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ABSTRACT

Current Type Ia supernova (SN Ia) models can reproduce most visible+IR+UV ob-
servations. In the X-ray band, the determination of elemental abundance ratios in
supernova remnants (SNRs) through their spectra has reached enough precision to
constrain SN Ia models. Martinez-Rodriguez et al have shown that the Ca/S mass
ratio in SNRs cannot be reproduced with the standard nuclear reaction rates for a
wide variety of SN Ia models, and suggested that the '>C+'°0 reaction rate could
be overestimated by a factor as high as ten. We show that the same Ca/S ratio can
be obtained by simultaneously varying the rates of the reactions '*C+'°0, 2C+12C,
1604190, and '°O(y,a)'>C within the reported uncertainties. We also show that the
yields of the main products of SN Ia nucleosynthesis do not depend on the details of
which rates are modified, but can be parametrized by an observational quantity such
as Ca/S. Using this SNR-calibrated approach, we then proceed to compute a new set
of SN Ia models and nucleosynthesis for both Chandrasekhar and sub-Chandrasekhar
mass progenitors with a one-dimensional hydrodynamics and nucleosynthesis code.
We discuss the nucleosynthesis of the models as a function of progenitor metallicity,
mass, and deflagration-to-detonation transition density. The yields of each model are
almost independent on the reaction rates modified for a common Ca/S ratio.
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1 INTRODUCTION

Type la supernovae (SN Ia) are a fairly homogeneous class
of high-luminosity transient phenomena whose spectra are
characterized by the absence of lines from the most abun-
dant elements in the Cosmos, hydrogen and helium, and the
presence of a conspicuous silicon line at 6150 A around max-
imum light (Minkowski 1939, 1941; Pskovskii 1969; Branch
& Patchett 1973; Wheeler & Harkness 1986). They have
been instrumental in the establishment of the current cos-
mological model, characterized by an accelerated expansion
of the Universe, the measurement of the contribution of dark
energy to the energy budget of the Universe, and constrain-
ing the equation of state of dark energy (e.g. Riess et al.
1998; Perlmutter et al. 1999; Riess et al. 2004; Wood-Vasey
et al. 2007; Scolnic et al. 2018). But the imprints of SN Ia
go beyond their applications as standard candles, and cover
aspects as diverse as the evolution of the interstellar and
intracluster media (Chevalier 1977; Sawala et al. 2010), the
generation of cosmic rays (Warren et al. 2005; Sinitsyna &
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Sinitsyna 2011; Takamoto & Kirk 2015; Cardillo et al. 2016),
or the source of most stable isotopes of the elements of the
iron-group (IGE) (Matteucci & Tornambe 1987; Matteucci
et al. 2009; Maoz & Graur 2017; McWilliam et al. 2018;
Prantzos et al. 2018).

The accepted progenitor of SN Ia is a carbon-oxygen
(CO) white dwarf (WD) exploding as a consequence of
destabilization due to mass accretion or whatever other
cause. If the WD mass is close to the Chandrasekhar limit
(Chandra scenario), the explosion can propagate either as a
pure deflagration (Nomoto et al. 1984) or as a delayed det-
onation (DDT, Khokhlov 1991). If its mass is substantially
below the Chandrasekhar limit (subCh scenario) the burning
front propagates as a pure detonation (Woosley & Weaver
1994; Woosley & Kasen 2010; Sim et al. 2010). Hydrody-
namical simulations of WD explosion can explain most of
the features in the optical light curve and spectra of SN Ia,
both in the Chandra and in the subCh scenarios (Nomoto
1984; Hoeflich et al. 1998; Woosley et al. 2007; Kasen et al.
2009; Blondin et al. 2013, 2017; Hoeflich et al. 2017). The
light curve is most sensitive to the kinetic energy imparted to
the ejecta and to the mass of *°Ni synthesized in the course
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of the thermonuclear explosion. The spectra are formed by
many lines of intermediate-mass elements (IME) and IGE,
but the interpretation in terms of the mass of each element
present in the ejecta is not trivial (Branch et al. 2005; Stehle
et al. 2005; Gerardy et al. 2007; Mazzali et al. 2008; Tanaka
et al. 2011a; Sasdelli et al. 2014; Ashall et al. 2016).

The thermonuclear nature of SN Ia couples the nucle-
osynthesis with the explosion properties, but the direct im-
pact on the optical of all but the major product of these
explosions, the radioactive isotope °Ni, is very limited. As
a result, most of the nucleosynthesis predictions of current
SN Ia models cannot be verified by the available optical data.
Observations of close SN Ia for long periods of time put some
constraints on their nucleosynthesis, although with large un-
certainties (Diamond et al. 2015; Botyédnszki & Kasen 2017;
Dimitriadis et al. 2017; Graur et al. 2018; Maguire et al.
2018). The X-ray spectra of young SN Ia remnants (SNRs)
allow more precision on the determination of mass ratios
of several IME and IGE (Badenes et al. 2006, 2008; Park
et al. 2013; Yang et al. 2013; Yamaguchi et al. 2015; Dave
et al. 2017). Indeed, Martinez-Rodriguez et al. (2017) have
determined the mass ratio of calcium to sulfur in several SN
Ta remnants with relative errors in the range ~ 5% — 16%.
Measurements in SNRs are easier because the plasma is op-
tically thin and all the shocked ejecta are emitting radiation,
allowing for a relatively simple correspondance between the
emitted photons and the emitting mass.

Most nucleosynthesis calculations associated with SN
Ta models have been performed using the technique of post-
processing. In this technique, first a simplified nuclear net-
work is used within the hydrodynamic solver, which allows
to obtain the release of nuclear energy with enough accuracy
to follow the hydrodynamic evolution of the explosion. In a
second step, the detailed nuclear composition of the ejecta
is computed using a large nuclear network, i.e. feeding a
nuclear kinetic code with the thermodynamical trajectories
of different WD zones along the explosion, computed using
the simplified nuclear network (e.g. Thielemann et al. 1986;
Bravo et al. 2010; Townsley et al. 2016; Leung & Nomoto
2017). This approach is unavoidable in multi-dimensional
simulations of SN Ia because of the large requirements on
CPU associated with resolving the hydrodynamical part of
the problem, including flame propagation. However, nowa-
days it is possible to incorporate a large nuclear network in
hydrocodes used in one-dimensional models of SN Ia (Miles
et al. 2018).

The aim of the present work is twofold. First, we present
our one-dimensional SN Ia explosion code, which uses a large
nuclear network in the computation of the hydrodynamic
evolution, allowing to obtain the detailed nuclear composi-
tion directly, without the need of post-processing, and en-
suring full coherence between the explosion energetics and
the nucleosynthesis. Second, we address the nucleosynthe-
sis constraints derived from X-ray data on SN Ia remnants.
Specifically, we explore the ways to match the constraints
posed by the observations of calcium, argon, and sulfur in
several remnants (Martinez-Rodriguez et al. 2017), allowing
for reasonable uncertainties in several key reaction rates.
We identify a combination of rates that satisfies the above
constraints, and use this SNR-calibration to study the de-
pendence of the nucleosynthesis on parameters such as the

progenitor metallicity, the WD mass, and the deflagration-
to-detonation transition density.

The plan of the paper is as follows. In Section 2 we
explain the general aspects of our method and related as-
sumptions. In Section 3 we discuss the observational con-
straints posed by X-ray spectra. These constraints allow us
to define the set of reaction rates adopted in our code. We
discuss the nucleosynthesis in Section 4, and summarize our
conclusions in Section 5. In Appendix A, we give the nucle-
osynthetic yields obtained with the standard set of reaction
rates and, in Appendix B, we provide further technical de-
tails about the characteristics of our code and the way in
which it incorporates an extensive nuclear network in the
hydrodynamics modelling of SN Ia.

2 FRAMEWORK

We have computed SN Ia explosion models in spherical sym-
metry for sub-Chandrasekhar WD detonation and Chandra
WD DDT. Our code integrates simultaneously the hydrody-
namics, via a PPM solver, and the nuclear network. Here,
we describe the general features of the models, and leave
further technical details for appendix B.

In the subCh scenario, a carbon-oxygen WD with a
mass significantly below the Chandrasekhar limit explodes
through a detonation starting at its center. The detona-
tion may be triggered by an inward shock wave launched
at the surface by the burning of a tiny layer of helium (not
present in our simulations) accreted from a degenerate or
non-degenerate companion. The detonation might also be
the consequence of a dynamic event (merging, collision) in
a double-degenerate system. The exploding WD is charac-
terized by its mass, Mwp, temperature, Twp, and chemical
composition. The initial chemical composition is set by the
carbon-to-oxygen mass ratio (C/O) and the mass fraction of
elements heavier than oxygen. This is equal to the metallic-
ity, Z, of the progenitor star (Timmes et al. 2003), because
during hydrostatic hydrogen and helium burning the amount
of CNO at birth of the progenitor star is transformed into
22Ne. Besides 12C, 10O and 2Ne, we complement the ini-
tial chemical composition with metals with baryon number
23 < A <100, which we assume are present in solar propor-
tions (Grevesse & Noels 1993) with respect to Z.

In the Chandra DDT scenario, a carbon-oxygen WD
with a mass close to the Chandrasekhar limit explodes, start-
ing by a subsonic flame (deflagration) at or near its cen-
ter. After consumption of a small fraction of the WD mass
and expansion by a factor of ~2 -6 in radius, the burn-
ing fronts turns into a detonation that processes most of the
star. The origin of the deflagration may be accretion of mat-
ter from a non-degenerate companion or from the debris of
a degenerate companion after a merging event. Either way,
the explosion is preceded by a long (~ 10° yrs) phase of slow
carbon burning (usually referred to as simmering or smol-
dering), in which the chemical composition is altered with
respect to that of the WD at its birth. These models are
characterized by the value of the density ahead the flame at
the moment in which the deflagration-to-detonation transi-
tion is induced, pppr, and also by the initial central density,
Pc, temperature, Twp, and chemical composition, which we
specify as in the subCh models. However, due to the chemical
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processing during carbon simmering, the actual composition
of matter is expected to differ from solar proportions. The
amount of carbon consumed during simmering may be as
large as 0.026-0.036 Mg (Piersanti et al. 2017), depending
on the initial metallicity, but its precise value is affected by
the numerical treatment of the URCA process (Piersanti,
priv. comm.; Martinez-Rodriguez et al. 2016; Schwab et al.
2017), so we do not include this effect in our initial models.
We warn that the actual metallicity of the main-sequence
progenitor of the exploding WD in the Chandra DDT sce-
nario may be different from the Z of the models as reported
in Table 1.

In all our models, we adopt C/O = 1! and Twp = 10 K.
All the initial models are built in hydrostatic equilibrium us-
ing the specified chemical composition. The central density
of our Chandra DDT models is p. = 3x10° g cm™3, as sug-
gested by models of the carbon simmering phase (Martinez-
Rodriguez et al. 2016).

The thermonuclear reaction rates used in the simula-
tions are those reccommended by the REACLIB compilation
(Cyburt et al. 2010), with electron screening in strong, in-
termediate and weak regimes, while weak interaction rates
are adopted from Fuller et al. (1982); Oda et al. (1994);
Martinez-Pinedo et al. (2000); Pruet & Fuller (2003). The
exception is the 2C+'°0 reaction.? We computed models
with either the ’standard’ 2C+1%0 reaction rate (Caugh-
lan & Fowler 1988, hereafter CF88), or the same rate scaled
down by a factor (1 —&cg), with &co = 0.9 to reproduce the
Ca/S mass ratio in SNRs (Martinez-Rodriguez et al. 2017,
see also Section 3 for more details). In both cases, we have
adopted the CF88 branching ratios for the neutron, proton,
and a output channels.

The propagation model for the burning front is dif-
ferent depending on whether it is subsonic or supersonic.
In the first case, i.e for deflagration waves, the front is
propagated at a fixed fraction of the local sound speed,
Vdef = 0.03v5oung. Once a detonation has been initiated, the
front velocity is not prescribed, and the detonation advances
as a result of the associated shock wave and the heat re-
leased by nuclear burning. The resulting detonation velocity
is close to the Chapman-Jouguet value for the densities of
interest, i.e. vger ~ (1.1 -1.3)x10° cm s~! for fuel densities
Oruel S 4x107 g cm™3(Gamezo et al. 1999). The nucleosyn-
thesis is mainly determined by the fuel density, see Fig. 1.
In this figure, we have grouped all IME, here defined as those
elements between and including magnesium and scandium,
and all IGE to facilitate comparison with existing literature,
e.g. figure A.1 in Fink et al. (2010), with which the agree-
ment is quite satisfactory.

We present the hydrodynamic and nucleosynthesis out-
put from 100 models, obtained by combining five values
of pppr, five values of Z, and two parametrizations of the
1204160 reaction rate, for the Chandra models, and five
values of Mwp, together with the same five values of Z and
the two parametrizations of the '2C+1°0 reaction rate, for

I In this paper, we adopt the convention that the ratio of two
element symbols, e.g. C/O or Ca/S, makes reference to the ratio
of the corresponding masses throughout the ejecta.

2 See Section 3.2 for an exploration of other modifications of re-
action rates.
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Figure 1. Nucleosynthetic yields as a function of density re-
sulting from detonation of C/O in model 1p06_Z2p25e-3_std. We
show the main constituents of the ejected matter, carbon, oxy-
gen, IME, and IGE. Nevertheless, for fuel densities in the range
4x10*-10° g cm™3, the abundance of neon (not plotted here) may
be as large as ~ 16% by mass.

the subCh models. Chandra models are named starting
by ’ddt’, then the value of pppr in units of 107 gcm™3,
then '_7Z’ followed by the progenitor metallicity, then ei-
ther '_&co0p9’ for the models ran with £cp =0.9 or '_std’ for
the models ran with the standard CF88 '2C+100 reaction
rate. For instance, model 'ddt1p2_Z2p25e-4_&co0p9’ belongs
to the delayed-detonation of a Chandrasekhar-mass WD
with pppr = 1.2x 107 g cm™3, metallicity Z = 2.25x 1074, and
£co =0.9. On the other hand, subCh models are named start-
ing with the value of the WD mass, in solar masses, then the
metallicity and the treatment of the >C+1°0 reaction rate,
as in Chandra models. For instance, model '1p06_Z2p25e-
3_std’ belongs to the detonation of a sub-Chandrasekhar
mass WD with Mwp = 1.06 Mg, metallicity Z = 2.25x 1073,
and &co =0, i.e. the standard CF88 '2C+100 reaction rate.

The complete list of models is given in Table 1, as well as
the final kinetic energy, K, and the ejected mass of S°Ni. We
emphasize that the central density reported for the subCh
models is a result of the construction of the initial models in
hydrostatic equilibrium for given Mwp and Z. As a result, it
reflects a slight dependence on the WD metallicity, especially
for the most neutronized progenitors.

In Figs. 2 and 3, we show the evolution of a sample of
models, one subCh and one Chandra. Density (contours) and
temperature (color) are shown as functions of time and mass
coordinate. The pure detonation nature of the subCh models
make their evolution relatively simple: matter burns at the
density it has in the initial model, as shown by the horizontal
density contours before arrival of the detonation. The mass
consumption rate is: M = 4mpr¥vye, which scales as r? near
the center (constant fuel density) and declines after the front
reaches regions with smaller density, hence smaller vgee. The
detonation wave approaches the outermost layers of the WD
after ~ 0.5 s. The maximum temperature attained behind the
detonation front is a declining function of fuel density, going
from ~ 6x10° K close to the center to < 3x10° K close to the
surface. Models characterized by a smaller central density
also reach lower maximum temperatures.
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Table 1. Characteristics of the computed SN Ia models.

Chandrasekhar-mass DDT

models with &co =0.9

models with &co =0

PDDT z pe K M(SNi) K M(*Ni)
(g cm™) (gem™)  (10% erg)  (Mo) (105 erg)  (Mo)
12x107  225x107%  3.0x10° 1.193 0.316 1.170 0.269
12x107 225x1073  3.0x10° 1.185 0.303 1.169 0.266
1.2x107  9.00x1073  3.0x10° 1.182 0.293 1.165 0.251
12x107 225x1072  3.0x10° 1.158 0.250 1.139 0.214
12x107  6.75x1072  3.0x10° 1.138 0.188 1.131 0.185
1.6x107  225%x107*  3.0x10° 1.328 0.517 1.317 0.491
1.6x107  225x1073  3.0x10° 1.323 0.510 1.314 0.487
1.6x107  9.00x1073  3.0x10° 1.307 0.476 1.292 0.443
1.6x107  225x1072  3.0x10° 1.287 0.434 1.285 0.426
1.6x107  6.75%x1072  3.0x10° 1.277 0.366 1.277 0.368
24x107 225x107*  3.0x10° 1.447 0.750 1.433 0.716
24%x107 225%1073  3.0x10° 1.443 0.743 1.429 0.710
24%107  9.00x1073  3.0x10° 1.429 0.704 1.420 0.685
24%x107 225%1072  3.0x10° 1.413 0.663 1.409 0.655
24%x107  6.75x1072  3.0x10° 1.389 0.549 1.385 0.546
28%x107 225x107*  3.0x10° 1.468 0.804 1.457 0.780
2.8x107 225x1073  3.0x10° 1.463 0.794 1.451 0.767
2.8x107  9.00x1073  3.0x10° 1.453 0.765 1.447 0.754
2.8x107  225x1072  3.0x10° 1.437 0.721 1.431 0.707
28x107  6.75%x1072  3.0x10° 1.412 0.595 1.410 0.596
40x107  225x107%  3.0x10° 1.507 0.909 1.500 0.896
4.0%x107 225x1073  3.0x10° 1.503 0.902 1.497 0.891
40%x107  9.00x1073  3.0x10° 1.493 0.872 1.487 0.859
40%x107  225%x1072  3.0x10° 1.478 0.824 1.475 0.817
40x107 6.75x1072  3.0x10° 1.456 0.689 1.454 0.688
sub-Chandrasekhar detonation models with éco =0.9  models with &co =0
Mwp Z Pe K MCONi) K M(ONi)
Mo) (gem™@) (10 erg)  (Mo) (107" erg)  (Mo)
0.88 225x107%  0.15x 108  0.926 0.191 0.907 0.150
0.88 225%1073  0.15x10%  0.921 0.182 0.905 0.145
0.88 9.00x1073  0.15x10%  0.917 0.169 0.904 0.138
0.88 225%1072  0.15x10%  0.913 0.155 0.902 0.133
0.88 6.75x1072  0.16x10%  0.926 0.139 0.920 0.133
0.97 225%x107*  0.26x10%  1.160 0.457 1.140 0.427
0.97 225%x1073  026x10%  1.150 0.449 1.140 0.421
0.97 9.00x1073  0.26x10% 1.150 0.433 1.140 0.410
0.97 225%x1072  027x10%  1.140 0.412 1.130 0.395
0.97 6.75x1072  0.28x10% 1.150 0.363 1.140 0.358
1.06 225x10™*  047x10%  1.330 0.706 1.320 0.685
1.06 225%x1073  047x10%  1.330 0.699 1.320 0.679
1.06 9.00x1073  0.48x10%  1.320 0.680 1.320 0.664
1.06 225%x1072  0.49x10%  1.320 0.650 1.310 0.638
1.06 6.75x1072  0.52x10%  1.320 0.569 1.320 0.565
1.10 225%x107  0.63x10%  1.400 0.807 1.390 0.791
1.10 225%x1073  0.63x10%  1.390 0.801 1.390 0.785
1.10 9.00x1073  0.64x10%  1.390 0.781 1.380 0.769
1.10 225%x1072  0.65x10%  1.380 0.748 1.380 0.739
1.10 6.75x1072  0.71x10®  1.380 0.653 1.380 0.650
1.15 225%x107%  0.94x10%  1.470 0.928 1.460 0.918
1.15 225%x1073  0.94x10%  1.460 0.922 1.460 0.913
1.15 9.00x1073  0.95x10%  1.460 0.901 1.460 0.894
1.15 225%x1072  0.98x10%  1.450 0.865 1.450 0.859
1.15 6.75x1072  1.07x10%  1.450 0.753 1.450 0.751

The evolution of the Chandra DDT model is more in-

volved. The explosion starts at the center of the WD as
a deflagration and propagates for two seconds, consuming
0.22 Mg before changing into a detonation. Since the de-
flagration is subsonic, the star has time to expand before
the arrival of the burning front. The expansion is communi-

cated gradually from the innermost to the outermost layers
(density contours start bending downwards), and becomes
global ~ 1 s after thermal runaway. Once initiated, the det-
onation reaches almost the surface of the WD without ap-
parent interference from the hydrodynamic processes inside.
However, a close inspection of Fig. 3 reveals some ripples
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Figure 2. Evolution of temperature (color) and density (con-
tours) as a function of time and mass coordinate in a sub-
Chandrasekhar detonation model with Mwp = 1.06 Mg and metal-
licity Z=10.009, model 1p06_Z9e-3_std. The contour labels give the
logarithm of the density.
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Figure 3. Same as Fig. 2, but for a Chandrasekhar-mass de-
layed detonation model with deflagration-to-detonation transition
density pppr = 2.4 X 107 g cm™ and metallicity Z = 0.009, model
ddt2p4_Z9e-3_std. Note that the color scale, as well as the x and
y axes, are different than those of the previous figure.

in the density contours accompanied by subtle changes in
temperature. The last are due to an inwards-moving shock
wave, launched from the location of the detonation initia-
tion, that reaches the center of the WD at ~2.4 s and re-
bounds, moving outwards thereafter. Since our code solves
simultaneously hydrodynamics and nuclear network, it in-
corporates the effects of all these waves on the evolution of
the explosion.
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Figure 4. Measured abundance ratio of argon to sulfur vs calcium
to sulfur in supernova remnants (big black dots with errorbars)
compared with the predictions of our model set using either the
standard 2C+'°0 reaction rate (empty magenta symbols) or the
same rate scaled down by a factor 10, i.e. éco =0.9 (solid blue
symbols). The uppermost black point belongs to the Kepler SNR.

3 CALCIUM, SULFUR AND THE FUSION OF
CARBON AND OXYGEN

Martinez-Rodriguez et al. (2017) argued that the Ca/S ra-
tios measured in the X-ray spectra of Type la SNRs span
values that are not reproduced by most SN Ia explosion
models. These authors speculate that the cause may be the
overestimation of the 12C+1°0 reaction rate by a factor ~ 10,
i.e. £c0 =0.9. Fig. 4 shows Ca/S and Ar/S obtained with our
SN Ia models, with either the standard rate of this reaction
or éco = 0.9, compared with the abundance ratios measured
by Martinez-Rodriguez et al. (2017). Models calculated with
the standard rate of the 2C+'°0 reaction are unable to re-
produce both the Ar/S and the Ca/S ratios, in particular
that of the Kepler SNR. On the other hand, models with
&co = 0.9 cover the whole range of observational points. How-
ever, the reduction of the rate of the reaction 12C+1°0 by a
factor of ten may be beyond the current experimental uncer-
tainty of this rate, which Shen et al. (2018) estimate on the
order of 50% at the temperatures of interest for explosive
oxygen burning, T ~ (3.5-5)x 10° K.

3.1 Impact of the 2C+!90 reaction rate

Scaling-down the '2C+1°0 reaction rate with &co = 0.9 af-
fects unevenly different elements present in the ejecta of SN
Ta. The impact of this reaction rate on the yield of a given el-
ement can be understood by comparing the locations where
the element is produced with the places where the reaction
is most active. Fig. 5 shows the mass flux associated with
the 12C+1°0 reaction as a function of mass coordinate and
time, for model 1p06_Z9e-3_std. The flux is large in two re-
gions, one between mass coordinates ~ 0.6 and ~ 0.85 Mg,
and the other outside of ~ 0.97 Mg, where the final mean
molecular weights are 35-50 and < 30, respectively. Thus,
we expect that IMEs and lighter elements are most sensitive
to the 12C+190 reaction rate.
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Figure 5. Time evolution of the mean molecular weight (con-
tours) and the mass flux of the 2C+!60 reaction, given by
28Nayp < 0 - v > Y Yisg (color, logarithmic scale), for model
1p06_Z9e-3_std.

Fig. 6 is a map of the final distribution of each element
in the ejecta of model 1p06_Z9e-3_std, normalized to the to-
tal yield of the same element, thus, going from 0 at the center
(brown) to 1 at the surface (red). The two horizontal dotted
lines limit the region where conditions for explosive oxygen
burning are achieved. It can be seen that several groups of el-
ements are synthesized in similar regions of the white dwarf.
For instance, most odd-Z IMEs are produced in the outer-
most 10-15% of the star, while most even-Z IMEs and the
lightest IGEs, from titanium to manganese, are created in
the outer half of the white dwarf.

Elements from the iron-group are mostly produced in
the innermost regions of the WD, and their yield is hardly
influenced by the rate of the 12C+1°0 reaction. On the other
hand, nitrogen, silicon, argon, calcium, and scandium are
produced in the zones of maximal influence of this reac-
tion, and within the regions that experience explosive oxy-
gen burning. Sulfur is particular, in the sense that its region
of maximal productivity coincides with the gap in the mass
flux associated with the '>C+10 reaction (Fig. 5), i.e. more
than half the yield of sulfur in Fig. 6 is concentrated in be-
tween the mass range from 0.85 Mg to 0.97 Mg. The yields
of other elements that are preferentially synthesized in the
outermost regions of the WD are sensitive to this reaction
rate, but are not a product of explosive oxygen burning and
their abundances are, in general, very small. This is the case,
for instance, of potassium and chlorine.

Figure 7 shows the same kind of map, pertaining to a
Chandra model. Qualitatively, the distribution of yields is
similar to that of the subCh model, although in the Chan-
dra model the lightest IGE are synthesized closer to the
center, while copper and zinc are synthesized very close to
the surface of the WD.

Fig. 8 shows the relative changes introduced in the
yields of the model with Mwp = 1.06 Mg and Z = 0.009
(coloured points), when &co = 0.9. The variations remain

under 10% for IGE and sulfur, while calcium, argon, and
silicon are most affected among the elements with largest
yields. The results for other explosion models (not shown in
Fig. 8) are similar.

The isotopic contribution to the abundance of each ele-
ment is not affected by the rate of the 2C+10 reaction as
much as the yield of the elements is, for the same model. Fig-
ure 9 shows the percent contribution of each isotope to the
abundance of its element when the standard reaction rate
is used and when &co =0.9. In contrast with elemental mass
yields, which change up to 40%, the percent contribution of
each isotope is largely insensitive to the rate of 2C+10,
with the exception of 7*Cr, whose contribution to chromium
varies by as much as ~ 30%.

3.2 Other reactions involving carbon and oxygen

The role of the reaction '2C+'°0 in the synthesis of IME
during explosive oxygen burning was highlighted by Woosley
et al. (1971) nearly five decades ago. They showed that
the key point is the regulation of a particles produced per
28Gi nucleus, a process that is contributed by four reac-
tions involving 12C and °0: three fusion reactions, 12C+12C,
1204160, and 104190, plus the photodisintegration reac-
tion '°0+y —»!2C+a. The last two reactions provide the
main paths of destruction of oxygen. If 1°0+y -»12C+a is
followed by '2C+12C—2Ne+a and by 2°Ne+y —1°0+a, the
net effect is the release of four « particles at the expense
of one '°0 nucleus. Otherwise, the destruction of 60, ei-
ther directly through '®O+'°0 or indirectly by '2C+1°0
just releases one @ particle per each pair of 'O nuclei con-
sumed. Thus, two reactions contribute positively to a large a
abundance, '°0(y, @) and '?C+!2C, and two contribute neg-
atively, '2C+1°0 and '°0+!°0. It is possible that a com-
bination of relatively minor changes in the rates of these
reactions might have the same net effect on the final Ca/S
and Ar/S ratios as the scaling down of the 2C+1°0 reaction
rate by a factor ten.

We have explored the results of modifying the four re-
action rates by computing a set of 135 additional versions
of model 1p06_Z9e-3. In each model, the three fusion reac-
tion rates were multiplied by a random factor in the range
(0.5-1.5). To test the sensitivity to the rate of the photodis-
integration reaction '°O(y,@)'>C (and its inverse), we used
different rates (Caughlan et al. 1985; Caughlan & Fowler
1988; Buchmann 1996; Katsuma 2012; Xu et al. 2013) avail-
able in the JINA REACLIB database®. The behaviour of
the last reaction rate at temperatures in excess of 4x10° K
is complicated and uncertain because of the possible con-
tribution of high-energy resonances and cascade transitions
(deBoer et al. 2017), and the use of different rates proposed
in the literature is a convenient way to account for this un-
certainty.

The resulting ratios of Ca/S, Si/Fe and Ti/Fe in these
explosion models are shown by open circles in Fig. 10, and
cover a range of Ca/S between 0.21 and 0.26. These fig-
ures can be compared with the ratios obtained for model
1p06_Z9e-3_std, with all standard rates (red solid pentagons,
located at Ca/S=0.22), and for model 1p06_Z9e-3_£co0p9,

3 https://groups.nscl.msu.edu/jina/reaclib/db/
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Figure 6. Final distribution of each element through the ejecta in model 1p06_Z9e-3_std. The color represents the cumulated mass of
each element, starting from the center of the star, normalized to the total ejected mass of the same element. All elements go through light
brown at the center to red at the surface, although this is not apparent for several elements whose yield is strongly concentrated in the
outermost layers of the ejecta, e.g. carbon or gallium. The two black dashed lines enclose the region where the maximum temperature

achieved by matter is in the range 3.5 < Tg max < 5.0, in units of 10° K.
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Figure 7. Same as Fig. 6 but for model ddt2p4_Z9e-3_std.

with all reactions but 2C+100 given by the standard rates
(green solid circles, located at Ca/S=0.273). The abundance
ratios show an almost linear monotonic dependence on each
other, irrespective of what reaction rate was modified and
in which measure. In other words, the ratios of Si/Fe and
Ti/Fe can be specified, for an explosion model like 1p06_Z9e-
3, as a function of Ca/S, which is a quantity measurable in
supernova remnants.

Motivated by these results, we have modified the four
reaction rates involving carbon and oxygen in order to obtain

Ca/S ratios similar to those for £co = 0.9, the value favoured

MNRAS 000, 1-19 (2018)

by SNR measurements. For model 1p06_Z9e-3_£co0p9, this
means Ca/S~ 0.27—-0.28. For this experiment, we have had to
change the four carbon and oxygen reaction rates by more
than the 50% variations shown thus far. Let us define a
parameter to describe the scaling of each one of these re-
actions, similar to the definition of £cg in Section 2. Thus,
the rate of 2C+!2C is that from CF88 scaled by a factor
(1-&cc), the rate of 1004100 is that from CF88 scaled by a
factor (1 —€&po) and, finally, the meaning of &g is the same as
before. The parameters of the four models with these rates
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model 1p06_Z9e-3_A, upward triangles: model 1p06_Z9e-3_B, downward triangles: model 1p06_Z9e-3_C, diamonds: model 1p06_Z9e-3_D,

see Section 3.2 for further details).

Table 2. Parameters of the four models with modified rates of
reactions involving carbon and oxygen.

model name écc foo  éco
1p06_Z9e-3_A  -2.2 05 0.5
1p06_Z9¢-3. B  -1.5 06 0.5
1p06_Z9e¢-3.C  -1.0 0.7 0.5
1p06_Z9e-3.D  -2.3 0.7 04

modified are given in Table 2. In all four models, the rates of
160(y,@)12C and its inverse were based on Katsuma (2012).

The point here is to explore to which extent fixing the
Ca/S ratio in a given model, with respect to the variations
in the rates of the carbon and oxygen reactions, is enough to
determine the whole nucleosynthesis output or whether, on
the contrary, the yields are sensitive to the precise reaction
rates modified. The results of the four modified models are
depicted in Fig. 10 as triangles, diamonds, and squares, close
to the desired values, i.e. those of model 1p06_Z9e-3_&co0p9
(green solid circles).

The full yields of the four crafted models can be seen

as well in Fig. 8 as open symbols, to be compared with
the ratios obtained for model 1p06_Z9e-3_£co0p9 (coloured
solid circles). Besides IGE, whose yields we already have
shown that are not affected by the modified rates, the abun-
dance ratios of elements which have an important contri-
bution from explosive oxygen burning (see Figs. 6 and 7)
are insensitive to the precise changes applied to the four re-
action rates. To summarize, the combined variation of the
rates in four key reactions involving 2C and 1°O (lzC—l—IGO7
120412, 1604190, and '90+y —»'?2C+a) within their uncer-
tainties can have the same effect than the suppression of the
rate of the single reaction 12C+1°0 by a factor &co = 0.9. In
practice, this is true for the most important nucleosynthetic
products of SN Ia, i.e. IGE and IME, with the exception
of potassium and chlorine. These two elements are not a
main product of explosive oxygen burning in our models, so
their sensitivity to the four reaction rates is different from
that of the products of this nucleosynthetic process (see Sec-
tion 3.1).

One can wonder whether the exceptions to the above
rule can provide a way to discriminate which ones of the

MNRAS 000, 1-19 (2018)
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Figure 10. Variation in the ratios of silicon to iron and of ti-
tanium to iron vs the ratio of calcium to sulfur for a set of
139 models using random modifications of the reaction rates for
2o4160, 20412¢, 1904190, and for '2C(e,7)'°O and its in-
verse. All models shown here are variants of the subCh model
with Mwp = 1.06 My and Z =0.009. Red solid pentagons belong to
model 1p06_Z9e-3_std, i.e. with all standard rates, while green
solid circles belong to model 1p06_Z9e-3_£co0p9, which repro-
duces the Ca/S and Ar/S mass ratios in SNRs. Open circles
belong to models obtained with the rates of the three fusion re-
actions above multiplied by a random factor in the range (0.5—
1.5), and the rate of photodisintegration of '°0O given by alternate
recipes in the JINA REACLIB database. The rest of symbols
belong to models 1p06_Z9e-3_A (squares), 1p06_Z9e-3_B (upward
triangles), 1p06_Z9e-3_C (downward triangles), and 1p06_Z9e-3_D
(diamonds), see text and Table 2 for details.
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four reactions should change with respect to their standard
rates, and in which amount. This question is beyond the
scope of the present paper and will need further investiga-
tion, but we can advance a few ideas. One possibility is to
measure the ratio of two elements in SNRs, one which is sen-
sitive to the changes in the four reaction rates and the other
which is insensitive. For the first one, the first option that
comes to mind is potassium, whose yield varies by ~ 30%
in Fig. 8 and is produced in non-negligible amounts in the
explosion. For the second one, a good choice could be cal-
cium, whose yield range of variation is on the order of a few
percent. Even though the changes in the yield of potassium
are modest, future mid-term projected X-ray facilities with
spectroscopic capabilities like XRISM (with ~ 5 eV energy
resolution and ~ 300 cm? effective area; Tashiro et al. 2018;
Hitomi Collaboration et al. 2018) and Athena (with ~2.5 eV
energy resolution and an effective area close to 1 m?; Nandra
et al. 2013) should be able to discriminate them.

4 YIELDS OF SNR-CALIBRATED SN IA
MODELS

In this Section, we give the final (after radioactive decays)
elemental and isotopic yields of the SN Ia models obtained
with &co = 0.9. We have shown that these models are repre-
sentative of a class of models in which the rates of the four
reactions involving '>C and 'O may change by different
amounts but have in common the abundance ratio of cal-
cium to sulfur and that of argon to sulfur, and are, in this
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Figure 12. Variation of the elemental yields with respect to pppr,
for the models with Z = 0.0225 and éco =0.9. The yields are nor-
malized to Fe and to the solar abundances, in log scale.

sense, SNR-calibrated SN Ia models. In Section 4.3, we give
the yields, in solar masses, of the most abundant radioactive
isotopes with half-life longer than one day. For completeness,
we also give in Appendix A the yields of the models using
the standard set of reaction rates, '2C+1°0 included.

4.1 Chandrasekhar-mass models

The yields belonging to the Chandra models are given in
Table 3. Rows starting by ’elem’ give the elemental yields of
each model, in solar masses, where the element is identified
by the atomic number and symbol. Rows starting by ’isot’
give the yield of each isotope in each model. In this case, the
isotope is identified by the atomic number and symbol and
by the baryon number.

The behaviour of the yields of the most abundant explo-
sion products with respect to variations of the parameters of
the Chandra models, pppr and Z, is illustrated in Figs. 11

Si PS Cl ArKCa Sc Ti V Cr MnFe CoNi CuZn GaGe SeAs BrKr
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Figure 13. Variation of the isotopic yields with respect to
metallicity, for the Chandrasekhar-mass models with pppr = 2.4 X
107 g em™ and &co = 0.9. The yields are normalized to *°Fe and
to the solar abundances, in log scale. The approximate locus of
each element is labelled on the top axis.
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Figure 14. Variation of the isotopic yields with respect to pppr,
for the models with Z = 0.0225 and &co = 0.9. The yields are nor-
malized to *°Fe and to the solar abundances, in log scale. The
approximate locus of each element is labelled on the top axis.

and 12 (elements) and 13 and 14 (isotopes). It should be
noted that the abundance scales are normalized to iron (and
to the solar ratio), which means that a change in the relative
abundance with, for instance, pppr may be due to a vary-
ing iron yield, to a change in the element yield, or to both.
In these figures, the dependence on metallicity is illustrated
taking as a reference the models with pppt =2.4 % 107 g cm™3,
whose %°Ni yields are representative of normal-luminosity
SN Ia.

MNRAS 000, 1-19 (2018)



Table 3. Nucleosynthesis in Chandrasekhar-mass DDT models with éco =0.9.
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PDDT 1.2E407 1.2E407 1.2E407 1.2E4+07 1.2E+407 1.6E+07 1.6E+07 1.6E+07 1.6E4+07 1.6E+07
V4 2.25E-4 2.25E-3 9.00E-3 2.25E-2 6.75E-2 2.25E-4 2.25E-3 9.00E-3 2.25E-2 6.75E-2
elem 2He 3.01E-04 2.87E-04 2.57E-04 1.61E-04 9.74E-06 3.08E-04 2.93E-04 2.62E-04 1.63E-04 9.43E-06
isot 2He3 1.58E-12 1.56E-12 1.54E-12 1.42E-12 1.16E-12 1.58E-12 1.56E-12 1.54E-12 1.42E-12 1.16E-12
isot 2He4 3.01E-04 2.87E-04 2.57E-04 1.61E-04 9.74E-06 3.07E-04 2.93E-04 2.62E-04 1.63E-04 9.43E-06
elem 6C 4.94E-03 4.98E-03 4.90E-03 5.06E-03 5.21E-03 2.50E-03 2.47E-03 2.54E-03 2.64E-03 2.51E-03
isot 6C12 4.94E-03 4.98E-03 4.90E-03 5.05E-03 5.21E-03 2.50E-03 2.47E-03 2.54E-03 2.64E-03 2.51E-03
isot 6C13 1.94E-10 3.57E-09 1.26E-08 2.95E-08 7.43E-08 1.04E-10 1.64E-09 6.37E-09 1.57E-08 3.94E-08
Sample of Table 3, the full version is available online. The meaning of the columns is explained in the text.

Table 4. Nucleosynthesis in sub-Chandrasekhar models with &co =0.9.
Mwp 0.88 0.88 0.88 0.88 0.88 0.97 0.97 0.97 0.97 0.97
V4 2.25E-4 2.25E-3 9.00E-3 2.25E-2 6.75E-2 2.25E-4 2.25E-3 9.00E-3 2.25E-2 6.75E-2
elem 2He 1.95E-07 1.94E-07 1.73E-07 1.30E-07 1.02E-08 2.21E-04 2.34E-04 2.67E-04 3.31E-04 4.90E-04
isot 2He3 1.76E-16 1.76E-16 1.78E-16 1.83E-16 2.15E-16 6.37E-16 6.31E-16 6.14E-16 5.81E-16 4.83E-16
isot 2He4 1.95E-07 1.94E-07 1.73E-07 1.29E-07 1.02E-08 2.20E-04 2.34E-04 2.67E-04 3.31E-04 4.90E-04
elem 6C 4.04E-03 4.03E-03 3.96E-03 3.82E-03 3.35E-03 1.67E-03 1.66E-03 1.63E-03 1.57E-03 1.37E-03
isot 6C12 4.04E-03 4.03E-03 3.96E-03 3.82E-03 3.34E-03 1.67E-03 1.66E-03 1.63E-03 1.56E-03 1.37E-03
isot 6C13 2.20E-10 3.65E-09 1.21E-08 2.59E-08 5.61E-08 9.51E-11 1.52E-09 5.65E-09 1.28E-08 2.83E-08

Sample of Table 4, the full version is available online. The meaning of the columns is the same as in Table 3.

The most remarkable feature in Fig. 12 is that the ratios
of all elements, with respect to iron, decrease monotonously
with increasing deflagration-to-detonation transition den-
sity. It is a consequence of the increasing mass of IGE with
increasing pppr, at given metallicity. Furthermore, most
of the additional mass that is processed by nuclear reac-
tions above the DDT layer is made of iron. Thus, all el-
ements but iron show similar dependence on pppr. Man-
ganese, chromium, and nickel are produced in almost solar
proportions with respect to iron in the most luminous mod-
els, i.e. those with the largest F°Ni yields. The same is true
for titanium and vanadium in the most subluminous models.
The yields of a few elements, such as zinc, do not change
monotonously with pppt. The only intermediate-mass ele-
ments produced in abundance are the even-atomic number
ones: silicon, sulfur, argon, and calcium. They are even over-
produced, with respect to iron and the solar proportions, in
the most subluminous models. On the other hand, scandium
is under-abundant in all present models.

The variation of the mass ratios of the different ele-
ments with respect to metallicity does not behave as homo-
geneously as with respect to pppr. As can be appreciated
in Fig. 11, by increasing Z one obtains larger yields of the
odd-atomic number elements, with the exception of cobalt,
while most of the even-atomic number ones remain largely
unaffected, with the exception of nickel. Thus, the mass ra-
tio of odd-to-even atomic number elements is, in general,
sensitive to the progenitor metallicity, a result that has been
already used to measure the metallicity of supernova progen-
itors through the ejecta abundances in supernova remnants
(e.g. Badenes et al. 2008). The mass ratio of potassium to
calcium is affected by the progenitor metallicity, so one has
to fix the last in order to use this mass ratio to get insight
on the rate of the reactions involving carbon and oxygen, as
explained in the previous section.

Isotopic mass ratios can not be directly measured in
supernova remnants, but they are necessary ingredients in
galactic chemical evolution models. In Figs. 13 and 14, we

MNRAS 000, 1-19 (2018)

show the isotopic ratios for baryon number A > 28. Most
isotopes from chromium to nickel are produced in almost
solar proportions in the most luminous models (Fig. 14).
The exceptions are 9Ti, >*Cr, Fe, and, to a lesser ex-
tent, 92Ni, which are overproduced in all models. This is
due to the relatively high central density of the explosion
models, pe =3x10° g em™3, which implies that matter is ef-
ficiently neutronized by electron captures on IGE isotopes
in nuclear statistical equilibrium, shortly after central in-
cineration, during the deflagration phase of the explosion.
The isotope "*Se is overproduced at all pppT in models with
metallicity ranging from slightly subsolar to slightly super-
solar (Fig. 13). In the same metallicity range, the krypton
isotopes 78Kr and 8°Kr are produced in almost solar propor-
tions with respect to “°Fe.

The isotopes that are most sensitive to Z are 0Ti, 49Ti,
S0y, Shy, S0Cy, 33Cr, 35Mn, *Fe, 7Fe, and ¥Ni. We note
that odd-baryon number and even-baryon number isotopes
are equally represented in this list. Thus, the dependence
of these isotope yields with respect to metallicity should be
taken into account in chemical evolution models.

4.2 Sub-Chandrasekhar models

The yields belonging to the sub Chandrasekhar-mass models
are given in Table 4, and illustrated in Figs. 15 to 18. In these
figures, the dependence on metallicity is illustrated taking
as a reference the models with Mwp = 0.97 Mg, whose °Ni
yields are representative of slightly subluminos SN Ia.

The trends with progenitor metallicity of the yields
of elements and isotopes in sub-Chandrasekhar models
(Figs. 15 and 17) resemble those in Chandrasekhar models,
discussed in Section 4.1, the main difference being that in
subCh models the nickel isotopic yields are strongly metal-
licity dependent.

The WD mass in subCh models plays a role similar to
that of the deflagration-to-detonation transition density in
Chandra models, in the sense that it is the leading param-
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Figure 15. Variation of the elemental yields with respect
to metallicity, for the sub-Chandrasekhar models with Mwp =
0.97 Mg and &co =0.9.
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Figure 16. Variation of the elemental yields with respect to the
WD mass, for the sub-Chandrasekhar models with Z =0.0225 and
&éco =0.9.

eter determining the ejected mass of °Ni and, hence, the
luminosity of the supernova. Here (Fig. 16), as in Chandra
models, the ratios of most elements with respect to iron de-
crease monotonously with increasing iron yield. However,
there are two notable exceptions, cobalt and nickel, whose
yields increase further than that of iron with increasing WD
mass.

Most isotopes from chromium to nickel are produced in
almost solar proportions in the normal luminosity models
(Fig. 18). In contrast with Chandra models, 50Ty, 34Cr, and
38Fe are underproduced in all models, which may help to
compensate for their overproduction in Chandra models if
both explosion scenarios contribute in similar proportions to
SN Ia.

4.3 Radioactivities

Tables 5 and 6 give the yields of the most abundant radioac-
tive isotopes with half-life longer than one day. We have in-
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Figure 17. Variation of the isotopic yields with respect to metal-
licity, for the sub-Chandrasekhar models with Mwp =0.97 Mg and
&co =0.9.

Si PS Cl  ArKCa Sc Ti V Cr MnFe CoNi CuZn GaGe SeAs BrKr

S
| %\”m\/‘\ \/\(/\/\S\A\A
AN T 5 1
Lo 1T VY

baryon number

Figure 18. Variation of the isotopic yields with respect to the
WD mass, for the sub-Chandrasekhar models with Z =0.0225 and
éco=09.

cluded all the isotopes whose yield in any one of the models
presented in this work is larger than 107 M.

Table 7 gives the maximum yield of these radioactive
isotopes in all our models. The yields of typical targets of y-
ray observations of supernova remnants, e.g. 20Al and **Ti,
are pretty small, on the order of 107> — 107® Mg, while other
isotopes, e.g. Ni, are produced in interesting amounts.

MNRAS 000, 1-19 (2018)
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Table 5. Radioactivities with half-life longer than one day in Chandrasekhar-mass DDT models with &co =0.9.

ODDT 1.2E407 1.2E407 1.2E407 1.2E407 1.2E407 1.6E+4+07 1.6E+07 1.6E+07 1.6E+07 1.6E+07
V4 2.25E-4 2.25E-3 9.00E-3 2.25E-2 6.75E-2 2.25E-4 2.25E-3 9.00E-3 2.25E-2 6.75E-2
Al26  1.07E-07 2.87E-07 3.99E-07 6.63E-07 1.18E-06 841E-08 148E-07 2.07E-07 3.31E-07 5.10E-07
P32 1.97E-10 2.48E-08 1.36E-07 5.23E-07 4.89E-06 1.28E-10 1.66E-08 8.86E-08 3.28E-07 2.71E-06
P33 811E-11 1.86E-08 1.26E-07 4.90E-07 3.81E-06 4.74E-11 1.11E-08 7.68E-08 3.00E-07 2.19E-06
S 35 2.46E-11  6.29E-09 7.54E-08 7.20E-07 1.11E-05 1.47E-11 4.07E-09 4.86E-08 4.48E-07 6.34E-06
Ar37  6.52E-06 1.17E-05 247E-05 4.01E-05 6.09E-05 4.55E-06 8.71E-06 1.78E-05 2.87E-05 4.48E-05
Ca4l 9.76E-07 2.19E-06 5.51E-06 9.45E-06 1.31E-05 8.78E-07 1.77E-06 4.18E-06 6.92E-06 9.82E-06
Sample of Table 5, the full version is available online. The meaning of the columns is explained in the text.

Table 6. Radioactivities with half-life longer than one day in sub-Chandrasekhar models with &co =0.9.
Mwp  0.88 0.88 0.88 0.88 0.88 0.97 0.97 0.97 0.97 0.97
V4 2.25E-4 2.25E-3 9.00E-3 2.25E-2 6.75E-2 2.25E-4 2.25E-3 9.00E-3 2.25E-2 6.75E-2
Al26  7.78E-08 2.03E-07 2.80E-07 4.27E-07 6.16E-07 4.06E-08 7.53E-08 1.02E-07 1.46E-07 1.92E-07
P32 147E-10 1.96E-08 1.06E-07 3.82E-07 2.98E-06 7.04E-11 9.88E-09 4.99E-08 1.68E-07 1.18E-06
P33 5.44E-11 1.46E-08 9.79E-08 3.61E-07 242E-06 2.68E-11 6.24E-09 4.03E-08 1.48E-07 9.83E-07
S 35 1.83E-11 4.98E-09 5.64E-08 4.94E-07 6.51E-06 8.28E-12 2.70E-09 2.88E-08 2.30E-07 2.77E-06
Ar37  5.63E-06 9.53E-06 1.93E-05 2.97E-05 4.42E-05 4.24E-06 7.82E-06 1.46E-05 2.29E-05 3.47E-05
Ca4l 8.23E-07 1.88E-06 4.49E-06 7.07E-06 9.58E-06 9.39E-07 1.79E-06 3.61E-06 5.71E-06 7.96E-06

Sample of Table 6, the full version is available online. The meaning of the columns is explained in the text.

Table 7. Maximum yield, in solar masses, of the radioactive iso-
topes in all our models.

Al26 1.7x107° Mn54 1.2x107
P32 49x107° Feb5 2.0x1072
P33 38x10° Fe59 1.2%x1073
S 35 1.1x107° Fe60 14x10™4
Ar37  65x107° Co56  1.7x107*
Cadl 13x107° Co57  84x10™*
Tid4  5.1x107° Co58  4.8x107°
V48  6.8x107* Co60  7.4x107°
V49  40x107° Ni56  9.3x107!
Crb1 1.8x 10~ Ni57  34x1072
Mn52 1.6x1072 Ni59 1.6x1073
Mn53  22x1073 Zn65  2.7x107°

5 CONCLUSIONS

We have computed the nucleosynthesis and hydrodynamics
output for spherically symmetric models of SN Ia belong-
ing to two explosion paradigms: the delayed-detonation of
a Chandrasekhar-mass WD, and the pure central detona-
tion of a sub-Chandrasekhar mass WD. Our models differ
from existing compilations of SN Ia nucleosynthesis in two
aspects. First, we have computed the nucleosynthesis using
a large nuclear network of up to 722 nuclides in the hydrody-
namics code, instead of post-processing the output. Second,
we introduce the concept of SNR-calibrated SN Ia nucle-
osynthesis models.

Since our models are one-dimensional they cannot ac-
count for the effect of hydrodynamical instabilities and tur-
bulence that are regularly found in multidimensional simu-
lations of SN Ia (e.g. Plewa et al. 2004; Ropke et al. 2006;
Bravo & Garcia-Senz 2006; Kasen & Woosley 2007). In spite
of these shortcomings, the results of many one-dimensional
models compare well with observations of both SN Ia and
their remnants (Hoflich & Khokhlov 1996; Nugent et al.
1997; Badenes et al. 2006; Blondin et al. 2013; Hoeflich et al.
2017; Martinez-Rodriguez et al. 2018), many SN Ia show
a high level of stratification, in better agreement with one-
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dimensional models than multidimensional ones (e.g. Tanaka
et al. 2011b), and many remnants display geometries close to
spherical symmetry (Lopez et al. 2011). However, the reader
should be aware of the limitations of the one-dimensional
hydrodynamical approach.

We have established that the combined variation of the
rates in four key reactions involving '2C and 00O (12C+160,
2C4+12¢, 1604190, and '°O+y —'2C+a) within the uncer-
tainties has the same effect than the suppression of the
rate of the single reaction '2C+!¢0 by a factor &co = 0.9.
For the sake of simplicity, we adopt this single change as
representative of the changes that are needed to reconcile
the nucleosynthetic yields of SN Ia models with the Ca/S
and Ar/S mass ratios measured in Galactic and Magellanic
Cloud Type Ia SNRs (Martinez-Rodriguez et al. 2017), and
call this family of modified SN Ia models “SNR-calibrated
SN Ia models”.

For all models, we have computed the hydrodynam-
ics and nucleosynthesis starting from WDs with metallic-
ities in the range from Z = 0.000225 to Z = 0.0675. For
Chandrasekhar-mass models we have computed explosions
with deflagration-to-detonation transition densities ranging
from 1.2x107 g ecm™ to 4.0x 107 g cm™>, while for sub-
Chandrasekhar mass models we have allowed the mass of
the exploding WD to vary between 0.88 Mg and 1.15 M.
The explosions of Chandrasekhar-mass WDs with pppt =
24x10"7 gem™ and of sub-Chandrasekhar mass WDs
with Mwp = 1.06 Mg should be representative of normal-
luminosity SN Ia, since they produce between 0.55 Mg and
0.75 Mg of ®Ni.

There is a remarkable difference  between
Chandrasekhar-mass and sub-Chandrasekhar mass models.
In the first ones, the increment in the IGE yields with
pppT comes predominantly in the form of iron. In the
second ones, this increment of IGE with Mwp is contributed
significantly by cobalt and nickel. We also note that the
even-atomic number IMEs are overproduced with respect
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to iron in the models that produce the less S°Ni (hence, the
most sub-luminous ones), for all WD masses.

The neutron-rich isotopes °Ti, 3Cr, and ®Fe are over-
produced with respect to *°Fe in the Chandrasekhar-mass
models because of the high initial central density. On the
other hand, the same isotopes are underproduced in all sub-
Chandrasekhar mass models, so a combination of explosions
of all masses might be able to produce the proportions of
these isotopes in the Solar System.

We notice an important production of the isotopes
747686 and 7880Kr, which are subdominant with respect to
the selenium and krypton isotopic composition in the So-
lar System. All these isotopes are less neutron-rich than the
most abundant ones in the Solar System, and are produced
in the outermost shells of the exploding WD.

Future X-ray facilities like XRISM and Athena may be
able to discriminate models with respect to the rates of the
aforementioned four reactions involving carbon and oxygen.
In this respect, the mass ratio of potassium to calcium looks
as the most promising observational target, although this
point is in need of further investigation. One possible strat-
egy would be to fix the properties of the ISM and, if un-
known, the age of observed supernova remnants through the
most prominent lines in the SNR X-ray spectra and, as well,
fix the best explosion model describing the spectra. There-
after, the mass ratio K/Ca would provide the best estimate
of the involved reaction rates, since the yield of K is sensitive
to their values. The results would have to be cross-checked
for as many SNRs as possible, in order to provide a statisti-
cally convincing constraint on the relevant nuclear physics.
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APPENDIX A: YIELDS OF MODELS WITH
THE STANDARD 2C+!°0 REACTION RATE

In this Section, we give the final (after radioactive decays)
elemental and isotopic yields of the SN Ia models that use
the standard set of reaction rates, 2C+'°0O included (Ta-
bles Al and A2). We give as well the yields of the most
abundant radioactive isotopes with half-life longer than one
day (Tables A3 and A4).

APPENDIX B: HYDRODYNAMICS AND
NUCLEOSYNTHESIS CODE

The supernova code solves the hydrodynamics and nucle-
osynthesis along the explosion in a single run, i.e. with no
postprocessing of the nuclear equations. This approach has
the advantage that the binding energy released in the nu-
clear processes is treated self-consistently in the hydro part
of the problem, as well as the dependence of the equation
of state on the chemical composition. As an example, dur-
ing alpha-rich freeze-out from nuclear statistical equilibrium
(NSE) the specific nuclear binding energy can change as
much as 9x 10'% erg ¢! (~ 10%), while the mean molar
weight varies from ~ 30—-32 at the beginning of the freeze-
out up to ~52—54 at the end of the same period.

The hydrodynamic solver is explicit and based on the
piecewise-parabolich method (PPM) in the Lagrangian ver-
sion of Colella & Woodward (1984), with spherical symme-
try and gravity. We adopt the modifications introduced in
Colella & Glaz (1985) to solve the Riemann problem with
a general equation of state (EOS). The integration of the
hydrodynamic equations with the PPM scheme is followed
by the integration of the nuclear kinetic equations, and then
the temperature is updated according to the nuclear energy
released (and to the energy loss rate due to neutrinos gen-
erated in weak transitions). We take profit of the flattening
algorithms introduced by Colella & Woodward (1984), in
order to identify the mass shells affected by shocks during
the detonation phase of the SN Ia explosion, and we forbid
nuclear burning until the shock has passed away from the
shell. This procedure mimicks the expected behaviour of ac-
tual detonations, in which the dissipation associated with
the leading shock front heats matter almost instantaneously
to temperatures on the order of 3—4x10° K (depending on
the fuel density), with no change in the chemical composi-
tion.

Our EOS accounts for radiation and for fully ion-
ized matter: electrons and positrons, relativistic and non-
relativistic with arbitrary degree of degeneracy from Blin-
nikov et al. (1996), and ions, with Coulomb and polarization
corrections from Yakovlev & Shalybkov (1989) and Ogata &
Ichimaru (1987), see also Bravo & Garcia-Senz (1999). The
information about the chemical composition is fully shared
between the nuclear solver and the hydro solver. It has an
imprint, for instance, in the Coulomb corrections to the ionic
EOS.

Within a thermonuclear supernova explosion, matter
changes from a state of extreme degeneracy to partial and
weak degeneracy. We integrate a temperature, T, equation
whenever matter is strongly degenerate, and a specific en-
ergy, e, equation otherwise. In practice, the first option is
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Table A1l. Nucleosynthesis in Chandrasekhar-mass DDT models with standard '2C+'°0O reaction rate.

PDDT 1.2E407 1.2E4+07 1.2E407 1.2E407 1.2E407 1.6E407 1.6E+07 1.6E407 1.6E+07 1.6E407
Z 2.25E-4 2.25E-3 9.00E-3 2.25E-2 6.75E-2 2.25E-4 2.25E-3 9.00E-3 2.25E-2 6.75E-2
elem 2He 1.31E-04 1.22E-04 1.00E-04 4.64E-05 3.05E-08 1.32E-04 1.23E-04 1.01E-04 4.63E-05 3.18E-08
isot 2He3 1.80E-12 1.78E-12 1.76E-12 1.62E-12 1.33E-12 1.80E-12 1.78E-12 1.76E-12 1.62E-12 1.33E-12
isot 2Hed 1.31E-04 1.22E-04 1.00E-04 4.64E-05 3.05E-08 1.32E-04 1.23E-04 1.01E-04 4.62E-05 3.18E-08
elem 6C 5.02E-03 4.94E-03 4.85E-03 5.16E-03 5.19E-03 2.40E-03 2.37E-03 2.55E-03 2.50E-03 2.40E-03
isot 6C12 5.02E-03 4.94E-03 4.85E-03 5.16E-03 5.19E-03 2.40E-03 2.37E-03 2.55E-03 2.50E-03 2.40E-03
isot 6C13 2.08E-10 3.58E-09 1.25E-08 3.02E-08 7.54E-08 1.06E-10 1.58E-09 6.48E-09 1.52E-08 3.90E-08
Sample of Table A1, the full version is available online. The meaning of the columns is the same as in Table 3.

Table A2. Nucleosynthesis in sub-Chandrasekhar models with standard '?C+'O reaction rate.
Mwp 0.88 0.88 0.88 0.88 0.88 0.97 0.97 0.97 0.97 0.97
Z 2.25E-4 2.25E-3 9.00E-3 2.25E-2 6.75E-2 2.25E-4 2.25E-3 9.00E-3 2.25E-2 6.75E-2
elem 2He 9.87E-08 9.71E-08 7.65E-08 3.33E-08 2.92E-10 2.25E-04 2.39E-04 2.72E-04 3.35E-04 4.93E-04
isot 2He3 1.97E-16 1.97E-16 1.99E-16 2.04E-16 2.39E-16 7.16E-16 7.09E-16 6.89E-16 6.52E-16 5.39E-16
isot 2He4 9.87E-08 9.71E-08 7.65E-08 3.33E-08 2.92E-10 2.25E-04 2.39E-04 2.72E-04 3.35E-04 4.93E-04
elem 6C 4.10E-03 4.08E-03 3.99E-03 3.83E-03 3.33E-03 1.67E-03 1.66E-03 1.63E-03 1.56E-03 1.36E-03
isot 6C12 4.10E-03 4.08E-03 3.99E-03 3.83E-03 3.33E-03 1.67E-03 1.66E-03 1.62E-03 1.55E-03 1.36E-03
isot 6C13 2.25E-10 3.71E-09 1.23E-08 2.61E-08 5.62E-08 9.58E-11 1.53E-09 5.68E-09 1.28E-08 2.83E-08

Sample of Table A2, the full version is available online. The meaning of the columns is the same as in Table 3.

Table A3. Radioactivities with half-life longer than one day in Chandrasekhar-mass models with the standard 2C+!60O reaction rate.

ODDT 1.2E+07 1.2E4+07 1.2E407 1.2E407 1.2E4+07 1.6E4+07 1.6E407 1.6E4+07 1.6E4+07 1.6E4+07

VA 2.25E-4 2.25E-3 9.00E-3 2.25E-2 6.75E-2 2.25E-4 2.25E-3 9.00E-3 2.25E-2 6.75E-2

Al26 1.29E-07 3.89E-07 5.25E-07 8.19E-07 1.32E-06 8.06E-08 2.01E-07 2.86E-07 3.97E-07 5.71E-07

P32 225E-10 2.97E-08 1.57E-07 5.68E-07 4.76E-06 1.40E-10 2.00E-08 1.05E-07 3.41E-07 2.57E-06

P33 8.13E-11 2.34E-08 1.49E-07 5.37TE-07 3.73E-06 5.02E-11 1.38E-08 9.17TE-08 3.13E-07 2.10E-06

S 35 2.74E-11 6.40E-09 7.57E-08 7.14E-07 1.08E-05 1.58E-11 4.10E-09 4.96E-08 4.22E-07 5.93E-06

Ar37 6.31E-06 1.08E-05 2.22E-05 3.74E-05 6.53E-05 4.11E-06 7.87E-06 1.65E-05 2.73E-05 4.77TE-05

Cad4l 6.71E-07 1.72E-06 4.13E-06 7.20E-06 1.08E-05 5.64E-07 1.35E-06 3.19E-06 5.38E-06 7.94E-06

Sample of Table A3, the full version is available online. The meaning of the columns is the same as in Table 5.

chosen when 08 T T

de/0logT [ ]
(Ge/ologT)| _, 0. (B1) 07 -
(9e/d1ogp) ~

Bl Spacing and time steps

The shell spacing, in terms of Lagrangian mass coordinate,
is uniform and equal to 0.002 X Mywp in all the star but for
the innermost and outermost 0.02 X Mywp, where it is finer.
Starting from a central mass shell of 3x 107 x Myp, the
mass of each shell increases by 10% until reaching the width
of 0.002 X Mwp. In the outermost layers, we apply the same
procedure as in the center but in reverse order. In total, there
are 562 mass shells in each model. Figure B1 shows the final
abundance profile of the isotopes that are most contributed
by the central layers in a delayed-detonation model, where
it can be seen that their production is well resolved by the
adopted spatial zoning. The fine zoning applied in the outer
layers contributes to reproducing acurately the density gra-
dient and the curvature effect on the propagation of the det-
onation front (Sharpe 2001; Dunkley et al. 2013; Miles et al.
2018). As an example, at the time of formation of the det-
onation in model ddt2p4_Z9e-3_std, the spatial resolution
is better than AR/R < 1% in all the WD, and the relative
change in density between adjacent fuel layers is less than
Ap/p < 10% in all but the outermost 10* M.

06 [ - ]

os | e ]

0.4 H

03 | 4

cumulated mass/total yield

01 F — 4

mass coordinate (solar masses)

Figure B1. Final abundance profile of several neutronized iso-
topes close to the center of the WD in model ddt2p4 _Z9e-
3_£co0p9. The ordinate gives the integrated mass, starting from
the center, normalized by the total yield of the isotope. It shows
that the adopted spatial resolution is fine enough to smoothly rep-
resent the production of 3Ti, %Cr, and Fe. The central layer
contributes slightly less than 10% to the total mass of **Ni, which
is anyway underproduced in this model by a factor > 2 (see, e.g.,
Fig. 13).
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Table A4. Radioactivities with half-life longer than one day in sub-Chandrasekhar models with the standard 2C+'°0 reaction rate.

Mwp  0.88 0.88 0.88 0.88 0.88 0.97 0.97 0.97 0.97 0.97

z 2.25E-4 2.25E-3 9.00E-3 2.25E-2 6.75E-2 2.25E-4 2.25E-3 9.00E-3 2.25E-2 6.75E-2
Al26  9.89E-08 2.81E-07 3.74E-07 5.25E-07 7.03E-07 5.46E-08 1.07E-07 1.40E-07 1.87E-07 2.30E-07
P32 1.68E-10 2.37E-08 1.23E-07 4.09E-07 2.91E-06 8.68E-11 1.24E-08 5.96E-08 1.84E-07 1.17E-06
P33 5.59E-11 1.87E-08 1.16E-07 3.90E-07 2.38E-06 293E-11 8.08E-09 4.81E-08 1.62E-07 9.77E-07
S 35 1.93E-11  5.13E-09 5.74E-08 4.85E-07 6.31E-06 8.90E-12 2.83E-09 2.96E-08 2.27E-07 2.68E-06
Ar37 4.82E-06 8.15E-06 1.69E-05 2.76E-05 4.56E-05 3.37E-06 6.63E-06 1.32E-05 2.16E-05 3.59E-05
Ca4l 4.95E-07 1.31E-06 3.16E-06 5.30E-06 7.52E-06 5.09E-07 1.19E-06 2.62E-06 4.35E-06 6.19E-06

Sample of Table A4, the full version is available online. The meaning of the columns is the same as in Table 5.

The time step is adaptive to ensure that the integra-
tion variables do not change too much in a single time step.
The variables we control are density, temperature, velocity,
abundances, and shell sound crossing time (Courant condi-
tion). The time step in the hydrodynamic solver, Az, can be
different from that of the nuclear network solver, Aty,c. Be-
sides, the value of Ar is common to all mass shells at any
given integration step, while the value of Aty can differ
from shell to shell. Specifically, we require for each hydro-

dynamic time step, that the relative change is smaller than bl ///

0.1% in density, 0.2% in temperature, and 20% in velocity ool //

(with a floor of 10° cm s‘l). With respect to the nuclear net- ///

work time step, we accept a relative change up to 2% in the to12 _/,/ ]

abundance of any nuclear species whose molar abundance . . . . . . . .
1e-12 1e-10 1e-08 1e-06 0.0001 0.01 1 100 10000

is larger than 107% mol g~! in any mass shell. If the new
time step results smaller than 40% of the previous one, the
integration of the last time step, either a hydrodynamic or
a nuclear one, is rejected and repeated with a smaller time
step, until the above condition is fulfilled. The repetition of
a hydrodynamic integration step implies that of the nuclear
solver for all mass shells. On the other hand, the repetition
of a nuclear integration step does not require that of the
hydrodynamic solution.

When the nuclear time step is smaller than the cur-
rent hydrodynamic time step, the nuclear evolution is solved
with frozen temperature and density until the accumulated
nuclear time equals the hydrodynamic time step. After ac-
counting for the nuclear energy released, sometimes the con-
dition of maximum relative change for the temperature is not
fulfilled, in which case the whole process is repeated start-
ing from the last hydro and nuclear good values, but with a
smaller At. In Fig. B2, there can be seen an example of the
run of the hydrodynamic time step along the explosion.

B2 Nuclear network

The nuclear network, shown in Fig. B3, is the same as in
Bravo & Martinez-Pinedo (2012). The network extends to
sufficiently neutron-rich isotopes, beyond the valley of beta
stability, to describe the high-density combustion phases, in
which electron captures increase the mean neutron excess
of matter to ~ 0.1 (electron mole number, Y, ~ 0.44). The
nuclear kinetic equations follow the time evolution of the
mass fraction, X;, of each species due to weak and strong
interactions, including photodisintegrations and four fusion
reactions (3a, 2C+12C, 12C+!°0, and '*0+1¢0), until the
temperature falls below 108 K, after which time only the
weak interactions are accounted for.

The nuclear network solver is implicit, iterative, and
uses adaptive time steps. In each time step, the iterative

MNRAS 000, 1-19 (2018)
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Figure B2. Hydrodynamic time step along the explosion of
model ddt2p4 Z9e-3_std. The sudden decreases on the time step
down to Ar~ 1077 s from time ~0.02 s to ~ 1.5 s belong to the
arrival of the deflagration front to a new mass shell when the fuel
density is high enough to assume a NSE state will be reached.
In our models, the minimum fuel density at which NSE is forced
is 8x 107 g cm™>. Thereafter, the more pronounced decreases on
the time step down to Ar~ 107! s reflect the arrival of either the
flame front or the detonation wave (through shock heating) to a
new mass shell, and the subsequent acceleration of the nuclear
reactions.

neutron excess

Figure B3. Nuclear network used in the hydrodynamic calcula-
tions reported in this paper. Location of the main contributors to
nucleosynthesis, besides p, n, and @, on the charge — baryon num-

ber plane, coloured according to their neutron excess (the actual
network is slightly larger, from Z=0 to Z =50 and from A =1 to
A =100). We highlighted the stable isotopes with an open white
square.
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nuclear network size

. . .
0.4 0.6 0.8 1 1.2 1.4
mass coordinate (solar masses)

Figure B4. Number of nuclei actually present in the compu-
tational network as function of the Lagrangian mass coordinate
in model ddt2p4_Z9e-3_std at four different times. At 1.007 s the
explosion is still in the deflagration phase and registers the largest
network size close to the center, where matter is in the NSE state.
The other three times depicted, 2.126 s, 2.185 s and 2.270 s, be-
long to the detonation phase and show increasing network size
close to the detonation front, and close to the WD surface as
well. In each shell, the network size remains constant, on the or-
der of 100 — 150 species, until the flame front reaches it, which
results in overlapping of the different symbols at the plot bottom.

10000

1000 4

100 | E|

number of reactions in network

2 25 3 35 4
time (s)

Figure B5. Time evolution of the number of nuclear reactions
(strong and weak, including photodisintegrations and fusion re-
actions) in the network for the mass shell with Lagrangian mass
coordinate 0.3 My in model ddt2p4_Z9e-3_std.

procedure ends when the molar abundances of all nuclei
with ¥; > 10717 mol g~! have converged to better than
104 x max(¥;,107% mol g~1).

The size and composition of the nuclear network
changes each time step and may be different from mass shell
to mass shell (see Fig. B4), with a maximum of 722 nuclides.
The nuclides actually present in the network are determined
according to the chemical abundances and the possible nu-
clear links to other abundant nuclei. Initially, the network is
defined by neutrons and the rest of isotopes present in the
Solar System mixture up to !9'In. Thereafter, the network is

formed by neutrons, protons, alphas, and those species with
abundance Y; > Yihresh = 10712 mol g1, plus the nuclei that
can be reached from any of the nuclei with ¥; > 100X Yiyresh
by any one of the reactions included in the network. A re-
action rate is included in the network only if the predicted
change of a molar abundance in the next time step, Atyyc, is
larger than a given threshold:

NAp(oV)Y;Y jAtnue > Ripresh = 1071 mol g™!. (B2)

We show in Fig. B5 how the number of reactions in the
network changes along the explosion for a typical mass shell.
A similar method of integration of the nuclear evolutionary
equations using an adaptive network has been described in
Rauscher et al. (2002) and Bravo & Martinez-Pinedo (2012),
the main novelty here is that it is solved along with the
hydrodynamic evolution of the exploding WD.

B3 Convergence of the nucleosynthesis calculation

In Table B1, we show the convergence of the nucleosynthe-
sis results for model ddt2p4 Z9e-3_std with respect to the
chosen threshold values, Yiresh and Rresh, When any one
of them is a factor ten smaller than our reference values,
Yinresh = 10712 mol g™ and Rypresn = 10713 mol g=!, while all
other parameters are held constant. For either an abundance
threshold or a reaction rate threshold an order of magnitude
smaller than our reference values, the final kinetic energy
changes by less than 0.09%, and the mass of °Ni synthe-
sized by less than 0.02%. Concerning the yields of the differ-
ent nuclides, with respect to the modification of Yiesh by a
factor ten, the yields change by at most 0.001% for 33% of
all nuclei and for 67% of nuclei with a mass yield, M;, larger
than 1073 Mg, while no nuclei with M; > 107> My changes
by more than 0.07%, no nuclei with M; > 107% Mg changes
by more than 2.7% (°'Ni is the one with the largest varia-
tion), and no nuclei with 107 Mg > M; > 10712 Mg changes
by more than 2.2% (*'Ti). The records are similar although
slightly worse when we consider the modification of Resh
by a factor of ten. In this case, the largest variation belongs
to 47Ti, whose mass yield is ~ 1077 M.

B4 Treatment of matter in NSE

At temperatures in excess of ~5—-6x10° K and suficiently
high densities, most direct and reverse strong interactions
achieve equilibrium, the NSE state, and the composition
is determined by a Saha equation accounting for the nu-
clear mass, the nuclear partition function, density, tem-
perature, and electron mole number. In our code, we as-
sume matter achieves NSE when the burning front arrives
to a mass shell with density p > pnsgo = 8 x 107 g cm™3.
Below this density, we require a minimum temperature of
T > Tnsgel = 5.5%10° K if density is p = pnsg1 =2% 107 g cm ™3,
or T > Tnsgz = 6% 10° K otherwise, to assume an NSE state
is achieved. Shells processed by the detonation front are not
assumed to achieve NSE anyway if their density is smaller
than pnsgg, irrespective of how high is their temperature.
Instead their chemical evolution is followed with the nuclear
network all the way. In practice, detonated shells are treated
through the NSE routine only in a very limited set of mod-
els, because either the deflagration-to-detonation transition
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Table B1. Convergence of nucleosynthesis calculations. The figures belong to model model ddt2p4_Z9e-3_std.

range of yield masses

33% of nuclides

67% of nuclides

100% of nuclides

Mo) better than better than better than

Yiwesh = 10729 mol g7 M; > 1073 0.001% 0.001% 0.07%

vs. 1073 > M; > 1076 0.001% 0.06% 2.7%
Yihresh = 10712 mol g~ 1070 > M; > 10712 0.001% 0.04% 2.2%
Ripresh = 1071 mol g7 M; > 1073 0.001% 0.02% 0.25%

vs. 1073 > M; > 107° 0.06% 0.15% 3.3%
Riresh = 10713 mol g~ 1076 > M; > 10712 0.6% 3.6% 28%
weak rates table in S09  M; > 1073 0.4% 2.5% 65%

vs. 1073 > M; > 1076 0.5% 1.9% 480%
our standard procedure 107 > M; > 10712 0.4% 2.2% 5020%

density of Chandra models stays below pnsgo, or the whole
subCh initial models stay below the same density, even at
the center of the WD (see Table 1).

Shells that have been incinerated to NSE are assumed to
stay in the statistical equilibrium state (and their chemical
composition in NSE is recalculated at each time step with
the new p, T, and Y.) when their temperature is larger than
T > Tou = 5% 10° K if density is p 2 poutt = 5% 10° g em™3,
or T > Toup = 5.8 % 10° K if density is p > pourz = 10° g cm™3.
Otherwise, i.e. for smaller temperatures, their abundances
are fed to the nuclear network and their chemical evolution
is followed solving the nuclear kinetic equations.

In thermonuclear supernova explosions, matter is neu-
tronized by electron captures in the NSE state at high densi-
ties. In our code, the electron captures in NSE are calculated
at each time step according to the NSE composition and the
weak interaction rates on each nuclei. The same method is
applied to obtain the neutrino cooling due to weak interac-
tions in NSE.

Since we do not rely on tabulated neutronization rates,
our code is well suited to rate the precision of the available
tables of electron captures in NSE or, more precisely, how
they impact on the results of the explosion. As an example,
we have recomputed the hydrodynamics and nucleosynthesis
of model ddt2p4_Z9e-3_std by using the extensive NSE ta-
bles provided by Seitenzahl et al. (2009, hereafter S09), and
show the results in the last row of Table B1. The kinetic
energy and the yield of °Ni we obtain match nicely those
calculated without the weak table, i.e. following our stan-
dard procedure of computing the NSE composition, weak
rates, and neutrino emission coupled to the hydrodynamic
solver. The discrepancy in kinetic energy is of order 0.07%,
comparable to our precision with respect to the parameters
Yihresh a0d Rinresh, while the ejected mass of *°Ni is only 0.7%
smaller than our standard value. On the other hand, the nu-
cleosynthesis changes drastically with respect to our stan-
dard model. Within the most abundant nuclides, which we
define as those with ejected mass M; > 1073M, for the present
purposes, we find discrepancies up to 65%, among them the
important SN Ia product 3*Cr. The yields of other neutron-
ized nuclides such as *3Fe and ©2Ni disagree from our stan-
dard model also by more than 10%. In the second row, that
of nuclides whose yield is in the range 1073Mg > M; > 107°M,
the largest discrepancy belongs to 04Ni, whose yield differs
from our standard model by as much as 480%, while the
discrepancy of the yield of OTj is also above 100%. Finally,
within the nuclides with M; > 10"1>Mpg, the largest discrep-
ancy amounts to 5020%, which is the case for “Ca. We have
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checked that our neutronization rate and neutrino emission
rate match those given in S09 at the tabulated values of T,
p, and Ye, so the different nucleosynthetic results we obtain
are attributable uniquely to the interpolation between the
nodes of their NSE tables.

This paper has been typeset from a TEX/IATEX file prepared by
the author.
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