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Abstract 

Due to high number of vehicles, the greenhouse gases in the atmosphere have reached the 

highest level. If it is compared a Fuel Cell Hybrid Electric Vehicle (FCHEV) to conventional 

Internal Combustion Engine (ICE) vehicles or Hybrid Electric Vehicles (HEVs), the first group 

has zero greenhouse gas emissions, and for that reason is a better alternative. Regarding All 

Electric Vehicles (AEVs) the charging time is longer which is a negative point. A fully charged 

battery from an AEV for example gives less range if it is compared to a FCHEV with a full 

hydrogen tank. So basically, the main advantages of FCHEV compared to AEV are: a quicker 

filing in of the tank and more autonomy. The most common used fuel cell (FC) is the Proton 

Electron Membrane Fuel Cell (PEMFC). The main problem of this type of FC is the slow current 

dynamics which leads for not being suitable for the sole power source in a vehicle. Therefore, 

the FCHEV is the best option, and by upgrading the power management system (PMS) in the 

proper way, the car’s performance can be improved. 

This bachelor’s thesis studies the integration of a neural network (NN) to a FCHEV. The 

objective is to analyze the effect of integrating NN on the PMS of FCHEV and try to improve 

its efficiency by predicting the driving profiles. 

A model to simulate the physical behavior of FCHEV has been looked for in MathWorks 

webpage by using MATLAB/Simulink software as a tool for simulation. All the parts of the 

model have been studied for better comprehension on how it works and for future modifications 

in order to implement the NN.  

Results shows that by implementing NN using the Time Series app from MATLAB, a driving 

profile can be predicted with an acceptable error, which means that after get prepared the NN 

by training with lot of data, the power economy can be improved by modifying the controller 

parameters. Moreover, this solution let to increase the life of the battery. 
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1. Abbreviations 

FCHEV Fuel Cell Hybrid Electric Vehicle 

ICE Internal Combustion Engine 

HEV Hybrid Electric Vehicle 

AEV All electric Vehicle 

FC Fuel Cell 

PEMFC Proton Electron Membrane Fuel Cell 

PMS Power Management System 

NN Neural Network 

PHEV Plug in Hybrid Electric Vehicle 

FCV Fuel Cell Vehicle 

DOE Department of Energy 

ESS Energy Storage System 

DOH Degree Of Hybridization 

SOC State of Charge 

EF Equivalent Factor 

EMS Energy Management Subsystem 

IGBT Insulated Gate Bipolar Transistor 

PMSM Permanent Magnet Synchronous Machine 

RBF Radial Basis Function 

NARX Nonlinear autoregressive network with exogenous inputs 
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2. Background 

Lately, rapid advances and developments in the auto industry have occurred. The increasing 

use of electric motors and the advances in their efficiency and capacity of high voltage energy 

storage devices has opened new frontiers. Although these latest improvements in the electric 

powertrain components, greenhouse gases’ levels have reached an alarming level. Therefore, 

the automotive industry is looking for other solutions by doing research and development in 

AEVs, HEVs and Plug in Hybrid Electric Vehicles (PHEVs). But the research is not limited only 

for those types. Alternatively, FCHEV seem to have a promising future as they have the 

advantage of going longer range in one complete hydrogen tank compared to AEVs which go 

lesser range, and moreover, with a very heavy battery pack. The tank refiling time for the 

hydrogen gas is about 3-5 minutes, while for AEVs can take hours to get the necessary amount 

of energy for doing the same route. On the other hand, HEVs still use gasoline and so have 

greenhouses gases coming out of the exhaust pipes. 

In the current scenario of environmental crisis and stringent environmental laws and capping 

of greenhouse gases, the advances in FCHEV vehicle research has made some people think 

that FCHEV can be a viable substitute to ICE and a better alternative to AEVs if the 

advancement and infrastructure reaches a level that it becomes convenient to have a FCHEV. 

Although the FC has shown promising capabilities as a main power source in a vehicle, it has 

some inherent characteristics that need to be taken care of in the power management strategy. 

In order to make FCHEVs a commercial success, some obstacles that it faces need to be 

discussed. 

2.1. Impediments in the commercialization of Fuel Cell 

Vehicles (FCV) 

In order to make successful the FC commercialization, it is required a solid infrastructure: 

hydrogen refueling stations, affordable price of Hydrogen gas, etc. Some of the main barriers 

are discussed below. 
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2.2. Hydrogen: availability, cost and quality 

Social acceptance and economy viability of the FC technology go hand in hand in order to 

success this kind of technology. One of the most important factors is the hydrogen fueling 

stations availability. The map shows the locations of the hydrogen fueling stations across 

Spain. According to the data provided by netinform.net [1], there are just 6 hydrogen gas 

fueling stations in operation which are shown in the map in Figure 1. Three of them are in 

Aragón, one in Albacete, one in Sevilla and the last one in Castilla La Mancha.  

 

 In operation 

 Planned 

 Old projects 

 

Figure 1. Hydrogen fueling stations in Spain 
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2.3. Commercial features of the FCHEV 

As explained above, lot of research and development is being done by the automotive 

companies to bring the cost down. According to a report from the Department of Energy (DOE), 

the goal on 2025 is to have a cost of FC system around 40 €/kW at 500,000 units produced 

per year [2]. This cost will only be possible with high volume production. Another institution, 

The International Energy Agency, also considers the possibility of FCVs as a solution to a 

cleaner transportation. An economic analysis done in [3], shows that by 2030, the cost of fuel 

cell stacks produced would be 32 – 68 €/kW of FC. According to another study done in [4] 

shows an expected technology learning curve between 0.78 – 0.85. This will bring down the 

cost from 22% to 15% which will make FC technology more economical. As seen below, Table 

1 includes powertrain cost prediction for 2030: 

Table 1. Cost summary of the powertrains for 2030 [3] 

Powertrain Cost Minimum [€] Maximum [€] Average [€] 

Fuel Cell €/kW 35 70 50 

Battery €/kW 180 270 225 

Electric drive train 1,085 1,835 1,460 

Hydrogen Storage 810 1,805 1,310 

Conventional (ICE) 2,165 2,285 2,225 

 

The running cost is also an important factor which leads to make any technology viable. 

Basically, the running cost would be the cost of the fuel. Table 2 below includes fuel cost 

prediction for 2030: 
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Table 2. Cost prediction of fuel for 2030 [3] 

Fuel cost Minimum [€] Maximum [€] Average [€] Distance [km] 

Gasoline 17 34 25.5 550 

Hydrogen 13 51 32 1,100 

Electric 24 41 32.5 2,200 

 

The ambition of the auto makers is to make FCHEV technology reach a similar level compared 

to gasoline vehicles in terms of durability, safety, performance, etc. In order for doing that, it is 

needed that the costs discussed above (powertrain cost and the fuel cost) decrease as much 

as possible until make this kind of cars the main used. This will promote more production of 

FCHEVs, which consequently will bring down cost even further. 

2.4. Motivation for developing a PMS with NN 

Regarding the scarcity of hydrogen refueling stations and the production cost of a FC stack, 

by increasing the autonomy of the vehicle through controlling in an optimal way the power 

demanded, will improve the reliability and the performance of this type of vehicles. The 

combination of electric power provided by the battery and the energy provided by the FC, let 

to have a one degree of freedom, giving flexibility to operate with the FC in its most optimum 

region as well as with the battery. This bachelor’s thesis investigates how to design a PMS 

that distributes the necessary power among the two sources in an optimal way. Along with 

satisfying the power demand while accelerating efficiently, taking profit from the regenerative 

power efficiently with an added degree of freedom would be also an ambitious challenge on 

designing an efficient PMS. Nevertheless, because the time and the complexity, it has been 

decided to work only with one degree of freedom. 

The effect of using NN is to make sure that the FC and the battery work in the most efficient 

region.  
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3. FCV: powertrain technology 

During the last years, lot of researches have focused on the development of towards non-

conventional powertrain vehicles. Cars like GM Volt and companies like Tesla have changed 

the automotive industries’ point of view. At the same time, with a lot of research regarding FCs, 

have emerged as an alternative to the ICEs. FCVs have almost no one real environmental 

concern. The fuel used is hydrogen H2 gas which undertakes a reaction with oxygen O2 and 

produces electricity, heat and water making all together a very environment friendly. 

Regarding the advantages, the FCHEVs have quite simple structure compared to ICE 

vehicles. In the FCHEV there are no moving parts, being that most of it is electronics are solid 

state devices. As a consequence, there are no vibration or noise issues with FCHEVs. 

Moreover, as no moving parts contemplated, the maintenance cost comes down and no parts 

require lubrication, which means no oil changes and no lubrication change in transmissions 

and other parts. 

The major automotive companies are investing for developing FCHEVs. Some of the reasons 

are that the environmental laws are becoming stricter and at the same time FCHEVs offers all 

the benefits discussed above. Nowadays, can be find commercially available some FCHEVs: 

Hyundai Tucson uses a 100kW FC stack with a range of 427 Km on a 0,95kWh battery. The 

Toyota Mirai has a 114kW FC stack with a 1.6kWh battery and with a range of 502 Km.  

Apart from improving the FC stack technology and efficiency, the type of components used for 

the energy storage system (ESS), which is another name to call the battery, and the powertrain 

types used in hybridization of the FCV play a tremendous role in its performance and range. 

So, different types of configurations have been investigated at the moment. In Table 3 below 

there is a list of projects from automotive companies trying to reach best configuration for 

FCHEV: 

Table 3. FCHEV projects from Car Manufacturers [5] 

Company System configuration 

Daimler Chrysler Straight fuel cell – Fuel cell-battery hybrid 
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Ford Straight fuel cell 

General Motors (GM) Fuel cell-battery hybrid 

Honda Fuel cell – ultra capacitor hybrid 

Mazda Fuel cell – ultra capacitor hybrid 

Nissan Fuel cell-battery hybrid 

Renault Fuel cell-battery hybrid 

Toyota Fuel cell-battery hybrid 

Volkswagen Straight fuel cell – Fuel cell-battery hybrid 

ZeTech Fuel cell-battery hybrid 

 

3.1. The FC 

A FC is similar to a battery in that it generates electricity from an electrochemical reaction. 

Both, batteries and FCs convert chemical energy into electrical energy and also, as a by-

product of this process into heat. However, a battery holds a closed store of energy within it 

and once this is consumed the battery must be thrown away or recharged by using an external 

supply of electricity to drive the electrochemical reaction in the reverse direction. 

On the other hand, a FC can run indefinitely as long as it is supplied with a source of hydrogen 

fuel (hence the name) and is similar to an ICE in that it oxidizes fuel in order to create energy. 

But rather than using combustion, a FC oxidizes H2 electrochemically in a very efficient way. 

During the reaction, hydrogen ions react with oxygen atoms to form water. In the process 

electrons are released and flow through an external circuit as an electric current. The only 

exhaust is water steam. 

The FC type used in automotive industry is the PEMFC, a low-temperature, hydrogen fueled 

cell containing a platinum catalyst. It is the most common type of FC and allows for variable 

electrical output, ideal for vehicle use. The PEMFC is made up of two electrodes with a 
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membrane acting as an insulator between the two electrodes. The electrodes along with the 

membrane from the membrane electrode assembly. The chemical reaction which takes place 

in this membrane is shown below [6]: 

Anode: 𝐻2(𝑔)  ⇌  2𝐻+ + 2𝑒− (1) 

Cathode: 
1

2
𝑂2(𝑔) + 2𝐻+ + 2𝑒− ⇌ 𝐻2𝑂(𝑔) 

(2) 

 

Figure 2 represents the structure of a membrane electrode assembly: 

Another phenomenon which occurs in FCs, which is the biggest concern, is the starvation. 

Parallelly to the cathode’s reaction represented in the (2), there is another reaction which take 

place (4): 

 

Global reaction: 
1

2
𝑂2(𝑔) + 𝐻2(𝑔) ⇌ 𝐻2𝑂(𝑔) 

(3) 

Figure 2. Membrane’s structure [7] 
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Starvation is negligible under normal conditions, but the problem appears when large power is 

drawn from a FC stack under transient conditions: as a start/stop or rapid acceleration. A FC 

produces insufficient power for make the vehicle works only with that, hence hybridization 

becomes inevitable. The Figure 3 below shows the structure of PEMFC cell stack. 

One of the most important factors which affects the operating conditions of a FC is the 

temperature. With a proper operating temperature, the oxygen reduction reaction is enhanced 

which avoids major voltage loss. When the FC works at 1 atm pressure and 100 oC, water is 

in vapor state, so it is transported through the membrane, catalyst and diffusion layer is easier. 

Nevertheless, by working with temperatures above 100 oC, water will be completely vaporized. 

As a consequence, that will trigger to a deficiency of water and dehydration of the membrane, 

which reduces the proton conductivity in the membrane. Regarding the broad range of cells, 

the operating temperature of PEMFCs is between 60-100 oC. That is the reason why the 

PEMFC are the most preferred type of fuel cell for automotive industry. 

Although PEMFC are better compared to other FCs, still needs a PMS in order to assure that 

𝐶 + 2𝐻2𝑂 ⇌ 𝐶𝑂2 + 4𝐻+ + 4𝑒− (4) 

Figure 3. PEMFC structure [8] 
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the PEMFC remains in a good range of temperature for working and appropriate amount of 

current is drawn. That only can be achieved through the PMS. When high current is extracted 

from the FC, the CO2 liberated regarding to (4) can provoke permanent loss of carbon, and 

therefore, reduces MEA membrane durability [9]. In order to avoid reaction (4) from becoming 

intense, an efficient PMS is needed for having a better performance. For the PMS it has to 

take into account the energy storage devices, which are used in the powertrain of FCVs to 

facilitate and supply power in cases of high-power transient demand. 

Another factor that prevents FC for being used as the only source of power in vehicles is 

starvation. As said before, when a large amount of current is extracted from the FC in a vehicle 

while driving, the membrane can easily be damaged. Hence, another device is needed to 

complement the FC stack, and for this reason the existence of FCHEVs instead of FCVs. In 

that case, battery packs are the preferred as ESSs in auto industry, which are widely used in 

HEVs, PHEVs and AEVs. Some car models of nowadays could be for example the Toyota 

Mirai or the Hyundai Tucson. There are still several challenges to face for developing and 

implementing a hydrogen-fueling infrastructure. One of the most important is the fact of 

reducing CO2 emissions while producing hydrogen. The industry and the government are still 

working on these issues trying to solve them as soon as possible. 

As seen in the reaction shown in (3), oxygen is one of the two important parts of the reaction. 

As long as more current is extracted from the fuel cell it means that the reaction must be done 

at a faster rate. So, it is necessary to be refilled very quickly the O2 used in the reaction in the 

FC. If that does not happen, the partial pressure of O2 drops at the cathode which provokes 

that the voltage of the FC stack drops drastically damaging the membrane. This phenomenon 

is the FC starvation explained in more detail. This will in turn lead to reduce the power response 

of the FC stack. Apart from the FC’s inability to stand sudden variations in power demand, the 

cooling requirements and water balance of the FC are critical in maintaining the stability and 

performance of the FC stack. These factors affect directly on the lifetime of the FC stack as 

well. If FC was the only power source in a car, it would not be any alternative for controlling 

the power demand. Nevertheless, when the ESSs as batteries are included, from one hand, 

lets the system to have one degree of freedom provoking an improvement in the dynamic 

behavior of the vehicle, and on the other hand, it prevents the extract of energy from the FC 

during sudden variations in power demand. A powertrain configuration having both devices, 
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can be used to the best of their capabilities to make a system quite efficient. Hence, creating 

an intelligent PMS for this kind of powertrains is the objective of this bachelor’s thesis. 
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4. Hybridization of FCHEV and PMS 

4.1. Powertrain topologies 

Depending on the number of power sources, the powertrain topologies can be divided in full 

power source with Battery, full power source with UC and Triple Hybrid power source. Figure 

4, Figure 5 and Figure 6 shows a block diagram of the different topologies of power source: 

 

Figure 4. Full power source battery 

 

Figure 5. Full power source with UC 

Figure 6. Triple hybrid power source  
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Hybridization with various power resources makes more complex the control strategy for the 

system by adding more degrees of freedom, but at the same time, it creates an opportunity for 

optimizing the control strategy. Find below (5) which calculates the degree of Hybridization 

(DOH): 

𝑃𝐸𝑀: power from the electric motor 

𝑃𝐸𝐶: power from the FC 

The FC in FCHEVs works like an engine except the fact that it charges the ESS and at the 

same time provides current to the motor. In exceptional cases, when the state of charge (SOC) 

from the ESS is not enough, the FC can also be used to provide power to the wheels. The 

DOH is useful in order to determine the power components’ size in the powertrain: the FC, 

batteries and Ultracapacitor. As it can be checked on (5), by increasing the ESS the DOH is 

higher. On contrary, by increasing the power generated from the FC, the DOH reduces. 

4.2. FCHEV PMSs 

The main goals to consider while developing a control strategy is to regulate the energy in 

such a way that power demand is always satisfied, the battery is sufficiently charged at all time 

and the overall system efficiency is maintained optimal [10]. In any FC vehicle powertrain 

configurations, the energy exchanges from the FC to the ESS operates in three modes: 

- Charge – The FC supplies energy to the battery and the load. 

- Discharge – The FC and battery supply energy to the load. 

- Recovery – The energy is supplied by recovering power through regenerative braking 

and stored in the battery. 

There are different techniques regarding control strategies. Those techniques are explained in 

more detail in the next section. Depending on the type of algorithm and control logic, the power 

management strategies can be categorized into two types: 

- Rule based. 

- Optimization based. 

𝐷𝑂𝐻 =
𝑃𝐸𝑀

𝑃𝐸𝑀 + 𝑃𝐸𝐶
 (5) 
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4.2.1. Rule based control strategy 

That rule is computationally less expensive compare to optimization based strategies. They 

are good for real time problem solving. Basically, they are based on a set of rules on which 

various decisions like power split are calculated. The rule based category includes two 

subgroups for power management strategies which are exposed as follows: 

4.2.1.1. Deterministic/Heuristic rule based 

This method analyzes the amount of power that flows to each of the power sources in the 

powertrain taking into account the efficiency map of the fuel cell. So, the rules which govern 

this particular method are based in this previous information. While designing the PMS, there 

are certain conditions that must to take into account. That conditions are [11]: 

- The power demanded by the vehicle has always to be satisfied. 

- Take care that the ESS devices always are remained between a maximum and 

minimum limit operation. In order to make sure the health of those devices. 

- The FC power and current is remained within its allowable limit for preventing 

starvation. 

As follows, a flow chart (Figure 7) is represented in order to make it clearer how it works the 

rule based control strategy. It is shown the process of decision making regarding the conditions 

and the rules exposed above: 

Pcomm: commanded power 

Pfc-rated: rated power of the fuel cell system 

Pfc: power of the fuel cell system 

Pfc-min: minimum power of the fuel cell system 

Ppps-traction: traction power extracted from the PPS 

Ppps-charging: charging power in to the PPS 

E: energy level of the PPS 

Emin: Bottom line of the energy storage in the PPS 

Emax: Top line of the energy storage in the PPS 
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In this flow chart can be seen that through a set of pre-defined the command power is satisfied. 

4.2.1.2. Assist management strategy 

Assist control is another subcategory of PMS included in rule based category. The principal 

parameters which depends this method are the stack voltage and the SOC of the battery. The 

purpose of this strategy is to reduce load in the FC by requesting more power out of the battery 

(as long as the SOC of the battery is above a certain limit [12]). This strategy can be split into 

the following rules:  

- A better proportion of power is provided by the battery as long as the SOC of the battery 

is above a minimum limit. The rest of power comes from the FC. However, if the SOC 

drops below the minimum limit value, the FC provides a higher proportion of power. 

- A higher proportion of the power is extracted from the FC in case that the stack voltage 

is higher than the maximum limit value. This condition remains valid until the first one 

becomes true again. 

Pcomm

Braking Power 
Command

Traction Power 
Command

Pb Ptr

If Pcomm <0
Yes

brake

NoTraction

If Pcomm > Pfc rated
Yes

Hybrid traction
Pfc = Pfc rated
Ppps-traction = Pcomm - Pfc

PPS charging
or traction

No

Pfc = 0
Ppps-traction 
= Pcomm

Yes No

PPS traction

YesPPS charging

Pfc = Pfc rated
Ppps-charging = Pfc - Pcomm

If Pcomm ≤ Pfc rated If E < Emin

If E > Emax
Yes

FC traction

Pfc = Pcomm
Ppps = 0

Pfc = Pfc rated
Ppps-charging = Pfc-Pcomm

PPS charging No

No

Figure 7. Rule based flow chart 



Page 24  Bachelor’s thesis 

 

The limit values for the stack voltage and the SOC of the ESS depend on the fuel cell stack’s 

size and the ESS. In a report done by Aouzellag and Ghedamsi was found an improvement of 

5-16% in the fuel economy [13]. 

 

4.2.1.3. Fuzzy logic 

As seen in the report [13], the authors have designed a control strategy by using Fuzzy logic. 

The extracted power from the FC dictates the current extracted from its, which then, is easy to 

know the amount of hydrogen that is consumed. The main goal of this control strategy is to 

reduce the consume of hydrogen. The fuel cell power, which does not depend on the SOC of 

the ESS components, is used as a parameter in order to provide power requested by the 

vehicle. The other parameter used in this control strategy is the vehicle speed. The Table 4 

summarize how it works the Fuzzy Logic algorithm: 

Table 4. Fuzzy Logic Energy Management [13]¡Error! No se encuentra el origen de 

la referencia. 

Condition Power from Ultracapacitor Power from the FC 

47 ≤ SOC ≤ 75 and Vv<60 Yes No 

47 ≤ SOC ≤ 75 and Vv>60 Yes No 

Figure 8. Power split in assist 

control strategy 
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SOC > 75 Yes No 

SOC < 47 and 10 ≤ Vv ≤ 60 Yes Yes 

SOC < 47 and Vv > 60 No until charged, then Yes Yes 

 

4.2.1.4. Load following management strategy 

In this kind of control strategy, the power limit depending on the SOC dictates the ON/OFF 

function of the FC. If the power requirement is higher than the limit maximum value, the 

controller turns ON the FC in order to fulfill the power that it lacks. This control strategy 

facilitates the maximum charge depletion of the battery pack [14]. Another thing to take into 

account is the dynamics and the time response of the FC due to it is not as fast as ICE. Figure 

9 represents the power split between FC and ESS: 

Figure 9. Power split between FC and ESS [14] 
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4.2.1.5. Thermostatic control strategy 

As seen in [15], the goal of this control strategy is to maintain the SOC of the battery between 

SOClow and SOChigh, which also supposed to extract the power from the FC between two 

values PFCmin and PFCmax. The following Figure 10 shows a representation of thermostatic 

control strategy in which it can be seen the limits of those parameters. 

The thermostatic control strategy is easy to be implemented in real time driving conditions and 

let the battery an extended life of use by reducing the charge/discharge cycles. Some 

experimental results in [16] show that this strategy is more efficient than the load following 

management strategy at least in city driving. However, a negative point of this control strategy 

is when the SOC of the battery is below the SOClow and the power demand is greater than 

PFCmax, in that case the strategy is not able to cover the power requirements of the vehicle. 

4.2.2. Optimized rule based management strategy 

The difference between rule based and optimization based strategies is that the first one is 

real time implementable but don’t necessarily provide the most efficient power split. On the 

other hand, the optimization rule based maximize the efficiency of the power train and at the 

same time minimize the losses [15]. In this method the optimal reference torques for power 

controllers are calculated by minimizing the hydrogen fuel consumption. When optimization is 

performed over fixed drive cycles, a global minimum can be found. Some optimization methods 

are computationally complex for processing and others also need the prediction of future paths 

in order to optimize the power management. In the next sections is explained four energy 

Figure 10. SOC vs PFC 
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management strategies which are included in optimized rule based control strategy: driver 

pattern recognition, equivalent consumption minimization strategy and maximum power point 

tracking energy control strategy. 

4.2.2.1. Driver pattern recognition 

Depending on the driver demand, the rule based control strategy will be different completely. 

So, the advantage provided by driving pattern recognition is the ability to operate a vehicle in 

‘’multi-mode’’ control algorithm. The way of working of that algorithm is by identifying certain 

representative parameters of a drive cycle which describe driving pattern: speed, acceleration, 

deceleration, slope of the road and others. Recognition of driving pattern is done by measuring 

the data obtained in certain points. After the pattern’s data is measured, features members are 

extracted from it. A feature vector is based on these feature members and is used for the 

driving pattern identification. A feature vector 𝑓 would be the once defined in resource [17] and 

is expressed as in (6): 

𝑎𝑖: feature member 

𝑘𝑖: weight factor (depend on the feature parameter) 

n: dimension of the feature vector 

On the following Table 5 is shown an example of each feature parameter (𝑎) and its 

corresponding weight (𝑘): 

Table 5. Feature vector parameter [17] 

Index number 

(𝑖) 

Feature Parameter (𝑎) Weight 

Factor (𝑘) 

1 Average speed (m/s) 10 

2 Positive Average Acceleration (a > 0.1 m/s2) 1 

3 Low Speed Time (15-30 Km/h)/Total Time (%) 10 

𝑓 = (𝑘1𝑥𝑎1, 𝑘2𝑥𝑎2, 𝑘3𝑥𝑎3, … , 𝑘𝑛𝑥𝑎𝑛)𝑇 (6) 
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4 Mid High Speed Time (70-90 Km/h)/Total Time (%) 100 

5 High Speed Time (> 90 Km/h)/ Total Time (%) 10 

6 Extreme Deceleration Time (a> -2.5 m/s2)/Total Time (%) 1000 

7 High Deceleration Time (a<-2 & a>-2.5 m/s2)/Total Time (%) 1 

8 Maximum Cycle Acceleration (m/s2) 100 

9 Maximum Cycle Speed (Km/h) 6 

10 Standard Deviation of Cycle Speed (Km/h) 1 

11 Mid Deceleration Time (a<-1 & a>-1.5 m/s2)/Total Time (%) 1000 

12 Mid High Deceleration (a>-2 & a<-1.5 m/s2)/Total Time (%) 1000 

13 Mid Acceleration Time (a>-2 & a<2 m/s2)/Total Time (%) 1 

14 High Acceleration Time (a>2 & a<2.5 m/s2)/Total Time (%) 1000 

15 Extreme Acceleration Time (a>2.5 m/s2)/Total Time (%) 1000 

 

Once the feature parameters are calculated, it is possible to proceed by creating the feature 

vector (6). Normally standard driving cycles are used for the simulation (E.g. NEDS, UDDS…). 

After running the simulation, an output value tries to identify the driving cycle by assigning 

numbers depending on the cycle. An example can be seen below (Figure 11) regarding the 

effectiveness of the simulation for the driving pattern recognition: 
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After the driving cycle is identified, the fuel economy can be improved by modifying the 

controller parameters. 

4.2.2.2. Equivalent consumption minimization strategy 

This strategy is an instantaneous optimization which does not depend on the drive cycle or on 

the future route done by the vehicle. With an appropriate equivalence factor (EF) and 

conditions, it can generate a close optimal solution. In the case of FCHEV, the power comes 

from the FC and the battery. So, the following equation is used in this strategy for predicting 

the future hydrogen consumed [20]: 

�̇�𝑒𝑞𝑣: equivalent total hydrogen consumption 

�̇�𝐻2: hydrogen consumption 

�̇�𝑒𝑞𝑢𝑖.𝐻2 𝑏𝑦 𝐸𝑆𝑆: equivalent hydrogen consumption for rate from the battery or ESS 

𝐿𝐻𝑉𝐻2: Lower heating value of the hydrogen 

𝑠: equivalent factor 

Once is calculated the equivalent hydrogen consumption from the battery, it is possible to 

obtain the power split ratio between the FC and the battery. 

�̇�𝑒𝑞𝑣 = �̇�𝐻2 + �̇�𝑒𝑞𝑢𝑖.𝐻2 𝑏𝑦 𝐸𝑆𝑆 =  �̇�𝐻2 +
𝑠

𝐿𝐻𝑉𝐻2
 (7) 

Figure 11. Efficiency of driving pattern recognition 



Page 30  Bachelor’s thesis 

 

In equivalent consumption minimization strategy, the battery’s SOC is considered as a state 

restriction and the goal of the strategy is to calculate an EF in which the battery’s SOC remains 

between the limits in order to maintain the state restriction inactive. In case the SOC have 

values out of the limit range, it becomes an active state restriction and then, the solution of the 

equivalent consumption minimization is not optimal at that point. In order to avoid this, a penalty 

function can be added to the EF and provokes the adaptation of the equivalent consumption 

minimization by avoiding the state restriction become active. This penalty function is really 

useful for the energy management because prevents discharge of the battery in case of low 

SOC, or on the other hand, prevents charging in case of maximum SOC by using for example 

the normal braking instead of the regenerative ones. The penalty function is expressed in (8) 

as follows: 

𝑘𝑝: penalty function 

𝑘𝑝(𝑥𝑚𝑎𝑥 − 𝑥): penalty for SOC exceeding upper limit 

𝑘𝑝(𝑥 − 𝑥𝑚𝑖𝑛): penalty for SOC falling under below limit 

Last but not least, this kind of strategy is heavy computationally, so is not the most used. 

4.2.2.3. Maximum power point tracking energy control strategy 

This control strategy is based by maximizing the efficiency of the FC and activate to the 

maximum power when the power demand is quite high [19]. The efficiency graphic indicates 

that the FC system has only one maximum power point, and is determined by operation 

conditions of the FC. With that operating conditions, the control strategy put the focus on 

calculating the maximum power that can be delivered to the wheels from the FC. The 

maximum power point and the maximum efficiency are defined as a fixed points, but in reality, 

these points may vary depending on the operating conditions of FC stack: pressure, 

𝑠(𝑡) = 𝑠 + 𝑓𝑝(𝑡)   𝑤ℎ𝑒𝑟𝑒, 𝑓𝑝(𝑡) =  

𝑘𝑝(𝑥𝑚𝑎𝑥 − 𝑥)                    𝑥  > 𝑥𝑚𝑎𝑥 

0                                        𝑥𝑚𝑖𝑛 < x < 𝑥𝑚𝑎𝑥 

𝑘𝑝(𝑥 − 𝑥𝑚𝑖𝑛)                      𝑥 < 𝑥𝑚𝑖𝑛 

(8) 



Using deep-learning methods to predict driving profiles  Page 31 

 

temperature… [18] The maximum power point tracking energy management strategy tries to 

avoid these disadvantage. The main goal of this strategy is to give a current reference to the 

FC which corresponds with maximum power point. The following equation presented is used 

in the algorithm of this strategy and determines the change of FC power with respect to change 

of FC current. Being a derivative (9), by equaling to cero, will be possible to find the maximum 

which corresponds with the Maximum power point: 

𝑃𝑓𝑐: Power from the FC 

𝐼𝑓𝑐: FC current (perturbated in order to see in which direction the variation goes for finding 

the maximum power point). 

𝑉𝑓𝑐: Voltage of FC 

𝑇𝑓𝑐: Temperature of FC 

𝑃𝐻2: Pressure of hydrogen 

𝑃𝑂2: Pressure of oxygen 

The maximum power is provided by this strategy in order to reduce charge/discharge cycles 

of the Battery. Last but not least, this strategy is best suited for low speed vehicles where the 

fuel cell is used as a range extender. 

 

 

𝑑𝑃𝑓𝑐

𝑑𝐼𝑓𝑐
=

𝑑𝑉𝑓𝑐

𝑑𝐼𝑓𝑐(𝐼𝑓𝑐 , 𝑃𝐻2, 𝑃𝑂2, 𝑇𝑓𝑐)
· 𝐼𝑓𝑐 = 0 (9) 



Page 32  Bachelor’s thesis 

 

5. Modelling approach and simulation 

The tools used for modelling and doing the simulations are crucial for the implementation and 

verification of these strategies in real applications. So, in this section, an effective vehicle 

simulator used in the initial phase for strategy development of vehicles is presented. An 

effective and trustworthy software tools play a critical role in the optimization of power 

management approaches. Some of the most popular software used in the field of vehicle 

research are: MATLAB/Simulink, ADVISOR and PSAT. MATLAB (meaning “matrix 

laboratory”) developed by MathWorks Inc. is the software used for doing the different 

simulations and analyses in this project. The Simulink is a part of the package which has been 

used for running the vehicle model simulation with its components and for developing the 

power management strategy with the NN. Simulink contains different kind of toolboxes with 

different functions associated to that. The toolboxes use blocks that represent kind of a 

systems with a specific function. The blocks can be interconnected each other creating a block 

diagram for modelling and simulating systems. Particularly, the model implemented uses the 

Simscape Driveline and Simscape Electrical toolboxes. 

The basic model has a PMS which determines the reference signals for the FC system, the 

DC/DC converter and the electric motor drives for distributing the power accurately from the 

two electrical sources, but taking care that the SOC is maintained between the 40 and 80%. 

The new model would consist with a battery and a FC as well but with the particularity that a 

NN has been implemented in order to looking for the optimal power management strategy. 

The final model with the NN has not been able to complete (maybe for the master’s thesis). 

The basic model consists of three main blocks below: 

1) Electrical subsystem 

2) Vehicle dynamics 

3) Energy management subsystem (EMS) 
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Putting all these blocks together represent the FCHEV model (Figure 12): 

5.1. Electrical subsystem 

The Electrical Subsystem from the FCHEV is composed of four parts:  

- The FC Stack 

- The DC/DC converter 

- The battery 

- The electrical motor. 

 

 

Figure 13. Electrical Subsystem MATLAB model 

 

Figure 12. FCHEV global model 
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5.1.1. The FC Stack 

The Fuel Cell Stack block, from electricdrivelib/Extra Sources library, implements a generic 

model parametrized in order to represent in that case a Proton Exchange Membrane Fuel Cell 

(PEMFC) stack [25]: 

 

Figure 14. FC Stack MATLAB model 

The inputs received by the FC stack system are: Fuel flow rate (FuelFr) and Air flow rate (AirFr). 

The specifications of the FC stack are listed below in Table 6: 

Table 6. FC Stack specifications 

Description  Value 

Stack power 

Nominal: 85,500 [W] 

Maximal: 100,022.4 [W] 

FC Resistance 0.17572 [Ω] 

Nernst voltage of one cell  1.1729 [V] 

Voltage direct current 288 [Vdc] 

Nominal utilization 

Hydrogen (H2): 95.24 % 

Oxygen (O2): 50.03 % 

Nominal Consumption 

Fuel: 794.4 slpm 

Air: 1891 slpm 
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Nominal stack efficiency 57 % 

Nominal supply pressure 

Fuel (bar): 3 

Air (bar): 3 

Number of cells 400 

Operating temperature 95 ֯C 

 

In order to work in the most efficient way, a H2 and an air flow regulator has been implemented. 

The flow controller manages the consumption of hydrogen and air according to the highest 

value between the direct measurement of the FC (<current>) and the estimated FC current 

consumption (fuel cell current*) which is calculated in the power management system. 

As seen in Figure 13, the FC Stack model is connected to a DC/DC converter in order to 

charge the Li-ion battery inside the electrical subsystem. 

5.1.2. The DC/DC converter 

The DC/DC converter is a buck type and is regulated by current. It contains a Bus Duty Cycle 

Controller block which controls the Insulated Gate Bipolar Transistor (IGBT) device. 

Figure 15. DC/DC converter MATLAB model 
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5.1.3. The battery 

The main specifications of the 25 KW Lithium-Ion battery used are in the Table 7 below: 

Table 7. Battery specifications 

Description Value 

Nominal voltage 288 [V] 

Rated capacity 13.9 [Ah] 

Initial SOC 40.32 % 

 

Another interesting graphic to take into account when modelling with batteries is the nominal 

current discharge curve (Figure 16):  

5.1.4. The electrical motor 

The electrical motor is a Permanent Magnet Synchronous Machine (PMSM). The motor has 8 

poles and the magnets are buried (the rotor is the type of salient rotor). In order to reach a 

maximum motor speed of 12,500 rpm, a flux weakening vector control is used. 

 

Figure 16. Nominal current discharge curve 
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Figure 17. Electrical motor MATLAB model 

5.2. Vehicle dynamics 

The vehicle dynamics subsystem models all the mechanical parts of the vehicle. It represents 

the motion influence on the overall system. A MATLAB model of the vehicle dynamics can be 

seen below (Figure 18): 

 

Figure 18. Vehicle dynamics MATLAB model 

On the one hand, the single reduction gear reduces the motor’s speed in order to increase the 

torque. The function of the differential is to split the input torque into two equal torques. The 

tires dynamics model the force applied to the ground. And finally, the viscous friction simulates 



Page 38  Bachelor’s thesis 

 

all the losses of the mechanical system. 

On the other hand, the longitudinal vehicle dynamics represents a two-axle vehicle body in 

longitudinal motion. Some of the settings which have been configured for the simulation are 

exposed in Table 8: 

Table 8. Longitudinal Vehicle Dynamics specifications 

Description Value 

Mass 1,625 [Kg] 

Number of wheels per axle 2 

Horizontal distance from CG to front axle 1.4 [m] 

Horizontal distance from CG to rear axle 1.4 [m] 

CG height above ground 0.5 [m] 

Gravitational acceleration  9.81 [m/s2] 

Drag parameters 

Frontal area: 2.71 [m2] 

Drag coefficient: 0.26 

Air density: 1.18 [Kg/m3] 

 

5.3. Energy management subsystem 

The energy management subsystem determines the reference signals for the FC stack 

system, the DC/DC converter and the electric motor drives in order to distribute accurately the 

power from the two electrical sources. The signals are calculated depending mainly on the 

position of the accelerator (between -100% and 100%) and the measured FCV speed. It is 

important to be said that the negative accelerator position represents a positive brake position. 

A representation of the energy management subsystem can be observed Figure 19: 
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Figure 19. MES MATLAB model 

Battery management system block controls that the SOC remains between 40 and 80%. 

Moreover, it prevents against voltage collapse by controlling the power required from the 

battery. Finally, the PMS block controls the reference power of the electrical motor by splitting 

the power demand as a function of the available power of the battery and the FC. This power 

is controlled by the DC/DC converter current. Some of the input signals to the PMS are the 

accelerator pedal position (Pedal position) and the vehicle speed (Car speed). On the other 

hand, the output signals are the reference motor torque (Motor torque*) and the reference 

current of the FC (Fuel Cell current*). 

The Battery management system block determines the battery limit and the battery power 

according to battery state of charge (SOC). 

5.4. Demonstration 

In this section is shown how the FCHEV 

performs in different operating modes over one 

complete cycle: cruising, accelerating, 

recharging battery while accelerating and 

regenerative breaking. In Figure 21 can be seen 

that the car’s speed starts from 0 Km/h to about 

90 Km/h at 12 seconds, and then there is a 

diminution to 80 Km/h at 16 seconds. That is a 

consequence of maintaining the accelerator 

pedal constant to 70% for the first 4 seconds, 

Figure 20. Accelerator parameters 

configuration 
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then the pedal is released to 25% for the next 4 seconds, after that the accelerator pedal is 

pushed again but this time to 85% for another 4 seconds and finally there is a braking (-70%) 

until the end of the simulation. Check Figure 20 for seeing the configuration of the acceleration 

parameters for the demonstration. 

 

Figure 21. Car's scope 

Showing up next, a more detailed explanation of what is happening in different intervals of 

time: 

- At t = 0 s, as mentioned before, the driver pushes the accelerator pedal to 70%. On 

that moment, the battery provides the motor the power till the FC starts. 

- At t = 0.7 s, the FC begins to provide power (blue line in the Figure 18), nevertheless 

is not able to reach the reference power due to its large time constant. That’s why the 

battery continues to provide the electrical power to the motor (yellow line in Figure 18). 

- At t = 4 s, because the accelerator pedal is released to 25%, the FC cannot reduce its 

power instantaneously, therefore the battery absorbs the FC power in order to maintain 

the required torque. 

- At t = 6 s, the FC power is the same as the reference power. The battery is no more 

needed.  

- At t = 8 s, the accelerator pedal is pushed to 85%. In that case, the battery supports 

the FC by providing an extra power of 25 kW. 
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- At t = 8.05 s, the total power (FC + battery) cannot reach the required power due to the 

FC response time.  

- At t = 8.45 s, the measured reaches the reference. The FC power increases so the 

battery power is progressively reduced to 6 kW as seen in the graphic (Figure 18). 

- At t = 10.9 s, the state of charge of the battery is lower than 40% (out of the bounds) 

which means then the battery needs to be recharged. The FC provides its power 

between the battery and the motor. Can be observed that the power from the battery 

is negative on this point, which means that the battery receives some power from the 

FC and recharges while the FCHEV is accelerating. 

- At t = 12 s, the regenerative breaking is simulated (-70 % from the accelerator pedal). 

The electrical motor acts like a generator driven by the vehicle’s wheels. The kinetic 

energy is transformed in electrical energy and then stored in the battery. On the other 

hand, the FC power decreases according to its response time. 

- At t = 15 s, the FC power is at its minimum (2 kW). 
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6. Implementation of the NN 

As mentioned before, the purpose of this bachelor’s thesis is to develop a NN and implement 

it in the power management strategy for a FCHEV.  So, first of all a short introduction about 

NN is going to be exposed, and then will be explained the process of how has been created 

and the way that could be implemented to the basic system modelled. 

6.1. Introduction to the NN 

A NN is a computational or mathematical model which tries to simulate a biological neural 

network. The NN is composed of interconnected group of neurons that processes the 

information through their connections. NN can be used for modelling complex relations 

between inputs and outputs. The structure of a neuron is shown below (Figure 22): 

A neuron is a function that is nonlinear, parametrized and bounded. The inputs from the neuron 

are variables (x0, x1,…,xn-1), the “v” is a weighted sum of all the inputs with an additional bias, 

and the output “ y ” ( y=f(v) ) is the value of the neuron. The output is produced based on the 

input and the activation (basically is the f). 

The goal of this structure is to ensure that the output and the target are so close enough that 

by adjusting the weights (the difference between them or the error) is minimized. 

In Figure 23 is represented the internal architecture of a neuron in more detail: 

Figure 22. Structure of a neuron 
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Each input is weighted with “w”. The transfer function “ f “ would be the sum of the weighted 

inputs and the bias “b”. 

The “ f ” represents a parameterization function called transfer function. The choice of this 

transfer function is dependent on the user based on his/her application and every neuron uses 

any differentiable transfer function to be able to generate their output. The “ f “ can be 

expressed on two different forms: 

𝑤: weight of the parameters 

𝑛: number of inputs 

The other type is when “ f ” is a radial basis function (RBF). The RBF is a local nonlinear and 

asymptotically disperse in all directions of the input space. For example, the output of a 

Gaussian RBF is: 

where 𝑤𝑛+1
  and 𝑤𝑖 represent the standard deviation and the position of the center of the 

Gaussian, respectively. 

𝑦 = 𝑓(𝑣) = 𝑓 (𝑤𝑛 + ∑ 𝑤𝑖𝑥𝑖

𝑛−1

𝑖=0

) (10) 

𝑦 = 𝑒𝑥𝑝 [−
∑ (𝑥𝑖 − 𝑤𝑖)2𝑛−1

𝑖=0

2𝑤𝑛+1
2 ] (11) 

Figure 23. Detailed neuron architecture [26] 
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6.2. Types of NN 

Generally, there are three types of NN:  

• Feedforward NN 

• Recurrent (Feedback) NN 

• Radial Basis Function (RBF) NN 

6.2.1. Feedforward NN 

Is a NN where the connections between neurons do not conform a directed cycle. The 

information flows from the inputs to the outputs in only one direction. Figure 24 represents the 

structure of this type of NN: 

The simplest type of feedforward NN is a single-layer perceptron network, where the inputs 

are directly connected to the outputs. Perceptron refers to networks which are formed only with 

one of these neurons. The perceptron can be trained with the delta rule learning algorithm. 

On the other hand, it exists the multi-layer perceptron NN, where inputs are connected to 

outputs through hidden layers. The most common method to train this kind of perceptrons is 

called “back propagation” algorithm. Multi-layer perceptron NN using back propagation are 

useful to solve extremely complex problems like speech recognition, image recognition, 

machine translation and computer security. 

Figure 24. Feedforward NN structure [26] 
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6.2.2. Recurrent (Feedback) NN 

Is a NN where the connections between neurons conform a directed cycle, ergo, a path that if 

the connections are followed leads back to the starting neuron. Figure 25 represents the 

structure of this type of NN: 

As it can be seen in the figure above, new inputs are fed into the recurrent NN at each time 

step. The previous information of the hidden layer is transferred to the context layer, then the 

output of the context is fed back to the hidden layer. 

The general linear system for recurrent neural networks is: 

 

 

6.2.3. Radial Basis Function (RBF) NN 

Is a NN that employs radial basis functions as activation functions. An RBF is a real-valued 

function whose value depends only on the distance from the origin or alternatively on the 

distance from some other point called a center. Figure 14 represents the structure of this type 

of NN: 

𝑥(𝑘) = 𝐴𝑥 (𝑘 − 1) + 𝐵𝑢 (𝑘 − 1) 

𝑦(𝑘) = 𝐶𝑥 (𝑘 − 1) + 𝐷𝑢 (𝑘 − 1) 

(12) 

Figure 25. Recurrent NN structure [27] 
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The general equation for the RBF NN is: 

𝑥: input vector 

𝑦(𝑥, 𝑤): output of the network 

𝑤𝑖: weight 

‖𝑥 − 𝑐𝑖‖: distance from the center 

The Gaussian is the common RBF networked used. The output of the Gaussian RBF is: 

𝑁: number of neurons in the hidden layer (N+1 is the output neuron) 

𝑥: input vector with “n” inputs 

𝑤: vector of (n+2)·N parameters 

𝑦(𝑥, 𝑤) = ∑ 𝑤𝑖∅ (‖𝑥 − 𝑐𝑖‖)

𝑁

𝑖=1

 
(13) 

𝑦(𝑥, 𝑤) = ∑ [𝑤𝑁+1,𝑖 𝑒𝑥𝑝 (−
∑ (𝑥𝑗 − 𝑤𝑖𝑗)

2𝑛
𝑗=1

2𝑤𝑖
2 )]

𝑁

𝑖=1

 
(14) 

Figure 26. Radial basis NN [28] 
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6.3. Learning methods 

The learning of NN is the algorithm procedure where the parameters of the neurons are 

calculated in order to make errors of the NN as small as possible. There are two classes of 

learning methods: 

• Supervised learning 

• Unsupervised learning 

6.3.1. Supervised learning 

It is a machine learning technique for learning a function from training data. The pairs of input 

vectors and desired output vectors are considered as the training data.  

In NN is often used the mean-squared as cost function, with the aim of minimizing the average 

squared error between the output of the network and the target value over all the example 

pairs. The equation below represents the mean-squared error: 

𝑒𝑖: difference between the network output and the target value. 

As mentioned before, the “back propagation” algorithm for training NN is obtained when 

gradient descent for multi-layer perceptron NN is used. What is called as a “teacher” provides 

examples of values of the inputs and of the corresponding values of the NN output. For 

example, given the (m+1)th training pattern, the weight can be updated as: 

∆𝑤𝑖𝑗
(𝑚)

: related with the supervision of the “teacher” 

6.3.2. Unsupervised learning 

It is a machine learning technique which determines how the data are organized. In this case, 

the network is provided with inputs but not with desired outputs. Unsupervised learning is 

𝑀𝑆𝐸 =  
1

𝑁
∑ 𝑒𝑖

2

𝑛

𝑖=1

 
(15) 

𝑤𝑖𝑗
(𝑚+1)

= 𝑤𝑖𝑗
(𝑚)

+ ∆𝑤𝑖𝑗
(𝑚)

 
(16) 
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closely related to density estimation in statistics. No teacher is present in this method since the 

learning have to find similar patterns between elements of the database and translate them 

into vicinities in the “map”. One of the most common NN using unsupervised learning are self-

organizing map (SOM) and adaptive resonance theory (ART). 

6.4. NN in vehicle power management 

The driving patterns are the immediate decisions of the driver to deal with the environment. 

This driving patterns have significant impact on emissions and fuel economy [21][22]. Standard 

driving cycles, such as the NEDC, are useful to determine the emissions of the vehicle and the 

fuel economy under a predefined driving pattern. It would not be possible for a driver to follow 

a fixed driving cycle in real life driving. Hence, the driving patterns need to be predicted in real-

time driving of the automobile for better power management of it. 

In recent years, pattern recognition has been used in helping power management of vehicles 

by predicting the drive cycle characteristics or driving profiles (drivers’ behavior) [23][24].  

The block diagram below (Figure 27) represents an overview of a NN that could be used to 

predict the roadway type and traffic congestion levels. Then this system could be embedded 

into an intelligent vehicle power management system controller (IPC). 

 

v(t): vehicle speed 

Figure 27. IPC block diagram 
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Figure 28. Neural Network Start 

Pd: required driveline power 

Pl: required electric load power 

The knowledge base existing in the IPC consists of the knowledge about the optimal alternator 

set point and torque compensation leant from different drive cycles. If the prediction results are 

used, the ideal values from the alternator set point and the torque compensation during the 

time interval [t, t+Δt] are the outputs obtained from the Intelligent Controller. 

6.5. Development and implementation of the NN 

The specific NN used for predicting the driving profile is from the type of feedback NN called 

time series nonlinear autoregressive network with exogenous inputs (NARX). The defining 

equation for NARX model is: 

where the next value of the dependent output signal 𝑦(𝑡) is regressed on previous values of 

the output signal and previous values of an independent (exogenous) input signal [27]. 

The NN’s implementation with MATLAB is quite simple: 

1) By typing in the MATLAB’s command window “nnstart”, a new window like Figure 28 

will appear: 

 

𝑦(𝑡) = 𝑓(𝑦(𝑡 − 1), 𝑦(𝑡 − 2), … , 𝑦(𝑡 − 𝑛𝑦), 𝑢(𝑡 − 2), … , 𝑢(𝑡 − 𝑛𝑢)) (17) 
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Figure 30. Select Data 

After that, the “Time Series app” option is going to be clicked. 

2) Another window will be opened and NARX option is going to be selected (see Figure 

29 below). Then, the “Next button” should be pressed to proceed for the next step: 

 

3) Next step is to select the data: the input values “x(t)” and the desired output “y(t)”. In 

this case, the NEDC driving cycle have been selected as data for the NN. As an input 

value x(t) = [acceleration, duration] and as output value y(t) = [initial speed, final 

speed]. See Figure 30 below for better comprehension: 

Figure 29.NARX selection 
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4) Next step will be to define the number of hidden neurons and the input/feedback 

delays: 

5) Finally, the NN is created and can start to be trained, but first, a training algorithm has 

to be selected. Levenberg-Marquardt training algorithm has been chosen on that case. 

In the next section some of the results are discussed. 

 

 

 

 

 

 

 

 

 

 

Figure 31. Network architecture 
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7. Results and discussion 

On this section some important plots are commented: 

Figure 32 and Figure 33 represent two 

different ways of seeing the error. 

On one hand, in Figure 32 the error is 

represented by the yellow lines. Other 

results as the training targets, training 

outputs, validation targets, validation 

outputs, test targets and test outputs are 

shown. 

On the other hand, in Figure 33 can be 

observed the error histogram, which is 

calculated as targets minus outputs. The 

error should be close to zero. So, in that 

case is clear that the majority of the values 

are close to zero (see yellow vertical line in 

the graph), then this NN can be considered 

as a good option for be implemented into 

the FCHEV model. 

 

 

 

Another results that the MATLAB NN app can do is the code generation (see in Appendix) and 

a Simulink diagram (see Figure 34 below): 

Figure 33. Error histogram 

Figure 32. Response graph 

Figure 34. NN Simulink diagram 
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8. Conclusion 

In this Bachelor’s thesis a system that predicts the driving profile of a FCHEV has been 

developed in order to optimize the power demand required by the vehicle. The system is based 

on using deep learning method, more specifically, a time series NARX NN.  

Firstly, an analyze on FCVs has been made. Nowadays, the FCVs’ commercialization is a 

scarce market, but little by little is winning a place with the arrival of electric and hybrids 

vehicles. FCHEVs seem to have a promising future as they have the advantage of going longer 

range in one complete hydrogen tank.   

Secondly, some knowledge has been acquired from some of the main power management 

components of FCHEVs, for instance the FC. 

Once clarified how it works the power management of a FCHEV, researches have been made 

regarding power control strategies developed for predicting and optimizing the power required 

by the vehicle. This has helped for having an idea of how this special optimization algorithms 

work.  

Thirdly, a FCHEV basic model has been implemented with the MATLAB/Simulink for be more 

familiarized with this powerful software and comprehend each of the most important blocks 

which form the model. On the other hand, as the idea was to implement the NN using MATLAB 

as well, it has been a must this part. 

Last but not least, a time series NARX NN has been created and implemented by using the 

MATLAB NN app. Step by step has been described the development of the NN with the 

software. The results have shown an acceptable error for applying NN to the FCHEV basic 

model as a future scope. 
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Appendix 

Neural Networks MATLAB code: 

function [y1,xf1,xf2] = myNeuralNetworkFunction(x1,x2,xi1,xi2) 
%MYNEURALNETWORKFUNCTION neural network simulation function. 
% 
% Auto-generated by MATLAB, 10-Jan-2020 01:24:00. 
% 
% [y1,xf1,xf2] = myNeuralNetworkFunction(x1,x2,xi1,xi2) takes these 

arguments: 
%   x1 = 2xTS matrix, input #1 
%   x2 = 2xTS matrix, input #2 
%   xi1 = 2x2 matrix, initial 2 delay states for input #1. 
%   xi2 = 2x2 matrix, initial 2 delay states for input #2. 
% and returns: 
%   y1 = 2xTS matrix, output #1 
%   xf1 = 2x2 matrix, final 2 delay states for input #1. 
%   xf2 = 2x2 matrix, final 2 delay states for input #2. 
% where TS is the number of timesteps. 

  
% ===== NEURAL NETWORK CONSTANTS ===== 

  
% Input 1 
x1_step1.xoffset = [-1.39;4]; 
x1_step1.gain = [0.823045267489712;0.0307692307692308]; 
x1_step1.ymin = -1; 

  
% Input 2 
x2_step1.xoffset = [0;0]; 
x2_step1.gain = [0.0166666666666667;0.0166666666666667]; 
x2_step1.ymin = -1; 

  
% Layer 1 
b1 = [2.1523104162151538432;-

0.59691879307517292652;0.39833076899648883762;-

0.44832250515697419369;0.14067776509380278127;-

0.61514243594655937386;0.083921413270994893452;-

0.82287571031099071561;0.41346438502531773773;-2.3696938883445133328]; 
IW1_1 = [0.67993056591573641789 -0.61482386550621792587 -

0.68259935090623391485 -0.50907670110851577228;0.22989448898612227512 -

0.83224609724168563396 0.07523293919877284408 -

0.93697535271907272936;0.32537141649652939757 1.1404036749514596671 

0.0038984753740487210205 -1.0096476647498144885;1.2172279573363324889 

0.070487051914960546783 -1.7719457977038117757 -

0.23075055884779416271;0.037395934089823681945 0.19723566290185456928 

0.69584108810109090992 0.27565336010910646003;-0.64094979141902785891 -

0.21619172292011734626 1.3575338208620433278 -

0.49436771647153698872;0.33021530672192983547 -0.47662236436933880235 -

1.9301762665943784647 -0.98082275180828193406;-2.2898599368615188965 -

1.438506007395557118 1.5162689150160313378 -1.1878290381142873056;-

0.1312641926280631588 1.7872474340643740298 0.82429675141051916842 -

0.29725028298384803538;-0.52340932057735667371 -0.62876530814010900272 

0.049172303341453262038 0.61508287811050565974]; 
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IW1_2 = [-1.4981970683327265892 -0.81205424166723139123 

1.3972537557800726038 -0.35282117611769420185;2.9873105075332815339 -

2.4036407243459274596 0.015222650309081951769 -0.23921203691219664056;-

0.71644045226254771119 0.16014376121666068498 0.64953404059877117849 

1.2195753056530913572;-1.0754545608019561165 0.88228046384771419142 

0.88376346546053274889 -0.79711970242926455388;-0.35266985326827093861 

1.2328390274626948031 0.74201728577637349193 -0.79508505031132525875;-

0.75989597202485825722 -0.2120495438411940381 3.0324469249312402397 

0.89410601164977343558;-0.4997691295531364597 2.8529131331135850758 -

0.61157464595093469217 -0.51414895339477439951;0.66987858334957217643 -

0.36901252168593540182 0.89911689685358930912 0.4513731647448017692;-

0.068957072859922849406 -1.5854206280565872333 0.22189776372142172578 

0.26903277395403307759;0.83856119752531177447 0.96911462300811401782 

0.0098680213836566856717 0.25780591265764946085]; 

  

% Layer 2 
b2 = [0.1789601690475293716;0.24386018977957071852]; 
LW2_1 = [-0.1866935734291172988 -0.082980645478709008644 

0.31094967202783169169 -0.088361769204309659198 0.58265765620644860423 

0.066826160778426318965 0.032500372452308627647 0.039697316608598126608 -

0.24946420302976285432 0.12849653432741250936;-0.80411654497781792639 -

0.90239080226808299212 -0.39367903043177210343 -0.50308846924135819378 -

0.04928206015376106891 0.74104475125317248452 0.74127246349765851807 

0.08307934926049376223 0.27943091514789375474 -0.50363015905328578636]; 

  
% Output 1 
y1_step1.ymin = -1; 
y1_step1.gain = [0.0166666666666667;0.0166666666666667]; 
y1_step1.xoffset = [0;0]; 

  
% ===== SIMULATION ======== 

  
% Dimensions 
TS = size(x1,2); % timesteps 

  
% Input 1 Delay States 
xd1 = mapminmax_apply(xi1,x1_step1); 
xd1 = [xd1 zeros(2,1)]; 

  
% Input 2 Delay States 
xd2 = mapminmax_apply(xi2,x2_step1); 
xd2 = [xd2 zeros(2,1)]; 

  
% Allocate Outputs 
y1 = zeros(2,TS); 

  
% Time loop 
for ts=1:TS 

     
    % Rotating delay state position 
    xdts = mod(ts+1,3)+1; 

     
    % Input 1 
    xd1(:,xdts) = mapminmax_apply(x1(:,ts),x1_step1); 
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    % Input 2 
    xd2(:,xdts) = mapminmax_apply(x2(:,ts),x2_step1); 

     
    % Layer 1 
    tapdelay1 = reshape(xd1(:,mod(xdts-[1 2]-1,3)+1),4,1); 
    tapdelay2 = reshape(xd2(:,mod(xdts-[1 2]-1,3)+1),4,1); 
    a1 = tansig_apply(b1 + IW1_1*tapdelay1 + IW1_2*tapdelay2); 

     
    % Layer 2 
    a2 = b2 + LW2_1*a1; 

     
    % Output 1 
    y1(:,ts) = mapminmax_reverse(a2,y1_step1); 
end 

  
% Final delay states 
finalxts = TS+(1: 2); 
xits = finalxts(finalxts<=2); 
xts = finalxts(finalxts>2)-2; 
xf1 = [xi1(:,xits) x1(:,xts)]; 
xf2 = [xi2(:,xits) x2(:,xts)]; 
end 

  
% ===== MODULE FUNCTIONS ======== 

  
% Map Minimum and Maximum Input Processing Function 
function y = mapminmax_apply(x,settings) 
y = bsxfun(@minus,x,settings.xoffset); 
y = bsxfun(@times,y,settings.gain); 
y = bsxfun(@plus,y,settings.ymin); 
end 

  
% Sigmoid Symmetric Transfer Function 
function a = tansig_apply(n,~) 
a = 2 ./ (1 + exp(-2*n)) - 1; 
end 

  
% Map Minimum and Maximum Output Reverse-Processing Function 
function x = mapminmax_reverse(y,settings) 
x = bsxfun(@minus,y,settings.ymin); 
x = bsxfun(@rdivide,x,settings.gain); 
x = bsxfun(@plus,x,settings.xoffset); 
end 

 

 


