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Abstract In this paper, a CMOS wide-band second-order voltage-mode all-
pass filter as a time delay cell is proposed. The proposed all-pass filter is made
up of solely two transistors as active elements and four passive components.
This filter demonstrates a group delay of approximately 60 ps within a band-
width of 5 GHz, achieving maximum delay-bandwidth-product (DBW). The
proposed circuit is highly linear and has an input-referred 1-dB compression
point P1dB of 2 dBm. The power consumption of the proposed circuit is only
10.3 mW. On the other hand, an active inductor is employed in the all-pass
filter instead of a passive RLC tank, thereby the three passive components are
eliminated, in order to tune the time delay and improve the size. In this case,
even though the power consumption increases, the time delay can be controlled
across an improved bandwidth of approximately 10 GHz. Moreover, the cir-
cuit demonstrates a 1-dB compression point P1dB of 18 dBm. The proposed
all-pass filter is simulated in TSMC 180-nm CMOS process parameters.
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1 Introduction

All-pass filters as delay stages have a large variety of applications and have
been utilized in many different radio frequency (RF) and phase shift circuits
like synchronizing ultra-wideband (UWB) impulse radios with locally gener-
ated reference pulses, equalizers, and analog/RF beamformers [1–4]. There are
several both current- and voltage-mode all-pass filters in the literature [5–7],
using one or more operational voltage or current amplifiers. Whereas, these
filters suffer from low bandwidth due to the presence of high impedance nodes
and have therefore low operating frequencies.

All-pass-filter-based time delays demonstrate better performance in terms
of area-efficiency and loss than approaches relying on transmission lines or
lumped LC delay lines, since these circuits occupy larger areas and are imprac-
tical for on-chip implementations. As a consequence, lots of delay stages, e.g.,
wide-band RF analog beamformers, realized by using all-pass-filter-based delay
approximations, have been recently studied [8,9]. Many reported delay stages
are normally realized by cascading first-order all-pass filters, e.g., gm-(R)C
filters, and these circuit topologies, however, suffer from limited bandwidths
about up to 2.5GHz [9, 10]. As a suitable alternative, second-order all-pass
filters can therefore be main components for realization of delay structures
with nanosecond delay. Generally, high-order rational all-pass filters can be
divided into several second-order all-pass filters with complex-conjugate poles
and first-order all-pass filters. Most conventional reported wide-band second-
order all-pass filters employed one or two passive inductors which are bulky,
occupying a large area [11–14]. Among all, only the filter in [13] was capable of
tuning time delay by using varactor diodes, since tunability is a good feature
of signal processing and communication circuits, e.g., in phase shifters and
beamformers.

This paper introduces a CMOS RF second-order all-pass filter which uti-
lizes an active inductor, thereby not only time delay can be tuned but also the
overall size will be reduced considerably compared with the conventional cir-
cuits. The proposed all-pass filter employs Padé approximation, approximating
accurately to an ideal delay and demonstrating a flat group delay through a
wide frequency range [11,12]. To achieve maximum delay-bandwidth-product
(DBW), a second-order all-pass filter using Padé technique is thus a better
candidate than the cascade of two first-order all-pass filters for realization of
a second-order delay circuit.

This paper is structured as follows. Section 2 presents the proposed all-
pass filter and determines theoretical analyses. In Sect. 3, the tunability of the
proposed second-order all-pass filter is provided. Simulation results are given
in Sect. 4. Section 5 provides conclusions.
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Fig. 1 Proposed second-order voltage-mode all-pass filter

2 Proposed second-order all-pass filter

The ideal transfer function of a second-order all-pass filter utilizing Padé ap-
proximation is expressed by

H(s) =
s2 − ωn

Q s+ ω2
n

s2 + ωn

Q s+ ω2
n

(1)

where ωn is the natural frequency and Q is the quality factor of the all-pass
filter. By changing the values of ωn and Q, the position of poles and zeros in
the complex plane is controlled and determined.

2.1 Circuit design

The proposed wide-band second-order all-pass filter as a time delay cell is
indicated in Fig. 1. Assuming that gm1,2 � gds and ignoring the parasitics
of the transistors, the transfer function of the proposed second-order all-pass
filter can be defined as

Vout
Vin

(s) = −RL(gm1R1 − 1)

RL +R1
·
s2 − 1

C

(
gm1+gm2−gm1gm2R1

gm1R1−1

)
s+ 1

LC

s2 + 1
C (gm1 + gm2)s+ 1

LC

(2)

where gm1 and gm2 are the transconductances of M1 and M2, respectively. If
the following conditions are satisfied:

gm1R1 = 2 (3a)

RL � R1 (3b)

gm1 + gm2 � gm1gm2R1 (3c)

an all-pass structure will be realized with the same frequencies of the left-
plane poles and right-plane zeros, resulting in twice the phase and group delay
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responses of an all-pass circuit. Therefore, the transfer function in (2) can be
rewritten as

Vout
Vin

(s) ∼= −
s2 − 1

C (gm1 + gm2)s+ 1
LC

s2 + 1
C (gm1 + gm2)s+ 1

LC

. (4)

From (4), the natural frequency and quality factor of the proposed second-
order all-pass filter are determined, respectively, as

ωn =
1√
LC

(5)

Q =
1

gm1 + gm2

√
C

L
. (6)

The voltage gain of the all-pass filter is −1 at low frequencies, as the
capacitor C and inductor L are considered as an open-circuit and sort-circuit,
respectively. At high frequencies, the capacitor C shorts the source terminal
of M1 to ground and, hence, a voltage gain equal to −1 is obtained again. The
pole/zero frequencies and phase response of the second-order all-pass filter can
be expressed, respectively, by

|ωp1,2| =|ωz1,2| =
L(gm1 + gm2)±

√
L2(gm1 + gm2)2 − 4LC

2LC
(7)

ϕ(ω) = −2 tan−1

[
L(gm1 + gm2) · ω

1− LCω2

]
(8)

and, thus, group delay response is given as

τg(ω) = −∂ϕ(ω)

∂ω
= 2L(gm1 + gm2) · 1 + LCω2

(1− LCω2)2 + ((gm1 + gm2)Lω)
2 (9)

where ω is the angular frequency. From (9), note that, the group delay is equal
to 2Lgm1 at low frequencies and gm2 (i.e., R2 = 1/gm2) will be neglected, since
the inductor L shorts the source of M1 to ground at DC. At high frequencies,
the resistor R2 can be regarded as a source degeneration resistor, contributing
to the linearity of the circuit.

When Q < 0.5, the all-pass filter has two real poles in the left-half plane,
while for Q > 0.5 a complex conjugate pole-pair appears. When Q = 1/

√
3,

the maximum flat delay will be achieved and Padé approximation is matched
and, therefore, DBW will be guaranteed [11]. It can be noted that, the circuit
can achieve larger delay over a wider bandwidth by choosing appropriate gm,
L, and C (low transconductance and small values of L and C) compared to the
gm-(R)C filters, since the natural frequency of the proposed filter is 1/

√
LC.
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Fig. 2 (a) Active inductor and, (b) and (c) its equivalent models

2.2 Non-ideality consideration

We will now consider the effects of parasitic capacitors Cgs and Cgd on the per-
formance of the proposed all-pass filter in Fig. 1. The parasitic pole stemmed
from Cgd is almost equal to 1/R1Cgd. From (3), the value of resistor R1 should
be small. Hence, the effect of Cgd can be neglected, as its parasitic pole will be
far beyond the dominant poles/zeros. Therefore, Cgs can be only assessed for
the evaluation. Considering finite output impedance of M1 and Cgs which af-
fect the pole/zero frequencies and DC-gain, the transfer function of the second-
order all-pass filter is given as

Vout
Vin

(s) = −CRL(gm1R1 − 1)− CgsRL(1 +R1gds)

(C + Cgs)(R1 +RL + gdsR1RL)
·

s2 −
[
(gm1+gm2+gds)(1+R1gds)−(gm2+gds)(R1(gm1+gds))

C(gm1R1−1)−Cgs(1+R1gds)

]
s+ gm1R1−1

LC(gm1R1−1)−LCgs(1+R1gds)

s2 +
[
(gm1+gm2+gds)(R1+RL)+gm2gdsR1RL

(C+Cgs)(R1+RL+gdsR1RL)

]
s+ 1

L(C+Cgs)

(10)

where gds is the output conductance of M1. If gm1,2 � gds and the conditions
in (3) are satisfied, the transfer function can be rewritten as

Vout
Vin

(s) ∼= −
C − Cgs

C + Cgs
·
s2 − gm1+gm2

C−Cgs
s+ 1

L(C−Cgs)

s2 + gm1+gm2

C+Cgs
s+ 1

L(C+Cgs)

. (11)
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6 Seyed Rasoul Aghazadeh et al.

As it can be observed, for C � Cgs, (4) and (11) will be the same. Fur-
ther analysis shows that Cgs creates variations on the gain and group delay
responses at high frequencies. Whereas, these variations can be adjusted by
varying the resistor R2 in the proposed all-pass filter. This will be discussed
in Sect. 4.

3 The tunability of the proposed second-order all-pass filter

An active inductor can be an attractive option for tuning time delay in the
proposed second-order all-pass filter, since they offer a variety of advantages,
e.g., small chip area, large and tunable inductance value and self-resonant
frequency, and also compatibility with standard CMOS technology [15].

3.1 Active inductor

Fig. 2(a) shows a one-port grounded active inductor [16, 17], which is used in
the proposed second-order all-pass filter. Assuming for simplicity that gm(ind) �
gds(ind), the input admittance of the active inductor, i.e., Yind(= 1/Zind), can
be easily obtained by using its small signal equivalent circuit shown in Fig. 2(b)
as

Yind =
sCgs + gm(ind)

sRCgs + 1
=

1

R
+

1

s
R2Cgs

Rgm(ind)−1 + R
Rgm(ind)−1

(12)

where the pole and zero frequencies of the input admittance are ωp = gm(ind)/Cgs

and ωz = 1/RCgs, respectively. The active inductor exhibits an inductive be-
havior in the frequency range of ωz < ω < ωp.

The input admittance achieved in (12) can therefore be modeled by a
parallel RL circuit, which is shown in Fig. 2(c) as

Y
′

ind = GP +
1

sL+RS
(13)

where GP = 1/RP is determined as parallel and RS as series resistance with
inductor L. From (12) and (13), the parameters of the RL equivalent circuit
can be expressed by

RP = R (14a)

L =
R2Cgs

Rgm(ind) − 1
(14b)

RS =
R

Rgm(ind) − 1
. (14c)

Note that, the RP is here a passive resistor which by varying its value, the
L and RS will change accordingly as well. Moreover, the values of L and RS

will change with the frequency, since they are active elements.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Title Suppressed Due to Excessive Length 7

Fig. 3 Proposed second-order voltage-mode active inductor-based all-pass filter

3.2 Proposed all-pass filter employing an active inductor

Fig. 3 illustrates the proposed all-pass filter exploiting an active inductor
in order to tune the delay, and to that end, we replaced the active induc-
tor shown in Fig. 2(a) with the parallel RLC circuit in Fig. 1. Capacitor
CP = Csb1 + Cdb2 + Cgs3 + Csb3 is the total parasitic capacitances at the
source terminal of M1, depending on MOSFET technology, transistor size,
and frequency. Therefore, the overall area can be improved, as there is not
any passive capacitor at this node. The new transfer function of the proposed
circuit is determined by

Vout
Vin

(s) = −RL(gm1R1 − 1)

RL +R1
·

s2 −
[
gm1RPL+L+CPRPRS−gm1R1(L+CPRPRS)

LCPRP (gm1R1−1)

]
s+ (gm1R1−1)(RP+RS)−gm1RPRS

LCPRP (gm1R1−1)

s2 +
[
gm1RPL+L+CPRPRS

LCPRP

]
s+ gm1RPRS+RP+RS

LCPRP

.

(15)

If L+ CPRPRS � gm1RPL, gm1RS � 1, and conditions in (3a)-(3b) are
satisfied, the transfer function can be rewritten as

Vout
Vin

(s) ∼= −
s2 − ( gm1

CP
)s+ 1

LCP

s2 + ( gm1

CP
)s+ 1

LCP

(16)

which is nearly the same as that in (4).

4 Simulation results

The proposed second-order all-pass filter is designed in 180nm TSMC CMOS
parameters and simulation is performed using HSPICE and Virtuoso Cadence.
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Fig. 4 Gain and phase responses of the proposed second-order all-pass filter

Fig. 5 Group delay response of the proposed second-order all-pass filter

We will simulate both the proposed second-order all-pass filters depicted in
Figs. 1 and 3, without and with active inductor respectively, to demonstrate
their overall performance. First, the proposed circuit shown in Fig. 1 is simu-
lated with gm1 = 31.5mA/V, gm2 = 3.7mA/V, and Q = 1/

√
3 (for maximum

DBW). This proposed filter consumes only 10.3mW power.

In Fig. 4 the gain and phase responses of the second-order all-pass filter
(without active inductor) are shown. The gain roll-off is due to the existence
of parasitic effects of the transistors and also due to the fact that the DC gain
of the all-pass filter is less than unity (refer to (2)). The group delay response
of the proposed all-pass filter is shown in Fig. 5, indicating a flat group delay
equal to 59.8ps over an approximately 5GHz bandwidth, which is very close
to the theoretical value in (9) with an error of about 11.5%. Fig. 6 shows
the gain and group delay responses of the second-order all-pass filter under
different values of R2(= 1/gm2). It is obvious that by varying gm2, flat gain
and group delay responses are achieved at higher frequencies, and implies that
gm2 is proportional to the group delay (refer to (9)).

The input-referred noise response of the proposed second-order all-pass
filter is shown in Fig. 7, demonstrating an input-referred noise of around
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Fig. 6 Gain and group delay responses of the proposed second-order all-pass filter for
different values of R2 = 1/gm2

Fig. 7 Input-referred noise response of the proposed second-order all-pass filter

Fig. 8 Input-referred P1dB and input-referred IIP3 responses of the proposed second-order
all-pass filter
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Table 1 The performance summary of the simulated second-order all-pass filter without
active inductor

Technology Mode Number of L Bandwidth (GHz) Delay (ps) P1dB (dBm) IIP3 (dBm) Power (mW/V)

180 nm Voltage 1 5 60 2 13.5 10.3/1.8

Fig. 9 Simulated inductance under different values of RP in active inductor

Fig. 10 Pre- and post-layout simulation results for (a) gain response and (b) group delay
response of the proposed second-order all-pass filter with active inductor

1.25nV/sqrt(Hz) by the frequency of 3GHz. The input-referred 1-dB com-
pression point (P1dB) and input-referred third-order intercept point (IIP3)
responses of the proposed second-order all-pass filter are shown in Fig. 8. The
input-referred P1dB and IIP3 are approximately 2dBm and 13.5dBm at 5GHz,
respectively. The main reason of this high linearity of the proposed all-pass
filter is the high drain current of M2 at the price of higher power consumption.
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Fig. 11 Gain and group delay responses of the proposed second-order all-pass filter with
active inductor for different values of RP (50Ω ∼ 1.85KΩ)

Table 1 summarizes the performance of the proposed second-order all-pass
filter shown in Fig. 1.

Finally, the proposed all-pass filter using an active inductor shown in Fig. 3
is simulated with gm1 = 18mA/V and gm2 = 117mA/V. The transconduc-
tance of the active inductor (gm2 = gm(ind)) is considered large enough to
lower down the values of L and RS (refer to (14)), improving the linearity of
the circuit, however the overall power consumption will increase. The active
inductor-based all-pass filter consumes around 33.3mW power from a 1.8V
supply voltage. The value of resistor RS (see Fig. 2) is very small and, there-
fore, can be ignored. From (14c) and RP = 250Ω, we find RS = 8.8Ω. To
find the value of active inductance L, we simulated only the active inductor
(the part inside the dotted box) shown in Fig. 3 with the same parameters
required as the entire circuit. Fig. 9 shows this simulated inductance L for
different values of RP .

Pre- and post-layout simulation results for the gain and group delay re-
sponses of the proposed active inductor-based all-pass filter with RP = 250Ω
are shown in Fig. 10, indicating small differences in the obtained responses.
As shown, the value of group delay for the post-layout simulation is nearly
23.4ps. The gain and group delay responses of the proposed circuit under dif-
ferent values of RP (RP is swept between 50Ω ∼ 1.85KΩ with the steps of
200Ω), which are based on typical case are shown in Fig. 11. As it can be
seen, delay can be tuned (fine-tuned) over an improved frequency range up to
around 10GHz by varying the passive resistor RP . The fine-tuning can be eas-
ily performed by a binary weighted resistor bank (switched-resistors) instead
of the RP in Fig. 3. In Fig. 12, the post-layout input-referred noise response
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Table 2 Performance comparison between wide-band second-order all-pass filters

Reference Technology Mode Number Bandwidth Delay (ps) P1dB (dBm) IIP3 (dBm) Power

of L (GHz) (mW/V)

[11]/Sim. − Voltage 2 10 60 − − −
[12]/Sim. 130 nm Current 1 10 60 −1.5 − 16.5/1.5

[13]/Meas. SiGe2RF HBT Voltage 2 3−10 75 −1 − 38.8/2.5

[14]/Meas. 130 nm Voltage 1 6 55 −5.5 2 18.5/1.5

[18]/Meas. 180 nm Voltage 0 3−12 6 14.6 22.6 12/1.8

This work 180 nm Voltage 0 10 Fine-tuning 18 22.7 33.3/1.8

/Post sim.

Fig. 12 Post-layout input-referred noise response of the proposed second-order all-pass
filter with active inductor

Fig. 13 Post-layout input-referred P1dB and input-referred IIP3 responses of the proposed
second-order all-pass filter with active inductor

of the proposed all-pass filter is shown, which indicates an input-referred noise
of nearly 2.1nV/sqrt(Hz) by the frequency of 1GHz, with RP = 250Ω. The
post-layout input-referred P1dB and IIP3 responses of the proposed circuit
are shown in Fig. 13. The input P1dB and IIP3 are 18dBm and 22.67dBm at
500MHz with RP = 250Ω, respectively.

Table 2 compares the proposed second-order voltage-mode active inductor-
based all-pass filter with some other reported wide-band second-order circuits.
As it can be observed, the proposed all-pass filter demonstrates a higher lin-
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Fig. 14 Monte Carlo simulation results for (a) gain response and (b) group delay response
of the proposed second-order all-pass filter with active inductor

Fig. 15 Corner analysis results for group delay response of the proposed second-order all-
pass filter with active inductor

earity than the other filters. Moreover, there is not any passive inductor, which
is bulky and area-consuming, in the proposed filter compared to the circuits
using one or two passive inductors. It can also be mentioned that the pro-
posed filter is capable of achieving more delay over a wider frequency range
(see Fig. 11) than the filter in [18], however at a higher power consumption.

For further analysis, Monte Carlo and corner analyses are carried out on
the circuit in Fig. 3 and results are shown in Figs. 14 and 15 respectively, with
RP = 250Ω. The Monte Carlo simulation results are performed with a Gaus-
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Fig. 16 Group delay responses of the proposed second-order all-pass filter with active
inductor for (a) different supply voltages and (b) different temperatures

Fig. 17 Layout of the proposed second-order all-pass filter with active inductor

sian distribution and 50 iterations, which are based on typical case. In this case,
maximum variation on the group delay of the proposed all-pass filter over the
frequency band due to the mismatch is just 4.8%. Since process, voltage, and
temperature (PVT) variations may affect the gain and thus the group delay
response, the proposed active inductor-based all-pass filter is simulated under
these variations. Fig. 16 indicates the group delay responses under different
supply voltages and temperatures, with RP = 250Ω. As shown, the obtained
responses due to PVT have small differences. Fig. 17 shows the layout of the
proposed second-order voltage-mode active inductor-based all-pass filter. The
core area is approximately 32µm×59µm.
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5 Conclusion

This paper presents a tunable wide-band second-order voltage-mode all-pass
filter as a time delay cell. The proposed all-pass filter shows a flat group delay
of 60ps over a 5GHz bandwidth, which achieves maximum delay-bandwidth-
product (DBW). This filter consumes only 10.3mW power and proves a higher
linearity than the other published second-order all-pass filters using just one
grounded inductor. Additionally, an active inductor is utilized in order to con-
trol the time delay of the proposed second-order all-pass filter and to decrease
the overall area. In this condition, the proposed active-inductor-based all-pass
filter consumes around 33.3mW power, while its time delay is varied for dif-
ferent values of tunable resistor in the active inductor. The proposed filter
achieves an input-referred 1-dB compression point P1dB of 18dBm.
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