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A stronger null hypothesis for crossing dependencies

R. Ferrer-i-Cancho1 (a)

1 Complexity & Quantitative Linguistics Lab
LARCA Research Group,
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Abstract – The syntactic structure of a sentence can be modeled as a tree where vertices are
words and edges indicate syntactic dependencies between words. It is well-known that those edges
normally do not cross when drawn over the sentence. Here a new null hypothesis for the number
of edge crossings of a sentence is presented. That null hypothesis takes into account the length
of the pair of edges that may cross and predicts the relative number of crossings in random trees
with a small error, suggesting that a ban of crossings or a principle of minimization of crossings
are not needed in general to explain the origins of non-crossing dependencies. Our work paves the
way for more powerful null hypotheses to investigate the origins of non-crossing dependencies in
nature.

Introduction. – The syntactic structure of a sen-
tence can be defined as a network where vertices are words
and edges indicate syntactic dependencies [1,2] as in Fig. 1.
The most common assumption is that this structure is
a tree (an acyclic connected graph) (e.g., [1, 3]). In the
1960s, a striking pattern of syntactic dependency trees of
sentences was reported: dependencies between words nor-
mally do not cross when drawn over the sentence [4, 5]
(e.g., Fig. 1). C, the number of different pairs of edges
that cross, is small in real sentences. In Fig. 1, C = 0 for
sentence (a) and C = 1 for sentence (b). Interestingly, the
tree structure of both sentences is the same but C varies,
showing that C depends on the linear arrangement of the
vertices.

Imagine that π(v) is defined as the position of the vertex
v in a linear arrangement of n vertices (the 1st vertex has
position 1, the second vertex has position 2 and so on...)
and thus 1 ≤ π(v) ≤ n. u ∼ v is used to refer to an edge
formed by the vertices u and v. The length of the edge
u ∼ v in words is d(u ∼ v) = |π(u) − π(v)| (here |...| is
the absolute value operator). s(u ∼ v) and e(u ∼ v) are
defined, respectively, as the initial and the end position
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Yesterday a woman who I knew arrived.

(a)

Yesterday a woman arrived who I knew.

(b)

u1 w1 v1 u2 w2 v2

(c)

Fig. 1: (a) A sentence without crossings. (b) An alternative
ordering yielding one crossing: the link yesterday ∼ arrived
crosses the link woman ∼ who and vice versa. (c) An abstract
structure. (a) and (b) are adapted from [3].

of the edge u ∼ v, i.e. s(u ∼ v) = min(π(u), π(v)) and
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e(u ∼ v) = max(π(u), π(v)). u1 ∼ v1 and u2 ∼ v2 cross if
and only if one of the following conditions is met

• s(u1 ∼ v1) < s(u2 ∼ v2) and s(u2 ∼ v2) < e(u1 ∼ v1)
and e(u1 ∼ v1) < e(u2 ∼ v2)

• s(u1 ∼ v1) > s(u2 ∼ v2) and s(u1 ∼ v1) < e(u2 ∼ v2)
and e(u2 ∼ v2) < e(u1 ∼ v1).

It has been hypothesized that C ≈ 0 in real sentences [1,6]
could be due to a principle of minimization of the length
of edges [7–10]. Although the minimization of

D =
∑
u∼v

d(u ∼ v) (1)

reduces crossings to practically zero [7], this does not pro-
vide a full explanation about the low frequency of cross-
ings in real sentences: (a) minimum D does not imply
C = 0 [11], (b) the actual value of D in real sentences
is located between the minimum and that of a random
ordering of vertices [12] and (c) the word order that mini-
mizes D might be in a serious conflict with other linguistic
or cognitive constraints [13]. Here the problem of the re-
duction of D that is required for explaining C ≈ 0 in real
sentences is avoided by means of a null hypothesis that
predicts C by considering the actual length of the edges
that may cross. With this null hypothesis, one can shed
light on a fundamental question: how much surprising it is
that C ≈ 0 given the lengths of edges? That null hypoth-
esis is vital for the development of a general but minimal
theory of crossing dependencies in nature. First, C ≈ 0 in
sentences might also be due to a ban of crossings by gram-
mar [2] or a principle of minimization of C [8]. Second,
crossings have also been investigated in networks of nu-
cleotides [14]. Here it will be shown that a simple null hy-
pothesis based on actual dependency lengths would suffice
a priori for predicting C ≈ 0 in short enough sentences.

Crossing theory. –

The expected number of crossings. C(u ∼ v) is defined
as the number of edge crossings where the edge formed by
u and v is involved. C can be defined as

C =
1

2

∑
u∼v

C(u ∼ v), (2)

where the 1/2 factor is due to the fact that if two edges
u1 ∼ v1 and u2 ∼ v2 cross, their crossing will be counted
twice, one through C(u1 ∼ v1) and another through
C(u2 ∼ v2). C(u1 ∼ v1) can be defined as

C(u1 ∼ v1) =
∑

u2∼v2,{u1,v1}∩{u2,v2}=∅

C(u1 ∼ v1, u2 ∼ v2),

(3)
where C(u1 ∼ v1, u2 ∼ v2) indicates if u1, v1 and u2, v2
define a couple of edges that cross, i.e. C(u1 ∼ v1, u2 ∼
v2) = 1 if they cross, C(u1 ∼ v1, u2 ∼ v2) = 0 otherwise.

• Assume that the vertices are labeled with integers
from 1 to n.

• Produce a uniformly random spanning tree with the
Aldous-Brother algorithm [18,19], assuming a com-
plete graph as the basis of the random walk.

• Take vertex labels as vertex positions (π(v) = v for
every vertex v).

Fig. 2: Procedure to generate a random labeled tree and a
random linear arrangement of its vertices.

Applying the definition of C(u ∼ v) in eq. (3), C becomes

C =
1

2

∑
u1∼v1

∑
u2∼v2,{u1,v1}∩{u2,v2}=∅

C(u1 ∼ v1, u2 ∼ v2).

(4)
Suppose that the vertices are arranged linearly at random
(being all the permutations of the vertex sequence equally
likely). Then, the expectation of C is

see eq. (5)

As C(u1 ∼ v1, u2 ∼ v2) is and indicator variable,
E[C(u1 ∼ v1, u2 ∼ v2)] can be replaced by p(cross) = 1/3,
the probability that two arbitrary edges that to not share
any vertex cross when their vertices are arranged linearly
at random, which yields [15]

E0[C] = Cmax/3 (7)

with
Cmax =

n

2

(
n− 1−

〈
k2
〉)

(8)

being the number of edge pairs that can potentially cross
and

〈
k2
〉

the degree 2nd moment of the tree [10].
〈
k2
〉

is
the mean of squared degrees, i.e.〈

k2
〉

=
∑
v

k2v, (9)

where kv is the degree of vertex v. In uniformly random
labeled trees, the expected

〈
k2
〉

is [16, 17]

E
[〈
k2
〉]

=

(
1− 1

n

)(
5− 6

n

)
. (10)

Thus, the expectation of E0[C] for those trees is

E[E0[C]] =
n

6

(
n− 1− E

[〈
k2
〉])

=
n2

6
− n+

11

6
− 1

n
. (11)

This analytical result is easy to check numerically by gen-
erating random linear arrangements of vertices of random
trees with the procedure in Fig. 2.

Here we aim to improve E0[C] introducing information
about the actual length of the dependencies. Suppose that

p(u1 ∼ v1 and u2 ∼ v2 cross|d) (14)
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E[C] =
1

2

∑
u1∼v1

∑
u2∼v2,{u1,v1}∩{u2,v2}=∅

E[C(u1 ∼ v1, u2 ∼ v2)]. (5)

E[C|d] =
1

2

∑
u1∼v1

∑
u2∼v2,{u1,v1}∩{u2,v2}=∅

E[C(u1 ∼ v1, u2 ∼ v2)|d] (12)

=
1

2

∑
u1∼v1

∑
u2∼v2,{u1,v1}∩{u2,v2}=∅

p(u1 ∼ v1 and u2 ∼ v2 cross|d). (13)

is the probability that the edges u1 ∼ v1 and u2 ∼ v2
cross in a random linear arrangement of vertices where
edge lengths are given by the function d above. Then,
E[C|d], the expected number of crossings given full knowl-
edge about edge lengths, can be defined as

see eq. (13)

The calculation of E[C|d] for a given sentence is not
straightforward: it requires the calculation of all the per-
mutations of the words of the sentence preserving the edge
lengths of the original sentence. Besides, E[C|d] makes a
prediction about the crossings of a dependency tree involv-
ing a lot of information: the edges of the tree and their
length. In contrast, E0[C] can be computed just from
knowledge about the degree sequence or simply the values
of n and

〈
k2
〉
, as eqs. (7) and (8) indicate. Here we aim

to predict the number of crossings reducing the computa-
tional and informational demands of E[C|d] while beating
the predictions of E0[C].
p(cross|d(u1 ∼ v1), d(u2 ∼ v2)) is defined as the prob-

ability that two edges that are arranged linearly at ran-
dom cross knowing that their lengths are d(u1 ∼ v1) and
d(u2 ∼ v2) and that they do not share any vertex. Re-
placing

p(u1 ∼ v1 and u2 ∼ v2 cross|d) (16)

by p(cross|d(u1 ∼ v1), d(u2 ∼ v2)) in eq. 13, one obtains

see eq. (17)

Ex[C] refers to an approximation to the expected value of
C knowing the length of x edges in every potential cross-
ing (giving priority to the knowledge about the lengths of
the pair of edges that may cross in every potential cross-
ing as in eq. (17)). E2[C] is an approximation to E[C|d]
that is based on a stronger null hypothesis than that of
E0[C] for the probability that two edges cross. E0[C] and
En−1[C] are true expectations (notice En−1[C] = E[C|d]).
While E[C|d] conditions globally with the function d, i.e.
the same conditioning for every pair of edges that may
cross, E2[C] conditions locally with two edge lengths that
depend on the pair of edges under consideration (Eq. 13
versus Eq. 17). In the remainder of the article two virtues
of E2[C] over E[C|d] will be shown. First, E2[C] is easier
to calculate. Second, it predicts C with small error in spite

of discarding, for every pair of edges that may potentially
cross, the lengths of other edges. The point is: if such a
rough but simple predictor of crossing works, is it neces-
sary to believe that crossings are forbidden by grammars
[2] or postulate an independent principle of minimization
of C [8]?

The probability that two edges cross knowing their
lengths. The set S(n, d) is defined as the set of possi-
ble initial positions for an edge of length d in a sequence
of length n, i.e.

S(n, d) = {s|1 ≤ s ≤ n− d}. (19)

We say that s1 and s2 are a valid pair of initial po-
sitions if they define the initial positions of two edges
that have lengths d1 and d2, respectively, and that do
not share vertices, i.e. s1 ∈ S(n, d1), s2 ∈ S(n, d2) and
{s1, s1 + d1} ∩ {s2, s2 + d2} = ∅.
p(cross = 1|d1, d2) can be defined as a proportion, i.e.

p(cross|d1, d2) =
|α(d1, d2)|
|β(d1, d2)|

, (20)

where here |..| is the cardinality operator, α(d1, d2) is the
set of valid pairs of initial position of two edges of lengths
d1 and d2 that involve a crossing and β(d1, d2) is simply
the set of valid pairs of initial positions of edges of lengths
d1 and d2. More formally,

β(d1, d2) = {s1, s2|s1 and s2 are valid initial positions} (21)

and

see eq. (22)

The definition of α(d1, d2) is based on an adapted ver-
sion of the formal definition of crossing in the introduc-
tion section (notice that e(u ∼ v) = s(u ∼ v) + d(u ∼ v)).
Fig. 3 shows p(cross|d1, d2) for two different number of
vertices. If β(d1, d2) = 0 then α(d1, d2) = 0 and then
p(cross|d1, d2) is undefined (notice that β(n− 1, n− 1) =
β(n−2, n−1) = β(n−1, n−2) = 0). If that happens, the
reasonable convention that p(cross|d1, d2) = 0 is adopted.
The order of edge length information is irrelevant, i.e.
p(cross|d1, d2) = p(cross|d2, d1) as Fig. 3 shows. Some
crossings are impossible a priori, i.e. p(cross|1, d2) =
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E2[C] =
1

2

∑
u1∼v1

∑
u2∼v2,{u1,v1}∩{u2,v2}=∅

p(cross|d(u1 ∼ v1), d(u2 ∼ v2)). (17)

α(d1, d2) = {s1, s2|s1 and s2 are valid initial positions and

(s1 < s2 and s2 < s1 + d1 and s1 + d1 < s2 + d2) or

(s1 > s2 and s1 < s2 + d2 and s2 + d2 < s1 + d1)}. (22)

n=4

d1

d 2

1 2 3

3
2

1 0

0

0

0

1

0

0

0

0

n=16

d1

d 2

5 10 15

15
10

5

Fig. 3: p(cross|d1, d2), the probability that two edges cross
when arranged linearly at random knowing their lengths (d1
and d2) and that they do not share vertices. Brightness is
proportional to p(cross|d1, d2) (black for p(cross|d1, d2) = 0
and white for p(cross|d1, d2) = 1). n is the number of vertices
(C > 0 needs n ≥ 4 [10]).

p(cross|n − 1, d2) = 0 and some others are unavoidable,
e.g., p(cross|n− 2, n− 2) = 1 (we are assuming n ≥ 4).

p(cross) and p(cross|d1, d2) are related through

n−1∑
d1=1

n−1∑
d2=1

p(cross|d1, d2)p(d1, d2) = p(cross), (24)

where p(d1, d2) is the probability that a random linear
arrangement of four different vertices, i.e. u1,v1,u2 and
v2, produces |π(u1)−π(v1)| = d1 and |π(u2)−π(v2)| = d2.

Results. – The relative number of crossings is defined
as C̄true = Ctrue/Cmax and thus Ex[C̄] = Ex[C]/Cmax.
Table 1 shows that E2[...] makes better predictions about
the (absolute or relative) number of crossings than E0[...]
for the real syntactic dependency trees in Fig. 1. C̄true and
Ex[C̄] allow for a fairer comparison of the real number of
crossings and its predictions as they measure crossings in
units of the potential number of crossings. We wish to
investigate if Ex[C̄] might shed light on the small number
of crossings of real sentences abstracting away from the
details of a concrete language, in the spirit of a long tra-
dition of research on crossing dependencies [20, 21]. Our
language neutral perspective is not based on the analysis
of real syntactic dependency trees but those of uniformly
random labeled trees whose vertex labels are distinctive
numbers from 1 to n that also represent the positions of
the vertices, i.e. π(v) = v. Here we aim to compare the
capacity of E0[C̄] and E2[C̄] to predict C̄true, the real
number of a crossings in uniformly random labeled trees,
when Ctrue is small (Ctrue ≤ 3) as in real sentences [4, 5].
The relative error of the prediction is defined as

∆x = Ex[C̄]− C̄true

= (Ex[C]− Ctrue)/Cmax. (25)

For every sentence of length n ≥ 4 (because C > 0 needs
it [10]), an ensemble of R = 104 uniformly random la-
beled trees with Ctrue ≤ 3 was generated (a) following the
procedure in Fig. 2 and (b) rejecting random trees yield-
ing Ctrue > 3 till the desired size R was reached. For
every relevant value of Ctrue (0 ≤ Ctrue ≤ 3), the mean
∆2 was calculated over all configurations where Cmax > 0
(Cmax = 0 is only achieved by star trees [10]). nmax = 20
was the maximum sentence length considered due to the
explosion of rejections as n increases. The space of possi-
ble trees is huge (there are nn−2 labeled trees of n vertices
[22]) and trees with Ctrue ≤ 3 have a number of crossings
that is unexpectedly low for that class of random trees (re-
call eq. (11)). These considerations notwithstanding, nmax

covers the average length of English sentences (about 17.8
words [23, pp. 37-55]), and that of other languages [12].

Fig. 4 shows the mean ∆x over ensembles of random
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Table 1: The properties and predictions of crossings for the sentences in Fig. 1. n is the number of vertices (sentence length
in words),

〈
k2
〉

is the degree 2nd moment, Cmax is the potential number of crossings, Ctrue and C̄true are, respectively, the
absolute and the relative actual number of crossings. E0[...] is the expectation of crossings ignoring edge lengths and E2[...] is
an approximation to the expectation knowing the lengths of edges. Numbers were rounded to leave two significant decimals.

Example n
〈
k2
〉

Cmax Ctrue E0[C] E2[C] C̄true E0[C̄] E2[C̄]
Fig. 1 (a) 7 3.4 9 0 3 0.57 0 0.33 0.063
Fig. 1 (b) 7 3.4 9 1 3 1.5 0.11 0.33 0.17

trees with Ctrue ≤ 3 indicating both E0[C̄] and E2[C̄]
overestimate C̄true in general. While ∆2 is small, i.e. of
the order of 5%, ∆0 converges to 1/3 as expected from the
fact that

∆0 = (Cmax/3− Ctrue)/Cmax

= 1/3− Ctrue/Cmax, (26)

which yields ∆0 ≈ 1/3 for sufficiently large n and Ctrue

small.

Discussion. – It has been shown that E2[C̄] is able
to predict the actual relative number of crossings in ran-
dom unlabeled trees. This is not very surprising: edge
length does give information on how likely edges are to
cross. What is not straightforward is that a method that
estimates crossings based exclusively on local dependency
length information (just on the length of the pair of edges
that can potentially cross) is able to make predictions with
a small relative error in trees of the size of real sentences.
Our finding has important consequences for language re-
search: it suggests that there is no need a priori for ban-
ning crossings by grammar [2] or minimizing C [8] to ex-
plain C ≈ 0 in short enough sentences. This is consistent
with the view that syntactic constraints, in general, do not
imply an internally represented grammar [21].

However, the predictive power of E2[C̄] decreases
slightly as the number of vertices increases (Fig. 4). The
reason is very simple: E2[...] departs from an estimation
of the probability that two edges cross that is based ex-
clusively on their lengths, thus discarding the length of
other edges. p(cross|d1, d2) neglects the length of n − 3
edges. As n increases, the amount of information dis-
carded increases and predictions worsen. In the tree in
Fig. 1 (c), the only pairs of edges that could cross in the
sense of p(cross|d1, d2) > 0 (i.e. if dependency lengths
of other edges were ignored) are u1 ∼ v1 and u2 ∼ v2
(recall that edges of length 1 or n − 1 cannot produce
crossings). Eq. (20) gives p(cross|d1 = d2 = 2) = 0.75
but p(C(u1 ∼ v1, u2 ∼ v2) = 1|d(u1 ∼ v1) = d(u2 ∼
v2) = 2, d(u1 ∼ v2) = 5) = 0 (d(u1 ∼ v2) = 5 can only
be achieved placing u1 and v2 at the ends of the sequence,
which turns C(u1 ∼ v1, u2 ∼ v2) = 1 impossible). For this
reason, En−1[C̄], the expected relative number of cross-
ings knowing all edge lengths in every potential crossing,
should be investigated in the future.
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