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Abstract—The use of autonomous underwater vehicles
for ocean research has increased as they have a better
cost/performance ratio than crewed oceanographic vessels. For
example, autonomous vehicles (e.g. a Wave Glider) can be used to
localise and track underwater targets. Whereas other researchers
have been focused on target tracking using acoustic modems, here
we present a novelty method called area-only target tracking.
This method works with commercially available acoustic tags,
thereby reducing the costs and complexity over other tracking
systems. Moreover, this method can be used to track small targets
such as jellyfishes due to the tag’s size. The methodology behind
the area-only technique is shown, and results from the first field
tests conducted in Monterey Bay area are also presented.

Index Terms—underwater target localization, autonomous ve-
hicles, wave glider, area-only, biologging, tracking, tag

I. INTRODUCTION

One of the main challenges in oceanographic research is
underwater localization. It is well known that Global Posi-
tioning System (GPS) signals suffer large attenuation under-
water. Therefore, different methods have been developed using
acoustic signals, which have better underwater performance.
Besides the traditional Long BaseLine (LBL) and Ultra-Short
BaseLine (USBL), new strategies are being developed (e.g.
moving long baseline) which leverage the higher performance
of autonomous vehicles and their capabilities to work in
increasingly complex scenarios [1].
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However, the size and power requirements of current
modems that provide such capabilities are not negligible, and
therefore, are not viable to track small targets, such as some
marine species (e.g. jellyfishes). Current tracking methods
for marine species use acoustic tags, which enable two kind
of studies [2]: (a) study their long-range migrations through
receivers spread in specific points, which only provides general
information about their movements; and (b) study their small
movements in a reduced area using different receivers nearby,
which has the same limitations of the traditional LBL systems
(e.g. deployment cost or synchronization between devices).
In addition, animals that emerge periodically on the surface
can send their position by satellite communications [3]. Other
studies have focused in the development of new tags to study
the animal behaviour [4]. Whereas these tags can be used to
measure different behavioural and environmental parameters,
they do not transmit any acoustic signal, and therefore, can
not be tracked.

In this framework, we present a novel Area-Only Target
Tracking (AOTT) method using an autonomous vehicles, such
as a Wave Glider from the Liquid Robotics company, which
detects and tracks a tagged underwater target while moving
on the surface. Using the detection/no-detection information
provided by an acoustic receiver, the algorithm is able to
compute the target position and the vehicle follows it. The
main algorithm used in this method is based on the Particle
Filter (PF), which has been used successfully in the Range-
Only Target Tracking (ROTT) method [5].

In the ROTT methods, the information used to track the
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Fig. 1: AOTT problem representation. Blue circles represent
the area around the Wave Glider where a tag transmission
was detected. White circles represent the area around the Wave
Glider where a tag transmission was missing. The centre point
of the overlapping area among all these detection/no-detection
is the target estimated position.

target is the slant range between devices, which is measured
using acoustic modems. Nonetheless, the only information
available in the AOTT method is the presence/absence of tag
detections, which yields in a more complex scenario. The
AOTT method is a passive “listen-only” approach where there
is no-interrogation between the tracker and the target. This
distinction contrasts with the ROTT method, which uses two-
way communication to compute the slant range between two
devices.

The method presented in this paper can be used in a wide
range of applications using the long-duration, autonomous
navigation and on-board processing characteristics of Wave
Glider vehicles, which can geolocate stationary or slowly
moving tagged targets on the seabed or in the water column
(e.g. benthic vehicles [6] or marine animals [7]). However,
the AOTT method is especially an important step forward to
track spatiotemporal changes in animal behaviour, which is
not feasible using the current state-of-the-art.

II. AREA-ONLY TARGET TRACKING METHOD

In the following, the main idea behind the AOTT method
and its mathematical formulation are presented.

A. AOTT idea

Given the acoustic receiver and tag used for this effort, the
only information that can be determined is presence or absence
of tag transmissions in the area of the receiver. In other words,
the receiver only "knows” whether the tag is inside the area of
reception, but has no-information about the tag’s direction or
range. The AOTT method infers the target position by taking
the area determined by the maximum reception range as the
only filter input (illustrated in Fig. 1).

Two types of areas can be observed: one where the tag is
detected (blue circles), and one where the tag is not detected
(white circles). The estimation of the target’s localization can
then be computed by overlapping all of these areas, where the
zone with a main coincidence is where the target should be,
thereby representing its probability distribution.

The AOTT is implemented using a PF algorithm, where
initially all the particles are placed in a specific area. Then,
each particle is moved accordingly to a motion model, and
each particle’s weight is updated for each new detection (or
no-detection) until all of them converge into the target position
estimation.

B. Mathematical formulation

The AOTT target tracking method can be seen as a Hidden
Markov Model (HMM) problem. Generally, the HMM is
defined as a sequence of states, known as a Markov chain, and
a set of observations for each state [8]. Using Bayes’ rule (1),
the probability distribution function of the HMM states can be
derived given a set of observations z € R™, and therefore, the
current state x € R?" can be estimated. Where m indicates
the number of observations carried out, and n can be either 2
or 3, which is the space dimension of the problem.

p(zlxi)p(xr-1)
p(z)

where p(xi|z) = p(xg|z.) is the posterior probability
distribution, where the ., subscript denotes all observations
up to k, p(xx_1) is the prior probability distribution ex-
pressed as p(xg|z.x—1), and p(z) is the total probability of
z, which is used as a normalized factor, expressed also as
S, P(2]%0)D(X—1)dX.

However, to compute the predicted state xj, the total
probability p(z) can be ignored, which yields in

p(xk|z) = : (1)

X), = argmax p(Xg|z.x). (2
X

In prediction theory and filtering, the posterior distribution
can be computed recursively from the prior distribution using
a prediction step p(xx|z.x—1) and an update step p(xx|z.x).

In general, the existing filtering methodologies compute
either the predictions with reference to the conditional proba-
bility distribution p(x|z.x), such as the PF, or with reference
to the probability join distribution p(xy,zg|z.x—1), such as
the Extended Kalman Filter (EKF), see [9] and the references
therein.

On the other hand, in order to simplify the notation, a 2D
scenario has been used, where the tracker conducts manoeu-
vres on the sea surface to predict the target’s position. This is a
common procedure due to the facility of knowing the target’s
depth with high accuracy using cheap devices (e.g. used in
GPS Intelligent Buoys [10, Chapter 3]), and therefore, a 3D
scenario can be projected into a 2D plane. Consequently, and
hereinafter, the following considerations and parameters will
be considered. Firstly, the state vector used for both tracker
and target is defined as

x=[z & y g, 3)



where x and y are the positions in the 2D plane, and & and y
are their associated velocities. The observation measurement
vector is defined as

z = [Zh EERE Zm]T7 (4)

where m denotes the number of observations conducted. In
the ROTT methods, those are the ranges between the tracker
and the target, whereas in the AOTT the measurement will be

{1
Zm:
0

which is used in the filter update step to indicate if a tag’s
transmission was or was not detected.

Finally, assuming that the target state vector at time-step k
is defined by xj, and a constant target velocity, which is a
general consideration, the target motion model is

if tag detection = T'rue 5)
if tag detection = False’

Xk = Frp_1xp—1 + Qr—1, (6)

where F' is the state transition matrix, and Q is the process
noise, which has variance o2. Both are related to time-step
At, and are described as

1 At 0 0
0 1 0 0
F=1o 0 1 ar )
0 0 0 1
and
TAtY LAB 0 0
1A At? 0 0
Q=|* LA 1A43 o ®)
0 0 At 1At
0 0 1A A

C. Algorithm designed using PF

Nowadays, the PF is one of the most used method in target
tracking [11] [12], especially for its robustness in front of
multi-modal probability density functions. The PF solves, in
a non-parametric way, the probability distribution problem of
the HMM using the Bayes’ rule (1) with the recursion of

p(Xk|Z:k—1) = Z p(Xk[xp—1) p(Xp—1]Z:k-1), (9
Xk—1 Motion Particles
model
and
p(Xk|Z.1) < p(zk|Xn) p(Xk|Z:1—1), (10)
—_— ——
Importance Particles
weights

where a bunch of particles x € R?" are spread on a 2D
area, which are used to represent different possible states.
Equation (10) represents the prediction step, which uses the
motion model presented in (6) to move each particle with some
random noise. In this case, the mean of all these particles
represents the prior probability distribution.

Then, using (10), each particle is weighted with a likelihood
ratio based on a measurement probability function. Here,
an important difference with reference to ROTT methods is
introduced as follows:

a) Range-only: In the ROTT methods, this function is
based on the error between the real range measurement zj
and the range that each particle have between each other and
the observer, expressed as

n 2
_ exp ( _ (hlxit) = 2)” 2_ ) )7 (11)
\/ 27‘1’0"2/‘/ 207,
which calculates the probability of the state xj for one
dimension Gaussian function with mean equal to the distance
between the observer and the particle, and variance equal to
o%,. In this case, the index n € {0,...,N} indicates the

particle number up to N. Where the measurement model can
be described by

h(xy) =[x = pk || +ws

_\/ Ik_xpk

where pj, € R? is the observer position, and wy, ~ N(0,02 )
is a zero-mean Gaussian noise.

Equation (11) is known as Probability Density Function
(PDF), and its representation is presented in Fig. 2a, where
a o3, = 40 was used.

b) Area-only: However, in the AOTT method the mea-
surement probability function is based on the distance that
each particle has between each other and the observer, where
the particles which are inside an area defined by the maximum
range that a tag can be detected will be more weighted than the
particles which are outside of this area. On the other hand, if a
tag detection is missed, the particles inside the area will be less
weighted than the particles which are outside. This behaviour
can be represented using the Cumulative Distribution Function
(CDF) [13] and its complementary Survival Function (SF)
(known also as Q-function [14]), which can be expressed as

n __
Wi =

12)

(yrk ypk‘)Q +’LU]€7

. Y

12 /exp((xf))dx if z,, =1

27TG'W_ QUW
Wy = ,

(x —p)® :
1-— 271rU€V/exp< 22 dx if z, =0
—o0

(13)

where r is the distance between each particle and the observer,
p is the maximum range that a tag can be detected, and o3, is
the variance, which is used to modify the slope of the function.

The 3D representation of (13) is shown in Fig. 2b and
Fig. 2c. Where the weight’s distribution used in the area-only
method is computed using a 0‘2,1, = 20 for the SF, and a
0‘2/(/ = 80 for the CDF functions, which are detection and
no-detection scenarios respectively.

Finally, all the particles are resampled accordingly to their
weight in order to obtain the posterior probability distribution
and to estimate the target’s position.



PDF-40 (range-only)

o =3 o

[ ] n R e
93 3 d 8
Particles weight

o
=3
S

SF-20 (area-only)

)
S

S
=3
<

Particles weight

(d)

CDF-80 (area-only)

154 o e
N \] 7
o I =

Particles weight

o
)
Y

0.00

¥y, 0
Yang, 20
)" —400

400
©

Fig. 2: (a) weight’s distribution used in the range-only method,
for a 0%, = 40. (b) weight’s distribution used in the area-only
method when a tag is detected (SF), for a J%,V = 20. And (c)
weight’s distribution used in the area-only method when a tag
transmission is missed CDF, for a o3, = 80.

¢) Resampling method: Different resampling methods
have been developed over the past years [15], where the
Systematic method offers a good performance in terms of
computational complexity and resampling quality. However,
n [5], we demonstrated that other methods, such as the
Compound strategy, have a greater performance under fast
target manoeuvre circumstances.
The Compound method consists of twofold strategies: a

standard Systematic resampling method for (N — £) particles;
and a Random resampling method for the last (¢) particles,
which are drooped randomly inside a circular area around the
latest Wave Glider position. This strategy is carried out to
always maintain some particles nearby the last tag’s detection,
which improves the PF time response in front of unexpected
target position variations. Moreover, it maintains the particles’
diversity, which helps to reduce the common degeneracy
problem presented in the PF [15].

Using all these considerations, the following algorithm can
be used to track underwater targets using autonomous vehicles
by the use of PFs, Algorithm 1.

Input: At, z;, New_range
Output: Next target state estimation Xy
if _Init_ then Initialize:
F7 Qa )A(O
The state vector for each particle and its weight
associated are also initialised:
{xg n 1~ P(x0)
(Wet, = 1N,
end
Predict step (9):
{x k}n 1= kal{xgq}iv:l + Qi1
if Time_has_elapsed then update step (10):
Importance weight update using (13)
(WL
Normalize the importance weights
USRS G YD DA

Resampling:

c= W2 Wt Wi, W W] for
i={1,...,N -1}

u = random()/(N —¢)

i=0

for j in range(N — () do
while v > ¢ do
| +4+=1
end
aux’/ = x}
u+=1/(N—1{)
end
for i in range(?) do
| aux/T*! = random(x)
end
X} =
Xp = ¥ Zn 1 Xi W,

end
Algorithm 1: PF for Area-Only tagged target tracking.

III. OPTIMAL PARAMETERS

In this section different simulations have been conducted
in order to characterize the AOTT algorithm under different
parameters and scenarios. These simulations have been carried
out using the Monte Carlo Simulation (MCS) method. For
all the simulations, the mean and the average result after 30
iterations are presented. The other parameters, which are not



involved in the current simulation, have been considered ideal.
Two different scenarios have been studied in each case: (a)
localising a static target, and (b) tracking a moving target
which had a velocity equal to 0.2 m/s.

A. Optimal path

The optimal path that should be conducted by an observer
in order to maximize the accuracy of the estimated target
position is a common problem of the target tracking methods,
which has been addressed exhaustively over the past years.
For example, Moreno-Salinas et al. [16] conducted a study
to find the optimal sensor placement in an underwater range-
only target localization scenario. Masmitja et al. [6] presented
a complete study to derive the optimal path to conduct by
a surface vehicle in a range-only and single-beacon target
localization scenario. Further in [17], Crasta et al. extended
the path optimisation problem for underwater target tracking
using multiple trackers. Whereas all these works have been
conducted for the ROTT methods, some of the results derived
can also be applied in the AOTT.

These studies pinpointed two basic rules to follow [6]: (a)
all the measurements must be performed uniformly distributed
on a circumference centred over the target, and (b) the circum-
ference’s radius must be greater than the target depth and in
some cases as large as possible:

a) Measurements’ distribution: We can derived intu-
itively that the measurements have to be uniformly distributed
to maximize the system observability, and therefore, the tar-
get’s estimation. The algorithms used in the ROTT methods
find the intersection between circumferences to estimate the
target position, if the measurements’ positions are not well
distributed, the possibility of errors due to noisy measurements
increase (i.e. measurements too close between each other and
obtained in a small region, provide circumferences too difficult
to differentiate between them). This idea can also be applied
in the AOTT method, if the tag’s receptions are uniformly
distributed around itself, the area that results by overlapping all
those receptions is smaller, and therefore, the tag’s uncertainty
is reduced.

b) Circumference’s radius: The ROTT optimal circum-
ference radius to follow by a tracker can be derived analyt-
ically which results in r, = \/iZq, where z, is the target’s
depth. However, this basic rule has the limitation defined by
the maximum tracker time required to perform the path. In
real scenarios a circumference with r. < 800 m is desired.
On the other hand, the only information available in the AOTT
method is the tag’s detection/no-detection, which is specified
by the Maximum Transmission Range (MTR) achievable by
an acoustic tag. Therefore, seems logical that the maximum
range to conduct by a tracker should be less than the maximum
transmission range, but closer to it in order to reduce the area
that results by overlapping all the tag receptions circles.

Following these two ideas, a set of simulations has been
conducted. Fig. 3a shows the relation between the Tracker
Circumference Radius (TCR) and the target estimation error,
where the ratio expressed as I';.,0e = TCR/MTR was used.

We can see that the best circumference’s radius is the closest
one to the tag’s MTR but lower than that. In contrast, radius
too small or larger than the MTR produce a poor target’s
estimation. Therefore, these values are not recommended,
which some times can cause the target’s lost. Here, it is also
interesting to observe that radius close to zero (TCR +— 0)
yielded to an error equal to 50 m (on static target scenario).
In this case, the target’s prediction was equal to the tracker’s
position, and the error was equal to the initial separation
between them, which was 50 m. In real situations this will
not be accurate, and therefore, this value must be discarded to
determine the optimal value.

B. Maximum transmission range

The MTR achievable by an acoustic tag is hard to known
a priori, where different in situ field tests are recommended
to be conducted to estimate its value. The transmission range
performance can be affected by different factors such as the
sea state, the acoustic noise, the sea temperature, or the battery
charge. All these factors introduce an uncertainty in the MTR
which is difficult to known and to study analytically. Here a
set of different simulations with different relations between
the MTR and the Maximum Particles Range (MPR) have
been conducted, where the MPR is a key element used to
spread the particles in the zone, expressed as p in (13). These
simulations allow to identify the relation between the ratio
I'range = MPR/MTR and the AOTT’s performance, and
therefore, indicates the best MPR which should be used when
the accurate real value of the MTR is unknown.

Fig. 3b shows that the optimum I';4,4. Was 1.4 for static
targets, and 1.2 for moving targets. When the MPR was too
low or high, the observer was not able to localise and track
the target. Therefore, the best maximum particles range that
should be used to spread all the particles and compute their
weight at each new tag detection is bounded by 0.8MTR <
MPR < 1.4MTR.

C. Reception ratio

The power transmission capability of standard tags is
strongly limited by their size, which is restricted by the size
of the marine specie under study. Moreover, if the different
sources of noise that exist in the environment (e.g. sea waves
[18]) are taken into consideration, it is obvious to think that
the transmission will not always reach the observer, i.e. some
tag’s transmission will be missed, even though the tracker stays
inside the tag’s MTR.

The Time_has_elapsed variable in Algorithm 1 is used to
update the PF. However, only after four missing tag receptions
it starts a no-reception cycle by applying the CDF, which
weights all the particles accordingly to (13). This procedure
is carried out to improve the algorithm performance, and to
increase its robustness in front of missing receptions.

Nonetheless, if the number of transmissions carried out
by the tag and successfully received by the observer is very
low, the algorithm will be unable to localise the target. This
behaviour can be observed in Fig. 3c, where the Successful
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Fig. 3: Estimated target position error as a function of the tracker circumference ratio (a), the maximum particles range ratio
(b), the tag reception ratio (c), and the resampling method (d): Systematic (Sys), and Compound (C,,) with different ratios.
The dotted line indicates a 50 m of error. Simulations conducted for static target (dark color) and moving target (light color)
cases. The mean and the Standard Deviation (STD) after 50 iterations are represented.

Reception (SR) over the Total Transmissions (TT) ratio defined
by T'yeception = SR/TT is presented. Here, a I'yeception < 0.5
yielded in a poor AOTT performance, and therefore, the target
could not be localised and followed.

D. Resampling method

As was pinpointed in [5], a Compound resampling method
for the PF can increase the target tracking performance. The
main idea of the Compound method is to spread a certain
number of particles in a zone nearby the target, which helps
the algorithm to track sudden changes in the direction of the
target.

Here, the particles are deployed around the tracker instead of
spreading them around the latest estimated target position. This
action helps to increase the particles diversity, and emphasise
the latest time that the tag was detected. The results obtained
are shown in Fig. 3d. Whereas the influence of the resampling
method to localise static targets is minimum, the Compound

method overperforms the Systematic method in moving target
scenarios.

Finally, all the optimum parameters obtained in this section
are summarized in Table L.

IV. SIMULATED SCENARIO

The next simulation has been conducted to observe the
AOTT’s performance using all the recommendations derived
from the previous section. In this case, the target was moving
at 0.2 m/s and performed a 90° right turn after 67 min, the
rest of the parameters were:

o Tag transmission delay = 60 s

e Maximum tag transmission range = 250 m

e Tracker radius = 200 m

o Tracker velocity = 1 m/s

o Number of particles = 10000

o Resampling method = Compound with ratio 1.5%
e Maximum particles range = 300 m

o Number of iterations = 50



TABLE I: Optimal parameters for AOTT method.

Parameter

Ratio definition

Optimal
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Fig. 4: Simulations: (a) x-y map where the tracker (WG), the target (T'), and the estimated target position using the PF
(PF) are presented. Black stars represent tag transmission receptions, whereas grey stars represent a missing tag detection; (b)
Evolution of the estimated target position error over time. Mean (dark color) and STD (light color) limits after 50 iterations,
for a T'yeception = 100% and 60%. Field tests: (c) Wave Glider and Coastal Profiling Float (CPF) positions, and the estimated
CPF position using both the ROTT and the AOTT algorithms; (d) Estimated target position error comparison among USBL,

ROTT, and AOTT methods.

The result obtained in this simulation is shown in Fig. 4a,
where the tracker and target trajectories are represented. In
addition, at each time that a tag’s transmission was received
or missed is also visible with a black and a grey start
consecutively. The estimated target position is shown in red.

Fig. 4b shows the error obtained between the estimated and

the real target position, where the dark color represents the
average value and the light color represents its STD, both after
50 iterations. Two set of simulations with different I'vcception
were conducted, using ratios equal to 100% and 60%. Before
and after the target right turn (at 67 min), the error was
~50 m using the ideal reception ratio, and ~100 m using the



60% ratio. In this situation, the AOTT had more problems to
find and track the real target position, which lose the target
position about ~2% of the iterations. Despite that, the tracker
in general did not loss the target’s position, and therefore, the
great capabilities of the AOTT method were demonstrated.

V. FIELD TESTS

Different field tests were conducted on June 27-28, 2018
using a Wave Glider as a tracker and the MBARI’s CPF
[19] as a target. The Wave Glider was equipped with a
Vemco receiver (VR2C), and two Vemco tags (V7P-69k) were
installed to the CPF. Additionally, the CPF was equipped
with a Benthos acoustic modem (ATM-900), and the Wave
Glider with a Benthos DAT (Direction Acoustic Transponder)
modem, which is a type of USBL, both from the Teledyne
company. Fig. 5 shows the CPF’s deployment moment, and
one of the acoustic tags affixed with a 3D printed housing
(inset).

Fig. 5: The CPF’s deployment during the test, with the Vemco
tags affixed to the float (inset) via a 3D printed housing.

This test lasted more than 15 h, where the CPF conducted
3 immersions at ~60 m depth. During all the test, the Wave
Glider carried out different circumferences around the area
which were used in twofold purposes: (a) to perform a tag
detection ratio versus range test, finding the maximum range
where the tags could be detected; and (b) to compare the
accuracy of the USBL, the ROTT, and the AOTT methods.

A. Reception ratio

As we explained in Section III-C, the maximum range that
an acoustic tag can be detected is unknown a priori, and it is
strongly dependent on the sea state. Moreover, the I';cception
decrease dramatically with the distance between the tag and
the receiver due to the attenuation that acoustic waves suffers
in water [18]. Therefore, in situ tests before each mission are
recommended to know the MTR. Fig. 6 shows the results
obtained after two days of tests, where a huge variation in
T'eception at different days can be observed, probably due to
different sea conditions.

Here, the TT value was computed as TT = T},,At, where
Tiag is the tag transmission period, and At is the elapsed
time. And the SR where grouped in ranges of 25 m between
the target and the tracker. The result shows that a I'cception

close to 80% for distances up to 75 m, and then it lows to
~30% until 400 m range.

Therefore, a tracker trajectory close enough to the target is
mandatory in order to maintain an acceptable reception ratio.
Conducting not too large circumferences was also derived in
Section III-A as a good practice.
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Fig. 6: Reception ratio versus distance between devices. Re-
sults obtained during field trials in Monterey Bay, California.

B. Area-only vs traditional target tracking methods

The second test was carried out to compare the performance
of the AOTT method to others. These methods where the
ROTT using the slant range measurements conducted by the
acoustic modems, and the estimated target position obtained
by the USBL. Both methods are widely used in the target
localization and tracking field.

Fig. 4c shows the paths conducted by the Wave Glider and
the CPF, and their initial positions. Moreover, the estimated
target position using both the ROTT and the AOTT methods
are presented. On the other hand, Fig. 4d shows the estimated
target position error of the AOTT, ROTT, and USBL methods.

From the AOTT’s error we can pinpointed three elements:
(a) the algorithm was notably stable, where the target was
mostly all the time correctly localised; (b) during the first
CPF’s immersion, the error was lower than 100 m, and then
it increased up to ;{200 m. If we compare this performance
with the study conducted previously, and if we take into
consideration that the Wave Glider’s path was not optimal,
the error’s values were inside the expected boundaries; and (c)
when the CPF was in the surface (at 05h) the error obtained
was greater, probably due to a poorest tag reception.

On the other hand, we also can see from Fig. 4d that the
USBL’s error was bigger than 200 m, specially at the end of
the test. This poor performance can be produced by threefold
causes: (a) due to a poor weather and sea state condition,
which could increase the acoustic multi-path behaviour, and
could make the vehicle more unstable; (b) due to the presence
of some misalignment error in the USBL device (e.g. an offset



between the transducer and the Inertial Measurement Unit
(IMU)); and (c) the strong multi-path behaviour that existed
due to the shallow water area where the test was conducted.
The USBL range measurements are typically more robust than
the bearing and elevation measurements. Therefore, the use
of a filter to increase the system’s performance is a good
practice, e.g. in [20] the authors used a simple weighted filter
to increase the estimated target position accuracy. In addition,
the USBL should be calibrated in advance to reduce those
possible misalignments. However, here the raw (i.e. without
post processing) data is presented, which can explain the poor
behaviour presented by the USBL.

Finally, we can see that the ROTT method was the best
one to estimate the target position, which had an error lower
than 20 m during almost all the test. The range-only methods
can be used when two-way communication between the target
and the tracker is possible. However, this functionality is not
available in current commercial acoustic tags, at least to the
best knowledge of the authors and until nowadays.

VI. CONCLUSIONS

This work has described the basis of a novel method for
target tracking using marine autonomous vehicles, which has
been called AOTT. This technique can be used to track tagged
marine species that could not be tracked otherwise due to their
size.

Here, an extended study to find the optimal parameters
for the AOTT method has been carried out, and its results
are presented. With this study, best practices under different
scenarios have been derived, which sets the basis of future
tests and applications.

Moreover, different field tests have also been performed. For
example, a target has been localised and tracked using a Wave
Glider. This field test has been used to validate the simulations
conducted and the hypothesis derived, and to evaluate its
performance in a real scenario. In addition, a comparison
between the AOTT’s performance among other methods has
been conducted. Whereas the error of AOTT is greater than the
error of ROTT (as expected), the AOTT method overperforms
other localization techniques due to the use of small tags
instead of bigger, more complex, and more expensive acoustic
modems.
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