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Abstract. The aim of this paper is to develop a constraint algorithm for

singular classical field theories in the framework of k-cosymplectic geometry.
Since these field theories are singular, we need to introduce the notion of

k-precosymplectic structure, which is a generalization of the k-cosymplectic

structure. Next k-precosymplectic Hamiltonian systems are introduced in or-
der to describe singular field theories, both in Lagrangian and Hamiltonian

formalisms. Finally, we develop a constraint algorithm in order to find a sub-
manifold where the existence of solutions of the field equations is ensured. The

case of affine Lagrangians is studied as a relevant example.

1. Introduction. Many theories in modern physics can be formulated using the
tools of differential geometry. The natural framework for autonomous Hamiltonian
mechanical systems is symplectic geometry [1], whereas its nonautonomous coun-
terpart can be nicely described using cosymplectic or contact geometry [6, 1]. These
two formulations admit straightforward generalizations to first order classical field
theory using k-symplectic and k-cosymplectic structures, which are the generaliza-
tion to field theories of the autonomous and nonautonomous cases in mechanics
[3, 22, 15]. A more general framework for classical field theories can be built up by
using multisymplectic geometry (see [27] and references therein; see also [26] for an
analysis of the relationship among these formulations).

Singular systems are important because of their role in modern physics, in me-
chanics and especially in field theory. In fact, some of the most important physical
theories are singular; for instance, Maxwell’s theory of electromagnetism, general
relativity, string theory and, in general, all gauge theories. The main problem of
singular theories is the failure of usual existence and uniqueness theorems for the
solutions of the differential equations which describe them. This problem is usually
solved by finding a submanifold of the phase space manifold of the system where
the existence of solutions is ensured. This can be done by applying the so-called
constraint algorithms.
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P.G. Bergmann and P.A.M. Dirac were the first to develop a constraint algorithm
to solve the problem for the Hamiltonian formalism of singular mechanics [2, 8].
These works were written using a local coordinate language and they were later
generalized to other situations (see, for instance, [4, 28, 29]). Many people worked
in the geometric version of this algorithm, both for the Hamiltonian and Lagrangian
formalisms. Some of the most relevant contributions in this way are [10, 11, 12, 23,
24, 30], which dealt with several geometric formulations of autonomous mechanics.
This was later generalized to nonautonomous systems [7, 18, 13]. These constraint
algorithms were adapted to singular field theories in the multisymplectic [17, 19]
and the k-symplectic [14] frameworks.

The k-symplectic formulation, in a certain sense, corresponds to autonomous
mechanics. The non-autonomous analogue of it, namely, field theories where the
Lagrangian or the Hamiltonian functions depend on the coordinates of the base
manifold, is provided by the k-cosymplectic formulation. The aim of this article
is to complete this program by developing a constraint algorithm for singular field
theories in the framework of k-cosymplectic geometry. Since these field theories are
singular, we need to introduce the notion of k-precosymplectic structure, which is
a generalization of the k-cosymplectic structure, and also define k-precosymplectic
Hamiltonian systems. Then we will develop a constraint algorithm, similar to those
mentioned above, in order to find a constraint submanifold where the existence of
solutions to the field equations is ensured.

The paper is organized as follows: Section 2 is devoted to review several prelim-
inary concepts. In particular, first we introduce k-vector fields and their integral
sections, and next we review the main features about k-cosymplectic geometry. In
Section 3, k-precosymplectic manifolds are introduced; they are the model of the
phase spaces for k-cosymplectic field theories described by singular Lagrangians.
We define the concept of a k-precosymplectic manifold, we introduce Darboux co-
ordinates in these manifolds, and we prove the existence of Reeb vector fields for
them and discuss conditions for their uniqueness. These structures are used in Sec-
tion 4 to present the k-cosymplectic formulation of nonautonomous classical field
theory, both in the Lagrangian and the Hamiltonian formalisms. Section 5 is de-
voted to present the constraint algorithm for k-precosymplectic field theories, which
is a generalization of the algorithm for k-presymplectic field theories developed in
[14]. Finally, in Section 6 some examples are discussed: first, the Lagrangian and
Hamiltonian formalisms for the case of affine Lagrangians in general (including a
particular model) and second, a simple model derived from the vibrating string,
both in the Lagrangian and Hamiltonian formalisms.

Throughout the paper all the manifolds and mappings are assumed to be smooth.
Sum over crossed repeated indices is understood.

2. Preliminaries: k-cosymplectic geometry. In this section we review the no-
tions of k-vector field and its integral sections, as well as some general concepts on
k-cosymplectic geometry. Some references on these topics are [22, 20, 21].

2.1. k-vector fields and integral sections. Let M be an m-dimensional smooth
manifold and its tangent bundle τ : TM → M . The tangent bundle of k1-

velocities is defined as the Whitney sum T 1
kM = TM ⊕M

k· · · ⊕M TM , with the
canonical projection τk : T 1

kM →M .
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Definition 2.1. A k-vector field X on M is a section of the projection τk. We
denote by Xk(M) the set of all k-vector fields on M .

Notice that using the diagram

T 1
kM

τk,α

��
M

X

==

Xα // TM

every k-vector field X can be decomposed as X = (X1, . . . , Xk), where Xα ∈ X(M).

Definition 2.2. Let X = (X1, . . . , Xk) be a k-vector field on M . An integral
section of X passing through p ∈ M is a map ϕ : U ⊂ Rk → M , with 0 ∈ U , and
such that

(1) ϕ(0) = p,

(2) Txϕ
( ∂

∂xα

∣∣∣
x

)
= Xα(ϕ(x)), for every x ∈ U , for all 1 ≤ α ≤ k, and where {xα}

are the canonical coordinates in Rk.

2.2. k-cosymplectic geometry.

Definition 2.3. [22] Let M be a manifold of dimension m = k(n + 1) + n. A k-
cosymplectic structure on M is a family (ηα, ωα, V ; 1 ≤ α ≤ k), where each ηα

is a closed 1-form, each ωα is a closed 2-form and V is an integrable nk-dimensional
distribution on M satisfying

(1) η1 ∧ · · · ∧ ηk 6= 0, ηα|V = 0, ωα|V×V = 0,

(2)
(⋂k

α=1 ker ηα
)
∩
(⋂k

α=1 kerωα
)

= {0}, dim
(⋂k

α=1 kerωα
)

= k.

Then, (M,ηα, ωα, V ) is said to be a k-cosymplectic manifold.

In particular, if k = 1, then dimM = 2n + 1 and (η1, ω1) is a cosymplectic
structure on M .

Definition 2.4. Let (M,ηα, ωα, V ) be a k-cosymplectic manifold. Then there exists
a family of k vector fields {Rα}, which are called Reeb vector fields, characterized
by the following conditions

iRαη
β = δβα , iRαω

β = 0 . (1)

Theorem 2.5 (Darboux theorem for k-cosymplectic manifolds). Let (M,ηα, ωα, V )
be a k-cosymplectic manifold. Then around each point of M there exist local coor-
dinates (xα, yi, yαi ) with 1 ≤ α ≤ k, 1 ≤ i ≤ n such that

ηα = dxα , ωα = dyi ∧ dyαi , V =

〈
∂

∂y1
i

, . . . ,
∂

∂yki

〉
i=1,...,n

.

These are the so-called Darboux or canonical coordinates of the k-cosymplectic
manifold M .

Proof. The proof of this theorem can be found in [20].
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Given a k-cosymplectic manifold (M,ηα, ωα, V ), we can define two vector bundle
morphisms

[̃ : T 1
kM −→ (T 1

k )∗M
X 7−→ (iX1ω

1 + (iX1η
1)η1, . . . , iXkω

k + (iXkη
k)ηk)

and
[ : T 1

kM −→ T ∗M
X 7−→ iXαω

α + (iXαη
α)ηα

Remark 1. Notice that [ = tr(̃[), and hence in the case k = 1 we have that [ = [̃
which is the [ morphism defined for cosymplectic manifolds.

Taking Darboux coordinates, the Reeb vector fields are

Rα =
∂

∂xα
.

2.3. Trivial k-cosymplectic manifolds. A trivial example of k-cosymplectic man-
ifold is provided by the cartesian product of the euclidean space Rk with a k-
symplectic manifold. Remember that a k-symplectic manifold is an n(k + 1)-
dimensional differentiable manifold N endowed with a k-symplectic structure, that
is, a family ($1, . . . , $k,V), where V is an nk-dimensional integrable distribu-
tion in N and $1, . . . , $k are closed differentiable 2-forms in N satisfying that:

$α
∣∣∣
V×V

= 0, (1 ≤ α ≤ k) , and

k⋂
α=1

ker$α = {0}. Then, using the canonical

projections

πRk : Rk ×N −→ Rk, πN : Rk ×N −→ N

we can define differential forms

ηα = π∗Rk(dxα), ωα = π∗N$
α,

and the distribution V in N defines a distribution V in M = Rk ×N in a natural
way. All conditions given in Definition 2.3 are satisfied, and hence M = Rk × N
endowed with the k-cosymplectic structure (ηα, ωα, V ) is a k-cosymplectic manifold.

Then, the simplest model of k-cosymplectic manifold is the so called stable
cotangent bundle of k1-covelocities of an n-dimensional manifold Q, denoted
as Rk × (T 1

k )∗Q, where (T 1
k )∗Q is the Whitney sum of k copies of the cotangent

bundle of Q, i.e. (T 1
k )∗Q = T ∗Q⊕Q

(k)
· · ·⊕Q T ∗Q (compare with the definition of the

tangent bundle of k1-velocities). Thus, the elements of Rk× (T 1
k )∗Q are of the form

(x, ν1q , . . . , νkq ) where x ∈ Rk, q ∈ Q and ναq ∈ T ∗qQ where 1 ≤ α ≤ k.
In the following diagram we collect the projections we use from now on:

Rk × (T 1
k )∗Q

π2 //

(πQ)1

$$

(πQ)1,0

��

π1

{{

πα1

��

πα2

&&
(T 1
k )∗Q

πk,α //

πk

��

T ∗Q

π

||
R Rkπαoo Rk ×Q

πRkoo πQ // Q
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If (qi), with 1 ≤ i ≤ n, is a local coordinate system defined on an open set
U ⊂ Q, the induced local coordinates (xα, qi, pαi ), 1 ≤ i ≤ n, 1 ≤ α ≤ k on

Rk × (T 1
k )∗U = ((πQ)1)

−1
(U) are given by

xα(x, ν1q , . . . , νkq ) = xα(x) = xα,

qi(x, ν1q , . . . , νkq ) = qi(q),

pαi (x, ν1q , . . . , νkq ) = ναk

(
∂

∂qi

∣∣∣∣
q

)
.

Thus, Rk × (T 1
k )∗Q is endowed with a k-cosymplectic structure and thus it is a

k-cosymplectic manifold of dimension k + n(k + 1), which has the structure of a
vector bundle over Q with the projection (πQ)1.

On Rk × (T 1
k )∗Q we can define a family of canonical forms:

ηα = (πα1 )∗dx, θα = (πα2 )∗θ, ωα = (πα2 )∗ω,

with 1 ≤ α ≤ k, being πα1 : Rk × (T 1
k )∗Q → R and πα2 : Rk × (T 1

k )∗Q → T ∗Q the
projections defined by

πα1 (x, ν1q , . . . , νkq ) = xα, πα2 (x, ν1q , . . . , νkq ) = ναq

and θ and ω are the canonical Liouville and symplectic forms on T ∗Q, respectively.
Observe that, since ω = −dθ, then ωα = −dθα.

If we consider a local coordinate system (xα, qi, pαi ) on Rk× (T 1
k )∗Q, the canon-

ical forms ηα, θα and ωα have the following local expressions:

ηα = dxα, θα = pαi dqi, ωα = dqi ∧ dpαi .

Moreover, let V = kerT (πQ)1,0. In local coordinates, the forms ηα and ωα are
closed, and the following relations hold:

(1) dx1 ∧ · · · ∧ dxk 6= 0, dxα|V = 0, ωα|V×V = 0,

(2)
(⋂k

α=1 ker dxα
)
∩
(⋂k

α=1 kerωα
)

= {0}, dim
(⋂k

α=1 kerωα
)

= k.

Remark 2. Notice that the canonical forms on (T 1
k )∗Q and Rk×(T 1

k )∗Q are (π2)∗-
related.

3. k-precosymplectic manifolds. In the same way as k-presymplectic manifolds
generalize k-symplectic manifolds, k-precosymplectic manifolds are a generalization
of k-cosymplectic manifolds when some degeneracy is accepted in the 2-forms of the
structure.

Definition 3.1. Let M be a differentiable manifold of dimension k(n+ 1) + n− `
(with 1 ≤ ` ≤ nk). A k-precosymplectic structure in M is a family (ηα,Ωα, V ),
1 ≤ α ≤ k, where ηα are closed 1-forms in M , ωα are closed 2-forms in M such that
rankωα = 2rα, with 1 ≤ rα ≤ n, and V is an integrable nk-dimensional distribution
in M satisfying that:

(1) η1 ∧ · · · ∧ ηk 6= 0, ηα|V = 0, ωα|V×V = 0,

(2) dim
( k⋂
α=1

kerωαp

)
≥ k (for every p ∈M) .

A manifold M endowed with a k-precosymplectic structure is said to be a k-
precosymplectic manifold.
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In particular, if k = 1, then dimM = 2n+ 1− ` and (M,η1, ω1) is a precosym-
plectic manifold as is defined in [16], and the so-called gauge distribution is given
by kerω1 ∩ ker η1.
Example As in the regular case, a simple example of k-precosymplectic manifold
can be constructed from a k-presymplectic manifold. Recall that a k-presymplectic
manifold is a family (P,$α,V) where $α are closed 2-forms in P and V is a nk-
dimensional integrable distribution satisfying $α|V×V = 0 for every 1 ≤ α ≤ k.

Under these hypothesis, the product manifold Rk × P is a k-precosymplectic
manifold taking ηα = τ∗dtα where tα are the canonical coordinates in Rk and τ is

the canonical projection Rk × P τ−→ Rk and ωα = π∗$α where π is the canonical

projection Rk × P
π−→ P . In the description of the algorithm, we will ask our

manifolds to be of this type in order to have the problem well defined.

In Definition 3.1 we have imposed the condition of the existence of a distribution
V because it is precisely the existence of this distribution what ensures the existence
of Darboux coordinates in the regular case. It is still an open problem to characterize
the conditions for their existence in the singular case. However, from now on we will
assume the existence of Darboux coordinates around every point (as it happens, for
instance, in the previous example). In more detail, let M be a k-precosymplectic

manifold such that rankωα = 2rα, with 1 ≤ rα ≤ n and d = kn−
k∑

α=1

rα−`; around

every point p ∈M , we assume the existence of a local chart of coordinates

(Up;xα, yi, yαiα , z
j) ; 1 ≤ α ≤ k , 1 ≤ i ≤ n , iα ∈ Iα ⊆ {1, . . . , n} , 1 ≤ j ≤ d ,

such that

ηα|Up = dxα, ωα|Up = dyiα ∧ dyαiα

V |Up =

〈
∂

∂yαiα
,
∂

∂zj

〉
,

[
(

k⋂
α=1

ker ηα) ∩ (

k⋂
α=1

kerωα)

] ∣∣
Up

=

〈
∂

∂zj

〉
.

To discuss Hamilton’s equations we will need the Reeb vector fields Rα, defined
by Eq. (1). We already mentioned that they are unique in the k-cosymplectic case.
Now we are going to prove their existence in the singular case, although they will
not be unique.

Proposition 1. Given a k-precosymplectic manifold (M,ωα, ηα, V ) with Darboux
charts, there exists a family Y1, . . . , Yk ∈ X(M) of vector fields satisfying{

iYαω
β = 0,

iYαη
β = δβα.

Proof. Consider a partition of unity {(Uλ, ψλ)}λ∈Λ on M such that on every Ub we

have Darboux coordinates {xαλ , yiλ, yαiα,λ; zjλ}. Consider now the local vector fields

Y λα =
∂

∂xαλ
. These vector fields satisfy

{
iY λα ω

β = 0,

iY λα η
β = δβα
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on Uλ. Using these vector fields, we can define global vector fields

Ỹ λα (p) =

{
ψλ(p)Y λα (p) if p ∈ Uλ,
0 if p /∈ Uλ.

With these global vector fields we can construct global vector fields Yα =
∑
λ∈Λ Ỹ

λ
α

which satisfy {
iYαω

β = 0,

iYαη
β = δβα,

for every α, β = 1, . . . , k.

The vector fields provided by this proposition are not necessarily unique. In fact,
the Reeb vector fields can be written in Darboux coordinates as

Rα =
∂

∂xα
+Dj

α

∂

∂zj

for arbitrary coefficients Dj
α.

Remark 3. Nevertheless, sometimes one can impose some extra conditions that
determine the Reeb vector fields uniquely. Consider for instance the situation
where the k-precosymplectic manifold M is of the type Rk × P , where P is a
k-presymplectic manifold.

The canonical vector fields ∂
∂xα of Rk can be lifted canonically to vector fields on

the product Rk × P . These vector fields are denoted also by ∂
∂xα and are a family

of Reeb vector fields of the k-precosymplectic manifold Rk ×M .

4. k-cosymplectic formulation of nonautonomous field theories. The k-
cosymplectic formulation allows to describe field theories where the Lagrangian or
the Hamiltonian functions depend explicitly on the coordinates of the basis (space-
time coordinates or similar). Therefore it is a generalization of the k-symplectic
formulation, where these coordinates do not appear explicitly [22]. It is also the
generalization of the standard cosymplectic formalism for non-autonomous mechan-
ics [6].

Next we review the main features of the Lagrangian and Hamiltonian formalisms
in this formulation (see [22, 20, 21, 25] for details).

4.1. k-cosymplectic Hamiltonian formalism.

Definition 4.1. Let (M,ωα, ηα, V ) be a k-cosymplectic manifold and let γ ∈ Ω1(M)
be a closed 1-form on M , which will be called the Hamiltonian 1-form. The family
(M,ωα, ηα, V, γ) is a k-cosymplectic Hamiltonian system.

A k-vector field X = (X1, . . . , Xk) ∈ Xk(M) is said to be a k-cosymplectic
Hamiltonian k-vector field if it is solution to the system of equations{

iXαω
α = γ − γ(Rα)ηα

iXβη
α = δαβ .

(2)

We use the notation X ∈ Xkh(M).

Notice that when k = 1 we recover the equation of motion for a cosymplectic
Hamiltonian system [7, 18].

As γ is a closed 1-form, by Poincaré’s Lemma there exists a local function h such
that γ = dh.
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Using the [ morphism defined in the previous sections, we can write equations
(2) as {

[(X ) = γ + (1− γ(Rα))ηα

iXβη
α = δαβ .

(3)

Consider an arbitrary k-vector field X = (Xα) ∈ Xk(M), which in a canonical chart
is expressed as

Xα = (Aα)β
∂

∂xβ
+ (Bα)i

∂

∂qi
+ (Cα)βi

∂

∂pβi
, 1 ≤ α ≤ k.

Imposing equations (2), we get the conditions
(Aα)β = δβα,
∂h

∂pαi
= (Bα)i,

∂h

∂qi
= −

∑k
β=1(Cβ)βi ,

(4)

where 1 ≤ i ≤ m and 1 ≤ α ≤ k. Notice that these conditions do not depend on the
choice of the Reeb vector fields. However, we need the Reeb vector fields to write
the system of equations (2). In remark 3 we discussed how to choose a family of
Reeb vector fields.

If ψ : Rk → Rk × (T 1
k ) ∗Q, locally given by ψ(x) = (ψα(x), ψi(x), ψαi (x)), is

an integral section of X , then, from (4), we obtain that ψ is a solution to the
Hamiltonian field equations

∂h

∂qi
=

k∑
α=1

∂ψαi
∂xα

,
∂h

∂pαi
=
∂ψi

∂xα
.

4.2. k-cosymplectic Lagrangian formalism. Consider the tangent bundle of k-
velocities T 1

kQ, with coordinates (qi, viα). For a vector Xq at Q, its vertical α-lift
(Xq)

α is defined as the vector on T 1
kQ given by

(Xq)
α(v1q, . . . , vkq) =

d

ds
(v1q, . . . , vα−1q, vαq + sXq, vα+1q, . . . , vkq)|s=0

,

where (v1q, . . . , vkq) ∈ T 1
kQ. In local coordinates, if Xq = ai

∂

∂qi

∣∣∣
q
, then (Xq)

α =

ai
∂

∂viα

∣∣∣
v
.

The canonical k-tangent structure on T 1
kQ is the set (J1, . . . , Jk) of tensor

fields of type (1, 1) defined by

Jα(v)(Zv) = (Tvτ
Q(Zv))

α for every Zv ∈ Tv(T 1
kQ) , v = (v1q, . . . , vkq) ∈ T 1

kQ .

In local coordinates we have that Jα =
∂

∂viα
⊗ dqi.

Furthermore, we have the Liouville vector fields ∆α ∈ X(T 1
kQ), which are the

infinitesimal generators of the flows

R× T 1
kQ −→ T 1

kQ

(s, (v1q, . . . , vkq)) −→ (v1q, . . . , vα−1q, e
s vαq, vα+1q, . . . , vkq) .

We denote ∆ =
∑
α ∆α. In local coordinates ∆α =

∑
i

viα
∂

∂viα
.
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Consider now the phase space Rk × T 1
kQ. The canonical structures Jα and the

Liouville vector fields ∆α can be trivially extended from T 1
kQ to Rk×T 1

kQ, and are
denoted also by Jα and ∆α. If (xα, qi, viα) are the natural coordinates in Rk×T 1

kQ,
their local expressions are the same as above. Using them, we can define:

Definition 4.2. A k-vector field X ∈ Xk(Rk × T 1
kQ) is a second order partial

differential equation (sopde) if it satisfies the following conditions:

(1) Jα(Xα) = ∆α for α fixed, with 1 ≤ α ≤ k;
(2) iXβη

α = δαβ for every 1 ≤ α, β ≤ k.

The local expression of a sopde X = (X1, . . . , Xk) is

Xα =
∂

∂xα
+ viα

∂

∂qi
+ (Xα)iβ

∂

∂viβ
. (5)

Definition 4.3. Let φ : Rk → Q, the first prolongation φ[1] of φ is the map

φ[1] : Rk −→ Rk × T 1
kQ

x 7−→ (x, j1
0φx) ≡

(
x, Txφ

(
∂

∂x1

∣∣∣
x

)
, . . . , Txφ

(
∂

∂xk

∣∣∣
x

))
The section φ[1] is said to be a holonomic section. In coordinates

φ[1](x1, . . . , xk) =

(
x1, . . . , xk, φi(x),

∂φi

∂xα
(x)

)
.

Proposition 2. If X = (X1, . . . , Xk) is an integrable sopde, then a map ψ :
Rk → Rk × T 1

kQ, given by ψ(x) = (ψα(x), ψi(x), ψiα(x)), is an integral section of
(X1, . . . , Xk) if, and only if,

ψα(x) = xα , ψiα(x) =
∂ψi

∂xα
(x) ,

∂2ψi

∂xα∂xβ
(x) = (Xα)iβ(ψ(x)) . (6)

In this case, ψ is a holonomic section.

Observe that if X = (X1, . . . , Xk) is integrable, from (6) we deduce that (Xα)iβ =

(Xβ)iα.
A Lagrangian function is a function L : Rk×T 1

kQ→ R. From it one can define
a family of 1-forms θ1

L, . . . , θ
k
L ∈ Ω1(Rk × T 1

kQ) as

θαL = dL ◦ Jα,

and from these 1-forms one can define the so-called Poincaré–Cartan 2-forms

ωαL = −dθαL.

These forms, together with the vertical tangent distribution V = kerT (πRk)1,0,
define a k-precosymplectic structure (dxα, ωαL, V ) on Rk × T 1

kQ.

Definition 4.4. Let L be a Lagrangian function on Rk × T 1
kQ. We say that L is

a regular Lagrangian if, for every 1 ≤ α, β ≤ k and every p ∈ Rk × T 1
kQ, the

matrix

(
∂2L

∂viα∂v
j
β

)
1≤i≤n
1≤j≤n

(p) is invertible. Otherwise, L is a singular Lagrangian.

Proposition 3. A Lagrangian function L : Rk × T 1
kQ→ R is regular if and only if

(dxα, ωαL, V ) is a k-cosymplectic structure on Rk × T 1
kQ.
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Proof. Taking coordinates, it is easy to see that the forms ωαL are nondegenerate if
and only if the matrix (

∂2L

∂viα∂v
j
β

)
1≤i≤n
1≤j≤n

(p)

is invertible for every 1 ≤ α, β ≤ k and every p ∈ Rk × T 1
kQ.

Definition 4.5. We say that a k-vector field X of Rk × T 1
kQ is a k-cosymplectic

Lagrangian k-vector field if it is a solution to equationsiXαωαL = dEL +
∂L

∂xα
dxα,

iXβdxα = δαβ ,
(7)

where EL = ∆(L)− L. We denote by XkL(Rk × T 1
kQ) the set of all k-cosymplectic

Lagrangian k-vector fields.

Equations (7) are called k-cosymplectic Lagrangian equations.
Notice that if L is regular, then (dxα, ωαL, V ) is a k-cosymplectic structure on

Rk × T 1
kQ. We denote by RLα the corresponding Reeb vector fields. Hence, if we

write the k-cosymplectic Hamilton equations for the system (Rk×T 1
kQ,dx

α, ωαL, L)
we get {

iXαω
α
L = dEL −RLα(EL)dxα,

iXβdxα = δαβ ,
(8)

which are equivalent to (7).
If X is an integrable sopde which is a solution to (8), then its integral sections

are solutions to the Euler-Lagrange equations for L

k∑
α=1

(
∂2L

∂xα∂viα
+

∂2L

∂qj∂viα

∂ψj

∂xα
+

∂2L

∂vjβ∂v
i
α

∂2ψj

∂xα∂xβ

)
=

∂L

∂qi
.

We saw in the Hamiltonian framework that the Reeb vector fields appear in the
equations but do not appear in the solutions. In the Lagrangian framework one can
go a step further and write the system of equations (8) without the Reeb vector
fields [5]. Consider the following Poincaré–Cartan 1-forms:

Θα
L = θαL +

(
δαβL−∆α

β(L)
)

dtβ ,

where ∆α
β = viβ

∂

∂viα
. Defining ΩαL = −dΘα

L, the system of equations (8) can be

written as {
iXαΩαL = (k − 1) dL ,

iXβdxα = δαβ ,

which is equivalent to (7). To our knowledge, this rewriting without Reeb vector
fields cannot be done in the Hamiltonian framework.

4.3. The Legendre map. Given a Lagrangian L : Rk × T 1
kQ → R the Legendre

map FL : Rk × T 1
kQ −→ Rk × (T 1

k ) ∗Q is defined as follows:

FL(t, v1q, . . . , vkq) = (t, . . . , [FL(t, v1q, . . . , vkq)]
α, . . .) ,

where

[FL(t, v1q, . . . , vkq)]
α
q (uq) =

d

ds

∣∣∣
s=0

L
(
t, v1q, . . . , vαq + suq, . . . , vkq

)
; uq ∈ TqQ .
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It is locally given by

FL : (tα, qi, viα) −→
(
tα, qi,

∂L

∂viα

)
.

Let us observe that the Lagrangian forms can also be defined as θαL = FL ∗θα and
ωαL = FL ∗ωα.

The Lagrangian function L is regular if, and only if, the corresponding Legendre
map FL is a local diffeomorphism. In the particular case that FL is a global
diffeomorphism, L is said to be a hyperregular Lagrangian.

A singular Lagrangian L is called almost-regular if P := FL(T 1
kQ) is a closed

submanifold of Rk× (T 1
k ) ∗Q, the Legendre map FL is a submersion onto its image,

and the fibres FL−1(FL(v)), for every v ∈ Rk × T 1
kQ, are connected submanifolds

of Rk×T 1
kQ. In this last case, there exists a Hamiltonian formalism associated with

the original Lagrangian system, which is developed on the submanifold P.

Remark 4. If L is regular, (dtα, ωαL, V ) is a k-cosymplectic structure on Rk × T 1
kQ,

where V = ker TπRk×Q =

〈
∂
∂viα

〉
is the vertical distribution of the vector bundle

πRk×Q : Rk × T 1
kQ→ Rk ×Q. If L is almost-regular, then P is a k-precosymplectic

manifold with the k-precosymplectic structure inherited from the above one.

5. Constraint algorithm for k-precosymplectic field theories. In this section
we generalize the algorithm developed in [14] for k-presymplectic field theories to
the case of k-precosymplectic field theories.

We are going to consider k-precosymplectic manifolds M = Rk × P where P
is a k-presymplectic manifold. These manifolds have Darboux coordinates and we
also have uniquely determined a collection of Reeb vector fiels R1, . . . ,Rk. These
cases are the most usual appearing in the applications of the k-symplectic and
k-cosymplectic formulation in classical field theories and applied mathematics.

In the same way as for k-cosymplectic field theories, we define:

Definition 5.1. A k-precosymplectic Hamiltonian system is given by a family
(M,ωα, ηα, V, γ), where (M,ωα, ηα, V ) is a k-precosymplectic manifold where M =
Rk × P and P is a k-presymplectic manifold and γ ∈ Ω1(M) is a closed 1-form
called the Hamiltonian 1-form. Since γ is closed, by Poincaré’s Lemma, γ = dh
for some h ∈ C∞(U), U ⊂M , which is called a local Hamiltonian function.

A k-vector field X = (X1, . . . , Xk) ∈ Xk(M) is said to be a k-precosymplectic
Hamiltonian k-vector field if it is a solution to the system of equations{

iXαω
α = γ − γ(Rα)ηα,

iXαη
β = δβα,

The solutions to the field equations defined by the k-presymplectic Hamiltonian
system (M,ωα, ηα, V, γ) are the integral sections of these k-precosymplectic Hamil-
tonian k-vector fields.

Remark 5. Notice that in the case k = 1, we recover the case of singular non-
autonomous mechanics studied in [7]. In that case, the Poincaré–Cartan 2-form is
widely used in the development of the constraint algorithm.

We want an algorithm that allows us to find a submanifold N ↪→ M where the
system of equations (2) has solutions tangent to N . In order to find this submanifold
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N (if it exists!) we develop an algorithm which introduces some constraints in every
step that provides us a sequence of submanifolds

· · · ↪→Mj ↪→ · · · ↪→M2 ↪→M1 ↪→M

which in favorable cases will end in the final constraint submanifold N . Notice
that this manifold may be a union of isolated points (dimN = 0) or be empty.
These cases have no interest for us, we are only interested in cases where we have
a final constraint submanifold of dimension greater than 0.

Theorem 5.2. Consider a k-precosymplectic Hamiltonian system (M,ωα, ηα, V, γ),
a submanifold C ↪→M and a k-vector field X : C → (T 1

k )CM such that Xp ∈ (T 1
k )pC

for every p ∈ C. Under this setting, the following two conditions are equivalent:

(1) There exists a k-vector field X = (Xα) : C → (T 1
k )CM tangent to C such that

the system of equations{
iXαω

α = γ − γ(Rα)ηα,

iXαη
β = δβα,

(9)

holds on C.
(2) For every p ∈ C, there exists Zp = (Zα)p ∈ (T 1

k )pC such that, if γ̃p =
γp(Rαp)ηαp , then

iZαpη
β
p = δβα ,

∑
α

ηαp + γ̃p = [(Zp) .

Proof. Consider the k-vector Zp = Xp ∈ (T 1
k )pC. It is clear that iZαpη

β
p = δβα for

every p ∈ C and that

[(Zp) = iZαpω
α
p + (iZαpη

α
p )ηαp = γ̃p +

∑
α

ηαp .

Conversely, let us suppose that for every p ∈ C, there exists Zp ∈ (T 1
k )pC such

that iZαpη
β
p = δβα and [(Zp) = γ̃p +

∑
α η

α
p . Let p ∈ C. We consider a Darboux

chart (U , {xα, yi, yαiα ; zj}) around p and hence,

ηα = dxα,

ωα =
∑
i∈Iα

dyi ∧ dyαi ,

γ =
∂h

∂yi
dyi +

∂h

∂yαiα
dyαiα +

∂h

∂xα
dxα +

∂h

∂zj
dzj .

In these Darboux coordinates, γ̃ = γ − γ(Rα)ηα is

γ̃ =
∂h

∂yi
dqi +

∂h

∂yαiα
dyαiα +

∂h

∂zj
dzj .

From now on, we will omit the point p everywhere in order to simplify the notation.
We write our k-vector Z in coordinates:

Zα = Aβα
∂

∂xβ
+Biα

∂

∂yi
+ Cβα,iβ

∂

∂yβiβ
+Dj

α

∂

∂zj
.



CONSTRAINT ALGORITHM FOR FIELD THEORIES 13

Now let us compute its image by the morphism [:

[(Z) =
∑
α

iZαω
α + (iZαη

α)ηα

=
∑
α

∑
i∈Iα

iZα(dyi ∧ dyαi ) +
∑
α

(iZαdxα)dxα

=
∑
α

∑
i∈Iα

(iZαdyi) dyαi −
∑
α

∑
i∈Iα

dyi (iZαdyiα) +
∑
α

(iZαdxα)dxα

=
∑
α

∑
i∈Iα

Biαdyαi −
∑
α

∑
i∈Iα

Cαi dyi +
∑
α

Aααdxα.

Comparing this expression with∑
α

ηα + γ̃ =
∑
α

dxα +
∂h

∂yi
dyi +

∂h

∂yαiα
dyαiα +

∂h

∂zj
dzj ,

we get the following conditions on Z:

Aαα = 1,
∂h

∂zj
= 0,

∂h

∂yi
= −

∑
α such

that i∈Iα

Cαα,i,
∂h

∂yαiα
= Biαα .

Furthermore, we know by hypothesis that Aβα = δβα. The second condition
∂h

∂zj
= 0

is a compatibility condition of the Hamilton equations in the k-precosymplectic case.
It can be stated in the following way: the Hamiltonian function cannot depend on
the so-called gauge variables zj . The third and fourth equations, along with the
condition Aβα = δβα, are equivalent to the system of equations (9) when written in
coordinates (see equation (4)). This concludes the proof.

Using the previous theorem we can give a description of the constraint algorithm.

First of all, we must restrict ourselves to the points such that γ
( ∂

∂zj

)
= 0, ∀j, be-

cause it is a compatibility condition of the system. The j-ary constraint submanifold
Mj ⊂Mj−1 is defined as

Mj =
{
p ∈Mj−1 | ∃Z = (Zα) ∈ (T 1

k )Mj−1 such that [(Z) = γ̃ +
∑
α

ηα and iZαη
β = δβα

}
,

where M0 = M .

Definition 5.3. Let C ↪→M be a submanifold of a k-precosymplectic manifold M .
The k-precosymplectic orthogonal complement of C is the annihilator

TC⊥ =
(
[
(
(T 1
k )C ∩DC

))0
where DC is the set of all k-vectors Zp = (Zα)p on C such that iZαpη

β
p = δβα.

With this definition and Theorem 5.2 we can give an alternative characterization
of the constraints submanifolds:

Mj =
{
p ∈Mj−1 | γ̃p +

∑
α

ηαp ∈ ((TMj−1)⊥p )0
}
.

Although this allows us to effectively compute the constraints at every step of the
algorithm, an alternative and equivalent way to compute the constraint submani-
folds given by the k-precosymplectic constraint algorithm, which is much more
operational, is the following:

(i) Obtain a local basis {Z1, . . . , Zr} of (TM)⊥.
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(ii) Use Theorem 5.2 to obtain a set of independent constraint functions

fµ = iZµ(γ̃ +
∑
α

ηα) , (10)

which define the submanifold M1 ↪→M .
(iii) Compute solutions X = (Xα) to equations (2).
(iv) Impose the tangency condition of X1, . . . , Xk on M1.
(v) Iterate item (iv) until no new constraints appear.

If this iterative procedure ends in a submanifold Ml with nonzero dimension,
then we can ensure the existence of global solutions to equations (2) on this sub-
manifold Ml.

Remark 6. The constraint algorithm works, in particular, for a singular Lagrangian
field theory (Rk × T 1

kQ,ω
α
L,dx

α, L), and for its associated Hamiltonian formalism
on P. Nevertheless, in the case of the Lagrangian formalism, the problem of finding
sopde multivector fields which are solutions to the field equations is not considered
in this algorithm. These sopde multivector fields can be obtained, in some cases,
by fixing some arbitrary functions in the general solution to the field equations
on the final constraint submanifold Mf . However, in general, looking for sopde
multivector fields solution leads to new constraints which define a new submanifold
Mf ′ ↪→ Mf ; hence, the tangency condition may originate more constraints and,
in the best of cases, we obtain a new final constraint submanifold Sf ′ ↪→ Mf ′

where there are sopde multivector fields solutions tangent to Sf ′ . In the examples
analyzed in Section 6.1 we give some insights on how to proceed in these cases
(see, for instance, [18] for a deep study of these topics in singular mechanics).
Nevertheless a rigorous intrinsic characterization of all of these additional “sopde
constraints” in field theories is still an open problem.

Finally, notice that we can treat k-presymplectic field theories as a particular
case of k-precosymplectic field theories. In this case, we do not have the 1-forms ηα

and we recover the k-presymplectic algorithm described in [14].

6. Examples.

6.1. Affine Lagrangians. In classical field theory affine Lagrangians are used
to describe some relevant models in Physics such as, for instance, the so-called
Einstein–Palatini (or metric-affine) approach to gravitation, and Dirac fermion
fields [9], among others.

Consider πRk : Rk×Q→ Rk as the configuration bundle of a field theory and its
associated phase space bundle of k-velocities τ̄1 : Rk×T 1

kQ→ Rk, with coordinates
(xα, qi, viα). In this phase space we consider an affine Lagrangian, that is, a
Lagrangian function L ∈ C∞(Rk × T 1

kQ) affine in the fibre coordinates viα:

L(xα, qi, viα) = fµj (xα, qi)vjµ + g(xα, qi) . (11)

Obviously such a Lagrangian is singular.

Remark 7. An affine Lagrangian can be alternatively defined from a 2-semibasic
k-form ζ on Rk ×Q. From it a Lagrangian Lζ ∈ C∞(Rk × T 1

kQ) is determined by
the equality

Lζ(x, j
1
0φx)ωx := [φ∗ζ] (x) ,

where φ is any section of Rk×Q→ Rk and ω = dkx is the volume form of Rk. This
function is well defined and its local expression is that of an affine Lagrangian.
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Lagrangian formalism. Now let us reproduce the calculations given in Section 4.2
for an affine Lagrangian. We have

EL = ∆(L)− L = −g(xα, qi) ∈ C∞(Rk × T 1
kQ) ,

ωαL = −
(
∂fαk
∂xµ

dxµ +
∂fαk
∂qj

dqj
)
∧ dqk ∈ Ω2(Rk × T 1

kQ) ,

and we have a k-precosymplectic structure (ωαL,dx
α,V) in Rk×T 1

kQ where (xα) are

the coordinates of Rk, V =

〈
∂

∂viµ

〉
and where the Reeb vector fields, determined

by the procedure in remark 3, are Rα =
∂

∂xα
. Then

dEL+
∂L

∂xµ
dxµ = − ∂g

∂xµ
dxµ− ∂g

∂qj
dqj+

(
∂fνl
∂xµ

vlν +
∂g

∂xµ

)
dxµ = − ∂g

∂qj
dqj+

∂fνl
∂xµ

vlν dxµ ,

and, for a k-vector field X = (X1, . . . , Xk) ∈ Xk(Rk × T 1
kQ) satisfying the second

group of equations (7), we have that

Xα =
∂

∂xα
+ F lα

∂

∂ql
+Glαν

∂

∂vlν
∈ X(Rk × T 1

kQ) , (12)

thus

iXαω
α
L = F lα

∂fαl
∂xµ

dxµ −
∂fαj
∂xα

dqj + F lα

(
∂fαl
∂qj
−
∂fαj
∂ql

)
dqj ,

and the first group of equations (7) leads to

(vlν − F lν)
∂fνl
∂xµ

= 0 , (13)

∂g

∂qj
−
∂fαj
∂xα

= −F lα
(
∂fαl
∂qj
−
∂fαj
∂ql

)
. (14)

This is a system of (linear) equations for the component functions F lα, which allows
us to determine (partially) these functions and, eventually, gives raise to constraints
functions (depending on the rank of the matrices involved). If this last situation
happens, then the constraint algorithm follows by demanding the tangency condi-
tion for the vector fields Xα. Observe also that, in any case, in these vector fields,
the coefficients Giαν are undetermined.

If we look for semi-holonomic k-vector fields X , it implies that F kν = vkν in (12).
Then, equations (13) hold identically, meanwhile equations (14) read

∂g

∂qj
−
∂fαj
∂xα

+ vlα

(
∂fαl
∂qj
−
∂fαj
∂ql

)
= 0

which are constraints. Then the tangency condition for the vector fields

Xν =
∂

∂xν
+ vlν

∂

∂ql
+Glνα

∂

∂vlα
,

leads to
∂g

∂qj
−
∂fαj
∂xα

+Glνα

(
∂fαl
∂qj
−
∂fαj
∂ql

)
= 0 ,

which allows us to determine (partially) the functions Gkνα and, eventually, gives

raise to constraints functions, depending on the rank of the matrix

(
∂fαl
∂qj
−
∂fαj
∂ql

)
.

In this last case, the constraint algorithm continues by demanding again the tan-
gency condition.
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Hamiltonian formalism. Let π̄1 : Rk × (T 1
k )∗Q → Rk be the phase space bundle of

k-momenta. The Legendre map FL : Rk × T 1
kQ → Rk × (T 1

k )∗Q associated to the
Lagrangian L is

xµ ◦ FL = xµ , qi ◦ FL = qi , pµi ◦ FL =
∂L

∂viµ
= fµi (xα, qj) .

Observe that P = FL(Rk × T 1
kQ) is defined by the constraints pµi = fµi (xα, qj);

hence it is the image of a section ξ : Rk × Q → Rk × (T 1
k )∗Q of the projection

(πQ)(1,0) : Rk × (T 1
k )∗Q → Rk × Q, and then it can be identified in a natural way

with Rk ×Q. Therefore, as ξ ◦ τ1 is a surjective submersion with connected fibres,
then so is FL0 : Rk × T 1

kQ → P (the restriction of FL onto its image P), since
FL0 = ξ ◦ τ1. In conclusion, affine Lagrangians are almost regular Lagrangians
and thus P is an embedded submanifold of Rk × (T 1

k )∗Q, which is diffeomorphic to
Rk ×Q.

Therefore we can introduce

h = −g(xα, qi) ∈ C∞(P) ,

ωα = −
(
∂fαk
∂xµ

dxµ +
∂fαk
∂qj

dqj
)
∧ dqk ∈ Ω2(P) ,

such that FL∗0EL = h and FL∗0ωαL = ωα. As above, ηα = dxα and the Reeb vector

fields are Rα =
∂

∂xα
. Then

dh−Rα(h) dxµ = dh− ∂h

∂xµ
dxµ = − ∂g

∂xµ
dxµ− ∂g

∂qj
dqj +

∂g

∂xµ
dxµ = − ∂g

∂qj
dqj ∈ Ω1(P) ,

and, for a k-vector field X = (X1, . . . , Xk) ∈ Xk(P) satisfying the second group of
equations (2), we have that

Xα =
∂

∂xα
+ F lα

∂

∂ql
∈ X(P) ,

thus

iXαω
α = F lα

∂fαl
∂xµ

dxµ −
∂fαj
∂xα

dqj ,

and the first group of equations (2) leads to

F lν
∂fνl
∂xµ

= 0 ,
∂g

∂qj
−
∂fαj
∂xα

= −F lα
(
∂fαl
∂qj
−
∂fαj
∂ql

)
. (15)

As in the Lagrangian formalism, this system of (linear) equations allows us to deter-
mine (partially) the component functions F lα and, eventually, could give constraints
functions (depending on the rank of the matrices involved). If this last situation
happens, then the constraint algorithm follows by demanding the tangency condi-
tion for the vector fields Xα.

6.2. A simple affine Lagrangian model.

Lagrangian formalism. As a particular example we consider the model studied in
[19], which has R2 × Q = R2 × R2 as configuration manifold, with coordinates
(x1, x2; q1, q2). The Lagrangian formalism takes place in R2 ×⊕2TQ, with coordi-
nates (x1, x2, q1, q2, v1

1 , v
1
2 , v

2
1 , v

2
2), and the Lagrangian is given by

L = x2(q1v1
2 + q2v2

2) + q1q2 ;
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that is, the functions in Eq. (11) are

f1
1 = 0 , f2

1 = x2q1 , f1
2 = 0 , f2

2 = x2q2 , g = q1q2 .

Since the Lagrangian is affine the energy is simply

EL = −q1q2 ,

and then

dEL +
∂L

∂xµ
dxµ = −q2dq1 − q1dq2 + (q1v1

2 + q2v2
2)dx2 .

We have the forms

η1 = dx1 , η2 = dx2 ; ω1
L = 0 , ω2

L = −q1 dx2 ∧ dq1 − q2 dx2 ∧ dq2 ,

and the Reeb vector fields

R1 =
∂

∂x1
, R2 =

∂

∂x2
.

A generic 2-vector field X = (X1, X2) ∈ X2(R2×⊕2TQ) satisfying the second group
of equations (7) has the form

X1 =
∂

∂x1
+ F 1

1

∂

∂q1
+ F 2

1

∂

∂q2
+G1

11

∂

∂v1
1

+G1
12

∂

∂v1
2

+G2
11

∂

∂v2
1

+G2
12

∂

∂v2
2

,

X2 =
∂

∂x2
+ F 1

2

∂

∂q1
+ F 2

2

∂

∂q2
+G1

21

∂

∂v1
1

+G1
22

∂

∂v1
2

+G2
21

∂

∂v2
1

+G2
22

∂

∂v2
2

;

thus

iXαω
α
L = iX2

ω2
L = (F 1

2 q
1 + F 2

2 q
2)dx2 − q1dq1 − q2dq2 ,

and conditions (13) and (14) read

(v1
2 − F 1

2 )q1 + (v2
2 − F 2

2 )q2 = 0 , q1 − q2 = 0 . (16)

The constraint ζ1 = q1 − q2 defines the submanifold S1 ↪→ R2 × ⊕2TQ. Next, the
tangency conditions on this submanifold lead to

X1(ζ1) = F 1
1 − F 2

1 = 0 , X2(ζ1) = F 1
2 − F 2

2 = 0 (on S1) , (17)

which, together with the first equation in (16), determine that F 1
1 = F 2

1 and F 1
2 =

F 2
2 =

1

2
(v1

2 + v2
2) (on S1).

If we look for semi-holonomic k-vector fields X , we have that F 1
1 = v1

1 , F 2
1 = v2

1 ,
F 1

2 = v1
2 , F 2

2 = v2
2 ; then the first equation in (16) holds identically and the tangency

conditions (17) give two new constraints

ζ2 ≡ X1(ζ1) = v1
1 − v2

1 = 0 , ζ3 ≡ X2(ζ1) = v1
2 − v2

2 = 0 (on S1) ,

which define the submanifold S2 ↪→ S1 ↪→ R2 × ⊕2TQ. Finally, the tangency
conditions for these constraints lead to the relations

X1(ζ2) = G1
11 −G2

11 = 0 , X2(ζ2) = G1
21 −G2

21 = 0 (on S2) ;

X1(ζ3) = G1
12 −G2

12 = 0 , X2(ζ3) = G1
22 −G2

22 = 0 (on S2) ,

and, taking (x1, x2, q1, v1
1 , v

1
2) as coordinates in S2, the final solution is

X1

∣∣∣
S2

=
∂

∂x1
+ v1

1

∂

∂q1
+G1

11

∂

∂v1
1

+G1
12

∂

∂v1
2

,

X2

∣∣∣
S2

=
∂

∂x2
+ v1

2

∂

∂q1
+G1

21

∂

∂v1
1

+G1
22

∂

∂v1
2

.
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Hamiltonian formalism. The Hamiltonian formalism takes place in R2 × ⊕2T ∗Q
which is endowed with local charts of coordinates (x1, x2, y1, y2, p1

1, p
2
1, p

1
2, p

2
2). The

Legendre map FL : R2 ×⊕2TQ→ R2 ×⊕2T ∗Q is given by

(x1, x2, y1, y2, p1
1, p

2
1, p

1
2, p

2
2) = FL(x1, x2, q1, q2; v1

1 , v
1
2 , v

2
1 , v

2
2)

= (x1, x2, q1, q2; 0, x2q1, 0, x2q2) .

Its image is the submanifold P of R2 ×⊕2T ∗Q given by the primary constraints

p1
1 = 0 , p2

1 = x2q1 , p1
2 = 0 , p2

2 = x2q2 ;

so, we can describe P with coordinates (x1, x2, q1, q2). In P we have the forms

η1 = dx1 , η2 = dx2 ; ω1 = 0 , ω2 = −q1 dx2 ∧ dq1 − q2 dx2 ∧ dq2 ,

and the Reeb vector fields

R1 =
∂

∂x1
, R2 =

∂

∂x2
.

The Hamiltonian function is
h = −q1q2 ,

and then

dh− ∂h

∂xµ
dxµ = −q2dq1 − q1dq2 .

A generic 2-vector field X = (X1, X2) ∈ X2(P) satisfying the second group of
equations (2) has the form

X1 =
∂

∂x1
+ F 1

1

∂

∂q1
+ F 2

1

∂

∂q2
, X2 =

∂

∂x2
+ F 1

2

∂

∂q1
+ F 2

2

∂

∂q2
;

thus
iXαω

α = iX2ω
2 = (F 1

2 q
1 + F 2

2 q
2)dx2 − q1dq1 − q2dq2 .

In this case, conditions (15) read

F 1
2 q

1 + F 2
2 q

2 = 0 , q1 − q2 = 0 . (18)

The constraint ξ1 = q1 − q2 defines the submanifold P1 ↪→ P. Next, the tangency
conditions on this submanifold lead to

X1(ξ1) = F 1
1 − F 2

1 = 0 , X2(ξ1) = F 1
2 − F 2

2 = 0 (on P1) ,

which, together with the first equation in (18), determine that F 1
1 = F 2

1 and F 1
2 =

F 2
2 (on P1). Therefore, taking (x1, x2, q1) as coordinates in P1, the final solution is

X1

∣∣∣
P1

=
∂

∂x1
+ F 1

1

∂

∂q1
, X2

∣∣∣
P1

=
∂

∂x2
+ F 1

2

∂

∂q1
. (19)

Observe that FL∗(ξ1) = ζ1, but the Lagrangian constraints ζ2, ζ3, which establish
relations among the coordinates on the fibers of the Legendre map, are not FL-
projectable since they arise as a consequence of the semi-holonomy condition. Thus
FL(S1) = FL(S2) = P1. It is also interesting to point out that none of the
Lagrangian solutions to the family (19) are FL-projectable, unless we restrict them
to the submanifold S3 ↪→ S2 ↪→ S1 ↪→ R2 × ⊕2TQ defined by the additional (non
FL-projectable) constraints v1

1 = 0 and v1
2 = 0. In that case, there is only one

FL-related solution tangent to S3, which is locally given by

X1 =
∂

∂x1
, X2 =

∂

∂x2
,

and it projects trivially onto a solution on P1 which is obtained from the family
(19) by taking F 1

1 = F 1
2 = 0. Observe also that FL(S3) = P1.
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6.3. A singular quadratic Lagrangian.

Lagrangian formalism. As another example we consider the Lagrangian function

L =
1

2e
q2
t +

1

2
σ2e− 1

2
τq2
s ,

with two independent variables (t, s) ∈ R2 and two dependent variables (q, e) ∈
Q = R × R+; the corresponding natural coordinates of R2 × ⊕2TQ are written
(t, s; q, e; qt, qs, et, es). Also τ ∈ R is a constant parameter and σ = σ(t, s) ∈ C∞(R2)
is a given function. This Lagrangian is very similar to the one introduced in [14]
but letting one of its parameters to be a given function in order to illustrate the
non-autonomous setting.

First we need to compute several geometric objects:

J t =
∂

∂qt
⊗ dq +

∂

∂et
⊗ de , Js =

∂

∂qs
⊗ dq +

∂

∂es
⊗ de ,

∆t = qt
∂

∂qt
+ et

∂

∂et
, ∆s = qs

∂

∂qs
+ es

∂

∂es
, ∆ = ∆t + ∆s .

Now we compute the Poincaré–Cartan forms:

θtL = dL ◦ J t =
1

e
qt dq , θsL = dL ◦ Js = −τ qs dq ,

ωtL = −dθtL =
qt
e2

de ∧ dq − 1

e
dqt ∧ dq , ωsL = −dθsL = τ dqs ∧ dq .

We also need the Lagrangian energy:

EL = ∆(L)− L =
1

2e
q2
t −

1

2
σ2e− 1

2
τq2
s .

Now we consider a generic 2-vector field X = (Xt, Xs) on the phase space R2 ×
⊕2TQ and consider the k-cosymplectic Euler–Lagrange equations (7) for it. After
applying the second group of equations, iXβdxα = δαβ , the form of X is given by

Xt =
∂

∂t
+Bqt

∂

∂q
+Bet

∂

∂e
+ Cqtt

∂

∂qt
+ Cqst

∂

∂qs
+ Cett

∂

∂et
+ Cest

∂

∂es
,

Xs =
∂

∂s
+Bqs

∂

∂q
+Bes

∂

∂e
+ Cqts

∂

∂qt
+ Cqss

∂

∂qs
+ Cets

∂

∂et
+ Cess

∂

∂es
.

Now we apply the first equation of the k-cosymplectic Euler–Lagrange equations,

iXαω
α
L = dEL +

∂L

∂xα
dxα. Equating the coefficients of the differentials we obtain:

Bet =
e2

qt

(
1

e
Cqtt − τCqss

)
, Bqt = qt , Bqs = qs ,

q2
t

e2
= σ2 .

From these equations, three coefficients of X are determined from the variables and
the other coefficients; the last equation is a constraint,

ζ1 =
1

2

(
q2
t

e2
− σ2

)
,

whose vanishing defines a submanifold S1 of R2×⊕2TQ. At this stage, X has nine
undetermined coefficients.
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Finally, we analyze the tangency of X (that is, of its components Xt, Xs) to S1.
Imposing Xt(ζ1)|S1 = 0, Xs(ζ1)|S1 = 0, we obtain two additional relations between
the undetermined coefficients (on S1), and no more constraints.

To complete our analysis we will study the k-cosymplectic Euler–Lagrange equa-
tions with the second-order partial differential equation condition. The generic
expression of X is given by

Xt =
∂

∂t
+ qt

∂

∂q
+ et

∂

∂e
+ Cqtt

∂

∂qt
+ Cqst

∂

∂qs
+ Cett

∂

∂et
+ Cest

∂

∂es
,

Xs =
∂

∂s
+ qs

∂

∂q
+ es

∂

∂e
+ Cqts

∂

∂qt
+ Cqss

∂

∂qs
+ Cets

∂

∂et
+ Cess

∂

∂es
.

Now the first equation of (7) yields two identities, a relation between the coefficients,

namely et
qt
e2
− 1

e
Cqtt +τCqss = 0, and the same constraint ζ1 as above. The tangency

of X to the submanifold S1 determines the coefficients Cqtt and Cqts (on S1), and no
more constraints appear. So X is left with 5 undetermined coefficients.

Hamiltonian formalism. The Hamiltonian formalism takes place in R2 × ⊕2T ∗Q,
where we use natural coordinates (t, s; q, e; pt, ps, πt, πs).

The Legendre map FL : R2 ×⊕2TQ→ R2 ×⊕2T ∗Q is given by

FL(t, s; q, e; qt, qs, et, es) =

(
t, s; q, e;

1

e
qt,−τqs, 0, 0

)
.

The primary Hamiltonian constraint submanifold P of R2 × ⊕2T ∗Q is defined by
the constraints

πt = 0, πs = 0.

Using (t, s; q, e; pt, ps) as coordinates on the submanifold P, its 2-precosymplectic
structure is given by

ηt = dt, ηs = ds, ωt = dq ∧ dpt, ωs = dq ∧ dps.

Then,

ker ηt ∩ ker ηs ∩ kerωt ∩ kerωs =

〈
∂

∂e

〉
.

The Reeb vector fields are

Rt =
∂

∂t
, Rs =

∂

∂s
.

The Hamiltonian function on P is

h =
1

2
e (pt)2 − 1

2
σ2e− 1

2τ
(ps)2.

Consider a 2-vector field X = (Xt, Xs) ∈ X2(P):

Xt = A1
t

∂

∂t
+A2

t

∂

∂s
+B1

t

∂

∂q
+B2

t

∂

∂e
+ C1

t

∂

∂pt
+ C2

t

∂

∂ps
,

Xs = A1
s

∂

∂t
+A2

s

∂

∂s
+B1

s

∂

∂q
+B2

s

∂

∂e
+ C1

s

∂

∂pt
+ C2

s

∂

∂ps
.

Now, Hamilton equations are written as{
i(Xt)ω

t + i(Xs)ω
s = dh− dh(Rt)ηt − dh(Rs)ηs,

i(Xt) η
t = 1, i(Xt) η

s = 0, i(Xs) η
t = 0, i(Xs) η

s = 1,
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which partly determine the coefficients of X :

B1
t = ept,

B1
s = −1

τ p
s,

C1
t + C2

s = 0,

A1
t = 1, A2

t = 0,

A1
s = 0, A2

s = 1,

and imposes as a consistency condition the secondary Hamiltonian constraint

ξ = i

(
∂

∂e

)
dh =

1

2
(pt)2 − 1

2
σ2 = 0 (on P) ,

which defines the submanifold P1 ↪→ P. The tangency condition to this new sub-

manifold, Xt(ξ)|P1 = 0, Xs(ξ)|P1 = 0, determines the coefficients C1
t

∣∣∣
P1

=
1

pt
σ
∂σ

∂t
,

C1
s

∣∣∣
P1

=
1

pt
σ
∂σ

∂s
, and yields no more constraints.

Observe that FL∗(ξ1) = ζ1, so FL(S1) = P1 and, as the semi-holonomy con-
dition does not originate constraints in the Lagrangian formalism, there are no
non-FL-projectable Lagrangian constraints.

7. Conclusions and outlook. In this paper the concepts of k-precosymplectic
manifold and of k-precosymplectic Hamiltonian system have been introduced, and
we have proved the existence of global Reeb vector fields in these manifolds. We have
developed a constraint algorithm for k-precosymplectic (i.e. singular) field theories
in order to find a submanifold of the phase bundle where there are solutions to
the field equations. This algorithm can be applied to the Hamiltonian and to the
Lagrangian formalisms of these field theories. In particular, the algorithm allows
to find a submanifold where there are multivector fields which are solutions to
the geometric field equations, and they are tangent to the submanifold. These
multivector fields are not necessarily integrable on this submanifold, but perhaps
on a smaller submanifold of it.

In addition, in the case of the Lagrangian formalism, the problem of finding
sopde multivector fields solution to the field equations has been briefly discussed,
but the problem of giving an intrinsic characterization of the “sopde constraints”
is a topic for further research.

Furthermore, an open problem is to find conditions to ensure the existence of
some kind of Darboux coordinates in both k-presymplectic and k-precosymplectic
manifolds. Work on this subject is in progress.

Finally, the constraint algorithm has been applied to classical field theories de-
scribed by affine Lagrangians, analyzing the Hamiltonian and the Lagrangian for-
malisms and, in this last case, the sopde condition. In a future work we would like
to apply this analysis to the study of some models in General Relativity described
by metric-affine Lagrangians, such as the Einstein–Palatini model.
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[17] M. de León, J. Maŕın-Solano, and J. C. Marrero, A geometrical approach to classical field

theories: A constraint algorithm for singular theories, In New Developments in Differential
Geometry, Springer, Netherlands, 350 (1996), 291–312.
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