

D E V E L O P M E N T O F A C A N - F D S N I F F E R U S I N G
P Y T H O N

joaquín cortés fuentes

Master’s degree in Industrial Engineering
Electronic Engineering

Universitat Politècnica de Catalunya
Escola Tècnica Superior d’Enginyeria Industrial de Barcelona

(ETSEIB)

June 2019

Abstract

Today, the CAN-FD protocol is taking over classical CAN, as it allows a
faster transfer speed, and as technology is being developed, more and more
information is needed to be sent and processed between several devices con-
nected all together in order to perform. In this project, a CAN-FD sniffer1

software has been developed in Python language, in order to be able to
communicate through a CAN-FD network, using a CAN-FD controller and
transceiver, a SPI interface, and a FTDI-USB cable to connect this device to a
PC.

A Python library has been written in order to implement the communica-
tion of the PC and the CAN-FD. Currently, there are already libraries to do
this functionality in other languages (such as C and C++), but Python was
chosen because this language is lacking this kind of libraries that support
CAN-FD (there are CAN libraries, but very few have CAN-FD support, and
most of them have limited support), and it is being more used every day in
data analysis and machine learning tasks, so it is very important to be able
to capture all possible information about several devices in order to gather
data and perform analysis.

Finally, a GUI is implemented, in order to have a basic layout for using
the library functions and perform simple tests so as to verify the library.

1 A sniffer is a device (usually a software program, but can be also a combination of software
and hardware) that is able to capture all the traffic between other devices connected to a
network with a shared media. It is usually used in network tests and analysis, but also for
malicious ends, such as personal data spying.

Contents
List of Figures iii
List of Tables iv
Listings v
Glossary vi
1 objectives 1

2 overview of concepts 2

2.1 CAN-FD . 2

2.2 SPI protocol . 5

3 description of hardware 7

3.1 MCP2157FD . 7

3.2 MPSSE . 9

4 description of the proposed software and state of the

art 11

4.1 Other libraries . 11

4.1.1 python-can . 11

4.1.2 Microchip API . 12

4.2 Minimal functionalities . 13

5 development of the library 14

5.1 Initial configurations . 14

5.2 MPSSE . 14

5.3 Adafruit library . 15

5.4 Microchip API . 18

5.4.1 Constants . 18

5.4.2 Registers . 18

5.4.3 CAN-FD functions . 19

5.4.4 Main . 20

5.5 Python library: canfdlib . 22

5.5.1 canfdlib: Registers . 22

5.5.2 canfdlib: CAN-FD functions 24

5.5.3 canfdlib: Main tasks . 26

5.5.4 GUI . 28

6 tests 33

6.1 SPI read . 33

6.2 SPI write . 33

6.3 canfdlib read . 35

6.4 canfdlib write . 36

6.5 RAM test . 37

6.6 Register test . 37

6.7 Operation mode test . 38

6.8 Tx-Rx tests . 39

6.8.1 Test 1: Tx . 39

6.8.2 Test 2: Tx with different DLC 40

6.8.3 Test 3: Rx . 41

i

6.8.4 Test 4: Rx with different DLC and ID 43

6.8.5 Test 5: Rx with random data 44

6.9 GUI test . 45

7 future work 47

8 temporal schedule 48

9 budget and costs 49

10 environmental impact 50

11 conclusions 51

12 bibliography 52

ii

List of Figures

Figure 1 CAN data frame. Source: [1]. 2

Figure 2 Extended CAN data frame. Source: [2] 3

Figure 3 CAN vs CAN-FD. Source: [3]. 4

Figure 4 SPI interface with a master device and three slaves.
Source: [4]. 5

Figure 5 The four different configurations of the SPI. Source: [5]. 6

Figure 6 Memory map of the MCP2517FD. Source: [6]. 8

Figure 7 MCP2517FD Click. Source: own. 9

Figure 8 MPSSE signals and terminations. Source: [7]. 10

Figure 9 USB Vendor ID and Product ID values from the man-
ual. Source: [7]. 15

Figure 10 USB Vendor ID and Product ID values read from soft-
ware (among others). Source: own. 15

Figure 11 Instruction Cycle for the MCP2517FD. Source: [6]. . . . 16

Figure 12 OSC register values after reset from the manual. Source:
[6]. 17

Figure 13 State machine of the main function in the API. Source:
own. 20

Figure 14 State machine of the main function in the canfdlib li-
brary. Source: own. 28

Figure 15 Template of the GUI. Source: own. 29

Figure 16 GUI. Source: own. 32

Figure 17 Devices used in testing. Source: own. 39

Figure 18 Oscilloscope signal for test 1. Source: own. 40

Figure 19 Data received for test 1. Source: own. 40

Figure 20 Oscilloscope signal for test 2. Source: own. 41

Figure 21 Data received for test 2. Source: own. 41

Figure 22 Data sent for test 3. Source: own. 42

Figure 23 Oscilloscope signal for test 3. Source: own. 42

Figure 24 Data sent for test 4. Source: own. 43

Figure 25 Oscilloscope signal for test 4. Source: own. 43

Figure 26 Part of the data sent for test 5. Source: own. 44

Figure 27 The device is manually connected. Source: own. 46

Figure 28 DLC is set to a different value. Source: own. 46

Figure 29 Mode is set to External Loopback. Source: own. 46

Figure 30 Message is transmitted and received After reset, no
message is received. Source: own. 46

Figure 31 Gantt diagram. Source: own. 48

Figure 32 Frame duration of CAN and some configurations of
CAN-FD. Source: [8] . 50

iii

List of Tables

Table 1 CAN data frame fields. Source: [1]. 3

Table 2 Corresponce of DLC bits between CAN and CAN-FD
protocols. Source: [3]. 4

Table 3 MPSSE connections. Source: own. 10

Table 4 Mode values. Source: [6] 38

Table 5 Costs. Source: own. 49

iv

Listings

Listing 1 SPI Python example. 15

Listing 2 SPI Python example with modified ft library. 16

Listing 3 Register definition. 18

Listing 4 Tx object (representation of the frame) initialization. . . 22

Listing 5 Time test performed. Result is in seconds. 23

Listing 6 init method of canfdlib 25

Listing 7 init method of the GUI 29

Listing 8 SPI write test . 33

Listing 9 canfdlib read test. 35

Listing 10 canfdlib write test. 36

Listing 11 RAM test . 37

Listing 12 Register test . 37

Listing 13 Operation mode test . 38

Listing 14 Test 1 . 40

Listing 15 Test 2 . 41

Listing 16 Test 3 . 42

Listing 17 Test 4. 43

Listing 18 Test 5. 44

v

Glossary

.c, .h C file extensions.

.py Python file extension.

API Application Programming Interface.

bin Binary.

CAN Controller Area Network.
CAN-FD CAN with Flexible Data-Rate.
CLK Clock signal.
CS, nCS Chip Select signal.

FIFO First In First Out stack.

GND Ground.
GPIO General Purpose Input-Output.
GUI Graphical User Interface.

hex Hexadecimal.

I2C Inter-Integrated Circuit.

JTAG Joint Test Action Group.

LSB Least Significant Bit.

MB MegaByte.
MB MegaBit.
MISO, SDI Master Input Slave Output.
MOSI, SDO Master Output Slave Input.
MPSEE Multi-Protocol Synchronous Serial Engine.
MSB Most Significant Bit.

OS Operating System.

R/W Read/Write.
RAM Random Access Memory.
Rx Reception.

SPI Serial Peripheral Interface.

Tx Transmission.

VCC Input voltage.

vi

1 Objectives

This Project was proposed by the Department of Electronic Engineering in
order to develop the required software for the MCP2157FD CAN-FD receiver
and transmitter to work in a PC with Windows, using the Python program-
ming language. This language has been chosen as, for today, no public li-
brary available for Python was found to control this device (and there are
very few libraries to work with a CAN-FD frame). The increasing use of
Python, particularly in fields such as Data Analysis and Machine Learning,
makes the necessity of being capable of gathering data from many sources,
with can be working with different communication protocols, and as the
CAN-FD protocol is also increasing in the industry (specially in the automo-
tive sector), this kind of library is also needed in order to make possible the
data collection and work with it in later analysis in the easier way possible.

In this project, a base library software will be developed, so it can be
implemented in later applications. Also, a GUI interface application will be
developed in order to test the base library and to have a basic graphical
software that is capable of transmitting and reading messages from a CAN-
FD device. External libraries will be used, as well as the necessary drivers
and hardware to connect the MCP2157FD to a USB port. The objectives are,
in this case:

• Develop a Python library to make possible the communication of the
PC with the MCP2157FD device, using SPI protocol.

• Extend this library to be capable of reading and writing data to the
device.

• Develop this software using as few external libraries as possible, so it
can be more portable.

• Develop a Graphical User Interface (GUI) to test the library and to
have a basic application for reading and writing messages in a CAN-
FD frame.

1

2 Overview of concepts

In this chapter, some general concepts present in the project will be ex-
plained in order to understand the following chapters and the development
of the software. Knowledge in digital electronics and programming is re-
quired to understand the explained concepts.

2.1 CAN-FD

CAN-FD protocol is a communication protocol conceived in 2012 by Bosch
in order to have a superior version of the CAN protocol, able to transmit as
much as eight times faster, as described in [9]. Before discussing the details
of the CAN-FD protocol and its improvements, the CAN protocol should be
explained before.

The CAN protocol is a communication protocol designed in the mid-80s
and widely used in the industry since the 90s, particularly in the automotive
sector. It allows to communicate several processing units (microcontrollers,
sensors and actuators) without the need of a host computer, as described
in [10]. The main characteristic of this protocol is how the data is transmit-
ted across devices, with data packets (frames) containing information of the
message (such as identication, length of message, etc.) and the actual data to
be transmitted, between 0 and 8 bytes. It has a maximum speed of 1 Mb/s.
Figure 1 details how a data frame is constructed. Here, the fields of the stan-
dard base format of the frame can be seen, and in Table 1, the detail of each
one is described.

Figure 1: CAN data frame. Source: [1].

The most important fields are the identifier (which identifies the priority of
the message) and the data field (which contains the actual data being trans-
mitted). All the other fields perform auxiliary functions in order to properly
transmit the message.

In addition to this standard frame, there is also the extended frame, which
allows to have a 29-bit identifier, as well as two reserved bits. This extended
fields are shown in Figure 2.

2

2.1 can-fd 3

Field name Length (bits) Purpose

Start-of-frame 1 Denotes the start of frame transmission

Identifier 11 A (unique) identifier which also represents the message priority

Remote transmission request (RTR) 1 0 for data frames and 1 for remote request frames

Identifier extension bit (IDE) 1 0 for base frame format with 11-bit identifiers

Reserved bit (r0) 1 Reserved bit. Must be 0, but accepted as either 0 or 1.

Data length code (DLC) 4 Number of bytes of data (0–8 bytes)

Data field 0-64 Reserved bit. Data to be transmitted (length in bytes dictated by DLC field)

CRC 15 Cyclic redundancy check. Used to detect errors in the data transmission

CRC delimiter 1 Must be 1

ACK slot 1 . Transmitter sends 1 and any receiver can assert a 0

ACK delimiter 1 . Must be 1

End-of-frame 7 Must be 1

Table 1: CAN data frame fields. Source: [1].

Figure 2: Extended CAN data frame. Source: [2]

As it can be seen, it has a 11-bit base identifier, followed by the SDR (Sub-
stitute remote request) bit, which must be always 1, the IDE bit, an extended
identifier (of 18 bits), the RTR field, and an extra reserved bit. The main ad-
vantaged of this extended frame is being able to have a larger identifier, as
well as having more reserved bits for future updates or additional features.

The ISO 11898 specification [10] has all of the details in architecture of the
network, as well as electrical specifications, and will not be discussed here.

The main disadvantage of the CAN protocol is the maximum size of the
the packets (8 bytes), as well as the speed of transmissions (1 Mb/s). The
CAN-FD protocol does not have these limitations, as it allow speeds as high
as 5 Mb/s and data messages of 64 bytes, as described in [11]. As it is an
updated version of the CAN protocol, it inherits many of its characteristics,
and the modifications needed to change a CAN network to a CAN-FD one
are minimal. In Figure 3, the CAN-FD data frame is shown in comparison
to the standard (non-extended) CAN frame.

2.1 can-fd 4

Figure 3: CAN vs CAN-FD. Source: [3].

The main differences between the protocols are:

• The following fields are added to the data frame:

– RRS (Remote Request Substitution): The CAN-FD does not allow
for remote frames, and the bit is substituted with this one.

– FDF (FD Format): Denotes that the frame is of CAN-FD type. In
standard CAN, this bit is always 0, whereas in CAN-FD, is 1.

– res: reserved bit. It has the same function as the CAN r0.

– BRS (Bit Rate Switch): Indicates if the transmission speed is set
at the arbitration rate (of maximum 1 Mb/s) if set to 0, or if the
transfer speed is higher (up to 10 Mb/s) if set to 1.

– ESI (Error Status Indicator): Indicates that there is a failure in the
system if set to 1.

– STC (Stuff Bit Content): It consists of three bit in Gray code and a
parity bit. It helps to improve the reliability of the communication.

• The DLC field has the same 4 bits as in the CAN frame, but also allows
to use up to 64 bytes, having consistency with the standard CAN frame
up to 8 bytes. The Table 2 shows how both protocols use the DLC field
consistently.

• The CRC field is expanded from 15 bits to 17 bits (if the data transmit-
ted is between 0 and 16 bytes), or to 21 bits (if the number of data bytes
is higher).

DLC (bin) 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

DLC (dec) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Classic CAN 0 1 2 3 4 5 6 7 8 8 8 8 8 8 8 8

CAN FD 0 1 2 3 4 5 6 7 8 12 16 20 24 32 48 64

Table 2: Corresponce of DLC bits between CAN and CAN-FD protocols. Source: [3].

The CAN-FD protocol has more bits than the classic CAN, so it may seem
that it can not transfer as many frames as the standard CAN per unit of time.
This is in fact true if the speed is set to the arbitration rate and the data sent
is of the same size (maximum 8 bytes), but the CAN-FD allows for higher
transmission speed using the BRS bit, so the actual data bytes can be sent or
received in less amount of time.

2.2 spi protocol 5

Also, due to the greater length of the data bytes, as much as 8 times more
data can be transmitted in a similar amount of time.

The CAN-FD protocol is actually used in the ECU systems in electrical
vehicles and advanced driving systems [12], robotics [13], and has improved
security [14].

2.2 SPI protocol

The SPI (Serial Peripheral Interface) protocol is a synchronous serial commu-
nication interface used in short distance communication (typically between
10 and 100 meters). The interface was developed by Motorola in the 80s
and is widely used in today industry. One of its main characteristics is the
master-slave architecture, where the master device reads data from the slaves
and writes to them. It allows full-duplex communication2. It has a four-wire
serial bus with the following signals:

• SCLK (Serial Clock, also called SCK): it synchronizes the transmission
of data between the devices. This makes the interface a synchronous
one.

• MOSI (Master Output Slave Input, also called SDO): it is the data out-
put of the master device.

• MISO (Master Input Slave Output, also called SDI): data input of the
master device.

• SS (Slave Select, also called CS): it allows the master device to select
between slave devices to communicate.

Figure 4 shows a typical bus between devices. As it can be seen, when
there is more than one slave, the master device needs additional SS channels.
Some devices allow to have daisy chain connections between devices, or
allow to multiplex the signal in time or frequency

Figure 4: SPI interface with a master device and three slaves. Source: [4].

2 Full-duplex communication is the capacity to transmit data while simultaneously reading
from the same device.

2.2 spi protocol 6

The SPI has four different modes, each one being a combination on the dif-
ferent values of the CPOL and CPHA, which determine the polarity of the
clock and the timing of the data bits relative to the clock pulses. This con-
figurations allow more flexibility between devices communicating. Figure 5

showcases the different configurations.

Figure 5: The four different configurations of the SPI. Source: [5].

The main advantages of the SPI protocol are the arbitrary size of messages
and simple hardware interfacing. In the other hand, it only supports one
master device (although certain hardware implementations may allow to
have more than one master) and there is no defined protocol to check errors.

3 Description of Hardware

In this section, the hardware used in the project will be discussed. Details of
each device and its technical implementations will not be discussed in the
project, only its main aspects and characteristics.

3.1 MCP2157FD

The MCP2157FD chip is a CAN FD controller, designed by Microchip, with
a SPI interface. It allows for communication with both CAN and CAN-FD
networks. Its main characteristics are:

• Conforms to ISO11898-1:2015.

• Supports both CAN 2.0 and CAN FD.

• Arbitration Bit Rate up to 1 Mb/s.

• Data Bit Rate up to 8 Mb/s3.

• Up to 20 MHz SPI Clock Speed.

• VDD: 2.7 V-5.5 V.

• 2 kB RAM.

• Three interrupt pins.

• Up to 40 MHz internal clock.

• 20 MHz of SPI clock.

• Supports SPI modes 0 and 1.

• GPIO pins.

• 31 FIFOs for transmit and receiving of messages.

In Figure 6, the memory map of the controller is seen. A more detailed
view of the memory map and the internal registers functions can be seen in
[6].

3 Theoretical. In practice, it goes up to ≈ 5.5 Mb/s

7

3.1 mcp2157fd 8

Figure 6: Memory map of the MCP2517FD. Source: [6].

In this project, the MCP2517FD CLICK device is used, which combines
this controller chip with a ATA6563 high speed CAN transceiver (also from
Microchip) and a standard DB9 pin male connector. This device needs both
5 V supply and 3.3 V. The MPSSE cable can supply 3.3 V, and an extra USB
cable is used to power the 5 V needed (with no data transmission, only as
power supply).

The ATA6563 is a CAN transceiver that interfaces between a CAN con-
troller and the physical CAN bus. It allows for 5 Mb/s speed. It is integrated
in the MCP2517FD CLICK device, and together with the MCP2517FD, it al-
lows for transmittion and reception of messages from a physical CAN net-
work, using the DB9 connector.

In Figure 7 the device is shown. The two main chips are seen, along with
the DB9 connector and pin connections to the MCP2517FD

3.2 mpsse 9

Figure 7: MCP2517FD Click. Source: own.

3.2 MPSSE

The MPSEE (Multi-Protocol Synchronous Serial Engine) cable, developed
by FTDI, allows for communication between a USB port and several com-
munication interfaces, such as SPI, JTAG and I2C. It contains the FT232H
chip, which handles all the USB communications and protocols, allowing
to connect devices with several synchronous communication protocols to a
computer or any other device with USB ports. The cable has at one end ten
wires to be interfaced to a male header in the device of interest.

The main features of the cables are the following:

• USB protocol handled on the chip.

• USB powered.

• Data speed up to 30 Mb/s.

• 1 kB receive and transmit buffers.

In this project, the cable is used to interface the CAN-FD controller with a
PC, using SPI communication. Figure 8 shows the cables on the device and
how they relate to the signals on the device.

3.2 mpsse 10

Figure 8: MPSSE signals and terminations. Source: [7].

Table 3 shows the description of the signals used in the SPI interface, and
the relation between the device signals and the connections between the
MCP2517FD pins. The MPSSE cable acts as the Master device in the SPI
interface, and the MCP2517FD as the Slave.

Color Pin Number Name MCP2517FD pin MCP2517FD name Description

Red 1 VCC +3.3V 7 Power supply output to target

Black 10 GND 8 GND Device ground

Orange 2 SK 4 SCK Serial Clock

Yellow 3 DO 6 MOSI Serial Data Output (for Master device)

Green 4 DI 5 MISO Serial Data Input (for Master device)

Brown 5 CS 3 CS Serial Chip Select

Table 3: MPSSE connections. Source: own.

The MPSSE cable incorporates the FT232H chip, which allows for USB-SPI
connnection.

4 Description of the proposed
software and state of the art

4.1 Other libraries

Before explaining the proposed software developed in this project, the state
of the art in CAN-FD libraries will be discussed. As the CAN-FD technology
is relatively new (as 2019, it has been around 7 years), there is not a large
number of available libraries. There is a popular Python library for CAN
communication frame, the python-can library [15], which is easily available
in Python environments with its pip package-management system . It has
support for different device interfaces, and its main functionalities will be
discussed in this section.

There is also an API to use with the controller proposed in this project,
but it uses a library developed by Microchip written in C, and it is designed
to be used with a Teensy 3.2 board4. This library will be also discussed, and
it will be the starting point for developing the library for this project, as it
incorporates the basic functions for using the controller.

4.1.1 python-can

This library allows to establish communication between a CAN controller
and any kind of device capable of running Python. It has the architecture
to allow for communication in a CAN frame, and has support for several
devices and interfaces. In order to do this, it does an abstraction task in
the operations performed in the CAN communication so it can read and
transmit messages and all the necessary data in a CAN network.

This library has several available interfaces for different hardware devices,
but only some of them support CAN-FD frames, which are the following:

• SocketCAN: This package is designed for implementation of CAN
communication between devices in a Linux environment and imple-
ments the CAN device drivers as network interfaces.

• Kvaser’s CANLIB: This interface allows for communication with a de-
vice of the Kvaser family.

• NEOVI Interface: This part of the library allows to communicate a de-
vice of the Intrepid Control Systems family.

• Vector: This part of the package allows for communication with devices
of the Vector family.

4 The Teensy board is a embedded system for fast development that incorporates a 32-bit ARM
Cortex processor.

11

4.1 other libraries 12

As it can be seen, none of the available interfaces of this library have sup-
port for the device used in this project (the Microchip MCP2517FD) in a
Windows OS. Additional interfaces can be added via plugins, but the pro-
cess is complex and documentation of the process has not been found for a
Windows machine and this specific device. Moreover, this project uses an in-
termediate device to communicate the CAN-FD controller and the USB port
of the computer via SPI communication, and this library does not allow this
kind of interface directly, and to do so, modifications of the library should
be made, which is out of the scope of this project.

4.1.2 Microchip API

This API is developed to use the MCP2517FD device with the Teensy board.
It has all the necessary packages to use the functionalities of the controller,
as well as SPI communication and all the needed configurations, and a main
function for demonstration purposes, which has the needed configurations
for initializing the device, configuring the transmit and receiving FIFOs,
transmittion and reception of messages with the FIFO and the interrupt pin
(R/W of individual bytes, 32-bit words, byte arrays and word arrays, using
CRC or not), and testing the RAM and registers read and write capabilities.

This library has all the needed capabilities for this project for using the
controller. However, it has two main drawbacks:

• It is developed to be used with a Teensy board, which uses an specific
processor, with its own instructions and interfaces.

• It is written in C.

Despite of this, this library will be used as a starting point for this project,
as it has the necessary functions for communicating with the Microchip spe-
cific device (as it is developed by the same company). The CAN-FD functions
will be translated from the C files to Python in order to be able to perform
this functions in Python language.

As it can be seen, the available libraries have some mayor drawbacks: they
do not support directly the device used in this project in a Windows OS
and using Python, and modifications to do so are out of scope. Communica-
tion between this device and a PC may be easier in a Linux environment or
substituting the PC with a embedded device (like the Teensy board), but the
main objective of this project is to be able to communicate this specific device
with a PC in a Windows environment using Python, an as it has been seen,
there are no available solutions for this specific problem (at least in public
domains). The official library by Microchip is a good starting point, as it
incorporates the necessary functions to communicate with the MCP2517FD
controller via SPI interface. The SPI protocol interface is not going to be de-
veloped, and instead, an already available Python library will be used, which
will be discussed in the next chapter. This library allows for communication
with a USB port using SPI and the MPSEE cable.

In the following section, the minimal specifications of the proposed library
will be discussed, as well as the desired behaviour of its function.

4.2 minimal functionalities 13

4.2 Minimal functionalities

The proposed software needs to be able to do the following functions in
order to perform communication in a CAN-FD network:

• SPI R/W: The library needs to be able to read and write bytes via SPI
protocol between the PC and the device.

• R/W messages: Bytes, 32-bit words, byte arrays and word arrays must
be able to be read and written.

• R/W CAN-FD messages: Full CAN-FD frames must be recognized and
treated correctly, giving the resulting data in them.

• Configuration: FIFOs, channels, and internal configurations should be
correctly set.

• Checking FIFO status: the software must be able to check the status of
the FIFOs in order to know if messages can be read or written.

• Tests: several tests should be available so as to know if the device is
performing correctly.

• GUI: a basic GUI should be also be developed, in order to make more
accessible all of the functions of the library and to demonstrate the
capabilities of the library.

The CAN-FD controller can work with an interruption system or with a
polling one. This latter one will be the one used in this project, as the MPSEE
cable used does not support interruptions. Also, half-duplex communication
will be used for the same reasons, even in the controller supports full-duplex.

There are more options and functions available in the device, such as
masks and filters, but they are not going to be discussed in this project.

5 Development of the library

After checking the minimal functionalities that the proposed library should
have, it seems that translating the C code from the API is the best option.
However, before doing that, the following tasks need to be done in order to
properly set the device working:

• The MPSSE cable must be correctly installed and configured so as to
be used in a Windows OS with Python.

• The SPI functions must be ported.

• The C library must be correctly understood in order to port it to
Python.

5.1 Initial configurations

The correct drivers for the MPSEE cable must be installed in the computer in
order to put the cable to work, as well as the necessary libraries to connect to
the device. The Adafruit GPIO FT232H library has all the needed functions
to easily connect any device to a computer via USB ports, using SPI protocol5.
The next steps need to be done so as to install correctly the device and its
associated libraries:

1. Install the drivers distributed by FTDI located at [16] so as the MPSEE
cable appears as a COM port.

2. Substitute the VCP drivers installed by the libusB using the Zadig soft-
ware located at [17].

3. Install the Python libftdi library, and the Adafruit library, both located
at [18].

All this process is done accordingly to the instructions seen in [18]. After
this process, the SPI communication can be now be controlled in Python.

5.2 MPSSE

In order to test the correct installation, FTDI distributes a software to check
the devices in the COM ports, and in the case of the MPSEE cable, see its
internal values, like the serial number. Checking these values and comparing
it to the ones in the manual [7], it can be seen that the device is correctly
installed. In Figures 9 and 10 this values can be seen.

5 This library also supports other communication protocols, like I2C, serial UART and JTAG,
but as they are not needed in this project, they will not be discussed.

14

5.3 adafruit library 15

Figure 9: USB Vendor ID and Product ID values from the manual. Source: [7].

Figure 10: USB Vendor ID and Product ID values read from software (among oth-
ers). Source: own.

5.3 Adafruit library

In order to test the SPI communication, the MPSEE cable is connected to
the MCP2517FD in the configuration seen in Table 3. The Adafruit library is
then used to communicate the controller with the Python environment. To
do so, Code 1 is used. Here, the register OSC, located at address 0xE00, is
read using the functions from the library. Comparing the values with the
reset values referenced in the manual [6], the correct communication can be
tested. The read process consists of writing the read instruction, followed by
the address. Then, the data can be read at the MISO channel. The data must
be a Python array consisting of 8-bit integers, and the returned data is a
bytearray object. As the address has a length of 12 bits, it must be divided in
two chunks.

Test 1 . SPI read
import Adafruit_GPIO . FT232H as f t

Temporarily d i s a b l e FTDI s e r i a l d r i v e r s .
f t . use_FT232H ()
I n i t i a l i z e a FT232H o b j e c t
f t232h = f t . FT232H ()
Create a SPI o b j e c t
sp i = f t . SPI (f t232h , cs =3 , max_speed_hz =20000000 , mode=0 , b i t o r d e r =

f t . MSBFIRST)

I n s t r u c t i o n s to read and write
cINSTRUCTION_READ = 0x03

cINSTRUCTION_WRITE = 0x02

5.3 adafruit library 16

Prepare data to wri te
spiTransmitBuf fer = []
address = 0xE00

spiTransmitBuf fer . append ((cINSTRUCTION_READ << 4) + ((address >> 8)
& 0xF))

spiTransmitBuf fer . append (address & 0xFF)
spi . wri te (spiTransmitBuf fer)
Read data (4 bytes)
response = spi . read (4)

p r i n t (’ Reading OSC r e g i s t e r with SPI . Resul t : ’)
p r i n t ("32− b i t word : { } " . format (b i n a s c i i . h e x l i f y (response)))
p r i n t (" Bytes : { } " . format (l i s t (response)))

Listing 1: SPI Python example.

However, these instructions do not perform as required. This is because
the library has a different instruction cycle that the needed in the controller.
The library puts the CS signal at a high level before writing or reading, and
then lowers it .In Figure 11 the controller instruction cycle is shown, and it
is seen that it needs the CS signal to go to low level before writing the read
instruction, and go high after reading.

Figure 11: Instruction Cycle for the MCP2517FD. Source: [6].

After inspecting the Adafruit library, the problem is solved by comment-
ing the assert/deassert commands in the R/W functions and doing them
manually according to the instruction cycle. This modified library (without
changing CS signal in R/W functions) is saved as ft.py an used for the rest
of the project. In Code 2 the modified test is seen, and the printed results are
now correct.
Test 2 . SPI read with modified f t l i b
import f t

Temporarily d i s a b l e FTDI s e r i a l d r i v e r s .
f t . use_FT232H ()
I n i t i a l i z e a FT232H o b j e c t
f t232h = f t . FT232H ()
Create a SPI o b j e c t
sp i = f t . SPI (f t232h , cs =3 , max_speed_hz =20000000 , mode=0 , b i t o r d e r =

f t . MSBFIRST)

I n s t r u c t i o n s to read and write
cINSTRUCTION_READ = 0x03

cINSTRUCTION_WRITE = 0x02

Prepare data to wri te
spiTransmitBuf fer = []

5.3 adafruit library 17

address = 0xE00

spiTransmitBuf fer . append ((cINSTRUCTION_READ << 4) + ((address >> 8)
& 0xF))

spiTransmitBuf fer . append (address & 0xFF)
spi . _ a s s e r t _ c s ()
sp i . wri te (spiTransmitBuf fer)
response_0 = spi . read (4)
sp i . _ d e a s s e r t _ c s ()

p r i n t (’ Reading OSC r e g i s t e r with SPI . Resul t : ’)
p r i n t ("32− b i t word : 0x { } " . format (b i n a s c i i . h e x l i f y (response)))
p r i n t (" Bytes : { } " . format (l i s t (response)))

>> Reading OSC r e g i s t e r with SPI . Resul t :
>> 32− b i t word : 0 x60040000

>> Bytes : [9 6 , 4 , 0 , 0]

Listing 2: SPI Python example with modified ft library.

The binascii library is used to visualize better the results in a human-
readable way. The result is printed in 32-bit word format (in hex) and as
a byte array. As it can be seen, the results are the same as stated in the man-
ual, but care must be taken in the bit and byte order: the first byte in the
array corresponds to the leftmost byte in the word, and to the first byte in
the word (bits 0 to 7). The LSB of the read word corresponds to the MSB of
the value in memory (bits 24 to 31). In Figure 12, the values of the register
are seen, as well as the location of its bits.

Figure 12: OSC register values after reset from the manual. Source: [6].

This bit and byte order is used for all the values read and written in the
device.

5.4 microchip api 18

5.4 Microchip API

The C API developed by Microchip is very complete, as it has all the neces-
sary functions to read and write messages in a CAN-FD frame, as well as
subfunctions needed to do this. It has also more functions to operate the de-
vice in more advanced ways, such as using filters, masks, remote modes, and
many more. Only the necessary functions of this library will be translated.
The API is structured in the following way:

• System configuration: Clock and ports configurations are made. This
part will be omitted as it does not apply to this project.

• SPI functions: The SPI protocol is configured and function to read and
write are defined. This part will be also be omitted, as in this project,
the SPI communication is made using the Adafruit library.

• CAN-FD functions: All functions needed to establish communication
with the controller, including reading and writing of messages in RAM
memory, use FIFOs for transmission and reception, interpreting the
CAN-FD frames, configure all possible registers (at bit, byte or word
level), resetting the device, etc.

• Main: A main loop with the logic of the program, showing the initial-
ization and the different states of the API and which functions are
executed in each one.

• Registers definition: The registers of the controller are defined in soft-
ware, with its individual bits defined.

• Constants: Constants definition, such as reset values and several ad-
dresses are defined.

In the following sections, these files and its functions will be discussed,
but without going into detail. These files can be seen at [19].

5.4.1 Constants

Constant values, such as memory addresses of certain registers, reset values,
baudrate, clock settings, etc, are in this file.

5.4.2 Registers

Each register is defined in this file using the struct and union data types. In
Code 3 the OSC register definition is seen. The other registers follow the
same structure.

typedef union _REG_OSC {
// B i t s in r e g i s t e r
s t r u c t {

u i n t 3 2 _ t P l lEnable : 1 ;
u i n t 3 2 _ t unimplemented1 : 1 ;
u i n t 3 2 _ t OscDisable : 1 ;
u i n t 3 2 _ t unimplemented2 : 1 ;
u i n t 3 2 _ t SCLKDIV : 1 ;

5.4 microchip api 19

u i n t 3 2 _ t CLKODIV : 2 ;
u i n t 3 2 _ t unimplemented3 : 1 ;
u i n t 3 2 _ t PllReady : 1 ;
u i n t 3 2 _ t unimplemented4 : 1 ;
u i n t 3 2 _ t OscReady : 1 ;
u i n t 3 2 _ t unimplemented5 : 1 ;
u i n t 3 2 _ t SclkReady : 1 ;
u i n t 3 2 _ t unimplemented6 : 1 9 ;

} bF ;
// 32− b i t word
u i n t 3 2 _ t word ;
// Array of 4 bytes
u i n t 8 _ t byte [4] ;

} REG_OSC ;

Listing 3: Register definition.

5.4.3 CAN-FD functions

These functions define the CAN-FD communication. The functions of inter-
est are the following:

• Reset: Writes the reset command.

• ReadByte: Reads one byte from the memory address indicated.

• ReadWord: Reads a word from the memory address indicated.

• ReadByteArray: Reads an array of bytes, starting from the memory ad-
dress indicated.

• ReadWordArray: Reads an array of words, starting from the memory
address indicated.

• Write functions: Analogous to the read functions but adding an extra
parameter with the data to write.

• Configure: Configures the CiCON (CAN Control Register) register.

• OperationModeSelect: Selects the operation mode of the controller.

• OperationModeGet: Gets the current operation mode of the controler.

• TransmitChannelConfigure: Configures the transmit FIFO CiFIFOCON
register in the corresponding channel used for transmittion.

• TransmitChannelLoad: Checks that the message to transmit is put on
a transmit buffer, is of correct length, updates status in the transmit
FIFO CiFIFOSTA, gets RAM address to write message in from the
CiFIFOUA register, and constructs the CAN-FD frame with the cor-
responding headers and fields.

• TransmitChannelStatusGet: Checks the transmit FIFO status.

• ReceiveChannelConfigure: Configures the receive FIFO CiFIFOCON reg-
ister in the corresponding channel used for reception.

5.4 microchip api 20

• ReceiveChannelStatusGet: Checks the receive FIFO status.

• ReceiveMessageGet: Checks that the FIFO selected is a receive buffer, is
of correct length, updates status in the receive FIFO CiFIFOSTA, gets
RAM address to read message from the CiFIFOUA register, and ex-
tracts data from the CAN-FD frame received.

• EccEnable/Disable: Enables/Disables the ECC (Error Correction Code)
function of the RAM memory.

• BitTimeConfigureNominalXXHz: Configures the CiNBTCFG register ac-
cording to the desired bit time XX. (clock speed, in MHz).

This functions allow to communicate in a CAN-FD network.

5.4.4 Main

In the main file, the logic of the system is defined. There are two demos in
the API: one is used to transmit a image file and receive messages using
LEDs as indicators and buttons as command controls; the other is a simpler
function, passing sequentially through the states, including tests, configura-
tion, reception and transmittion. More functions are used in both demos of
the API (like the use of TEF6 and interrupt pins), but only the main ones
(the necessary functions needed to establish communication in a CAN-FD
network and configuring the device) are considered here. The basic state
logic of this last demo is seen in Figure 13.

Figure 13: State machine of the main function in the API. Source: own.

6 The Transmit Event FIFO (TEF) stores the messages IDs of the transmitted messages.

5.4 microchip api 21

The states are sequential, but a loop can be easily be implemented in order
to check the state periodically and executing the functions needed. Also,
there is no input in the simple demo: the message to transmit is hard-coded,
and consists of 64 random bytes.
In each state, a series of functions are executed to perform the task. These
are the following:

• Init: Initial state, variables are initialized.

• Reset: The device is reset.

• Configs: The controller is configured. This includes the CAN Control
Register, Tx and Rx FIFOs, RAM, and Normal Mode is selected so the
device can start operating. It should be noted that at least one filter
object should be configured and linked to the Rx FIFO for the device
to work.

• RAM test: Data is written in RAM memory and then read in order to
verify it. The data consists of n random bytes, where n goes from 4 to
the maximum length of messages (64 bytes) in steps of 4

7.

• Register test: Same as the RAM test, but now data is written in registers
CiFLTOBJ.

• Tx: Transmission of message. This task consists of three subtasks:

– Config: The header of the frame is prepared, as seen in Code 4.

– Check flags: Check if the Tx buffer is not full. If not, load the
message; else, it finishes the task.

– Load: The message is put on a Tx buffer (a FIFO configured as a
transmit one). The header of the frame is set with the Control Reg-
ister (CiFIFOCON) corresponding to the Tx channel. The address
in RAM memory where to write the message is read from the
User Address Register (CiFIFOUA) and is written, and the status
is updated and can be read from the Status Register (CiFIFOSTA).

• Rx: Reception of message. This task is also divided in separate sub-
tasks:

– Check flags: Check if the Rx buffer is not empty. If not, proceeds
to receive task; else, skips it.

– Receive: The status is read from the CiFIFOSTA register corre-
sponding to the Rx channel; the memory address where to read
the message is get from the CiFIFOUA register; the header of the
message is set to the CiFIFOCON register, and the status is up-
dated.

• Request/Wait config: Sets the operation mode of the controller to Config-
uration Mode, and waits until the operation is done. Then, it resets the
device and the routine restarts from the Init state.

7 This is because RAM can only be accessed in multiples of 4 bytes

5.5 python library : canfdlib 22

// Assemble t ransmit message : CAN FD Base frame with BRS , 64 data
bytes

CAN_TX_MSGOBJ txObj ;
u i n t 8 _ t txd [MAX_DATA_BYTES] ;

// I n i t i a l i z e ID and Control b i t s
txObj . word [0] = 0 ;
txObj . word [1] = 0 ;

txObj . bF . id . SID = txCounter ; // Standard or Base ID
txObj . bF . id . EID = 0 ;

txObj . bF . c t r l . FDF = 1 ; // CAN FD frame
txObj . bF . c t r l . BRS = 1 ; // Switch b i t r a t e
txObj . bF . c t r l . IDE = 0 ; // Standard frame
txObj . bF . c t r l . RTR = 0 ; // Not a remote frame request
txObj . bF . c t r l .DLC = CAN_DLC_64 ; // 64 data bytes
// Sequence : doesn ’ t get transmit ted , but w i l l be s tored in TEF
txObj . bF . c t r l . SEQ = 1 ;

Listing 4: Tx object (representation of the frame) initialization.

5.5 Python library: canfdlib

In order to design the Python library, the functionalities of the Microchip
library are taken and translated to Python code. Given the differences in
both languages and how they work, this is not a trivial task.

First of all, the library needs the SPI functions in order to communicate.
The best option for implementing the SPI library is creating a class, named
canfdlib, that inherits all the SPI functions in the modified Adafruit library,
and adding the functions described in Section 5.4.3. A separate file with
constant values is made, as well as another for registers definitions. The main
loop will be discussed, but it will not be implemented in the main library,
but rather in the GUI application. Finally, this methodology allows to have
several connections simultaneously, having them in seperate instances of the
class.

5.5.1 canfdlib: Registers

The registers can not be defined in the same way as in the C library, as
Python does not directly support the struct and union datatypes. At first,
the ctypes library was used, which allows to create classes with the same
behaviour as the C data types, allowing to create a variable with a fixed bit
length and that can be accessed as a 32-bit integer, a 4 byte array, or bitwise,
using the same structure as in section 5.4.2 (exactly in the same order as
written in the C library).

This solution was tested, but suffered a problem: the bit and byte order
did not correspond with the ones in the device, neither with the ones in the
C library. There are two workarounds for this problem:

• Re-arrange the bit and byte order dynamically in runtime, preserving
the same structure as in the C library.

5.5 python library : canfdlib 23

• Re-arrange the bit and byte order manually during definition.

The first solution is not suitable as it would be called each time a register
is read or written, and considering the number of operations that can be
potentially be made in a unit of time, this would add a bottleneck and slow
down the performance of the software. Giving that Python is already not as
optimized as C for working directly with memory and low-level instructions,
this solution is discarded.

The other solution, in the other hand, would not add any time constraint
in the software, as it consists only in changing the order of each bit in each
struct. However, as the registers were already defined in the initial order (the
same as in the C library), re-arranging them would be very time consuming,
and it would be confusing for other users, as the orders would not coincide
with the ones in the manual.

Finally, the solution adopted was to use the ctypes library only for a few
variables of internal use, in order to easily access the individual bits. As in
these variables the bit fields are the only ones used, its order is irrelevant,
and only the value is used. As for all other registers used, a 32-bit word is
used as a base value (that depends on the register and the function, and can
be a reset value, a defined value, or a read value), and then each necessary
bit of this integer is changed according to the context. Although it may be a
little cumbersome, this approach preserves the same bit and byte order as in
the controller, and the time needed to perform the bit masking is very low.

Nevertheless, these three approaches were tested in order to check any
significant differences in time execution. In Code 5 the time test performed
is seen, as well as its results. Each of these methods is executed 100000 times
and timed. The results show that the proposed approach is faster than the
others, even faster that instantiating the class in the correct bit order. How-
ever, the results are very similar, and repeating the test, sometimes it had
the opposite results. Nevertheless, the proposed approach is maintained as
it requires less manual work in assembling the correct word.

def reverse (n) :
array = [i n t (hex (i n t (n) >> i & 0 x f f) . r e p l a c e (’L ’ , ’ ’) , 16) f o r i
in (2 4 , 16 , 8 , 0)]

new = []
f o r byte in array :

aux = bin (byte) . r e p l a c e (’ 0b ’ , ’ ’)
while len (aux) < 8 :

aux = ’ 0 ’ + aux
new . append (i n t (aux [: : − 1] , 2))

re turn i n t (b i n a s c i i . h e x l i f y (bytearray (new)) , 16)

def s e t _ b i t (v , index , x) :
mask = 1 << index
v &= ~mask
i f x :

v |= mask
return v

def method1 () :
S t r u c t r e g i s t e r .
Reverse the b i t order in each byte of the word
reg = REG_CiCON () # r e g i s t e r i n s t a n c e
reg . IsoCrcEnable = 1 # b i t i s changed

5.5 python library : canfdlib 24

re turn reverse (reg . word) # r e s u l t to wri te

def method2 () :
Change b i t of word
word = 0

re turn s e t _ b i t (word , 5 , 1) # r e s u l t to wri te

def method3 () :
r e g i s t e r i n s t a n c e with modified b i t order
reg = REG_CiCON ()
reg . IsoCrcEnable = 1

reg . word i s r e s u l t to wri te

i f __name__ == ’ __main__ ’ :
p r i n t (t i m e i t . t i m e i t (" method1 () " , setup=" from __main__ import

method1 " , number=100000))
p r i n t (t i m e i t . t i m e i t (" method2 () " , setup=" from __main__ import

method2 " , number=100000))
p r i n t (t i m e i t . t i m e i t (" method3 () " , setup=" from __main__ import

method3 " , number=100000))

>> 1 .44910316838

>> 0 .0353271315938

>> 0 .0401096362199

Listing 5: Time test performed. Result is in seconds.

5.5.2 canfdlib: CAN-FD functions

The functions of the C library are written in the class as methods. From
these, the different tasks are encapsulated as functions as well and made
methods of the class. Most of the variables have the same role and type, but
registers have been changed and discussed in 5.5.1. Also, some values, such
as length of messages and channels are now attributes of the class and can
be modified in runtime.

In Code 6, the __ i n i t __ method of the class is shown. Here, the __ i n i t
__ method of the SPI class defined in the Adafruit library is called. After
that, some internal parameters are defined, such as states, configurable pa-
rameters and some register definitions. To initialize the canfdlib needs the
following parameters:

• ft232h: An instance of a ft232h object from the Adafruit library. This
object creates the connection with the MPSSE cable.

• cs: Chip Signal.

• max_speed_hx: Maximum SPI speed.

• mode: SPI mode.

• bitorder: Bit order (MSB or LSB).

• SPI_DEFAULT_BUFFER_LENGTH: Default length of the SPI buffer.

• SPI_MAX _BUFFER_LENGTH: Maximum length of the SPI buffer.

• SPI_BAUDRATE: Baud rate.

5.5 python library : canfdlib 25

def _ _ i n i t _ _ (s e l f , f t232h , cs , max_speed_hz , mode , b i torder ,
SPI_DEFAULT_BUFFER_LENGTH, SPI_MAX_BUFFER_LENGTH, SPI_BAUDRATE) :
Cal l _ _ i n i t _ _ from parent c l a s s
super (CANFD_SPI , s e l f) . _ _ i n i t _ _ (f t232h , cs , max_speed_hz , mode ,
b i t o r d e r)

I n t e r n a l parameters
s e l f . SPI_DEFAULT_BUFFER_LENGTH = SPI_DEFAULT_BUFFER_LENGTH
s e l f . SPI_MAX_BUFFER_LENGTH = SPI_MAX_BUFFER_LENGTH
s e l f . SPI_BAUDRATE = SPI_BAUDRATE

s e l f . c l k = CAN_SYSCLK_40M
s e l f . txFromFlash = True
s e l f . switchChanged = True
s e l f . r a m I n i t i a l i z e d = Fa lse

Config i n t e r n a l r e g i s t e r s
s e l f . can_conf ig = REG_CAN_CONFIG()

s e l f . rxF lags = CAN_RX_FIFO_NO_EVENT
s e l f . t x F l a g s = CAN_RX_FIFO_NO_EVENT
s e l f . e r r o r F l a g s = CAN_ERROR_FREE_STATE

s e l f . txConfig = CAN_TX_FIFO_CONFIG ()
s e l f . rxConfig = CAN_RX_FIFO_CONFIG ()

Message o b j e c t s
s e l f . txObj = CAN_TX_MSGOBJ()
s e l f . rxObj = CAN_RX_MSGOBJ()

s e l f . txCounter = 0

s e l f . t r a n s m i t B u f f e r = []
s e l f . r e c e i v e B u f f e r = []

Configurable parameters
s e l f . opMode = NORMAL_MODE
s e l f . se lec tedBi tT ime = CAN_500K_2M
s e l f . txchannel = CAN_FIFO_CH2

s e l f . rxchannel = CAN_FIFO_CH1

s e l f . t x d l c = CAN_DLC_64

S t a t e of the program .
s e l f . s t a t e = " i d l e " # APP_STATE_INIT

Listing 6: init method of canfdlib

The functions described in Section 5.4.3 are written in Python. Some are
practically the same, and others have been written in a more pythonic way,
(using lists comprehension for example), and others have been completely
changed, as Python does not support directly the use of pointer variables
and union data types like C. The main changes done between languages are
the following:

• SPI communication is changed completely, and to full-duplex (original)
to half-duplex.

• Returned data from SPI is transformed differently: in C, pointer vari-
ables are used to access memory directly and bitwise operations are

5.5 python library : canfdlib 26

done to store the data in a variable as an integer or array of integers;
in Python, the SPI returns a bytearray object of the length indicated.

• In Python, the returned value of the SPI is cast to an hex using the
binascii and then to a integer or list of integers.

• In the original configuration functions, all registers were defined in
software as a combination of union and struct data types, a default
value was given to its word, then it was modified at bit level, and
finally written as a 32-bit integer; in Python, the bits of interest are
changed in a variable containing the default value as an integer, and
then is written.

• In the OperationModeSelect function, in order to modify only the bits of
interest, the C library does the following operations:

d &= ~0x07 ;
d |= opMode ;

In Python, this is changed to gain clarity to the following form, which
does the same operation:

byte = (0 xF8 & byte) + mode

• switch clauses are substituted by cascades of if-elif-else statements.

• Lists comprehension are used when possible to substitute for loops.

All other functions retain the same structure, with the obvious changes in
syntax between languages (such as the declaration of variables, which in C
are declared explicitly along with its type, and in Python this is not needed).

More methods are defined in this class, which perform all the operations
needed in the tasks, and will be discussed in Section 5.5.3.

5.5.3 canfdlib: Main tasks

The tasks in the main function are practically the same as the ones discussed
in 5.4.4, but a loop will be implemented in the GUI. Each task has been
encapsulated into a single function. The tasks in the canfdlib library have the
following changes with respect to the C library:

• Init: In the C library, the oscillator frequency is divided, and some ob-
jects used, such as TEF, interruptions and GPIOs are configured. None
of these functions is used in the Python library (they could be added
but they are not used in the scope of this project).

• Reset: This task does not change.

• Configs: Only the implementation of the configure function is changed,
but the task is the same.

• RAM test: Does not change.

• Register test: Does not change.

5.5 python library : canfdlib 27

• Tx: A new method is defined that accepts one parameter (the message
to transmit, as an array of bytes) and calls the following methods:

– Config: The header of the message is configured.

– Check flags: Task does not change.

– Load: The message is written in FIFO, and the status is updated.

• Rx: A new method is also defined for Rx. It returns the received mes-
sage as an array of bytes.

– Check flags: Does not change.

– Receive: The message is read from FIFO and returned.

• Request/Wait config: Does not change.

The new state machine of the program (with the loop implemented for
later use) is shown in Figure 14. The tasks are the same as before, but the
logic of the system is changed so after each task finishes, it goes to a new
task, Change state, where the state of the system is updated. The state can be
also changed by user input, and the value of the state variable determines
which task to execute next. As the main loop is not implemented directly
in the library, but rather in the GUI application, it can be configured by the
user as desired given the task functions (it can be modified to add more
configurations, interruptions can be implemented by other means, etc).

5.5 python library : canfdlib 28

Figure 14: State machine of the main function in the canfdlib library. Source: own.

5.5.4 GUI

The GUI application is designed in order to test the library and to have a
minimum, verifiable and complete example. It is a separate entity from the
library, so it can used and modified without changing the base files.

The main loop is implemented, where the state is check periodically and
the corresponding task is executed. Several elements are needed in the GUI
so as to change the state of the program, as well as to configure some param-
eters. These elements are the following ones:

• Connect button: To establish connection with the device.

• Reset button: Button to reset the device when it is clicked.

• Stop button: Halts the program.

5.5 python library : canfdlib 29

• Tx button and input box: A message that the user wants to transmit is
written in the input box as an array of bytes.

• Rx box and button: A text box where the received message is shown,
as well as program messages and other information.

• Clear button: Button to clear the Rx text box.

• Config droplist and button: To select a operation mode of the controller
and configuring it.

• DLC droplist and button: To select the length of the messages.

• Tx and Rx channel input and button: To change the channels used for
transmition and reception.

In Figure 15, a template of the position of this elements is shown.

Figure 15: Template of the GUI. Source: own.

The mttkinter package is used, as it allows to develop graphical elements
very easily and has support for parallel executions. A class is created to
encapsulate the functionalities of the GUI. Inside this class, all its graphi-
cal elements will be attributes, and an instance of the canfdlib is made an
attribute and used for accessing its methods.

In Code 7 the __ i n i t __ method is shown. Here, all the elements are po-
sitioned according to the template. In order to do so, several frames are
defined, corresponding to the colored zones in the template. Each frame can
have its own number of rows and columns, so the distribution can be styl-
ized. For each element, positioning and size are passed. Finally, if debug was
set to Fa lse , the main loop function is attached to run after each loop of the
mttkinter root function8, and then tries to connect to the device. If not, it
writes an error message and the controller should be manually connected. If
debug was set to True, the device is not connected automatically, and no loop
is attached.

def _ _ i n i t _ _ (s e l f , inputDic t=None , debug=Fa lse) :
s e l f . inputDic t = inputDict
s e l f . debug = debug

s e l f . rxd = []
s e l f . txd = []

s e l f . window = tk . Tk ()
s e l f . window . t i t l e (window_tit le)

8 The mttkinter executes a loop so as to refresh the GUI elements.

5.5 python library : canfdlib 30

s e l f . window . geometry (window_size)

s e l f . r ight_frame = tk . Frame (s e l f . window , width =450 , he ight
=100)

s e l f . l e f t _ f r a m e = tk . Frame (s e l f . window , width =250 , he ight
=100)

s e l f . corner_frame = tk . Frame (s e l f . window , width =100 , he ight
=20)

s e l f . extra_frame = tk . Frame (s e l f . window , width =30 , he ight
=100)

s e l f . window . grid_columnconfigure (1 , weight =1)
s e l f . r ight_frame . gr id (row=0 , column=1 , s t i c k y =" nsew ")
s e l f . l e f t _ f r a m e . gr id (row=0 , column=0 , s t i c k y =" nsew ")
s e l f . corner_frame . gr id (row=1 , column=0 , s t i c k y ="sw")
s e l f . extra_frame . gr id (row=0 , column =2)

t e x t b o t f o r rx
s e l f . r x _ b o x _ s c r o l l b a r = tk . S c r o l l b a r (s e l f . l e f t _ f r a m e)
s e l f . rx_box_text = tk . Text (s e l f . l e f t_ f rame , height=

rx_textbox_height , width=rx_textbox_width)
s e l f . r x _ b o x _ s c r o l l b a r . gr id (column=1 , row=0 , s t i c k y =tk .N+tk .

S+tk .W)
s e l f . rx_box_text . gr id (column=0 , row=0)
s e l f . r x _ b o x _ s c r o l l b a r . conf ig (command= s e l f . rx_box_text . yview)
s e l f . rx_box_text . conf ig (yscrollcommand= s e l f . r x _ b o x _ s c r o l l b a r

. s e t)

rx button
s e l f . r e c e i v e _ s t a r t _ b u t t o n = tk . Button (s e l f . r ight_frame , t e x t

=" S t a r t RX" , command = s e l f . r e c e i v e)
s e l f . r e c e i v e _ s t a r t _ b u t t o n . gr id (column=0 ,row=0 , pady=5)

c l e a r rx box windows button
s e l f . c l e a r _ b u t t o n = tk . Button (s e l f . r ight_frame , t e x t =" Clear "

, command= s e l f . c l e a r)
s e l f . c l e a r _ b u t t o n . gr id (column=0 , row=1 , pady=5)

tx button
s e l f . t r a n s m i t _ s t a r t _ b u t t o n = tk . Button (s e l f . corner_frame ,

t e x t =" S t a r t TX" , command= s e l f . t ransmit)
s e l f . t r a n s m i t _ s t a r t _ b u t t o n . gr id (column=2 ,row=0)

tx message
s e l f . tx_msg = tk . Entry (s e l f . corner_frame , width=tx_msg_width

)
s e l f . tx_msg . gr id (column=1 ,row=0)

tx l a b e l
s e l f . t x l b l = tk . Label (s e l f . corner_frame , t e x t ="TX Message : ")
s e l f . t x l b l . gr id (column=0 , row=0)

rx channel button
s e l f . rx_channel_button = tk . Button (s e l f . r ight_frame , t e x t ="

Set RX channel " , command= s e l f . setRXchannel)
s e l f . rx_channel_button . gr id (column=1 , row=3 , pady=5)

rx channel
s e l f . rx_channel = tk . Entry (s e l f . r ight_frame , width =10)
s e l f . rx_channel . gr id (column=1 , row=4 , pady=5)

tx channel button

5.5 python library : canfdlib 31

s e l f . tx_channel_button = tk . Button (s e l f . r ight_frame , t e x t ="
Set TX channel " , command= s e l f . setTXchannel)

s e l f . tx_channel_button . gr id (column=0 , row=3 , pady=5)

tx channel
s e l f . tx_channel = tk . Entry (s e l f . r ight_frame , width =10)
s e l f . tx_channel . gr id (column=0 , row=4 , pady=5)

r e s e t button
s e l f . r e s e t _ b u t t o n = tk . Button (s e l f . r ight_frame , t e x t =" Reset

Device " , command= s e l f . r e s e t)
s e l f . r e s e t _ b u t t o n . gr id (column=0 ,row=2 , pady=5)

opMode d r o p l i s t and button
OPTIONS = ["NORMAL_MODE" , "SLEEP_MODE" , "

INTERNAL_LOOPBACK_MODE" , "LISTEN_ONLY_MODE" , "CONFIGURATION_MODE" ,
"EXTERNAL_LOOPBACK_MODE" , "CLASSIC_MODE" , "RESTRICTED_MODE" , "
INVALID_MODE"]

s e l f . d r o p l i s t = tk . Str ingVar (s e l f . l e f t _ f r a m e)
s e l f . d r o p l i s t . s e t (OPTIONS [0]) # d e f a u l t value

w = tk . OptionMenu (s e l f . r ight_frame , s e l f . d r o p l i s t , *OPTIONS)
w. grid (column=1 ,row=1 , padx=5)

s e l f . opmode_button = tk . Button (s e l f . r ight_frame , t e x t =" Set
conf ig mode" , command= s e l f . changemode)

s e l f . opmode_button . gr id (column=1 ,row=2 , pady=5)

stop button
s e l f . s top_button = tk . Button (s e l f . r ight_frame , t e x t ="STOP" ,

command= s e l f . stop)
s e l f . s top_button . gr id (column=1 , row=0 , pady=5)

connect button
s e l f . connect_button = tk . Button (s e l f . extra_frame , t e x t ="

CONNECT" , command= s e l f . connect)
s e l f . connect_button . gr id (column=0 , row=2 , pady=0) # enlarge
s e l f . connect_button . conf ig (height =3 , width =15)

dlc d r o p l i s t and button
OPTIONS_dlc = ["CAN_DLC_0" , "CAN_DLC_1" , "CAN_DLC_2" , "

CAN_DLC_3" , "CAN_DLC_4" , "CAN_DLC_5" , "CAN_DLC_6" , "CAN_DLC_7" , "
CAN_DLC_8" , "CAN_DLC_12" , "CAN_DLC_16" , "CAN_DLC_20" , "CAN_DLC_24" , "
CAN_DLC_32" , "CAN_DLC_48" , "CAN_DLC_64"]

s e l f . d r o p l i s t _ d l c = tk . Str ingVar (s e l f . extra_frame)
s e l f . d r o p l i s t _ d l c . s e t (OPTIONS_dlc [−1]) # d e f a u l t value

w_dlc = tk . OptionMenu (s e l f . extra_frame , s e l f . d r o p l i s t _ d l c , *
OPTIONS_dlc)

w_dlc . gr id (column=0 , row=0 , padx=5)

s e l f . dlc_button = tk . Button (s e l f . extra_frame , t e x t =" Set DLC"
, command= s e l f . changedlc)

s e l f . dlc_button . gr id (column=0 , row=1 , pady=5)

s e l f . canfd = None

i f s e l f . debug :
s e l f . window . a f t e r (1 0 0 0 , s e l f . dummy_main)

5.5 python library : canfdlib 32

pass
e l s e :

t r y :
s e l f . connect ()

except RuntimeError :
s e l f . rx_box_text . i n s e r t (tk .END, " Device not ready .

Connect manually . " + ’\n ’)
s e l f . window . a f t e r (0 , s e l f . main)

s e l f . window . mainloop ()

Listing 7: init method of the GUI

This class accepts two parameters: a input dictionary containing all the
necessary parameters needed to create an instance of the canfdlib class, and
a boolean value that puts the GUI in debug mode. In this mode, the device
does not execute the main loop, and the device must be manually initialized.
Each button has a function associated, which is a method of the class. These
functions have all a similar structure:

• If needed, a parameter is read from the input box and passed to a
canfdlib method.

• The state is changed if the function uses the device (this does not hap-
pen in the Clear method, for example). The main loop then executes the
necessary task.

• If a result is returned, this is printed in the Rx box.

The resulting GUI is shown in Figure 16.

Figure 16: GUI. Source: own.

The tests explained in Chapter 6 are also implemented in the GUI, and
can be easily accessible writing t e s t X in the Tx message input box, where X
is the number of the test (as there are several tests integrated).

6 Tests

In order to check the correct behaviour of the library and the GUI, several
tests are defined. Several tests are done to check other functions, and will
be discussed in this chapter. The tests are first written in a plan script, and
when they successfully completed, they are encapsulated in a function and
then grouped in a dictionary of functions so they can be easily accessible
from external files. Also, this facilitates the task of implementing the tests in
the GUI. In this Section, the shown tests are plain scripts, and in the Annex,
the encapsulated version is present.

All numbers have a fixed width of 8 or 32 bits, so to compare them to
other references (such as the values in manual), extra 0s should be added
when necessary so as to have the correct bit length.

6.1 SPI read

This test has already been shown in Code 2. It uses the Adafruit library to
read a register in the device. Comparing the values with the reset values of
the manual, it is seen that the SPI reading operation works well.

6.2 SPI write

This test is shown in Code 8. The register CiCON, located at address 0x000

is read in order to check the initial value, and then some data is written on
it. Finally, the register is read once again in order to check if the data was
written.
spiTransmitBuf fer = []
address = 0 x000

spiTransmitBuf fer . append ((cINSTRUCTION_READ << 4) + ((address >> 8)
& 0xF))

spiTransmitBuf fer . append (address & 0xFF)
spi . _ a s s e r t _ c s ()
sp i . wri te (spiTransmitBuf fer)
response_0 = spi . read (4)
sp i . _ d e a s s e r t _ c s ()
p r i n t (’CiCON r e g i s t e r before wri t ing : ’)
p r i n t (b i n a s c i i . h e x l i f y (response_0))
p r i n t (l i s t (response_0))

spiTransmitBuf fer = []
data = [0 , 0 , 0 , 0]
addressW = 0 x000

spiTransmitBuf fer . append ((cINSTRUCTION_WRITE << 4) + ((addressW >>
8) & 0xF))

spiTransmitBuf fer . append (addressW & 0xFF)
spiTransmitBuf fer = spiTransmitBuf fer + data

spi . _ a s s e r t _ c s ()

33

6.2 spi write 34

sp i . wri te (spiTransmitBuf fer)
sp i . _ d e a s s e r t _ c s ()

spiTransmitBuf fer = []
spiTransmitBuf fer . append ((cINSTRUCTION_READ << 4) + ((address >> 8)

& 0xF))
spiTransmitBuf fer . append (address & 0xFF)

spi . _ a s s e r t _ c s ()
sp i . wri te (spiTransmitBuf fer)
response_1 = spi . read (4)
sp i . _ d e a s s e r t _ c s ()
p r i n t (’CiCON r e g i s t e r modified : ’)
p r i n t (b i n a s c i i . h e x l i f y (response_1))
p r i n t (l i s t (response_1))

Reset
spiTransmitBuf fer = []
spiTransmitBuf fer . append (cINSTRUCTION_RESET << 4)
spiTransmitBuf fer . append (0)
sp i . _ a s s e r t _ c s ()
sp i . wri te (spiTransmitBuf fer)
sp i . _ d e a s s e r t _ c s ()

spiTransmitBuf fer = []
spiTransmitBuf fer . append ((cINSTRUCTION_READ << 4) + ((address >> 8)

& 0xF))
spiTransmitBuf fer . append (address & 0xFF)

spi . _ a s s e r t _ c s ()
sp i . wri te (spiTransmitBuf fer)
response_1 = spi . read (4)
sp i . _ d e a s s e r t _ c s ()
p r i n t (’CiCON d e f a u l t : ’)
p r i n t (b i n a s c i i . h e x l i f y (response_1))
p r i n t (l i s t (response_1))

>> CiCON r e g i s t e r before wri t ing :
>> 0 x60079804

>> [9 6 , 7 , 152 , 4]
>> Data to wri te (4 bytes) :
>> [0 , 0 , 0 , 0]
>> CiCON r e g i s t e r modified :
>> 0 x00000000

>> [0 , 0 , 0 , 0]
>> CiCON d e f a u l t :
>> 0 x60079804

>> [9 6 , 7 , 152 , 4]

Listing 8: SPI write test

In order to change any value written to its default, the reset command is
written before each test. In order to check the correct behaviour of the reset,
it is written after this test and the register is read. As it is seen, the register
has returned to its default value.

6.3 canfdlib read 35

6.3 canfdlib read

In this test, the functions developed in the library for reading are tested. The
register CiCON is read in several ways:

• As an array of bytes with readByteArray.

• As a 32-bit word with readWord.

• Its 1st byte only, with readByte.

• As a 32-bit word array, along with the next register CiNBTCFG with
readWordArray.

The results are shown in Code 9. All the values read have the same values
as the default ones.

address = 0 x000

word = canfd . readWord (address)
byte = canfd . readByte (address)
byteArr = canfd . readByteArray (address , 4) # read 4 bytes
wordArr = canfd . readWordArray (address , 2) # read 2 words
p r i n t (’ Reading CiCON as 32− b i t word with CAN FD l i b , using readWord

: ’)
p r i n t (word)
p r i n t (hex (word))

p r i n t (’ Reading 1 s t byte of CiCON with CAN FD l i b , using readByte : ’)
p r i n t (byte)
p r i n t (hex (byte))
p r i n t (’ Reading CiCON as array of bytes with CAN FD l i b , using

readByteArray : ’)
p r i n t (l i s t (byteArr))
p r i n t (’ Reading CiCON and CiNBTCFG as array of two 32− b i t words with

CAN FD l i b , using readWordArray : ’)
p r i n t (l i s t (wordArr))

Reading CiCON as 32− b i t word with CAN FD l i b , using readWord :
>> 1611110404

>> 0 x60079804

>> Reading 1 s t byte of CiCON with CAN FD l i b , using readByte :
>> 96

>> 0x60

>> Reading CiCON as array of bytes with CAN FD l i b , using
readByteArray :

[9 6 , 7 , 152 , 4]
>> Reading CiCON and CiNBTCFG as array of two 32− b i t words with CAN

FD l i b , using readWordArray :
>> [1611110404 , 252657152]

Listing 9: canfdlib read test.

6.4 canfdlib write 36

6.4 canfdlib write

In this test, data is written in the register CiCON in several ways:

• An array of bytes with writeByteArray.

• A 32-bit word with writeWord.

• A single byte with writeByte.

• A word array with writeWordArray

The value is read after each writing, and the device is resetted so that the
value of the register is set to default. Results are seen in Code 10. As it can
be seen, the read values coincide with the written data.

address = 0 x000

word = canfd . readWord (address)
p r i n t (’ Reading CiCON: ’)
p r i n t (word)
write_word = 0 x600798F4

p r i n t ("Word to wri te : ")
p r i n t (write_word)
canfd . writeWord (address , write_word)
word = canfd . readWord (address)
p r i n t (’ Reading CiCON with 0 x600798F4 wri t ten on i t : ’)
p r i n t (word)
canfd . r e s e t ()
wri te_byte = 0x6F
canfd . wri teByte (address , wri te_byte)
word = canfd . readWord (address)
p r i n t (’ Reading CiCON with 0x00 wri t ten on i t s 1 s t byte : ’)
p r i n t (word)
canfd . r e s e t ()
wr i te_byte_array = [0 x60 , 0x07 , 0x98 , 0xF4]
canfd . writeByteArray (address , wr i te_byte_array)
word = canfd . readWord (address)
p r i n t (’ Reading CiCON with [0 x60 , 0x07 , 0x98 , 0xF4] array wri t ten on

i t (4 bytes) : ’)
p r i n t (word)
canfd . r e s e t ()
write_word_array = [0 x600798F4 , 0 x 7 f 0 f 3 e f f]
canfd . writeWordArray (address , write_word_array)
word = canfd . readWordArray (address , 2)
p r i n t (’ Reading CiCON and CiNBTCFG with [0 x600798F4 , 0 x 7 f 0 f 3 e f f]

wr i t ten on i t : ’)
p r i n t (word)

>> Reading CiCON:
>> 1611110404

>> Word to wri te :
>> 1611110644

>> Reading CiCON with 0 x600798F4 wri t ten on i t :
>> 1611110644

>> R e s e t t i n g . . .
>> Reading CiCON with 0x00 wri t ten on i t s 1 s t byte :
>> 1862768644

>> R e s e t t i n g . . .
>> Reading CiCON with [0 x60 , 0x07 , 0x98 , 0xF4] array wri t ten on i t

(4 bytes) :
>> 1611110644

6.5 ram test 37

>> R e s e t t i n g . . .
>> Reading CiCON and CiNBTCFG with [0 x600798F4 , 0 x 7 f 0 f 3 e f f] wr i t ten

on i t :
>> [1611110644 , 2131705599]

Listing 10: canfdlib write test.

6.5 RAM test

The RAM test is executed, where random bytes are written in RAM with
various lengths of messages. The test returns -1 if some value is mismatched,
and stops the test. If nothing goes wrong, it returns 1. In Code 11 the test is
shown. The results can be seen at the Annex.

def ramTest (s e l f) :
v e r i f y R/W
f o r length in range (4 , MAX_DATA_BYTES + 1 , 4) :

txd = [(randint (0 , RAND_MAX) & 0xFF) f o r e in range (0 ,
length)]

p r i n t (" Data wri t ten on RAM: { } " . format (txd))
s e l f . writeByteArray (cRAMADDR_START, txd)
rxd = s e l f . readByteArray (cRAMADDR_START, length)
p r i n t (" Data read on RAM: { } " . format (rxd))
f o r i in range (0 , length) :

good = txd [i] == rxd [i]
i f not good :

p r i n t (" Data mismatch ! ")
re turn −1

re turn 1

r e s u l t = canfd . ramTest ()
i f r e s u l t == −1:

p r i n t ("RAM t e s t f a i l e d ! ")
e l s e :

p r i n t (’RAM t e s t s u c c e s f u l ! ’)

Listing 11: RAM test

6.6 Register test

This test is very similar to the RAM test, so its detailed code is not presented.
In Code 12 the test is shown. The results can be seen at the Annex.

r e s u l t = canfd . r e g i s t e r T e s t ()
i f r e s u l t == −1:

p r i n t (" R e g i s t e r t e s t f a i l e d ! ")
e l s e :

p r i n t (’ R e g i s t e r t e s t s u c c e s f u l ! : ’)

Listing 12: Register test

6.7 operation mode test 38

6.7 Operation mode test

In this test, the operation mode of the device is changed and then is read
from the device in order to check if the change was successful. Code 13

shows the test and its results. The mode after reset is checked, then changed
a few times, and finally, the mode after initialization is seen in order to
check it is correct. In Table 4, the correspondence between the mode and its
associated integer value is seen.

Mode Value (int) Value (bit)

NORMAL_MODE 0 000

SLEEP_MODE 1 001

INTERNAL_LOOPBACK_MODE 2 010

LISTEN_ONLY_MODE 3 011

CONFIGURATION_MODE 4 100

EXTERNAL_LOOPBACK_MODE 5 101

CLASSIC_MODE 6 110

RESTRICTED_MODE 7 111

Table 4: Mode values. Source: [6]

mode = canfd . operationModeGet ()
p r i n t (" After r e s e t mode : { } " . format (mode))
p r i n t (" s e l e c t i n g NORMAL_MODE mode")
canfd . operationModeSelect (NORMAL_MODE)
mode = canfd . operationModeGet ()
p r i n t (" Device mode : { } " . format (mode))
p r i n t (" s e l e c t i n g INTERNAL_LOOPBACK_MODE mode")
canfd . operationModeSelect (INTERNAL_LOOPBACK_MODE)
mode = canfd . operationModeGet ()
p r i n t (" Device mode : { } " . format (mode))
p r i n t (" s e l e c t i n g CONFIGURATION_MODE mode")
canfd . operationModeSelect (CONFIGURATION_MODE)
mode = canfd . operationModeGet ()
p r i n t (" Device mode : { } " . format (mode))
p r i n t (" s e l e c t i n g mode a f t e r i n i t ")
canfd . i n i t i a l i z e ()
mode = canfd . operationModeGet ()
p r i n t (" Device mode : { } " . format (mode))

After r e s e t mode : 4

s e l e c t i n g NORMAL_MODE mode
Device mode : 0

s e l e c t i n g INTERNAL_LOOPBACK_MODE mode
Device mode : 2

s e l e c t i n g CONFIGURATION_MODE mode
Device mode : 4

s e l e c t i n g mode a f t e r i n i t
ECC enabled
RAM i n i t i a l i z e d
Device mode : 0

Listing 13: Operation mode test

6.8 tx-rx tests 39

6.8 Tx-Rx tests

Several tests are made in order to check the transmission and reception. In
order to do them, the following devices are used:

1. Host PC: The PC where this project has been developed and the library
is running.

2. MCP2517FD click + MPSEE cable: The controller is connected to the
host PC and to a CAN-FD model with the DB9 connector.

3. Oscilloscope: It is used to verify that signals are transmitted.

4. CAN-FD model: This model, developed by the Electronic Engineering
department, is able to transmit data using CAN-FD frames in order to
simulate the ECU system of a automobile, and has a sniffer system in-
corporated, so that data can be seen with a suitable device, in a similar
fashion to the project developed here. It also works as an intermediate
device between both computers so they can communicate.

5. Transmitter-receiver (TRx) PC: This PC is connected to the model so it
can read and write messages to it, as well as to the host PC. It has a
custom software to transmit and receive messages.

These devices are shown in Figure 17.

Figure 17: Devices used in testing. Source: own.

6.8.1 Test 1: Tx

In this test, a single message of 64 bytes is transmitted from the host to the
TRx PC. The code for this test is shown in 14. The data received in the TRx
PC is shown on screen, and with the oscilloscope, it can be verified that
data is being transmitted. In Figure 18 the oscilloscope signal is seen, and in
Figure 19 the data received is shown.

6.8 tx-rx tests 40

canfd . i n i t i a l i z e ()
txd = range (0 , canfd . dlcToDataBytes (canfd . t x d l c)) # 64 bytes of data
p r i n t (" (TEST) message to transmit : { } " . format ([hex (a) f o r a in txd])

)
canfd . transmitMessageTasks (txd)

>> (TEST) message to transmit : [’ 0x0 ’ , ’ 0x1 ’ , ’ 0x2 ’ , ’ 0x3 ’ , ’ 0x4 ’ , ’
0x5 ’ , ’ 0x6 ’ , ’ 0x7 ’ , ’ 0x8 ’ , ’ 0x9 ’ , ’ 0xa ’ , ’ 0xb ’ , ’ 0 xc ’ , ’ 0xd ’ , ’ 0

xe ’ , ’ 0 xf ’ , ’ 0x10 ’ , ’ 0x11 ’ , ’ 0x12 ’ , ’ 0x13 ’ , ’ 0x14 ’ , ’ 0x15 ’ , ’ 0

x16 ’ , ’ 0x17 ’ , ’ 0x18 ’ , ’ 0x19 ’ , ’ 0x1a ’ , ’ 0x1b ’ , ’ 0 x1c ’ , ’ 0x1d ’ , ’ 0

x1e ’ , ’ 0 x1 f ’ , ’ 0x20 ’ , ’ 0x21 ’ , ’ 0x22 ’ , ’ 0x23 ’ , ’ 0x24 ’ , ’ 0x25 ’ , ’ 0

x26 ’ , ’ 0x27 ’ , ’ 0x28 ’ , ’ 0x29 ’ , ’ 0x2a ’ , ’ 0x2b ’ , ’ 0 x2c ’ , ’ 0x2d ’ , ’ 0

x2e ’ , ’ 0 x2 f ’ , ’ 0x30 ’ , ’ 0x31 ’ , ’ 0x32 ’ , ’ 0x33 ’ , ’ 0x34 ’ , ’ 0x35 ’ , ’ 0

x36 ’ , ’ 0x37 ’ , ’ 0x38 ’ , ’ 0x39 ’ , ’ 0x3a ’ , ’ 0x3b ’ , ’ 0 x3c ’ , ’ 0x3d ’ , ’ 0

x3e ’ , ’ 0 x3 f ’]

Listing 14: Test 1

Figure 18: Oscilloscope signal for test 1. Source: own.

Figure 19: Data received for test 1. Source: own.

6.8.2 Test 2: Tx with different DLC

In this test, a single message of 32 bytes is transmitted from the host to the
TRx PC. The code for this test is shown in 15. In Figure 20 the oscilloscope
signal is seen, and in Figure 21 the data received is shown.

6.8 tx-rx tests 41

canfd . i n i t i a l i z e ()
canfd . t x d l c = 13 # DLC value f o r payload of 32 bytes
txd = range (0 , canfd . dlcToDataBytes (canfd . t x d l c)) # 32 bytes of data
txd = txd [: : −1]
p r i n t (" (TEST) message to transmit : { } " . format ([hex (a) f o r a in txd])

)
canfd . transmitMessageTasks (txd)

>> (TEST) message to transmit : [’ 0 x1 f ’ , ’ 0 x1e ’ , ’ 0x1d ’ , ’ 0 x1c ’ , ’ 0

x1b ’ , ’ 0x1a ’ , ’ 0x19 ’ , ’ 0x18 ’ , ’ 0x17 ’ , ’ 0x16 ’ , ’ 0x15 ’ , ’ 0x14 ’ , ’ 0

x13 ’ , ’ 0x12 ’ , ’ 0x11 ’ , ’ 0x10 ’ , ’ 0 xf ’ , ’ 0xe ’ , ’ 0xd ’ , ’ 0 xc ’ , ’ 0xb ’ ,
’ 0xa ’ , ’ 0x9 ’ , ’ 0x8 ’ , ’ 0x7 ’ , ’ 0x6 ’ , ’ 0x5 ’ , ’ 0x4 ’ , ’ 0x3 ’ , ’ 0x2 ’ ,

’ 0x1 ’ , ’ 0x0 ’]

Listing 15: Test 2

Figure 20: Oscilloscope signal for test 2. Source: own.

Figure 21: Data received for test 2. Source: own.

6.8.3 Test 3: Rx

In this test, a single message of 64 bytes is transmitted from the TRx PC to
the host PC. In Figure 22 the data sent is shown, in Figure 23 the oscilloscope
signal is seen, and in 16 the code for this test is shown, along with the data
received.

6.8 tx-rx tests 42

Figure 22: Data sent for test 3. Source: own.

Figure 23: Oscilloscope signal for test 3. Source: own.

canfd . i n i t i a l i z e ()
while True :

r e c e i v e message
rxd = canfd . receiveMessageTasks ()
i f rxd i s not None : # p r i n t message when rece ived

p r i n t (" (TEST) rece ived message : { } " . format ([hex (a) f o r a in
rxd]))

>> (TEST) rece ived message : [’ 0x1 ’ , ’ 0x2 ’ , ’ 0x3 ’ , ’ 0x12 ’ , ’ 0xa ’ , ’ 0

xb ’ , ’ 0x0 ’ , ’ 0x0 ’ , ’ 0x0 ’ , ’ 0x0 ’ , ’ 0x0 ’ , ’ 0x0 ’ , ’ 0x0 ’ , ’ 0x0 ’ , ’ 0

x0 ’ , ’ 0x0 ’ , ’ 0x0 ’ , ’ 0x0 ’ , ’ 0x0 ’ , ’ 0x0 ’ , ’ 0x0 ’ , ’ 0x0 ’ , ’ 0x0 ’ , ’ 0

x0 ’ , ’ 0x0 ’ , ’ 0x0 ’ , ’ 0x0 ’ , ’ 0x0 ’ , ’ 0x0 ’ , ’ 0x0 ’ , ’ 0x0 ’ , ’ 0x0 ’ , ’ 0

x0 ’ , ’ 0x0 ’ , ’ 0x0 ’ , ’ 0x0 ’ , ’ 0x0 ’ , ’ 0x0 ’ , ’ 0x0 ’ , ’ 0x0 ’ , ’ 0x0 ’ , ’ 0

x0 ’ , ’ 0x0 ’ , ’ 0x0 ’ , ’ 0x0 ’ , ’ 0x0 ’ , ’ 0x0 ’ , ’ 0x0 ’ , ’ 0x0 ’ , ’ 0x0 ’ , ’ 0

x0 ’ , ’ 0x0 ’ , ’ 0x0 ’ , ’ 0x0 ’ , ’ 0x0 ’ , ’ 0x0 ’ , ’ 0x0 ’ , ’ 0x0 ’ , ’ 0x0 ’ , ’ 0

x0 ’ , ’ 0x0 ’ , ’ 0x0 ’ , ’ 0x1 ’ , ’ 0 x f f ’]

Listing 16: Test 3

6.8 tx-rx tests 43

6.8.4 Test 4: Rx with different DLC and ID

In this test, a single message of 8 bytes is transmitted from the TRx PC to the
host PC, changing the ID from the previous test. In Figure 24 the data sent
is shown, in Figure 25 the oscilloscope signal is seen, and in 17 the code for
this test is shown, along with the data received.

Figure 24: Data sent for test 4. Source: own.

Figure 25: Oscilloscope signal for test 4. Source: own.

canfd . i n i t i a l i z e ()
while True :

r e c e i v e message
rxd = canfd . receiveMessageTasks ()
i f rxd i s not None : # p r i n t message when rece ived

p r i n t (" (TEST) rece ived message : { } " . format ([hex (a) f o r a in
rxd]))

>> (TEST) rece ived message : [’ 0x1 ’ , ’ 0x2 ’ , ’ 0x3 ’ , ’ 0 xf ’ , ’ 0xa ’ , ’ 0

xb ’ , ’Oxc ’ , ’ 0x0 ’]

Listing 17: Test 4.

6.8 tx-rx tests 44

6.8.5 Test 5: Rx with random data

In this test, several messages transmitted by the model are received. The data
has random elements, length and IDs. In Figure 26, part of the data sent is
shown, and in 18 the code for this test is shown, along with part of the data
received.

Figure 26: Part of the data sent for test 5. Source: own.

canfd . i n i t i a l i z e ()
while True :

r e c e i v e message
rxd = canfd . receiveMessageTasks ()
i f rxd i s not None : # p r i n t message when rece ived

p r i n t (" (TEST) rece ived message : { } " . format ([hex (a) f o r a in
rxd]))

>> (TEST) rece ived message : [’ 0 xfb ’ , ’ 0x73 ’ , ’ 0 x3c ’ , ’ 0x69 ’ , ’ 0x17 ’ ,
’ 0x3 ’ , ’ 0 xa l ’ , ’ 0 x l ’ , ’ 0 x3 f ’ , ’ 0xd6 ’ , ’ 0 xf ’ , ’ 0xed ’ , ’ 0x13 ’ , ’ 0

x41 ’ , ’ 0xa7 ’ , ’ 0 x f f ’ , ’ 0xb4 ’ , ’ 0xa8 ’ , ’ 0 x9e ’ , ’ 0 xf4 ’ , ’ 0xda ’ , ’ 0

x63 ’ , ’ 0xb7 ’ , ’ 0 x3c ’ , ’ 0xb5 ’ , ’ 0 x6e ’ , ’ 0x84 ’ , ’ 0x89 ’ , ’ 0x85 ’ , ’ 0

xd2 ’ , ’ 0 x5c ’ , ’ 0x19 ’]
>> (TEST) rece ived message : [’ 0 xlb ’ , ’ 0 xc4 ’ , ’ 0x47 ’ , ’ 0 xe6 ’ , ’ 0x9d ’ ,

’ 0 xc5 ’ , ’ 0 xf ’]
>> (TEST) rece ived message : [’ 0x48 ’ , ’ 0 xf0 ’ , ’ 0x61 ’ , ’ 0x7b ’ , ’ 0xb7 ’ ,

’ 0 xe7 ’ , ’ 0x32 ’ , ’ 0x6a ’]
>> (TEST) rece ived message : [’ 0 x f l ’ , ’ 0x77 ’ , ’ 0x37 ’ , ’ 0x4b ’ , ’ 0 x e l ’ ,

’ 0 x l ’ , ’ 0x75 ’ , ’ 0x42 ’ , ’ 0 xbl ’ , ’ 0 xc ’ , ’ 0xd4 ’ , ’ 0 x5 f ’ , ’ 0xad ’ , ’ 0

x3 ’ , ’ 0xa0 ’ , ’ 0x18 ’ , ’ 0xa6 ’ , ’ 0 x2 f ’ , ’ 0xed ’ , ’ 0x27 ’ , ’ 0xa2 ’ , ’ 0

xf6 ’ , ’ 0 xlb ’ , ’ 0 x2c ’]
>> (TEST) rece ived message : [’ 0x2a ’ , ’ 0x0 ’ , ’ 0 xfa ’ , ’ 0x1b ’]
>> (TEST) rece ived message : [’ 0 xe8 ’ , ’ 0x6a ’ , ’ 0 x l ’ , ’ 0x24

’ , ’ 0x98 ’ , ’ 0 xef ’ , ’ 0x4 ’ , ’ 0 xlb ’ , ’ 0 x5e ’ , ’ 0 x5e ’ , ’ 0x35 ’ , ’ 0x29 ’ , ’ 0

x8c ’ , ’ 0xaa ’ , ’ 0x56 ’ , ’ 0x2 ’]
>> (TEST) rece ived message : [’ 0x50 ’]
>> (TEST) rece ived message : [’ 0 xc2 ’ , ’ 0xbc ’ , ’ 0 x3 f ’ , ’ 0x1 ’]
>> (TEST) rece ived message : [’ 0 xf8 ’ , ’ 0x97 ’ , ’ 0x67 ’ , ’ 0x46 ’ , ’ 0 x9e ’ ,

’ 0x60 ’ , ’ 0 xc8 ’ , ’ 0x75 ’ , ’ 0x3b ’ , ’ 0x2a ’ , ’ 0x7 ’ , ’ 0 x8e ’ , ’ 0x87 ’ ,
’ 0 xf2 ’ , ’ 0x85 ’ , ’ 0x13 ’ , ’ 0x4d ’ , ’ 0xe ’ , ’ 0 xc9 ’ , ’ 0x3d ’ , ’ 0 x7e ’ , ’
0 x l c ’ , ’ 0 xf9 ’ , ’ 0 xc9 ’ , ’ 0x12 ’ , ’ 0xad ’ , ’ 0x14 ’ , ’ 0x85 ’ , ’ 0xa2 ’ , ’
0 xbl ’ , ’ 0 xf5 ’ , ’ 0 x9e

’ , ’ 0 xc7 ’ , ’ 0xa2 ’ , ’ 0x8 ’ , ’ 0xa6 ’ , ’ 0x30 ’ , ’ 0x71 ’ , ’ 0 xc9 ’ , ’ 0x68 ’ , ’ 0

x85 ’ , ’ 0x31 ’ , ’ 0 x l ’ , ’ 0 x6c ’ , ’ 0 x f f ’ , ’ 0x84 ’ , ’ 0 xc0 ’ , ’ 0x48 ’ , ’ 0

xc4 ’ , ’ 0 xc8 ’ , ’ 0x19 ’ , ’ 0xad ’ , ’ 0x3 ’ , ’ 0x2 ’ , ’ 0an ’ , ’ 0x2d ’ , ’ 0xd4

’ , ’ 0x87 ’ , ’ 0xa4 ’ , ’ 0xcd
’ , ’ 0xcd ’ , ’ 0 x6c ’ , ’ 0x2d ’ , ’ 0 x4 f ’]
>> (TEST) rece ived message : [’ 0xb4 ’ , ’ 0 x3c ’ , ’ 0x7 ’]
>> (TEST) rece ived message : [’ 0xb3 ’ , ’ 0 x f c ’ , ’ 0x42 ’ , ’ 0x95 ’ , ’ 0 xf4 ’]
>> (TEST) rece ived message : [’ 0x43 ’ , ’ 0 xac ’ , ’ 0x85 ’ , ’ 0x55 ’ , ’ 0x50 ’ ,

’ 0 xfe ’ , ’ 0xa ’ , ’ 0x24 ’ , ’ 0xbe ’ , ’ 0x55 ’ , ’ 0xbe ’ , ’ 0xb7 ’ , ’ 0x2a ’ ,
’ 0 xec ’ , ’ 0x37 ’ , ’ 0x4a ’ , ’ 0 xc9 ’ , ’ 0 x la ’ , ’ 0 xc7 ’ , ’ 0x62 ’ , ’ 0x24 ’ ,

6.9 gui test 45

’ 0 x5 f ’ , ’ 0x9b ’ , ’ 0xbc ’ , ’ 0x93 ’ , ’ 0 x2 f ’ , ’ 0x98 ’ , ’ 0 xf8 ’ , ’ 0x7b ’ ,
’ 0x80 ’ , ’ 0 x f l ’ , ’ 0x5 ’]

>> (TEST) rece ived message : [’ 0x88 ’ , ’ 0x4b ’ , ’ 0x27 ’ , ’ 0x88 ’ , ’ 0xa ’]
>> (TEST) rece ived message : [’ 0x1a ’ , ’ 0 xc9 ’ , ’ 0xd8 ’ , ’ 0 x5e ’ , ’ 0x3b ’ ,

’ 0x58 ’ , ’ 0x62 ’ , ’ 0x3 ’ , ’ 0xd8 ’ , ’ 0 xe8 ’ , ’ 0x46 ’ , ’ 0x10 ’ , ’ 0x67 ’ ,
’ 0x65 ’ , ’ 0x26 ’ , ’ 0xcd ’ , ’ 0xb3 ’ , ’ 0x50 ’ , ’ 0 xe9 ’ , ’ 0x6b ’]

>> (TEST) rece ived message : [’ 0x23 ’ , ’ 0x4 ’ , ’ 0x5d ’ , ’ 0 xc6 ’ , ’ 0x43 ’ ,
’ 0x56 ’ , ’ 0xa4 ’ , ’ 0 x7c ’ , ’ 0 x7 f ’ , ’ 0 x3 f ’ , ’ 0x53 ’ , ’ 0 xec ’ , ’ 0x80 ’ ,
’ 0 xf8 ’ , ’ 0x10 ’ , ’ 0xa8 ’ , ’ 0xcd ’ , ’ 0x11 ’ , ’ 0 x5 f ’ , ’ 0 c0 ’]

>> (TEST) rece ived message : [’ 0 xac ’]
>> (TEST) rece ived message : [’ 0x89 ’ , ’ 0x17 ’ , ’ 0 x l c ’ , ’ 0 xaf ’ , ’ 0 xld ’ ,

’ 0 x l ’ , ’ 0xb0 ’ , ’ 0 xa l ’ , ’ 0xb2 ’ , ’ 0x5a ’ , ’ 0x36 ’ , ’ 0xd5 ’ , ’ 0x95 ’ ,
’ 0xa9 ’ , ’ 0xd7 ’ , ’ 0 xe8 ’]

>> (TEST) rece ived message : [’ 0x20 ’ , ’ 0x48 ’ , ’ 0xb0 ’ , ’ 0xC5 ’ , ’ 0xa1 ’ ,
’ 0xa2 ’ , ’ 0x2d ’ , ’ 0x89 ’]

>> (TEST) rece ived message : [’ 0 x3c ’ , ’ 0x86 ’ , ’ 0x79 ’ , ’ 0 xfe ’ , ’ 0 x l ’ ,
’ 0x33 ’ , ’ 0 xf5 ’ , ’ 0 xdf ’ , ’ 0x48 ’ , ’ 0xa7 ’ , ’ 0x69 ’ , ’ 0x95 ’ , ’ 0x89 ’ ,
’ 0 xe6 ’ , ’ 0 xdl ’ , ’ 0x99 ’ , ’ 0 x9c ’ , ’ 0 xef ’ , ’ 0x93 ’ , ’ 0xed ’ , ’ 0 x3c ’ ,
’ 0x81 ’ , ’ 0 x5c ’ , ’ 0 xc7 ’ , ’ 0x3d ’ , ’ 0 xbl ’ , ’ 0xb8 ’ , ’ 0 xfa ’ , ’ 0x8d ’ ,
’ 0x2d ’ , ’ 0x74 ’ , ’ 0x24 ’ , ’ 0 xec ’ , ’ 0x4d ’ , ’ 0xb4 ’ , ’ 0x9a ’ , ’ 0x6b ’ ,
’ 0 xdf ’ , ’ 0xd3 ’ , ’ 0x14 ’ , ’ 0xa6 ’ , ’ 0 xaf ’ , ’ 0 xfd ’ , ’ 0x17 ’ , ’ 0 xc1 ’ ,
’ 0xd8 ’ , ’ 0 x8e ’ , ’ 0x26 ’ , ’ 0x23 ’ , ’ 0 xce ’ , ’ 0x29 ’ , ’ 0xa7 ’ , ’ 0 xf5 ’ ,
’ 0x27 ’ , ’ 0x98 ’ , ’ 0x97 ’ , ’ 0x59 ’ , ’ 0x2a ’ , ’ 0x67 ’ , ’ 0xed ’ , ’ 0x6b ’ ,
’ 0x23 ’ , ’ 0 x3 f ’ , ’ 0 x c f ’]

>> (TEST) rece ived message : [’ 0x3 ’ , ’ 0x78 ’ , ’ 0x0 ’ , ’ 0 xf4 ’ , ’ 0 xac ’ , ’
0 xe4 ’ , ’ 0 xee ’ , ’ 0x73 ’ , ’ 0 xe5 ’ , ’ 0x40 ’ , ’ 0x92 ’ , ’ 0x9 ’ , ’ 0x66 ’ , ’ 0

x14 ’ , ’ 0 xe2 ’ , ’ 0 x9e ’]
>> (TEST) rece ived message : [’ 0x75 ’ , ’ 0xa0 ’ , ’ 0xcd ’ , ’ 0 x4e ’ , ’ 0xbb ’ ,

’ 0 x8 f ’ , ’ 0x26 ’ , ’ 0x93 ’ , ’ 0 xfd ’ , ’ 0x44 ’ , ’ 0 xa l ’ , ’ 0xa8 ’ , ’ 0x18 ’ ,
’ 0x4 ’ , ’ 0 xe0 ’ , ’ 0 xae ’ , ’ 0 xf9 ’ , ’ 0x48 ’ , ’ 0x7a ’ , ’ 0 xe8 ’ , ’ 0xd7 ’ ,

’ 0x4a ’ , ’ 0x98 ’ , ’ 0x28 ’ , ’ 0x33 ’ , ’ 0 x4 f ’ , ’ 0x50 ’ , ’ 0 xfd ’ , ’ 0x91 ’ ,
’ 0xb7 ’ , ’ 0 xc1 ’ , ’ 0x99 ’ , ’ 0 xf3 ’ , ’ 0 xc6 ’ , ’ 0 xf3 ’ , ’ 0x84 ’ , ’ 0 x la ’ ,
’ 0x30 ’ , ’ 0x6a ’ , ’ 0x3 ’ , ’ 0 x7c ’ , ’ 0x66 ’ , ’ 0x91 ’ , ’ 0x46 ’ , ’ 0x4 ’ , ’ 0

xa3 ’ , ’ 0 xc3 ’ , ’ 0x54 ’]
>> (TEST) rece ived message : [’ 0x35 ’ , ’ 0xb7 ’ , ’ 0 xlb ’ , ’ 0 x8c ’ , ’ 0 x8 f ’]
>> (TEST) rece ived message : [’ 0x84 ’ , ’ 0x44 ’ , ’ 0x77 ’ , ’ 0 xe8 ’ , ’ 0x72 ’ ,

’ 0xb4 ’ , ’ 0 x l ’ , ’ 0xa9 ’ , ’ 0x70 ’ , ’ 0 x l ’ , ’ 0xd3 ’ , ’ 0x30 ’ , ’ 0x69 ’ , ’
0 xbl ’ , ’ 0x56 ’ , ’ 0x20 ’ , ’ 0x63 ’ , ’ 0x8 ’ , ’ 0x42 ’ , ’ 0x74 ’ , ’ 0 x8 f ’ , ’ 0

x23 ’ , ’ 0x84 ’ , ’ 0 xf2 ’ , ’ 0x12 ’ , ’ 0xd4 ’ , ’ 0 xea ’ , ’ 0x70 ’ , ’ 0x91 ’ , ’ 0

x41 ’ , ’ 0x94 ’ , ’ 0 xca ’ , ’ 0 x7 f ’ , ’ 0x3b ’ , ’ 0x1b ’ , ’ 0 x9e ’ , ’ 0x26 ’ , ’ 0

x5 f ’ , ’ 0 x7e ’ , ’ 0 xce ’ , ’ 0x76 ’ , ’ 0 xef ’ , ’ 0 xdl ’ , ’ 0xb3 ’ , ’ 0x91 ’ , ’ 0

x6e ’ , ’ 0xa4 ’ , ’ 0x21 ’]

Listing 18: Test 5.

6.9 GUI test

In this final test, the GUI is tested to see if its functionalities work as ex-
pected. To do so, the different buttons and droplists are tested in order to
check if they work properly, with the GUI not in debug mode. The following
operations are made, in this order:

• The device is manually connected.

• DLC is set to a different value.

• Mode is set to External Loopback.

6.9 gui test 46

• A message is transmitted.

• The message is checked in the reception FIFO.

• The device is reset.

• Rx FIFO is checked again to see if the message is gone (and thus con-
firming the reset).

All the results are shown in Figures 27 to 30.

Figure 27: The device is manually connected. Source: own.

Figure 28: DLC is set to a different value. Source: own.

Figure 29: Mode is set to External Loopback. Source: own.

Figure 30: Message is transmitted and received After reset, no message is received.
Source: own.

7 Future work

Although the main objective of this project has been accomplished, there is
still much more work to do in this library. All files are uploaded in GitHub
[20], so anyone can access the library and improve it.

The main proposed improvements are the following:

• More functionality: This library only incorporates the basic functions
of the Microchip API. Advanced functions, such as the use of the TEF,
filters, masks, CRC use, and more, can be implemented.

• Further testing: Several tests have been done in this project in order to
check the library and its functions, but other aspects, such as operation
speed and additional bit time configurations, should be tested in more
detail.

• Optimization: Some parts of the code could be improved in order to
gain clarity and to improve performance. This includes the register
problem discussed in 5.5.1. The access and modification of register
variables should be unified and generalized in order to easily access
and modify registers at bit, byte and word level, preserving the correct
bit and byte order.

• The ctypes library should be totally implemented or discarded.

• Better GUI: The GUI developed in this project is made for demonstra-
tions purposes of the library. It may have more advanced functions,
such as configuration of additional parameters of the device, save log
files, etc.

• Error handling: Most of the errors in the device operation go silently
or stop the execution of the program. Exceptions and error handling
should be added with try-except clauses, so that errors are noticed and
treated correctly

• Updating: A major drawback of this library is the use of the Adafruit
library, which forces the environment to be in Python 2.7, which is
being deprecated (current version of Python is 3.7) and lacks some
features, such as native support for struct-like data types. This library
does not work in the newer versions of Python. Another library can
be used to establish SPI communication, or the Adafruit library can be
modified to work with newer versions of Python. Although the use of
a virtual environment with Python 2.7 solves this problem when using
a device with newer versions, a future goal could be the native support
for Python 3.7

• Other OS support: Although the objective was to develop this library
for use with Windows, it would be interesting to have support for
Linux and Mac OS.

47

8 Temporal schedule

In Figure 31, a Gantt diagram of this project is seen. The Research task in-
cludes all the research done in other libraries, the devices used in this project,
the Microchip library, as well as information on the CAN, CAN-FD and SPI
protocols, and information about C and Python instructions. The Setup task
includes the installation of all the necessary libraries and drivers. The rest of
the tasks are self-explanatory.

Figure 31: Gantt diagram. Source: own.

48

9 Budget and costs

The budget of this project is presented here, which can be seen in Table 5.
The activities cost was calculated using the total time spent in the project
(approximately 360h) with an hourly salary of 20 €. The hardware costs are
very low, and all software and libraries used have no cost and license to be
modified and distributed as desired, even for commercial use. Most of the
cost comes from the human resources.

Product Price (€)

MCP2517FD click 22.05

MPSEE cable C232HM-DDHSL-0 24.26

PC with Windows license 499.99

Activities (human resources) 7200

TOTAL 7746.3

Table 5: Costs. Source: own.

The lifetime of the software developed in this project is not expected to
be very long, as it has some major drawbacks which need to be improved,
as discussed in Section 7. The Python version needed is being deprecated
and will not be updated any more in 2020; nevertheless, it is a good starting
point for developing a more robust library with a longer life and support.

If the library was to be marketed and sold (which is not the case, as the
library is designed to have a free license to use and modify), it would be in-
teresting to know its value. The python-can library has around 299.985 down-
loads9. Supposing this library is as downloaded as the python-can one, each
download of the library should cost at least 2.5 cents in order to amortize
the investment, which is a very low price. In fact, it may be even distributed
as free software and obtain income from other ways, such as maintenance or
advertisement, thus obtaining better acceptance in the public.

Considering its actual state, its life would not be longer than 2 years. If
its lifetime wants to be enlarged, more time would be required in order
to update the library. This would take an estimated time of 140 h, which
translates to an increase in 2800 € in the budget. This would increase the
estimated value of the library to 3.5 cents/download.

9 This metric has been obtained from the Google Cloud Platform and only accounts the down-
loads from pip

49

10 Environmental impact

The use of CAN-FD protocol over classical CAN has the advantage of in-
creasing the data transfered over unit of time, and thus requieres less time
to transfer a certain amount of data. Consider the energy consumed by this
device transfering 1 Mb (10

6 bits) of data at its maximum speed, in both
CAN and CAN-FD modes. Figure 32 shows the duration of the frames in
CAN protocol and some configurations of CAN-FD.

Figure 32: Frame duration of CAN and some configurations of CAN-FD. Source: [8]

From here, the required time to transfer 1 Mb of data at maximum speed
is calculated, as shown in Equations 1 and 2 for the CAN frame, and in
Equations 3 and 4 for the CAN-FD frame.

n =
data

26
=
106

64
= 15625 frames (1)

t = n x 111 µs ≈ 1.734s (2)

n =
data

29
=
106

512
= 1954 frames (3)

t = n x 96.375 µs ≈ 0.188s (4)

The operating current of the device at 5.5 V and 40 MHz is approximately
12 mA, so its power consumption is of 66 mW. The total energy consumption
of the transmission is 114 mJ for the CAN frame and 12.4 mJ. The difference
is astonishing, with the CAN-FD frame consuming only 10.8 % of the energy
required for the classical CAN.

The CO2 emissions for consuming electrical energy are, according to [21],
about 0.27 tons of CO2 per MWh consumed at the endpoint. Thus, the use
of the CAN-FD protocol produces a saving of 7.62 µg of CO2 per Mb of
data transmitted. Taking an example, autonomous cars will treat as much as
4.000 GB of data per hour in the near future, as seen in [22]; the use of the
CAN-FD protocol could save 243 g of CO2 emissions per hour in a single car,
which represents about a 1.95 % of saving in its hourly emissions10.

10 Considering a mean speed of 70 km/h and emissions of 178 g/km, which is a the mean value
of emissions of a gasoline car in Spain at November 2016 given by [23]

50

11 Conclusions

The objectives in this project have been accomplished. A basic library has
been developed for Python to communicate a PC with Windows with the
MCP2517FD click device through SPI communication, using a MPSEE ca-
ble with a USB port. This library is capable of reading data from a CAN-FD
frame as well as writing to it. It can also access all internal registers of the de-
vice and configure it. It only uses four additional libraries (Adafruit for SPI,
ctypes for some register-like objects, binascii for casting bytearray objects to in-
tegers, and random for generating some random data), and only one of these
(Adafruit) is an external library, as all others are incorporated in Python. Fi-
nally, a basic GUI has also been developed to test the library, incorporating
some tests. All of these files are located at [20], with GNU General Public
License v3.0

This library is a starting point to develop more advanced libraries able to
take advantage of all the functionalities of the controller. Although the life-
time of the library is somewhat limited, an update for working with newer
versions of Python could extend it for several years. Nevertheless, the poten-
tial use of this library is very interesting, as it is now possible to connect the
MCP2517FD with a computer, using Windows and Python 2.7, and several
tasks, such as gathering data for analysis in real time, can be done easily in a
single language. As all of the software has free license, any user can develop
an application and contribute to this project, so both companies working
with CAN-FD networks and home users developing its own projects.

51

12 Bibliography

[1] CAN bus. https://en.wikipedia.org/wiki/CAN_bus. Accessed: 2019-
02-20.

[2] Introduction to CAN bus. https://learn.sparkfun.com/tutorials/

ast-can485-hookup-guide/introduction-to-can-bus. Accessed: 2019-
03-13.

[3] National Instruments. CAN FD EXPLAINED - A SIM-
PLE INTRO. https://www.csselectronics.com/screen/page/

can-fd-flexible-data-rate-intro/language/en. Accessed: 2019-
02-26.

[4] Serial Peripheral Interface. https://en.wikipedia.org/wiki/Serial_

Peripheral_Interface. Accessed: 2019-03-15.

[5] Total Phase. Beagle Protocol Analyzers, 1 2008. Rev. 3.02.

[6] Microchip Technology Inc. External CAN FD Controller with SPI Interface,
2017. Rev. 1.

[7] Future Technology Devices International Ltd. USB 2.0 HI-SPEED TO
MPSSE CABLE Datasheet, 2016. Rev. 1.2.1.

[8] Universitatea Politehnica Timisoara. CAN with Flexible Data-Rate
- CAN-FD. http://www.aut.upt.ro/~pal-stefan.murvay/teaching/

nes/Lecture_05_CAN-FD.pdf. Accessed: 2019-02-26.

[9] G. Marcon Zago and E. Pignaton de Freitas. A Quantitative Perfor-
mance Study on CAN and CAN FD Vehicular Networks. IEEE Transac-
tions on Industrial Electronics, 65(5):4413–4422, May 2018.

[10] International Standards Organization. Road vehicles - interchange of digi-
tal information - controller area network (CAN) for high-speed communication,
11 1993. Rev. 1.

[11] Bosch. CAN with Flexible Data-Rate, 4 2012. Rev. 1.

[12] T. Nguyen, B. M. Cheon, and J. W. Jeon. CAN FD performance analysis
for ECU re-programming using the CANoe. In The 18th IEEE Interna-
tional Symposium on Consumer Electronics (ISCE 2014), pages 1–4, June
2014.

[13] Robert I. Davis, Alan Burns, Reinder J. Bril, and Johan J. Lukkien. Con-
troller area network (CAN) schedulability analysis: Refuted, revisited
and revised. Real-Time Systems, 35(3):239–272, Apr 2007.

52

https://en.wikipedia.org/wiki/CAN_bus
https://learn.sparkfun.com/tutorials/ast-can485-hookup-guide/introduction-to-can-bus
https://learn.sparkfun.com/tutorials/ast-can485-hookup-guide/introduction-to-can-bus
https://www.csselectronics.com/screen/page/can-fd-flexible-data-rate-intro/language/en
https://www.csselectronics.com/screen/page/can-fd-flexible-data-rate-intro/language/en
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface
http://www.aut.upt.ro/~pal-stefan.murvay/teaching/nes/Lecture_05_CAN-FD.pdf
http://www.aut.upt.ro/~pal-stefan.murvay/teaching/nes/Lecture_05_CAN-FD.pdf

bibliography 53

[14] S. Woo, H. J. Jo, I. S. Kim, and D. H. Lee. A Practical Security Architec-
ture for In-Vehicle CAN-FD. IEEE Transactions on Intelligent Transporta-
tion Systems, 17(8):2248–2261, Aug 2016.

[15] Thorne B. and P. Ben. python-can library. https://python-can.

readthedocs.io/en/stable/index.html. Accessed: 2019-04-1.

[16] Future Technology Devices International Ltd. Ftdi virtual com port
drivers. https://www.ftdichip.com/Drivers/VCP.htm. Accessed: 2019-
03-01.

[17] Batard P. Zadig. https://zadig.akeo.ie/. Accessed: 2019-03-01.

[18] DiCola T. Mpsee windows setup. https://learn.adafruit.com/

adafruit-ft232h-breakout/windows-setup. Accessed: 2019-03-01.

[19] Microchip Technology Inc. Mcp2517fd c api. http://ww1.microchip.

com/downloads/en/DeviceDoc/MCP2517FD_canfdspi_API_v1.0.zip. Ac-
cessed: 2019-02-20.

[20] J. Cortes. canfdlib. https://github.com/jcf9410/canfdlib.

[21] Departamento de Planificación y Estudios. FACTORES DE CON-
VERSIÓN ENERGÍA FINAL -ENERGÍA PRIMARIA y FACTORES DE
EMISIÓN DE CO2, 11 2011.

[22] Krzanich B. The coming flood of dta in autonomous vehicles. In LA
Auto Show’s AutoMobility conference, 2016.

[23] IDAE, ANFAC and ANIACAM. Guía de Vehículos Turismo de venta
en España, con indicación de consumos y emisiones de CO2, 3 2016.

[24] Microchip Technology Inc. Mc2517fd api. http://ww1.microchip.

com/downloads/en/DeviceDoc/MCP2517FD_canfdspi_API_v1.0.zip. Ac-
cessed: 2019-03-01.

[25] Ràfols Bellés J. Development of a Python application for monitoring RF
messages using one NRF24L01 board and a USB-MPSSE cable. Degree’s
final project, Universitat Politècnica de Catalunya, 2016.

[26] Fructuoso Keller D. LoRa sniffer using python and one MPSSE cable.
Degree’s final project, Universitat Politècnica de Catalunya, 2018.

[27] MicroControl GmbH & Co. KG. Can fd. an introduction. http://

www.microcontrol.net/en/know-how/bus-systems/can-fd/. Accessed:
2019-02-25.

[28] National Instruments. Understanding can with flexible data-rate
(can fd). http://www.microcontrol.net/en/know-how/bus-systems/

can-fd/. Accessed: 2019-02-25.

[29] Motorola. SPI Block Guide, 1 2003. Rev. 3.06.

https://python-can.readthedocs.io/en/stable/index.html
https://python-can.readthedocs.io/en/stable/index.html
https://www.ftdichip.com/Drivers/VCP.htm
https://zadig.akeo.ie/
https://learn.adafruit.com/adafruit-ft232h-breakout/windows-setup
https://learn.adafruit.com/adafruit-ft232h-breakout/windows-setup
http://ww1.microchip.com/downloads/en/DeviceDoc/MCP2517FD_canfdspi_API_v1.0.zip
http://ww1.microchip.com/downloads/en/DeviceDoc/MCP2517FD_canfdspi_API_v1.0.zip
https://github.com/jcf9410/canfdlib
http://ww1.microchip.com/downloads/en/DeviceDoc/MCP2517FD_canfdspi_API_v1.0.zip
http://ww1.microchip.com/downloads/en/DeviceDoc/MCP2517FD_canfdspi_API_v1.0.zip
http://www.microcontrol.net/en/know-how/bus-systems/can-fd/
http://www.microcontrol.net/en/know-how/bus-systems/can-fd/
http://www.microcontrol.net/en/know-how/bus-systems/can-fd/
http://www.microcontrol.net/en/know-how/bus-systems/can-fd/

	Abstract
	Contents
	List of Figures
	List of Figures
	List of Tables
	Listings
	Glossary
	1 Objectives
	2 Overview of concepts
	2.1 CAN-FD
	2.2 SPI protocol

	3 Description of Hardware
	3.1 MCP2157FD
	3.2 MPSSE

	4 Description of the proposed software and state of the art
	4.1 Other libraries
	4.1.1 python-can
	4.1.2 Microchip API

	4.2 Minimal functionalities

	5 Development of the library
	5.1 Initial configurations
	5.2 MPSSE
	5.3 Adafruit library
	5.4 Microchip API
	5.4.1 Constants
	5.4.2 Registers
	5.4.3 CAN-FD functions
	5.4.4 Main

	5.5 Python library: canfdlib
	5.5.1 canfdlib: Registers
	5.5.2 canfdlib: CAN-FD functions
	5.5.3 canfdlib: Main tasks
	5.5.4 GUI

	6 Tests
	6.1 SPI read
	6.2 SPI write
	6.3 canfdlib read
	6.4 canfdlib write
	6.5 RAM test
	6.6 Register test
	6.7 Operation mode test
	6.8 Tx-Rx tests
	6.8.1 Test 1: Tx
	6.8.2 Test 2: Tx with different DLC
	6.8.3 Test 3: Rx
	6.8.4 Test 4: Rx with different DLC and ID
	6.8.5 Test 5: Rx with random data

	6.9 GUI test

	7 Future work
	8 Temporal schedule
	9 Budget and costs
	10 Environmental impact
	11 Conclusions
	12 Bibliography

