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Abstract— This paper proposes a method to predict pressures
in all nodes of a water distribution network (WDN) by Gaussian
process regression (GPR) from pressure measurements in a
subset of selected nodes. The pressure sensors are placed in
the nodes where, together, they capture the maximum pressure
variance and also have a minimum sensitivity to measurement
noise. As a case study, the proposed method was tested on a
dataset obtained from simulations with the hydraulic model of
the Hanoi WDN. Using only three pressure sensors, the GPR
estimation error in the pressures of the unmeasured nodes are
comparable to the error due to measurement noise in physical
pressure sensors.

I. INTRODUCTION

Drinking water is one of the critical resources in modern
life. Since water processing from its collection to its distribu-
tion to final consumers is generally expensive, it is important
to manage it efficiently, in order to reduce economic losses
and avoid shortages of this vital resource. The assurance of
water quality and the reduction of losses due to leaks in the
pipes of distribution systems are two of the main problems
related to water management [1]. Concerning leakage losses,
the volume of water leaked is around 30% in most cities;
however, in some towns such as Tuxtla Gutiérrez (Mexico),
it reaches over 60% [2]. Controlling leaks is a challenging
task due to the difficulty of locating them since leaks are
usually not visible directly. However, pressure variations in
the network caused by leaks provide evidence that can help
determine them [3]-[5].

In order to facilitate monitoring and control of water dis-
tribution networks (WDNs), these are often divided into sub-
networks called district metered areas (DMAs) [6]. This sec-
tioning in small systems with at most 3 000 nodes facilitates
the isolation and control of leaks [7]. Nevertheless, in the best
cases, the available instrumentation is limited to monitoring
the inflow/outflow of the DMA and pressures of the inlet
node and the critical node where the minimum pressure of the
DMA is recorded. These few pressure measurements are not
sufficient for the precise location of leaks, so it is necessary to
add a higher number of sensors at other points in the network
[4], [8], which is not possible due to economic limitations.
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Since the monitoring of the pressure on all nodes of the
network is technically and economically unfeasible, several
methods have been proposed to select the optimal positions
to place the pressure sensors [9]-[12]. Although some leak
location methods don’t requiere the knowledge of all the
node pressures, e.g. classifiers and other machine learning
techniques [13]-[16], it is also essential to estimate the
pressure in sensor-free nodes, which could help to determine
if a leak or other failure causes that a pressure fall below the
minimum or exceed a tolerable value.

This problem has been studied in [17] and [18] where
the authors proposed the calculation of the pressure in the
non-sensed nodes using Kriging interpolation and data of
the hydraulic topology of the network. Now, in this paper,
a method that calculates the pressures in unmeasured nodes
based on only statistical dependence between node pressures
is proposed. An argument supporting this proposal is the
fact that pressures at different nodes of a WDN are highly
correlated in leak and non-leak scenarios (see Fig. 1). This
was confirmed with a principal component analysis, which
reveals that about 85% of the pressure variance on the ana-
lyzed network can be explained with only the first principal
component, which proves the high correlation between all
the pressures. This statistical dependence suggests directly
using measured pressures to estimate unmeasured pressures,
and has motivated this work.

In this paper, a method is proposed to predict the un-
measured node pressures in WDNs, from a specified set of
pressure sensors placed in nodes in such a way the maximum
pressure variance is captured. These pressure variations can
be due to leaks and changes on demand in the consumption
nodes throughout the day, among other causes. The unmea-
sured pressures are estimated from regression models with
Gaussian processes, which can be seen as virtual sensors that
provide an optimal unbiased estimate that, as will be shown,
have an estimation error comparable to the error due to the
measurement noise in a physical pressure sensor.

The paper is organized as follows. Section II presents the
mathematical basis for fitting the GPR models that estimate
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Fig. 1. Evolution of node pressures in a sector of Madrid WDN. A leak

occurs at node 50 from time ¢ = 24 h. The test sector consists of 312 nodes,
but only the pressures in five nodes were plotted.

the node pressures. Section III shows the results of applying
the GPR models to estimate pressures in Hanoi WDN,
which is used as a case study. Finally, in Section IV, some
conclusions are presented, as well as the direction that the
research that motivated the presentation of this paper will
take.

II. FOUNDATION AND METHODOLOGY

This section describes the Gaussian process regression
(GPR) and its application to the prediction of pressures in
sensor-free nodes. First, the Gaussian process is defined;
Subsequently, it describes how to perform regressions with
Gaussian processes; Finally, a method is proposed to estimate
unmeasured pressures in a WDN using GPR.

A. Gaussian process

Gaussian processes (GPs) are data-driven machine learn-
ing models that have been used in regression and clas-
sification tasks. The GP provides a mechanism to make
inferences about new data from previously known data sets.
By modeling the data as Gaussian distributions, it is possible
to make an estimation of new data (predictions) using the
mean of these distributions. In addition, they also offer a
measure of the uncertainty in the forecasts from the variance
of the data distributions. The following description is limited
to what is required for this work. A detailed and friendly
explanation of GP and its applications for learning and
control can be found in [19].

A GP is defined as a collection of random variables where
any finite subset of these variables has a normal (Gaussian)
multivariate distribution. Formally: If {f(x),x € R?} is
a GP, then given n observations xi,Xso,...,X,, the joint
distribution of the random variables f(x1), f(x2), ..., f (%)
is Gaussian. A GP is defined by the functions that determine
its mean m(x) and its covariance k(x,x’):

B(f(x)) =m(x) (D
E ([£(x) = m(0)] [f(x) = m(x)]") = k(x.x) @)

Unlike normal distributions over vectors that are character-
ized by a finite number of parameters, usually a mean g and

a covariance 3, Gaussian processes are not parametric distri-
butions, but they are considered distributions over functions
in an infinite-dimensional vector space (often called Hilbert
space). The function f : R¢ — R that characterizes a GP is
denoted by

f(x) ~ GP(m(x), k(x, x')). (©)

In most GP applications, the mean function m(x) is
assumed to be zero, and the covariance function k(x,x’)
is selected according to the context or problem. Thus, for
example, the polynomial kernel is frequently used in classi-
fication problems with many dimensions (d > 1), while the
squared exponential kernel is frequently used in regression
problems:

k(x,x') = 0]20 exp(—(x — x’)T(x — x’)/(2al2)) , @

where oy and o; are kernel parameters, which are often
called hyperparameters and grouped in a vector 8 = [0, oy].
Since the regression reliability is dependent on how well the
covariance function is selected, if its hyperparameters are
not chosen sensibly, the result is nonsense. The covariance
function is often written as k(x,x’|0) to indicate its de-
pendence on hyperparameters 8. A compendium of the most
used kernels in applications can be found in [20]-[22]. In the
proposal presented, a squared exponential function is used.

B. Gaussian process regression

GPR is an application of GPs to infer (predict or estimate)
values of variables that are indexed in time (e.g. Kalman
filter), in space (e.g. Kriging), or in any other dimension
not necessarily space-time but that has a useful meaning
in applications. In regards to prediction, GPR provides an
optimal unbiased estimate. It is optimal because minimizes
the variance of estimation errors, and unbiased because it
ensures that the mean of estimation errors towards zero.
In the context of Machine Learning, GPR uses supervised
learning and a measure of the similarity between points (the
covariance function) to predict response for input points not
included in the training data.

A GPR model is constructed from a training dataset
{(xs,9:);1 = 1,2,...,n}, where x; € R? and y; €
R. In this dataset, x; are known values of the predictor
variables (features), while y; are the desired response for the
corresponding inputs x;. The training dataset is used to fit
the GPR model, which consists of tuning the parameters and
hyperparameters of the model. Then, the fitted GPR model is
used to predict the value of the response variable ¥,y given
a new input vector Xpey.

In classical linear regression, the prediction model is of
the form

y=xB+e, )

where € ~ N(0,0?). The error variance o2 and the coeffi-
cients 3 in (5) are estimated from the data. In a way similar to
(5), GPR explains the response y by means of the following
model:

h(x)"8 + f(x), (6)



where f(x) ~ GP(0, k(x,x")). Equation (6) expresses that
the data is close to a lineal model with the residuals being
modeled by a GP. The functions h(-) are used to project
the original feature vector x € R? into a new feature vector
h(x) € RP, and B € RP is the vector of basis functions
coefficients. The basis functions h(-) are proposed looking
for the GPR model to fit the data better than the standard
linear model, first projecting the inputs in a high-dimensional
space and then applying the linear model in this space instead
of directly on the inputs themselves. Since the projections
are fixed functions (i.e. independent of 3), the model is still
linear in the parameters and, therefore analytically tractable
[23]. When fitting the model, it must be optimized over
the parameters 3 jointly with the hyperparameters 6 of the
covariance function.

In order to create the GPR model, one latent variable f(x;)
is defined for each observation x; in the training set, so that
a response instance y; can be modeled as

Py | f(xi),xi) ~ N (yi | h(x:) "B+ f(x:),0%), (D)

where o2 is the noise variance. Like 3, o2 is fitted in the
training process.

Using a more compact notation, the probability distribu-
tion of the response (7) and the corresponding Gaussian pro-
cess, given the training data, can be written in the following
matrix form:

P(y|f,X) ~N(y|HB +f,0°L,) 8)
P(f]X) ~ N(f]0,K(X,X)) )
where
x{ 1 h(x)" f(x1)
x_ @ ="l m= h(><.2)T f= f(}.(z) ,
) n h(xn)T £ ()

and K (X, X) denotes the matrix containing the covariances
between all input pairs of the training set, for a given set
of hyperparameters 6, i.e. K, ; = k(x;,x;). This covariance
matrix is also denoted by K(X,X|8) to indicate its de-
pendence on the hyperparameters. Both the hyperparameters
(0), implicitly included in (9), and the parameters (3 and
o?) included in (8), are calculated offline during the training
process. After this, the GPR model fitted to the training data
(X,y) can be used online for predictions with new input
data.

In order to estimate 3, @ and ¢? of a GPR model,
the likelihood P(y|X) is maximized as a function of
those parameters and hyperparameters. To facilitate the op-
timization process, the logarithm of the likelihood is used:
(3,0,0?) & log(P(y | X,3,0,0%)). In [23] it has been
shown that the log-likelihood is given by

(B,0,0% = f% log (|K(X,X[60) +0°L,|) — glog%rf

Ly —HB)T (K(X.X|0) +0°L,) " (y — HB).

5 10)

From (10), the parameters and hyperparameters of the
GPR model are estimated by

3.0,52 = (8,8, >
I@’ 70 arglglleaXQ (ﬁ? ’U )

k) )o-

(1)

using a multivariate optimization algorithm (e.g. conjugate
gradients, Nelder-Mead, etc.) on (10).

Once the parameters and hyperparameters of the GPR
model are known, it is possible to make predictions with it,
this means estimating the response ynew for each new input
Xpew- 10 make predictions, it is necessary to know the prob-
ability density P(Ynew | ¥, X, Xnew). From the definition of
conditional probability, and assuming that each response y;
only depends on the feature vector x; and its corresponding
latent variable f(x;), it can be shown [23] that the density of
the response Ynew at a New point Xew, given y, X, is given
by

P(ynewa Yy | X, Xnew) _
P(y | X, Xnew)

N(ynew ‘ h(XneW)Tﬁ + lu’? O't?ew + E) ?

P(ynew | Yy, X7 Xnew) =
(12)
where
—1
1= Kk(%pew, X)T (K(X,X) +0°L,)  (y—HB), (13)
Y= k(xneW7 Xnew)_
K(Xpew, X)T (K(X, X) + 0°1,) " k(xpew; X),  (14)

and k(xpew, X) is a vector containing the covariances be-
tween the new input vector and all input vectors of the
training set.

From (12) and (13), the expected value of ¥y, for the new
feature vector X,y iS given by

E(ynew | y, X, Xpew /37 0, 02) =

h(xnew)T/B + Z aik(xneWu Xi)7
=1

(15)

where

a = (K(X,X) +0°L,) " (y — HB). (16)

Equations (15) and (16) that allow to statistically infer the
response Ynew fOr an input vector X, are the same as the
kriging equations used in geostatistics [24], but in these the
spatial coordinates are taken as predictor variables.

The computation of predictions using GPR is mainly
determined by the calculation of . The complexity of this
computation is O(n3), so the computational cost is high
for large values of n [25]. Some techniques to reduce the
computational cost by approximating « are discussed in [22]
and [26].

C. Estimation of unmeasured pressures using GPR

The proposed method for estimating unmeasured pres-
sures in a WDN requires a matrix of pressure measure-
ments at the N nodes of the network. This matrix, P =
[P1,Ps,..., Py, is constructed with measurements of the
node pressures for different operating conditions (at a dif-
ferent time of day or different node demands), with leaks



and without leaks. If a well-calibrated hydraulic model of
the network is available, then, this information can be used
to generate P through an extended-period simulation.

A subset of nodes is selected as “measured nodes”, whose
pressures will be used as the predictor variable x defined
in the previous subsection. The pressures on the remaining
nodes act as response variables y, so a GPR model will be
created for each node. Thus, for a network with /N nodes and
d sensors, a total of N — d models will be built, which will
function as virtual sensors to estimate unmeasured pressures.
Correctly, the pressure matrix P is rearranged and partitioned
as follows:

P* =[x(1),...,x(d),y1), ..., y(N —d)]

Although any subset of node pressures can be used as
predictor variables, it is recommended to select the nodes that
capture the maximum pressure variance in the entire network.
This is due to the fact that the pressure variations contain
the information useful for detect leaks and other failures in
the WDN. The selection of the predictor variables (nodes
with sensors) is performed through a principal components
analysis (PCA), discarding the node pressures that in PCA
are mainly mapped to the last components, because they
do not capture the essential variability of the hydraulic
phenomenon, but instead capture mostly noise [27]. In this
way, a robust predictor selection is obtained.

The computations of the training process to fit the pa-
rameters and hyperparameters of GPR models, as described
from (7) to (11), and the computations to estimate the kth
pressure Py = y(j)new for j = 1,..., N — d, as described
from (12) to (16), were implemented in MATLAB using the
built-in matrix operations and subroutines of the Statistics
and Machine Learning Toolbox.

Because statistical inference is used to estimate the node
pressures, in addition to the expected pressure P (mean
of the Gaussian distribution) it is possible to determine
a confidence interval for the prediction. From elementary
statistics, it is known that the amplitude of the confidence
interval is determined by the standard deviation (square root
of the variance) of the probability distribution. Thus, for
example, the 95% confidence interval is given by

A7)

Py — 1.96s < P, < Py, + 1.96s, (18)

where s is the standard deviation in P(ynew | Y, X, Xnew)
according to (12) and (14). So GPR models not only allow
to predict the non-measured pressures, they also allow to
estimate the prediction uncertainty.

III. RESULTS

The prediction of node pressures using GPR models, as
described in the preceding section, was tested using a dataset
obtained by simulation with the hydraulic model of Hanoi
WDN [28]. This network has 31 consumption nodes and
34 pipes organized in 3 loops. No pumping facilities are
considered since only a single fixed head source at elevation
of 100m is available. This WDN was simulated using
the EPANET package [29] through the EPANET-MATLAB

100m %I
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Fig. 2. The Hanoi WDN. Only in nodes marked with “PT” are sensors
placed to measure the pressures used as predictors in the GPR models.

Toolkit [30]. To construct the pressure matrix P, the network
was first simulated under leak-free nominal conditions and
then with leaks of {1,2,...,10} 1/s in each of the 31 nodes,
creating a 311 x 31 matrix.

Using PCA, it was determined that if only three sensors
are available, they should be placed in the nodes numbered
12, 21 and 27, for Hanoi WDN. These positions are marked
with “PT” on the network map in Fig. 2. If a greater
number of predictor variables are desired, to improve the
accuracy of the predictions with the GPR model, through
PCA it was determined that the ten most suitable nodes
to sense the network pressures are, in order of importance,
{21,12,27,16,1,13,31,17,26,20}. From only the three
predictor variables Pjo, P»1 and Ps7, using GPR models for
the pressures of the remaining 28 nodes it was possible to
reconstruct the entire pressure map of the WDN with RMS
error of 0.0017 m (0.01% of the network average pressure) in
no leakage condition, and 0.0070m (0.06% of the network
average pressure) with leaks of 101/s maximum. In Fig. 3,
the reconstructed pressure map for the non-leakage condition
is shown.

Typically, only pressures at the supply point (node 1, the
higher pressure) and at the critical point (node 29, the lower
pressure) would be monitored. However, as determined by
PCA, it is the pressures on the nodes {12,21,27} that pro-
vide as much information as possible in order to reconstruct
the entire map of network pressures.

Figures 4, 5 and 6 compare the pressure values estimated
by GPR models against the true values obtained by simu-
lation for three test nodes (11, 14 and 25) of Hanoi WDN.
For these experiments were considered three different magni-
tudes of leak, Qieak = {10, 20,30} 1/s, in each network node.
To numerically assess the accuracy in the predictions, Table I
shows some estimated pressures at node 11 compared to the
true (target) pressures under varying pressure conditions. In
all reported results, affine basis functions h(x)" = [1,x"]
(named “linear” in MATLAB) were used. Quadratic basis
functions were also tested, but no significant improvements
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Fig. 3. Predicted pressures in all the nodes of the Hanoi WDN from only

three measurements. In this “ball plot” the areas of circles are proportional
to the pressure magnitude at each node.

TABLE 1
PREDICTED VALUES OF Pj; FROM MEASUREMENTS OF { P12, P21, Pa7}.
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Fig. 4. Predicted pressure at node 11 of Hanoi WDN from measures at

nodes {12,21,17}.

Predictors Response
Sensor 1  Sensor 2 Sensor 3 | Target Predicted
Pro Poi Ps7 Py Py
4.1477 6.2606 6.3014 8.3558 8.3556
4.0235 6.1364 6.1772 8.2315 8.2309
3.9907 6.1350 6.1738 8.1987 8.1992
3.9494 6.1332 6.1696 8.1574 8.1587
3.9016 6.1311 6.1648 8.1096 8.1105
3.6765 5.6358 4.9594 7.8845 7.8845
3.6725 5.6384 5.1660 7.8805 7.8806
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Fig. 5. Predicted pressure at node 14 of Hanoi WDN from measures at

nodes {12,21,17}.

were achieved in the regression performance.

Finally, Fig. 7 shows the graph of the standard deviation
that represents the uncertainty of the estimates for each node,
according to (12) and (14). In this graph it is noted that the
greatest uncertainty in the estimated pressure corresponds to
node 16, which was expected because this node is topolog-
ically distant from the three measured nodes. The standard
deviation in this case is s = 0.0484m and the estimated
pressure is Pjg = 11.2984m, so that the 95% confidence
interval, according to (18), results

11.2035m < Pig < 11.3933 m, (19)

which contains the true value Pig = 11.3057 m.

Considering the worst case (19), if the measurements
of the predictor variables are assumed to be accurate, the
uncertainty in the estimated pressure is almost comparable
to the measurement noise that would result from physically
measuring the variable, so it is feasible to estimate the non-
measured pressures through GPR.

IV. CONCLUSIONS

A method to estimate unmeasured pressures in WDNs
from a subset of pressure measurements was presented. The
prediction method based on data-driven GPR models showed
good results with a dataset obtained by simulation on Hanoi

Pressure (m)
w

93

Qeak=101/s | Qieak =201/s Qieak =301/s
1 I |
1 31 62
Leakage scenarios
Fig. 6. Predicted pressure at node 25 of Hanoi WDN from measures at

nodes {12,21,17}.
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WDN which was used as a benchmark. The good results
are also attributed to the fact that the available pressure
sensors are not placed arbitrarily but their optimal position
is calculated so that they capture the maximum pressure
variance in the network. In the near future, this method will
be tested with measurements of a real hydraulic network.

It is important to note that these results can be considered
to develop methods for detecting and locating leaks in WDNs
using a “pressure map” continuously updated through GPR.
Two possibilities have been considered: one where two-
dimensional pressure maps of the network are compared
(with leakage and without leakage) using techniques for
image processing, and another where the node pressures are
processed as one-dimensional lists.
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