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ABSTRACT

Forecasting the dynamics of chaotic systems from the analysis of their output signals is a challenging problem with applications in most �elds
of modern science. In this work, we use a laser model to compare the performance of several machine learning algorithms for forecasting
the amplitude of upcoming emitted chaotic pulses. We simulate the dynamics of an optically injected semiconductor laser that presents a rich
variety of dynamical regimes when changing the parameters. We focus on a particular dynamical regime that can show ultrahigh intensity
pulses, reminiscent of rogue waves. We compare the goodness of the forecast for several popular methods in machine learning, namely, deep
learning, support vector machine, nearest neighbors, and reservoir computing. Finally, we analyze how their performance for predicting the
height of the next optical pulse depends on the amount of noise and the length of the time series used for training.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5120755

Predicting the dynamical evolution of chaotic systems is an
extremely challenging problem with important practical appli-
cations. With unprecedented advances in computer science and
arti�cial intelligence, many algorithms are nowadays available for
time series forecasting. Here, we use a well-known chaotic system
of an optically injected semiconductor laser that exhibits fast and
irregular pulsing dynamics to compare the performance of sev-
eral algorithms [deep learning, support vector machine (SVM),
nearest neighbors, and reservoir computing (RC)] for predicting
the amplitude of the next pulse. We compare the predictive power
of such machine learning methods in terms of data requirements
and the robustness toward the presence of noise in the evolution of
the system. Our results indicate that an accurate prediction of the
amplitude of upcoming chaotic pulses is possible using machine
learning techniques, although the presence of extreme events in
the time series and the consideration of stochastic contributions
in the laser model bound the accuracy that can be achieved.

I. INTRODUCTION

Optically injected semiconductor lasers have a rich variety of
dynamical regimes, including stable locked emission, regular pulsing,

and chaotic behavior.1,2 These regimes have found several prac-
tical applications. For example, under stable emission, the laser
emits light at the injected wavelength (the so-called injection-locking
region) and has a high resonance frequency and a large modula-
tion bandwidth,3 which have broad applications for optical commu-
nications. The regular pulsing regime can be used for microwave
generation,4,5while the broadband chaotic signal can be exploited for
ultrafast random number generation.6

In turn, the output of the laser in the chaotic regime can be used
for testing new methods for data analysis, and in particular, for time
series prediction. Predicting the dynamical evolution of complex sys-
tems from the analysis of their output signals is an important problem
in nonlinear science,7–9 with a wide range of interdisciplinary appli-
cations. In these “big data” days, a signi�cant number of researchers
are focusing on developing novel methods for time series forecasting
based on machine learning algorithms.10–14

Delay embedding and recurrent neural networks have been
used to predict the evolution of chaotic systems such as the
Lorenz system and the Mackey-Glass system.15 Locally linear neu-
rofuzzy models16 and support vector machine17 have also been
used to forecast chaotic signals. Here, in contrast with previous
works, we do not attempt to forecast the evolution of a chaotic
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system, but the amplitude of the next peak in the observed
signal.

As a case study, we consider the dynamics of an optically
injected laser. We simulate the laser dynamics using a well-known
rate equation model1,18 and use the chaotic regime to compare the
performance of several machine learning algorithms (deep learning,
support vector machine, nearest neighbors, and reservoir comput-
ing) for forecasting the amplitude of the next intensity pulse.

Ourmainmotivation to study this system is that it can be imple-
mented experimentally and we hope that our work will motivate the
analysis of real data. An important characteristic of this laser system
is that it has control parameters (that can be varied in the experiment)
that allow to generate time series with or without extreme pulses.

Therefore, in the simulations, within the chaotic regime,we con-
sider two di�erent situations: the intensity pulses display occasional
extreme values (so-called optical rogue waves19,20) or the intensity
pulses are irregular but do not display extreme �uctuations. In the
�rst case, the probability distribution function (pdf) of pulse ampli-
tudes is long tailed, while in the second case, it has a well-de�ned
cuto�.

The possibility of predicting and suppressing extreme pulses in a
chaotic system has been demonstrated in Ref. 21, but in this work the
authors did not attempt to predict the pulse amplitude but rather the
occurrence of a very high pulse whenever the trajectory approached a
particular region of the phase space. To shed light on the limits of the
forecast of extreme events, we consider dynamical regimes with and
without extreme pulses, produced by the same underlying system,
and we attempt to predict the amplitude of the next pulse, regardless
of whether it is normal or extreme. In our system, we �nd that, while
both regular and extreme pulses can be forecasted, the existence of
extreme pulses bounds the prediction accuracy. In an experimental
setup, observational noise and the limited bandwidth of the detection
system (photodiode, oscilloscope) can further limit the predictability
of the pulse amplitude.

II. MODEL

We simulated the dynamics of the complex optical �eld E and
the carrier population N in a semiconductor laser with optical injec-
tion using the following rate equations:2,22

dE

dt
= κ (1 + iα) (N − 1)E + i1ωE +

√

Pinj +
√
Dξ (t) , (1)

dN

dt
= γN

(

µ − N − N |E|2
)

. (2)

The parameters in Eqs. (1) and (2) are: κ , the �eld decay rate,
which we set at 300 ns−1; α, the linewidth enhancement factor,
which we set at 3; 1ω, the optical frequency detuning, which we
set at 2π × 0.49GHz; Pinj, the optical injection strength, which we
set to 60 ns−2; D, the noise level, which we varied; γN , the carrier
decay rate, which we set at 1 ns−1, µ the pump current parameter,
which we varied. ξ(t) is a complex uncorrelated Gaussian noise of
zero mean and unity variance that represents spontaneous emission:
ξ(t) = ξr(t) + iξi(t) with 〈ξr(t)ξr(t′)〉 = δ(t − t′), 〈ξi(t)ξi(t′)〉
= δ(t − t′), and 〈ξr(t)ξi(t′)〉 = 0.

FIG. 1. Deterministic bifurcation diagram of the output intensity of the injected
laser (D = 0) when varying the pump current parameter µ. For the subsequent
analysis, we choose two currents that lead to very different dynamical behav-
iors: (i) µ = 2.2, where the system presents extreme events, and (ii) µ = 2.45,
where the system displays a bounded chaotic behavior. Example time series for
these parameters, including noise in the simulations (D = 10−4 ns−1) are shown
in Fig. 2.

To simulate the evolution of Eqs. (1) and (2), we used the Runge-
Kutta method of order 2 with a time step of 10−3 ns, as described in
Ref. 23, which takes into account the stochastic evolution with white
noise. In this work, we will analyze the chaotic pulses that appear at
the output intensity of the laser de�ned as P = |E|2.

Figure 1 displays how the intensity deterministic dynamics
(D = 0) depends on the pump current parameterµ. For smallµ (not
shown), the laser emits a constant intensity, but asµ increases, aHopf
bifurcation and a series of period-doubling bifurcations occur, result-
ing in chaotic emission.Aroundµ = 2.2, the intensity shows extreme
pulses as shown in Fig. 1 and the time series in Figs. 2(a) and 2(b).
In contrast, at around µ = 2.45, the amplitude of the pulses in this
chaotic regime is tightly bounded as it can be seen in Fig. 1 and in
the time series in Figs. 2(c) and 2(d).

The autocorrelation functions of the peak intensity values (i.e.,
the autocorrelation of the series yi built with the amplitude of each
intensity peak) for both values of µ and both values of D are shown
in Fig. 2. Forµ = 2.2, the autocorrelation of the peak series decays to
zero after a few peaks, both for D = 0 and D = 10−4 ns−1. It can be
seen that forµ = 2.45, the autocorrelation of the peak series does not
decay to zero and shows non-negligible values of the autocorrelation
even after 8 peaks. The values of the autocorrelation as a function of
the time lag (number of peaks) are larger for the series with noise.
We show in Fig. 2(d) that the evolution of the laser intensity with
noise alternates regions of more regular behavior with regions of
chaotic dynamics, which is not seen in the time series without noise
in Fig. 2(c). This is due to the fact that µ = 2.45 lies in a small
chaotic island near regular regimes (see Fig. 1) and we �nd noise-
induced jumps between di�erent dynamical regimes. We anticipate
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FIG. 2. (Left) Intensity time series of the laser with optical injection and (right)
autocorrelation function of the extracted peak series forµ = 2.2 [(a) and (b)] and
µ = 2.45 [(c) and (d)] and noise level of D = 0 [(a) and (c)] and D = 10−4 ns−1

[(b) and (d)].

that the faster decay of the autocorrelation function, togetherwith the
presence of extreme pulses, in the time series for µ = 2.2 will result
on larger prediction errors than in the time series for µ = 2.45.

III. FORECAST METHODS

All machine learning methods used here tackle the problem of
function approximation. We use them to forecast the amplitude of
the upcoming intensity peaks by assuming that there is an objective
function (that we try to infer) that takes as inputs a certain number
of consecutive peak amplitudes and returns as output the amplitude
of the next peak.

Except for themethod of reservoir computing (that has an inter-
nal state withmemory of the history of the inputs), all other methods
are memoryless (i.e., they have no internal state of the history of the
inputs), and explicit input and outputs of the objective function have
to be provided in the training phase, giving information of the history
with the previous intensity peaks amplitude. Let yi be the ith intensity
peak amplitude, then our objective function is

f
(

yi−n, . . . , yi−1

)

= yi, (3)

where n is the number of input intensity peak amplitudes that the
machine learning algorithm is fed with. For the forecast of the
peak amplitudes, we found that keeping n = 3 yielded the mini-
mumprediction error and further increasingnproduced no accuracy
enhancement. This choice will be justi�ed in more detail in Sec. IV
(see Fig. 8).

For simplicity, we call xi =
(

yi−n, . . . , yi−1

)

and thus, we can
rewrite Eq. (3) as

f (xi) = yi. (4)

For testing the methods, we use a di�erent realization of the
same simulations (not used in the training phase), and, with these

new data, we evaluated the learned function,

f̃ (xi) = ỹi. (5)

Several statistical measures have been used in the literature to quan-
tify the performance of time series prediction algorithms such as the
correlation coe�cient (CC),24 the mean squared error (MSE),15 the
normalized mean squared error (NMSE),16 the root mean squared
error (RMSE),15 the normalized rootmean squared error (NRMSE),17

the mean absolute relative error (MARE), etc. Here, we use the
MARE24 de�ned as

MARE =
1

N

i=N
∑

i=1

∣

∣ỹi − yi
∣

∣

yi
. (6)

In Secs. III A and III B, we describe the di�erent algorithms
used.

A. Statistical methods

1. k-Nearest neighbors

The k-Nearest Neighbors (KNNs) is a popular method used for
supervised learning.25 It works by �nding, in the training set, the k
most similar points to a test point. Then, the prediction of the test
point is obtained by averaging the response of such k points (in the
training set). Thus,

ỹ =
1

k

∑

j∈N

yj, (7)

where N (the neighborhood of the test point xi) is the set of indexes
of the k points in the training set that are closest to the test point.

2. Support vector machine

Support vector machine26–28 (SVM) is another popular method
used for supervised learning, which is based on the inner product
of points in the set to approximate the response function.29 Nonlin-
earities can be introduced straightforwardly by modifying the inner
product function. For linear SVM, the inner product of two points
(xi and xj) is calculated as

〈

xi, xj
〉

= xtixj, (8)

while nonlinearity can be introduced by using a Gaussian kernel to
calculate the inner product,

〈

xi, xj
〉

= exp

(

−
∥

∥xi − xj
∥

∥

2σ 2

)

. (9)

The objective function, f̃ (xi) = ỹi, is written as a linear combi-
nation of the inner products with the support vectors

f̃ (xi) =
∑

j

βj

〈

xj, xi
〉

+ b. (10)

The coe�cients βj and b are obtained by solving a convex optimiza-
tion problem.27

The linear SVM has the advantage of being parameter-free. In
contrast, for using the Gaussian kernel, the scale factor σ has to be
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de�ned. To set the value of σ , we used the automatic heuristic imple-
mented in the “Statistics andMachine Learning Toolbox” of “Matlab”
(the �trsvm function).

B. Artificial neural networks

1. Feed-forward neural networks

Feed-forward neural networks, usually simply referred as neu-
ral networks, use a set of units, called perceptrons, that, when used in
a large network, their output can approximate a great variety of func-
tions depending on the weights of the connections among the units.

Perceptrons perform two tasks: they compute a weighted sum of
all their inputs (and a constant bias input) and they perform a non-
linear function, called activation function, to the result. The output
of the activation function is the output of the perceptron. Most com-
monly, the activation functions used are sigmoids; in this work, we
use the tanh function in all but the last (output) layer, in which we
do not use a nonlinearity to avoid bounding the �nal output to the
codomain of the nonlinearity.

A feed-forward neural network is a network of such perceptrons
wherein they are ordered in layers, as shown in Fig. 3(a) for a single
hidden layer. The perceptrons of the �rst layer have their inputs set
to be the inputs of the whole network. For the rest of the layers, the
inputs are de�ned as the outputs of the perceptrons in the previous
layer.

The parameters of these networks are the weights of each per-
ceptron. These parameters can be set using a gradient descend
algorithm; in feed-forward neural networks, an e�cient algorithm to
perform gradient descend, called back-propagation,30 may be used.

We used a shallow neural network (shallow NN), consisting
of a single hidden layer of 30 perceptrons and a deep neural net-
work (deep NN) consisting of 5 hidden layers of 10, 20, 50, 25, and
10 perceptrons (ordered from the input layer to the output layer),
respectively.

2. Reservoir computing

Reservoir computing (RC) is a computational paradigm that
can be viewed as a particular type of arti�cial neural networks with

a single hidden layer and recurrent connections.31 A ring topology
in the hidden layer (or reservoir), as the one shown in Fig. 3(b), is
a simple way to create recurrent connections. Such a ring topology
yields a performance comparable to more complex network topolo-
gies in the reservoir.32Being a recurrent neural network, the reservoir
computing technique is suitable to process sequential information.
In reservoir computing, the connection weights from the input layer
to the hidden layer as well as the connection weights within the
reservoir are drawn from a Gaussian distribution and left untrained.
The connection weights from the reservoir to the output layer are
trained in a supervised learning procedure, which translates to a
linear problem that can be solved via a simple linear regression.33

The nodes in the reservoir layer perform a nonlinear transfor-
mation of the input data. Here, we use a sine squared nonlinearity,
which can be implemented in photonic hardware,34,35 but other types
of nonlinearity are also possible. Finally, the output node performs a
weighted sum of the reservoir outputs.

The RCmethod can be described by the following equations for
the states of the nodes in the hidden layer (zj) and the prediction of
the output node (ỹ):

z
j
i = F(γwI

j yi−1 + βz
j−1
i−1), (11)

ỹi =
D
∑

j=1

wO
j z

j
i , (12)

where i refers to the peaks in the laser time series, j is the index of the
node in the hidden layer, wI are the set of input weights drawn from
a random Gaussian distribution, γ and β are the input and feedback
scaling, respectively, and F(u) = sin2(u + φ) is the nonlinear activa-
tion function. In Eq. (12), D is the number of hidden nodes and wO

stands for the trained output weights. In order to create a recurrent
ring connectivity in the hidden layer (also known as reservoir), we
connect node zj (j = {2 · · ·D}) with its neighbor zj−1 andwe close the
ring by connecting node z1 with zD as shown in Fig. 3(b). Here, we
have set the hyper-parameter values as γ = 4.5, β = 0.25, φ = 0.6π ,
andD = 6000,whichminimize the prediction error.Wehave veri�ed
that a “tanh” activation function yields quantitatively similar results
once the hyperparameters γ and β are optimized.

FIG. 3. Graphical representation of a feed-forward neural
network with a single hidden layer (a) and a reservoir com-
puter (b). The dashed lines represent the connections that
can be adjusted via a learning procedure, while the solid lines
account for the connections that are randomly weighted and
left untrained.
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FIG. 4. Simulated intensity time series together with the peak amplitudes
predicted by the different methods. The parameters are D = 10−4 ns−1 and
µ = 2.2. All methods were trained using 15 000 ns of simulation, which contain
65 534 peak intensity values.

We note that the heuristic for the RC practitioners is to assume
a random interconnection topology in the reservoir, which usually
yields good results. However, regular network topologies also yield
optimal results as long as the hyperparameters are optimized,36,37 as
it has been the case here. For the RC method, we only feed a single
amplitude value to predict the amplitude of the next pulse. Feeding
the RCmethod with the value of several previous peaks would mean
that, in practice, the reservoir computer would not need to use its
own internal memory. The motivation to employ a di�erent num-
ber of input peaks for the reservoir computer lies on the observation
that it can reach a prediction error comparable to the other methods
without using explicit memory of the preceding peaks.

IV. RESULTS AND DISCUSSION

We now proceed to evaluate the performance of the di�erent
forecast methods on the prediction of the amplitude of chaotic laser
pulses. The goal of ourwork is to predict the amplitude of the upcom-
ing laser pulse given the recent history of the dynamics. To that end,
we generate long time series of a laser subject to optical injection fol-
lowing the model described in Eqs. (1) and (2) for the two chaotic
regimes shown in Fig. 2.

By looking at Fig. 2, the presence of extreme events in the time
series of the laser when the current isµ = 2.2 becomes apparent. We
anticipate that the existence of such extreme events poses a challenge
for the prediction of the chaotic laser pulses’ amplitude. Figure 4
shows a segment of the time series of the laser for the parameters
µ = 2.2 andD = 10−4 ns−1 together with the prediction of the pulses
amplitude for all the methods considered in this work. From this �rst
qualitative evaluation of the forecast methods, we can observe how
the linear SVM method is outperformed by the other methods. In

turn, the methods deep NN, KNN, and RC tend to yield a similar,
accurate, prediction of the amplitude of the chaotic pulses.

A further visualization of the goodness of the di�erent methods
is provided by the scatter plots in Fig. 5. These scatter plots represent
the predicted peak intensities vs the real ones. The methods with a
better prediction accuracy need to align to a diagonal line in this rep-
resentation. For this chaotic regime of the laser dynamics with the
presence of extreme events, the deep NN, KNN, and RC methods
are well aligned to the diagonal lines as shown in Figs. 5(d)–5(f). In
contrast, the ShallowNN andGaussian SVMmethods tend to under-
estimate the amplitude of medium to large pulses as it can be seen in
5(b) and 5(c). As shown in Fig. 5(a), the linear SVM method fails to
capture the complexity of the dynamics.

FIG. 5. Scatter plots displaying the simulated peak intensity vs the predicted peak
intensity for the methods: (a) linear SVM, (b) Gaussian SVM, (c) shallow neu-
ral network, (d) deep neural network, (e) k-nearest neighbors, and (f) reservoir
computing. The parameters are D = 10−4 ns−1 and µ = 2.2. All methods were
trained using 15 000 ns of simulation, containing 65 534 peak intensity values.
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When doing data-driven forecasting, it is necessary to evalu-
ate the number of training points needed to have accurate results. In
Figs. 6 and 7, we show how the accuracy [as measured by the mean
absolute relative error, Eq. (6)] depends on the number of points used
to train the algorithms, when there are extreme pulses (Fig. 6) and
when there are no extreme pulses (Fig. 7).

First, we compare the forecast results for the noise-free numer-
ical simulations at currents µ = 2.2 and µ = 2.45, which are shown
in Figs. 6(a) and 7(a). The MARE of the forecast for µ = 2.2 is at
least two orders of magnitude worse than the forecast for µ = 2.45.
This is due to the added complexity of the extreme events atµ = 2.2,
deteriorating the performance of all the forecastingmethods.We �nd
that the KNN, deep NN, and RC methods, in this order, yield the
most accurate predictions forµ = 2.2. Thesemethods, together with
the shallow NN, yield the lowest MARE for µ = 2.45. In both cases,
the performance of the RCmethod becomesmore accurate when the
number of training data points is larger than the number of nodes in

FIG. 6. Mean absolute relative error as a function of number of training points.
We show the error of the peak amplitude prediction as a function of the number of
training points for noise levels of (a) D = 0 and (b) D = 10−4 ns−1, at µ = 2.2.

the reservoir (D = 6000). Overall, the prediction of the amplitude of
the upcoming chaotic pulse forµ = 2.45 requires less training points
than forµ = 2.2. These results suggest that the forecast of the dynam-
ics with extreme pulses is intrinsically harder to predict. It could also
be that the low frequency of the extreme pulses makes them more
di�cult to predict because they appear less frequently in the training
set. However, they also appear less frequently in the testing set and
thus have less weight in the overall error.

Second, we analyze the in�uence of the stochastic contribu-
tion in Eq. (1) on the forecast of the pulses’ amplitude. We show
in Figs. 6(b) and 7(b) that the presence of noise triggers an early
plateau that bounds the MARE, deteriorating the performance of
all the methods. The stochastic contribution to the dynamics has a
stronger in�uence on the forecast for the chaotic dynamics gener-
ated at µ = 2.45, with an increase of two orders of magnitude in the
MARE as shown in Figs. 7(a) and 7(b). When noisy dynamics is con-
sidered, theMARE forµ = 2.45 andµ = 2.2 are less than an order of

FIG. 7. Mean absolute relative error as a function of number of training points.
We show the error of the peak amplitude prediction as a function of the number of
training points for noise levels of (a) D = 0 and (b) D = 10−4 ns−1, atµ = 2.45.
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FIG. 8. Mean absolute relative error as a function of the number of preceding
pulses fed as the input to each algorithm. For this example, all algorithms were
trained using 10 000 data points at µ = 2.45 and D = 10−4 ns−1. For both KNN
and deep NN, the minimum error occurs when using 3 input peaks, the latter being
the absolute minimum in this plot considering all other methods.

magnitude apart [see Figs. 6(b) and 7(b)] in contrast to the noise-free
counterparts for which the di�erence in MARE between µ = 2.45
andµ = 2.2 ismore apparent [see Figs. 6(a) and 7(a)]. The deteriora-
tion of the prediction accuracy in the presence of observational noise
has also been reported, e.g., in Ref. 16, where the NMSE decreased 5
to 6 orders of magnitude.

An important parameter for all but the reservoir computing
approach is the number of input intensity peak amplitudes (n) where-
with the machine learning algorithm is fed. This parameter sets the
amount of history that the algorithm is able to “see.” In Fig. 8, we
show how the performance changes when changing n in the case of
the chaotic dynamics with µ = 2.45 and D = 10−4 ns−1. We used
10 000 training data points to be well inside the plateau of perfor-
mance seen in Fig. 7(b). The results shown in this �gure justi�es our
choice of using n = 3, which yields a minimum MARE for most of
the forecast methods. For the RC method, we set n = 1 as it is the
only method that possesses an internal memory.

Another important issue to consider when implementing these
data-driven methods is the computer power that is required to train
and test each forecast method. Although di�erent methods scale dif-
ferently with the amount of data in the training set, some general
rules of thumb apply. In the KNN method, while there is no speci�c
training time, the time for evaluating each test point, however, grows
linearly with the amount of points in the dataset. The KNN method
is, in this sense, ideal for real-time data as it can take into account new
data into the dataset without any extra computational overhead. The
computing power for training and testing the SVMmethods depends
greatly on the amount of support vectors that are needed, and on
the kernel that is used. We �nd that the linear SVM method takes a
greater time to train and a comparable time to test with respect to the
Gaussian kernel method. This is due to the fact that the linear SVM
method fails to capture the complexity of the data and, thus, a great

amount of support vectors are needed. The feed-forward neural net-
works and the RC method are (in respect to train and test) opposite
to the KNNmethod, and they take a great amount of time to train but
are computationally cheap to evaluate test points. The training time
of the neural networks-based models depends on the length of the
training data and on the amount of internal model parameters they
have. In our examples, the deep NN takes about 20 times the time of
the shallow NN to train. The RC method, on the other hand, has a
simpler training mechanism, which takes approximately 5 times the
time of the shallow NN to train. All neural networks-based models
take a comparable (low) time in the testing stage.

We end up with a comparison of the performances obtained
here with the literature. The reported MARE values that have been
obtained strongly vary with the algorithm used and the character-
istics of the datasets analyzed. For example, machine learning tech-
niques with delay embedding in real data give MARE values of the
order of 0.15 for river �ow prediction,24 or as low as 0.025 for electric-
ity consumption.14With time series simulated from the chaotic Ikeda
map, a MARE value as low as 5.8 × 10−5 was reported in Ref. 38. In
general, the prediction of noisy (possibly chaotic) real-world dynam-
ics yields larger errors than the prediction of synthetic numerical
data without noise. A more precise direct comparison of previously
published results is, however, not currently possible since we do not
predict the future trajectory of the dynamics but the amplitude for
the next pulse.

V. CONCLUSIONS

We have used the chaotic dynamics of the intensity of an opti-
cally injected laser to test the performance of several machine learn-
ing algorithms for forecasting the amplitude of the next intensity
pulse. This laser system is described by a simple model that, with a
small change of parameters, produces time series which have extreme
events in the form of high peak intensities, resembling the dynamics
of much more complex systems. In spite of the fact that the autocor-
relation function of the sequence of pulse amplitudes decays rapidly,
good prediction accuracy was achieved with some of the proposed
methods, namely, the KNN, deepNN, andRCmethods.We have ver-
i�ed that theMARE for the most accurate methods (deep NN, KNN,
and RC) remains approximately constant even for the prediction of
extreme pulses that have a probability of appearance as low as 1/1000.

Our work suggests that similar methods may be used in the
forecast of more complex systems, although further testing is of
course necessary to assess how well they would perform in high-
dimensional chaotic dynamical systems. With simple dynamics, we
only needed around 1000 data points to achieve maximum perfor-
mance with somemethods (shallow and deepNN); when forecasting
more complex dynamics, some of the methods (KNN and deep NN)
will continue improving their performance if longer datasets are
available for training (longer than 105 data points).

We have also compared the performance of di�erent varia-
tions of the same machine learning algorithm (compare linear to
Gaussian SVM and shallow to deep neural networks in Figs. 4–7),
especially relevant when considering big training datasets. We do
not exclude that even more complex methods (e.g., a neural network
with additional hidden layers) might outperform the presented algo-
rithms. However, the presented algorithms already serve the purpose
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of showing the dependence of the forecast error on the complexity of
the dynamics and on the inclusion of stochastic contributions.
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