insert Tools Desktop Window Help ~

Eeiliibreo s IENERD error should be close to zero. So, in that
I Training . L.
o 21cation case is clear that the majority of the values

Zero Error

100

are close to zero (see yellow vertical line in

80

60

the graph), then this NN can be considered

Instances

40

as a good option for be implemented into
the FCHEV model.

20

-61.69
-47.88
-44.16
-40.45

36.7:

33.00

3

5.

B

1
4.47
0.76

04

-3.33

B0

9!

0

;Y
16.23
18.94

©

Errors = Targets - Outputs

Figure 33. Error histogram

Another results that the MATLAB NN app can do is the code generation (see in Appendix) and

a Simulink diagram (see Figure 34 below):

Figure 34. NN Simulink diagram





















