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Abstract—The steadily rising efficiency together with the 
precision of prediction in solar photovoltaic (PV) energy requires 
a deterministic reliability in the performance estimation.  This 
research determines an underlying output prediction fault of a 
solar PV module that originates from ignoring nominal operating 
cell temperature (NOCT) consideration. The impact of NOCT 
consideration is investigated to minimize the maximum power 
prognosis fault for the PV modules, where the significant 
parameters of the maximum power point tracking (MPPT) 
controller used such as current, output power are measured under 
partial shading condition. A set of non-parametric correlations are 
calculated using Spearman’s ρ and Kendall τ rank statistical 
methods in order to provide a fast true estimation, as well as avoid 
experimental measurement difficulties and cost for an advanced 
output power prediction. Finally, the findings have been 
numerically and experimentally verified to enhance the 
forecasting accuracy which may significantly affects the engineer’s 
cost benefit estimations prior to any operational enterprise. 
 

Index Terms—Fault Prognosis, Solar Photovoltaic Module, 
Partial Shading Effect, Correlation, Cell Temperature, Power 
Forecasting. 

I.  INTRODUCTION 

OWADAYS the pace of research is very coherent 
among researchers for predicting the solar photovoltaic 

(PV) module’s output power under various conditions [1]. Solar 
irradiance is the most significant factor for characterizing the 
magnitude of power generated in the cell and cell temperatures 
are the second most significant  factor [2-3].  These factors are 
dependent on a number of data such as cell temperature, partial 
shading effect, wind speed etc. 

Most of the applications corresponding to the field of PV  
need to evaluate the temperature of the PV cells as well as the 
solar radiation incident on them with adequate precision and 
reliability [4]. This is because the 𝐼-𝑉 curve of the photovoltaic 
module depends on the temperature and incident solar 
irradiation [5-7].  

There is valuable research in the literature that 
has been reported in recent years to enhance the solar PV 
performance prediction [8-17]. Among them, some methods 
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include the basis of module operating temperature measurement 
techniques [8-9], the uncertainty performance loss-rate 
estimation measurement via indoor [10] and outdoor [11] 
techniques, and partial shading effect assessment approaches 
are also widely discussed [18-19]. 

G. Farivar and B. Asaei [20] presented an effective new 
method for estimating the operating temperature of a PV 
module with the simple diode model. The researchers have 
proposed the methodology, which is based on an analytical 
formula, in order to derive the temperature from the maximum 
power point, voltage and current. The work has been 
experimentally verified. In addition, other research by G. 
Mangeni, et al. [21], discussed a photovoltaic module’s cell 
temperature measurement and an 81 point heat distribution 
mapping technique using only 9 temperature sensors. They used 
these 9 negative temperature coefficient thermistor based 
temperature sensors (NTC thermistor) attached at the back of 
photovoltaic panel equally spaced in a 3 by 3 manner, a 
microcontroller, a data acquisition and visualization software 
with interpolation technique developed in MATLAB. 

Malte Ruben Vogt, et al. [22] studied the reduced operating 
temperature of modules made from passivated emitter rear cells 
(PERCs) compared with modules made from cells featuring an 
“unpassivated fullarea screen-printed aluminum rear side 
metallization aluminum back surface field (Al-BSF)”. 
Additionally, they increased the yield of modules using PERC 
instead of Al-BSF solar cells. The research offers a valuable 
experimental investigation. 

In P. Ingenhoven, et al. [23] paper, the researchers have 
compared statistical and deterministic smoothing methods to 
reduce the uncertainty of performance loss rate (PLR) 
predictions. 

Based on the addressed references, the main reasons for 
solar PV material degradation are continuous cycles of 
temperature, humidity, irradiation, mechanical stress, spotted 
soiling that can induce corrosion of the metallic connections, 
hot spots, bubbles, and other failures [23–25]. In addition to 
material degradation, there are other considerable outdoor 
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Fig. 1. Solar PV cells temperature measurement using (a) conventional, and (b) 
proposed strategies, for (c) the demonstrated module’s cells matrix  
 
operating conditions, such as partial shading analysis, which 
must be considered when a true output estimation is required. 
The following listed studies have allowed many researchers to 
evaluate their own Solar PV system under partial shading 
conditions [18-19]. 

The scope of this article is to introduce a new fast technique 
to estimate the performance metrics (output) of a solar PV 
module under a partial shading condition. In addition to this 
outdoor operating condition, the nominal operating cell 
temperature (NOCT) must be accounted for to avoid an 
incorrect prognosis during cell temperature measurement. In 
particular, this fact motivated us to experimentally test the cell 
temperature distribution during open/close circuits, as the PV 
module temperature settings have significant impact on the 
output prediction. This research offers correlations to reduce the 
difference between predicted values and experiments.  

To find an accurate estimate of the output, it is necessary to 
follow the simple procedure shown in Fig. 1, where the 
flowchart (Fig. 1(a)) illustrates the conventional way to predict 
the module temperature, which is based on either the ambient 
temperature of the PV module or the open-circuit module 
temperature distribution. The captured PV characteristics under 
a close-circuit condition are derived in a different manner, in 
which the measurement restrictions is depicted in Fig. 1(b), for 
a high efficiency crystalline PV module with maximum output 
of 150 W, 7.6 A. The cells temperature is studied cell by cell 
based on the presented cells coding in Fig. 1(c). 

The studied output prediction and measurement are grouped 
in two distinct techniques, listed in the following. This paper is 

structured as follows. In Section II, the theoretical findings are 
discussed. In Section III, numerical-based results and 
comparisons between the two techniques are presented. In 
Section IV, the experimental setup and verifications are 
presented. The main contribution of the research is concluded 
in Section V.  

II.  THEORY OF THE PROPOSED MEASUREMENT TECHNIQUE 

A. Methodology 
Based on the proposed schematic illustrated in Fig. 1(b), the 

procedure to manage the cell temperature relies on a NOCT 
consideration. In addition to the load’s impact, the effect of 
partial shading at different levels has been considered. In this 
section, we describe the method used to compute the cell 
temperature, namely: 

 
1) Define the PV module in Matlab Simulink based on the 

ambient temperature using an average value of each 
month.  

2) After storing the first estimations of the module’s 
temperature (T1) and output. Then the experimental cell 
temperature (online) can be measured under load 
(closed-circuit) conditions. 

3) The measured cells temperature (T2) can be seen to be 
considerably higher than T1, therefore the output 
prediction has been affected due to the error of the PV 
module temperature as an input). 

4) To avoid this defect, the input PV module temperature is 
updated monthly in Simulink. This back and forth 
measurement process comes with a cost, which has 
solved by step 5. 

5) All the data from both models (a and b) are stored within 
different shading-levels. Afterwards, pairwise and 
Spearman’s 𝜌 statistical methods are applied to find out 
the best possible correlations with minimum error. 

6) The proposed correlations as a function of NOCT and 
partial shading effects have resulted in a faster and more 
accurate estimation of the output. 
 

B. Mathematical Definitions 
The total solar irradiance that strikes the surface of the PV 

module (ϕtotal) can be defined by the harvested power (PE) and 
wasted energy (PL), where PL is due to the light reflected or 
emitted through the module (ϕo), and the power converted into 
heat (ϕh). Thus, the effective power is calculated by: 

               E total L total o hP P                           (1) 

For the simulation studies, the parameter ϕtotal is set by 800 
W.m-2 in ambient temperature Tamb = 20˚C, wind speed v = 1 
m.s-1, in addition, an optical density of luminescent down 
shifting (LDS) layers at dye peak absorption equals 2. There is 
valuable research done regarding to the impact of LDS over 
NOCT in [3]. 

The cell temperature measurements, either IR-Infrared-
based (Tm1 and Tm2) or linear interpolation technique (T1 and 
T2), have considered the module’s cell coding or matrix (see 
Fig. 1(c)) [21]. In particular, to compare the outcome of both 
measurement techniques, the average string-based module 
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temperature was calculated from:  
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Boundary conditions at the front surface of the glass and the 
back surface of the plastic are convection and radiation heat 
transfers which entirely discussed in [4]. Thus, the boundary 
conditions for the average PV module temperature (T1 or T2) 
can be defined, for instance, when model (a) operates (see Fig. 
1(a)) as: 
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The relative efficiency deviation (Δηrel) as function of solar 
irradiance (G) and cell temperature (T2) can be defined as: 
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Based on the self-reference method [26-28], using the short-
circuit current (Isc) as a function of G can be written as: 

                         2
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The module’s temperature dependency during the partial 
shading phenomenon can be modeled through heat equations 
over each individual layer of crystalline silicon (C-Si) in the 
solar modules. In this study, it is assumed that the temperature 
diffusion is uniform at the horizontal plane. The heat equations 
are given for each layer by Eq. (1-3), in which the suffix i varies 
between 20-100% depending to the shading rate. 
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where T1, T2, and T3 are the uniformed temperature of the glass, 
silicon, and plastic parts, respectively.α1, α2, and α3 are the 
thermal diffusion constants which are 3.77×10-7, 7.65×10-6, and 
1.86×10-7 (m2.s-1), respectively. P is the generated power in the 
silicon layer given as: 
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where Is and Vs are the current and voltage of the string 
(including the cell). m is the number of solar PV modules in 
series, as we tested the measurement for only a single module, 
thus, m=1. 60S represents the number of cells, which is 60 in 
this study. Finally, S is the total active area of the cell in m2. 

Fig. 2-a presents a cross-sectional model of the C-Si solar 
PV cells, in which the PV module has been implemented at 
Barcelona in Spain. The thickness of glass, silicon, and plastic 

back sheet have been measured and are X1 = 3.5, X2 − X1 = 0.28, 
X3 − X2 = 0.6 (mm), respectively. There are also two ethylene 
vinyl acetate copolymer (EVA) layers encapsulating the C-Si 
layer, which are considered in the model. The EVA layers over 
the C-Si layer are transparent and considerably thinner than the 
glass layer [29]. 
 

A. C-Si Photovoltaics Module Characteristics 

The 60 cells, C-Si, PV module with a nominal output power 
of 150 W, 7.6 A, under different partial shading rates (S = 0-
80%), and open circuit test conditions has the I-V and P-V 
curves presented in Fig. 3(a) and (b). 

 
Fig. 2. Cross-sectional model of used C-Si solar module, where (a) indicates 
the solar irradiance versus module partitions, and (b) irradiance and temperature 
dependence of C-Si PV module 

 
Fig. 3. Solar C-Si 60 cells PV module characteristics based on partial shading 
effect, (a) I-V, (b) P-V curves. 
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III.  RESULTS AND DISCUSSION 

In this section, the behavior of the C-Si module under all 
defined considerations and assumptions have been collated and 
analyzed where the results have determined a significant 
estimation error. Afterwards, a table of calculated correlations 
has been offered for engineers in order to be used to prevent 
such unreliability. 

Fig. 4 illustrates the monthly variation maps of Is as a 
function of Vs and cell temperature, where the influence of 
NOCT in comparison to a NON-NOCT consideration based on 
seasonal horizon has been studied. Fig. 4(a),(b) and (c) present 
the autumn season, when the difference between NOCT and 

NON-NOCT currents at higher voltages (14-22 V) can be seen 
on the September and October months. The sharp color map 
curvatures describe more voltage drop, mainly at the highest Vs 
when the NOCT is considered. In contrast, the variation of Is 
appears more linear in the month of November, approximately 
similar to the NON-NOCT condition. Fig. 4(d), (e) and (f) 
indicate the winter, where insignificant errors of estimation are 
observed due to the lower Is. Among the three months of winter, 
Fig. 4(f) (Feb) shows sharper and wider curvatures which mean 
a higher risk of reliability in the output estimation. The 
curvature range is between 18-22 V in this season. In spring 
(Fig. 4(g), (h) and (i)), a larger estimation error exists in  

Fig. 4. Nominal output characteristic maps of the used solar C-Si module with and without nominal operating cell temperature (NOCT) consideration for (a) 
September, (b) October, (c) November, (d)  December, (e) January, (f) February, (g) March, (h) April, (i) May, (j) June, (k) July, and (l) August.
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Fig. 5 Maximum output power based on partial shading range evaluation under conventional (non-NOCT) and NOCT computations, (a) S=80% and non-NOCT, 
(a´) S=80% and NOCT, (b) S=60% and non-NOCT, (b´) S=60% and NOCT, (c) S=40% and non-NOCT, (c´) S=40% and NOCT, (d) S=20% and non-NOCT, (d´) 
S=20% and NOCT, (e) S=0% and non-NOCT, and (e´) S=0% and NOCT considerations.

 
comparison with autumn and winter, in which more nonlinear 
curves can be seen, especially in the range of 15-22 V. With 
respect to spring’s maps, the most critical error occurs in the 
month of May within 14-22 V operation. During the summer, 
the current’s maps have tended significantly towards the NOCT 
consideration, where the largest ramped curves occur at a 
different level of Is (0.5-9 A), and Vs (12-22 V). The highlights 
of the presented current maps (Fig. 4) are; more estimation error 
exists when Vs is approaching the rated value Vm of the solar 
module, which mostly affects the peak operation months (Jun, 
Jul, and Aug). If the difference between the currents with and 
without the NOCT consideration defines the error of the Is 
calculation, then the most critical error occurs during the widest 
range of Vs as well as a higher gradient. Therefore, the current 
prediction highly depends on the cell temperature and nominal 
voltage especially during peak operation times such as the 
summer season.  

Fig. 5 presents the variation of maximum output power and 
voltage as function of ambient temperature for conventional 
and NOCT cases. For various rates of partial shading (0-80%), 
the predicted values based on the conventional measurement 
have a significant estimation error. The study proofs that the 
maximum error of power prediction occurred at the higher rate 
of partial shading S. In other words, a larger rate of S and Vs led 
to power prediction inaccuracy (error). Hence, more 
nonlinearity in the prediction error has been presented. On 
cloudy days (S = 80%), the variation of maximum output power 
shown in Fig. 5(a) and (a´) have resulted in a negligible 
estimation error ≤3% because of a lower voltage drop of Vs. Fig. 
5 (b) illustrates the maximum extracted output power of 65 W 
during the partial shading condition without a NOCT 
consideration. Whereas, the maximum achieved power with the 
NOCT consideration is 62 W. On average, an estimation error 
about 4.5% has been noted. Under a partial shading of S = 40%, 
a maximum power of 98 W (non-NOCT), and 94 W (NOCT) 
could be seen with an error of 6.5%, shown in Fig. 5(c) and Fig. 
5(c´), respectively. In Fig. 5(d), the maximum power based on 
the non-NOCT case was recorded as 131 W, while more heat 

loss for the NOCT consideration (Fig. 5(d´)) shows a maximum 
power of 126 W. In addition to a higher rate of G, larger heat 
loss has been observed, thus, the estimation error has slightly 
increased to 8.8%. The highest rate of estimation error occurs 
when the maximum possible rate of G = 1000 W.m-2, S = 0% 
(no shading) strikes the C-Si module. Then, the cell temperature 
raises, and accordingly the heat loss in each cell, which only 
can be modeled if the NOCT is considered. Fig. 5(e) depicts the 
maximum available output power (158 W) through C-Si PV 
module used under the ideal conditions of highest rate of solar 
irradiance and no partial shading. Whereas, the true value of 
output power is recorded as 154 W under the NOCT 
consideration (shown in Fig. 5(e´)). A significant error 
estimation of 9.7% (annual average) was noted. 

Fig. 6 illustrates the estimation error trend for the whole 
year, if using the non-NOCT technique and not the proposed 
measurement method described in this research. The estimation 
error increases when less partial shading and a higher rate of 
solar irradiance (G) hits the PV cells. The worst-case estimation 
error occurs in August, and generally during the summer 
season. 

 
Fig. 6. Monthly spectrum of the estimation error. 
 

Fig. 7 depicts the temperature distribution over the module 
tested in August, in which the impact of NOCT has been 
highlighted. Fig. 7(a) presents the module with an open-circuit 
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load connected. In contrast, the module under the proposed 
measurement with a NOCT consideration is shown in Fig. 7(b), 
where an average temperature of 3.6 ̊ C is the difference (error). 
Temperature predictions through an infrared thermometer and 
NTC sensors at an irradiance of 800 W.m-2 are set for the 
simulation. The peak temperature for both heat measurements 
are 53 °C and 52 °C respectively. All the 45 NTC sensors have 
been calibrated to 60 °C prior to the experiment. 

To avoid such estimation error, this study has provided a set 
of non-parametric and parametric correlations with minimum 
error in order to simplify the process of measurement and 
importantly reduce the cost in both primary and post-processing 
predictions for engineers. Spearman’s ρ (rs) and Kendall τ rank 
correlation coefficients methodologies have been computed. 
Unlike the Pearson’s method, the Spearman’s ρ does not need 
an assumption of linearity in the relationship of the defined 
variables [30], which can be calculated using non-parametric 
model for a sample of n size: 

                 ,

cov( , )

.X Y

X Y

X Y
s rg rg

rg rg

rg rg
r 

 
                      (8) 

where ρ is the Pearson correlation coefficient, cov (rgX,rgY) is 
the covariance of the rank variables, and σrgX and σrgY are the 
standard deviations of the rank variables. 

The Kendall τ rank correlation also identifies monotonic 
relationships, which can be defined as: 

    

( )

( )
( , )

0.5 ( 1)

number of concordant pairs

number of discordant pairs
X Y

n n







      (9) 

where concordant means the ranks for both elements agree, that 
is, if both xi > xj and yi > yj or if both xi < xj and yi < yj. On the 
other hand, discordant means, if xi > xj and yi < yj or if xi < xj 
and yi > yj. In an exceptional case, if xi = xj or yi = yj, the pair is 
neither concordant nor discordant. Both correlation methods 
vary between fully opposed (-1) to identical (+1) for a 
correlation, and the interpretations are the same for the 
Spearman’s correlation [30]. 
  

 
Fig. 7. 5 by 9 interpolated heat distribution during peak time with solar 
irradiance of 1000 W.m-2, under S = 0%, where (a) non-NOCT, and (b) NOCT. 

 

Table I presents the non-parametric correlations using 
Spearman’s ρ, and Kendall τ rank with very high significant 
probability of <0.0001. As illustrated, a correlation of 0.9859 
can be injected to the output power estimated values in order to 
extract the true values, which are tested through the proposed 
technique (shown in Fig. 1(b)). As the variation is nearly linear 
during various partial shading rate, therefore, the correlations 
are independent of S. 

TABLE I. OUTPUT POWER CORRELATION BASED ON S RATE 

Partial shading Spearman’s ρ Kendall’s τ Signif probability 

S = 80% 0.9859 0.9458 <0.0001* 
S = 60% 0.9859 0.9458 <0.0001* 
S = 40% 0.9859 0.9458 <0.0001* 
S = 20% 0.9859 0.9458 <0.0001* 
S = 0% 0.9859 0.9458 <0.0001* 

IV.  EXPERIMENTAL VERIFICATIONS 

Experimental measurements and tests are presented to 
verify the validity of the proposed technique of prediction in the 
coast of Barcelona city (Spain). The experimental results have 
been provided using actual total cell temperature estimation and 
maximum power point tracking (MPPT), where a DC-DC 
converter and variable DC load have been employed in a 
designed Hardware-in-the-loop configuration shown in Fig. 8. 

 
Fig. 8. The hardware-in-the-loop configuration designed for experimental 
validation. 

 
The implemented experimental setup is represented in Fig. 

9. The Solar PV module with parameters as listed in Table II, 
has been installed out of the laboratory through approximately 
120 m of cables. A 100 μF filter capacitor which is further 
connected to the SEMITEACH B6U+E1CIF+B6CI converter 
with IGBT switches are used as the interface between the PV 
module and the DC load. A brushless DC motor (MotorSolver 
DCMOT8077), with parameters as listed in Table III, coupled 
with a DC generator with the same parameters are utilized as 
the DC load. By changing the variable resistor connected at the 
DC generator’s terminal, the mechanical load on the DC 
motor’s shaft changes and different loading scenarios can be 
achieved during the cell temperature measurements. The MPPT 
system with an average switching frequency of 5kHz is 
implemented in a MATLAB/Simulink environment and the 
obtained pulses have been sent to the converter through 
dSPACE1104. Load voltage and current are measured with 
LEM LV25-P and LEM LA25- NP voltage and current 
transducers, respectively and they have been sent to the MPPT 
algorithm. A Microchip MCP1406 IC is also utilized at the 
dSPACE 1104 output to regulate the pulse amplitude. 
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Fig. 9. Experimental setup for proposed technique validation. 

 

 
Table IV shows the monthly maximum output power which 

was acquired by the utilized MPPT. The values have been 
experimentally supplied via a resistive load through the 250W 
DC motor-generator setup described earlier. Fig. 11 illustrates 
the total cell temperature estimation under non-NOCT 
(conventional) and NOCT setup considerations (drawn in Fig. 
1(a)-(b)).  

On August 20th 2017 (peak time, sunny day), the cell 
temperature measurement was recorded through the 45 NTC 
sensors technique reported in [31] (as graphed in Fig. 10). The 
impact of this graph relies on error predicting of both the 
measurement techniques, T2 > T1, where T2 deals with the true 
temperature under a condition of full load. The T1 trend 
(conventional) accounts only for the temperature of the  

 
Fig. 10. Experimental cell temperature using non-NOCT and NOCT 
considerations during the peak operation time (20th of August, 2017).  

module’s surface due to the no-load measurement. The 
accuracy of each measurement test is approximately less than 
0.1%. 

TABLE IV. MEASURED MAXIMUM OUTPUT POWER UNDER DIFFERENT RATE 

OF S, AND G=1000W.M-2 

Month Unit S= 80% S=60% S=40% S=20% S=0% 

Jan W 30.372 61.584 92.355 122.420 151.653 

Feb W 30.176 61.202 91.791 121.675 150.729 

Mar W 29.717 60.309 90.471 119.932 148.566 

Apr W 29.322 59.540 89.335 118.432 146.705 

May W 28.727 58.382 87.624 116.173 143.902 

Jun W 27.863 56.698 85.136 112.890 139.829 

Jul W 27.193 55.395 83.210 110.349 136.677 

Aug W 26.992 55.002 82.631 109.584 135.728 

Sep W 27.930 56.828 85.328 113.143 140.143 

Oct W 28.860 58.640 88.005 116.676 144.526 

Nov W 29.520 59.925 89.904 119.183 147.636 

Dec W 30.372 61.584 92.355 122.420 151.653 

 

 
Fig. 11. IR thermo-graphs of C-Si PV module under grid-connected condition 
in the open rack. a) IR thermo-graphs of module under grid-connected 
(NOCT), and b) and the open-circuit (non-NOCT). 

 
IV. CONCLUSION 

In this research, a new technique of measurement has been 
studied without any assumptions, in which a NOCT 
consideration was accounted for under different ranges of 
partial shading effects during the whole year. To minimize the 
error of the output power prediction, both techniques of 
measurements, conventional and proposed were examined 
through equal conditions to present the difference (error) 
between them. Afterwards, the impact of the proposed 
technique has been modified into the output results of the 

 
TABLE II 

PV MODULE PARAMETERS 

Parameter Value 

open circuit voltage (Voc) 21.06 V 

short circuit current (ISC) 8.62 A 

MPP voltage (VMPP ) 17.09 V 

MPP current (IMPP) 7.62 A 

number of cells 36 (4×9) 

 
TABLE III 

DC LOAD PARAMETERS 

Parameter Value 

Rated Power 250 W 

Maximum Voltage 42 V 

Maximum Speed 4000 rpm 

No-load Current 0.97 A 

Voltage Constant (Ke) 0.0087 V/rpm 

Armature Resistance (Ra) 3.9 Ω 

Armature Inductance (La) 0.665 mH 
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conventional technique via non-parametric correlations, known 
as the Spearman’s ρ, and Kendall τ rank methods. This paper 
offers these correlations under different rates of partial shading 
to reduce the cost and complexity in design. The contribution 
of this investigation can be used by engineers in prediction 
studies with less than 0.1% error, regardless of the assumptions 
and considerations of which they applied for their 
measurements. The measurements data including current, 
voltage, and output power have been experimentally verified 
where the proposed measurement technique brought the true 
estimation because of full environmental considerations such as 
cell temperature, and partial shading.  
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