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Abstract 

 

Classical and atomistic nucleation models have been tested in several aqueous systems 

dealing with electrocrystallization. A lot of reported experimental nucleation data have been 

used, and in a wide range of overpotentials. The critical nucleus size has been calculated in 

those cases not reported in the original work, and the results obtained with the classical and 

atomistic models have been tabulated, compared and discussed. Small values for the critical 

nucleus size occur in most of the systems. 
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Introduction 

 

Theories of nucleation have been developed along the last decades, from both 

thermodynamic and kinetic points of view [1-7], since nucleation is an important 

phenomenon which plays a fundamental role in crystal growth, precipitation and 

electrocrystallization. The phenomenon of electrocrystallization has been treated by several 

authors [8-14] and also reviewed recently [15-19]. Nucleation and its control are very 

important in the formation of nanoparticles and nanostructured materials [20-25], and has 

also been applied to monolayers of molecular materials [26]. 

Dependence in between the nucleation rate and the overpotential acting in the system is 

predicted in the nucleation models. To test the classical models as well the atomistic model 

of nucleation, several systems have been selected dealing with electrochemical nucleation. 

One point that deserves attention in the discussions of the different nucleation models is that 

about the critical nucleus size. In this work this point has been considered and, from the 

treatment of experimental data, the critical nucleus size has been calculated for different 

systems, and some discussions are presented. 

At first, immediately afterwards, a brief revision of the nucleation models is shown. 

 

Classical Models 

In the case of 3D homogeneous or heterogeneous nucleation, the following expressions are 

obtained for the critical nucleus n*, under the consideration that the surface of the nucleus is 

related to the power 2/3 of the volume: 

∆𝐺(𝑛∗) =
𝑏𝜔2𝜎3

(∆𝜇)2
𝐹(𝜃) =

𝑏𝜔2𝜎3

(𝑘𝑇 ln𝛽)2 𝐹
(𝜃)            (1𝑎) 

   

𝑛∗ =
2∆𝐺(𝑛∗)
𝑘𝑇 ln𝛽

𝐹(𝜃)            (1𝑏) 
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where b: shape factor, ω: molecular volume and β: supersaturation ratio. The classical 

models use macroscopic magnitudes, as the interfacial tension σ, and the nucleus size is 

treated as a continuous value. The function F(θ) takes the value of 1 for homogeneous 

nucleation and depends on the contact angle, or the adhesion energy, between substrate and 

nucleation phase in the case of heterogeneous nucleation. This function is usually neglected 

in practise. A proposed solution [16] is to consider σ as an average specific interface energy 

that takes into account for the interface energy between nucleus and substrate. Under this 

assumption, the above expressions can be rewritten as: 

∆𝐺(𝑛∗) =
𝑘𝑇𝐵3𝐷
(ln𝛽)2             (2𝑎) 

𝑛∗ =
2𝐵3𝐷

(ln𝛽)3             (2𝑏) 

𝐵3𝐷 =
𝑏𝜔2𝜎3

(𝑘𝑇)3             (2𝑐) 

  

The kinetic approach to the nucleation process considers that the nucleus formation proceeds 

in a reversible process by addition and aggregation of individual particles, where some 

aggregates growth while others redissolve, and some of them reach the critical size. The 

nucleation rate takes the form: 

𝐽 = 𝑍𝑐∗𝑏∗            (3𝑎) 

𝑐∗ = 𝑁1 exp �− ∆𝐺∗

𝑘𝑇
�            (3𝑏) 

  

In eq. (3a) Z is the Zeldovich factor, b* is the probability of a monomer to be incorporated in 

the critical nucleus, and c* is the equilibrium concentration of the critical nuclei, expressed 

by eq. (3b) where N1 is the monomer concentration. For most of the systems, the nucleation 

rate can be expressed by a general equation [5]: 
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𝐽 = 𝐽𝑜 exp �− ∆𝐺∗

𝑘𝑇
� = 𝐽𝑜 exp �− 𝐵3𝐷

(𝑙𝑛 𝛽)2�            (4𝑎) 

  

In eq. (4a) Jo is a practically supersaturation independent term. Then  

𝐵3𝐷 ≈ −
𝑑 ln 𝐽

𝑑 � 1
(ln𝛽)2�

            (4𝑏) 

                    
Consequently, from eq. (4b) and (2b) the value of n* can be calculated. 

 

For ionic solutions, if β=Sν, where ν=ν++ν- and ν+ and ν- represents the number of cations 

and anions in the molecular formula, respectively, the previous equations can be rewritten as: 

𝐽 = 𝐽𝑜exp (−
𝐵3𝐷′

(ln 𝑆)2)            (5𝑎) 

𝐵3𝐷′ =
𝐵3𝐷
ν2

≈ −
𝑑 ln 𝐽

𝑑 � 1
(ln 𝑆)2�

            (5𝑏) 

    

𝑛∗ =
2𝐵3𝐷′

ν(ln𝑆)3             (5𝑐) 

      

Atomistic Model 

In the atomistic model the critical nucleus size has a discrete character and is not a 

continuous function of supersaturation. Then, there is a supersaturation interval where the 

size of the critical nucleus is the same. For the nucleation rate we have the following 

expressions: 

𝐽 = 𝐽𝑜 exp�−
Φ(𝑛∗) − 𝑛∗∆𝜇

𝑘𝑇
�            (6𝑎) 

Φ(𝑛∗) − 𝑛∗∆𝜇 = ∆𝐺(𝑛∗)           (6𝑏) 
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In the atomistic model Φ(n*), the excess surface energy, and n* are constants in a given 

supersaturation interval and then lnJ depends linearly on ∆µ for each interval [6, 27], 

showing discontinuities when passing from one interval to another. Considering Jo as a 

practically supersaturation independent term, we have for each interval: 

𝑛∗ =
𝑑 ln 𝐽
𝑑 ln𝛽

            (7𝑎) 

           

ν𝑛∗ =
𝑑 ln 𝐽
𝑑 ln 𝑆

            (7𝑏) 

         
When we deal with electrocrystallization, as lnβ=zFη/RT, where η is the overpotential, we 

can write [1, 9, 17, 27]: 

𝑛∗ =
𝑅𝑇 𝑑 ln 𝐽
𝑧𝐹 𝑑η

            (7𝑐) 

        
 

Results and discussion 

 

As can be seen from eq. (4a) and eq. (6a), nucleation models predict certain dependence 

between the nucleation rate and supersaturation, but one of the serious problems concerned 

with nucleation theories is their experimental test. In most of the works the nucleation rate J 

is obtained. In those systems where the number of nuclei N were reported for an 

instantaneous nucleation, it was assumed that J ∝ N [1, 17] and then similar equations to 

eqs. (7a-7c) were used. In some cases the nucleation rate can be related to the induction time 

ti. The induction time includes the time for nucleation, tn, and the time for nucleus growth 

until a detectable size, tg. When exits a nucleation control tn>>tg, and then 

𝑡𝑖 ≈ 𝑡𝑛 ∝
1
𝐽

            (8) 
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For a simplicity in the data treatment, it will be assumed that this consideration holds and 

then, in eqs. (4b), (5b), (7a-7c), the term d lnJ can be substituted by (-d lnti): 

𝑛∗ = −
𝑑 ln 𝑡𝑖
𝑑 ln𝛽

            (9𝑎) 

          

ν𝑛∗ = −
𝑑 ln 𝑡𝑖
𝑑 ln 𝑆

            (9𝑏) 

          

𝑛∗ = −
𝑅𝑇 𝑑 ln 𝑡𝑖
𝑧𝐹 𝑑η

            (9𝑐) 

        
In most systems, T=298 K and thus RT/F= 0.0257 V. For the atomistic model, plots of lnJ or 

lnN or lnti versus lnβ or lnS or versus the overpotential η were done, and from the slope and 

the corresponding equations the value of n* was determined. For the classical model, plots of 

lnJ or lnN or lnti versus 1/ln2β or 1/ln2S were treated, and from the slope and the 

corresponding equations the value of n* was determined. These models have been tested 

from experimental systems (Table 1 and Table 2). Table 1 shows the results of both the 

classical and the atomistic model, meanwhile Table 2 shows the results obtained only with 

the atomistic model. Some of the reported values have been calculated by the author from 

original data, but others were yet reported in the original paper.  

 

The values of the critical nucleus size obtained with both classical and atomistic models 

agree (Table 1) and indicate that a small or very small critical nucleus is formed. This 

agreement is not strange since from eq. (4b) and eq. (2b) of the classical model it is obtained 

that n*= d lnJ /d lnβ, which coincides with eq. (7a) of the atomistic model. Small values of 

the critical nucleus were also compiled by Krumm et al. (see Table 1 in ref [37]), with values 

ranging from 0 to 18, and by Budevski et al. (see Table 4.1 in ref [16]), with values ranging 

from 0 to 14, for other systems in electrodeposition. The small values of n* obtained in 

electrocrystallization are due to the higher supersaturations usually attained in this case and 
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to the heterogeneous character introduced by the electrode surface, with the presence of 

defects. These small values seem to reinforce that the atomistic model is more realistic.  

Critical nucleus sizes of zero, which appears in some electrocrystallization systems at high 

overpotentials, can be explained by the presence of active sites on the electrode surface. The 

active sites play the role of the critical nucleus [10], and when the necessary overpotential or 

supersaturation is reached, nucleation occurs at these centres. Nanoscopic structural defects, 

ions, impurity molecules and foreign nanoparticles in the volume of the old phase or on the 

substrate surface are examples of such active centres [1]. The data in Table 2 clearly show 

that the higher values for the critical nucleus size occur at single crystals or at well defined 

crystalline faces, and at low enough overpotentials (systems E, F, K, R, S, U, V and b in 

Table 2), as a consequence of a lower density of defects in the substrate. 

 

From the plot of lnJ or lnti vs. lnß or η it is seen, in several systems, a change in the slope 

(systems A and E in Table 1 and systems F, L, P and R in Table 2) that according to the 

atomistic model indicates a change in the critical nucleus size, but in a discrete way. The 

existence of nucleus sizes more stable than others is predicted by the atomistic models [2, 6]. 

Taken into consideration the very small determined critical nucleus size, it seems that 

magnitudes used by the classical models, as the interfacial tension, are without sense or 

meaning. But, on the other hand, the sizes predicted by the classical models agree with those 

of the atomistic model. This result seems to justify the formal use of classical models but the 

meaning of the magnitudes they use should be revised. Recently, Mostany et al. [60] have 

considered this point and proposed the temperature dependence of the nucleation rate, the 

interfacial tension and the exchange current densities as a way to analyse it. Small values of 

n* were also obtained by the author [61] in the precipitation of calcium carbonate from 

supersaturated solutions. It was also observed a linear dependence in the plot of lnti vs. lnS 

with a change in the slope at a certain value of supersaturation, indicating a change in the 

value of n*, as has been reported here for some systems in electrocrystalization.  



 8 

 

From considerations of the atomistic model [8, 17], when the critical nucleus size change 

∆G(n1
*) = ∆G(n2

*), and according to eq. (6b), it is possible to calculate Φ(n1
*)−Φ(n2

*). 

Particularly, when n* change from 1 to 0, the values of Φ(1) and ∆G(1) can be obtained. 

From the systems and values reported in Table 1 and Table 2, the results shown in Table 3 

arise. The obtained values of Φ(1) indicate a certain correlation with the overpotential, being 

necessary higher overpotentials when the excess surface energy increases. Lower values of 

Φ(1) indicate a strong interaction with the substrate, as is the case of electrocrystalization of 

PbSO4 on Hg/Pb amalgam (system G in Table 3). Due to the connection between the excess 

surface energy, of the atomistic model, and the interfacial tension, of the classical models, 

this low value can by related to a low value of the interfacial tension for this system. 

 

Some studies on nucleation and growth at the initial stages of metal electrodeposition and 

nanoparticle formation have used Scanning Probe Microscopy (SPM) techniques, as STM 

and ECSTM [30, 52, 62-65] or AFM [39, 48, 66-67]. These nanometric techniques yield 

information on an atomic scale and provide a view of the electrodeposition process in a 

nanometric scale. Aspects such as the spatial distribution of nuclei, 2D or 3D dimensional 

growth, influence of defects and influence of additives or surface-capping agents, can be 

undertaken now in a more precise way. In particular, the number of nuclei, or the nucleation 

rate, as a function of the overpotential can be obtained more precisely with recent fast SPM 

than using other microscopy techniques as Scanning Electron Microscopy (SEM) [44, 46, 

56, 68]. Furthermore, some of these techniques can be applied in-situ. A revision of the 

impact of these techniques on the analysis of electrochemical nucleation is out of the target 

of the present work. 
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Conclusions 

 

It can be concluded that the atomistic model can be applied to the electrochemical nucleation 

phenomenon, and that small values for the critical nucleus size are obtained. These small 

values are due to the high attained supersaturations and also to the presence of defects in the 

electrode surface. The presence of intervals where lnJ depends linearly on ∆µ, according to 

the atomistic model, has been observed in several systems.  
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Table 1. Critical nucleus size, n*, calculated in electrocrystallization from both the classical and the 
atomistic models. Supersaturation expressed as potential or overpotential in V, except for D) and E) 
where the values between ( ) are expressed as S=a/asat=IAP/KSP; a values reported in the original 
paper. 
 
 System    Supersat.    n* clas.   n* atom.    reference  
 
A) Ag on C  η=0.09-0.24     3-1a                  28  
   η=0.09-0.16     1a 

   η=0.16-0.24     0a 

B) Cd on Pt  η=0.022-0.038     5-1      29 
C) Cu on Au(111) η=0.071-0.082     3-2a   3-2a     30  
D) PbCl2 on Hg/Pb  η=0.067-0.117     2-0    1    31 
    (190-6720) 

E) PbSO4 on Hg/Pb  η=0.025-0.100     2-0      31 
     (7-2450) 

           η=0.025-0.060        1 
     (7-110) 

    η=0.060-0.100     0 
    (110-2450) 
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Table 2. Critical nucleus size, n*, calculated in electrocrystallization from the atomistic model. 
Supersaturation expressed as potential or overpotential in V; a values reported in the original paper. 
 
 System    Supersat.              n* atom.    reference  
 
A) Ag on Si  -E=0.8-0.9   1-0a   32 
     Ag on C  -E=0.7-0.9   1-0a  
B) Ag on C  η=0.110-0.120     2   33 
C) AgO on Ag  E=0.63-0.74     1   34 
D) Bi on C  -E=0.1-0.35     0a   35 
E) Cd on Cd(0001) η=0.015-0.045     5a   36 
F) Cd on Si(111) η=0.015-0.021     6   37 
        0.474-0.520     1-0 
G) Co on C  -E=1.2-1.5     0   38 
H) Co on C  -E=0.83-0.88   1-0   39 
I) Co on C  -E:1.22-1.27     0a    40 
J) Cu on n-Si/TiN -E=0.05-0.25   1-0   41 
K) Cu on Pt  η=0.022-0.032    11a    42 
      Cu on W  η=0.040-0.055     4a  
L) Cu on Pd  η=0.040-0.054       4a    43 
   η=0.054-0.082       1a 

   η=0.082-0.200       0a 

M) Cu on n-GaAs -E=0.49-0.56   0-1a   44 
N) Cu on n-GaAs -E=0.6-0.9     0a    45 
O) Cu on C  E=-0.18-0.10     0a    46 
P) Cu on C  η=0.060-0.074       3a    47 
   η=0.074-0.124     1a 

Q) Cu on Si(111) -E=0.50-0.75   0-1    48 
R) Hg on Pt  η=0.084-0.094    10   49 
        0.094-0.106     6 
S) Hg on Pt  η=0.083-0.093     5a    50 
T) Ni on C  -E=0.93-0.98   1-0   39 
U) Pb on Ag(111) η=0.013-0.019    11a   51 
      Pb on Ag(100)      13a 

V) Pb on n-Si(111) η=0.006-0.010    11a    52 
     Pb on HOPG(0001) η=0.004-0.007    11 
W) Pt on W  -E=0.54-0.76     0a   53 
X) Pt on Ti  -E=0.56-0.68     0a   54 
Y) Rh on Au  E=0.2-0     1-0a   55 
Z) Rh on PG  -E=0.17-0.30     0a   56 
a) Sn on C  η=0.160-0.410   1-0   57 
b) Tl on Si(111)  η=0.003-0.007    18a   37 
c) Zn on C  -E=1.35-1.70     1-0   58 
d) Zn on HOPG  η=0.22-0.37     1a   59 
 



 16 

 
 
 
Table 3. Values of Φ(n1

*)−Φ(n2
*), Φ(1) and ∆G(1) for some systems. η is the overpotential at the 

point of change of n*, expressed in V. 
 
System   Φ(n1

*)−Φ(n2
*) 1020/J Φ(1) 1020/J      ∆G(1) 1020/J      η/V        ref. Table n  

A) Ag on C     Φ(1)−Φ(0) = 2.6     2.6              1.1 − 0           0.160 A Table 1 
B) Ag on Pt    Φ(1)−Φ(0) = 3.8     3.8              0.6 − 0           0.240 17  
C) Cu on C    Φ(3)−Φ(1) = 4.7               0.074 P Table 2 
D) Cu on Pd      Φ(4)−Φ(1) = 5.2               0.054 L Table 2 
     Φ(1)−Φ(0) = 2.6     2.6              0.9 − 0           0.082  
E) Hg on C    Φ(1)−Φ(0) = 7.7     7.7  0.7 − 0           0.242 17 
F) Hg on Pt     Φ(10)−Φ(6) = 6.0               0.094      R Table 2 
G) PbSO4 on Hg/Pb    Φ(1)−Φ(0) = 1.9     1.9              1.1 − 0           0.060      E Table 1 
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