
Polytechnic University of Catalonia

Barcelona School of Informatics

Department of Computer Science

A workflow for the analysis and

modelling of high-dimensional omics

data

Author: Gerard Otero Mart́ın

Director: Luis Antonio Belanche Muñoz

September 2019

Abstract

In the recent years, advances in the field of Computer Science have made

Machine Learning a viable method of obtaining very precise information and

making great predictions in studies related to the entire field of biology.

In this project we create a fast and accurate Machine Learning workflow

with an easy and user-friendly interface, many customizable parameters, in-

forming plots and feedback, and several data input methods, using the latest

available free technologies.

Acknowledgments

First of all I would like to thank my director, Luis Antonio Belanche

Muñoz, for his support throughout the entire process and the help he has

brought me to be able to successfully develop this entire project.

I would also like to thank my family for supporting me during the last six

years and giving me an exemplary education, and the friends and workmates

that have been working with me all these past years helping me learn new

things every day.

Lastly, I would like to thank Kiara for all her love and support during

the development of this project.

Contents

1 Introduction 1

1.1 Formalization of the problem 2

1.2 Objectives . 2

1.3 Actors involved . 3

1.3.1 Developer . 3

1.3.2 Project director . 3

1.3.3 Beneficiaries . 4

1.4 State of the art . 4

1.5 Scope . 7

1.6 Obstacles . 8

1.7 Methodology . 9

1.7.1 Reviews and meetings 9

1.7.2 Development tools . 9

1.7.3 Validation . 10

2 Design and implementation 11

2.1 Summary . 11

2.2 Workflow . 11

2.2.1 Design . 11

2.2.2 Implementation . 19

2.3 User interface . 29

2.3.1 Design . 29

2.3.2 Implementation . 31

2.4 Experimentation . 41

2.4.1 An experiment with real data (Golub et al. 1999) . . . 41

2.4.2 An example with random data 53

3 Temporal planning 57

3.1 Planning and scheduling . 57

3.2 Task descriptions . 57

3.2.1 Acquire background in genomics and machine learning 57

3.2.2 Learn to use the tools 58

3.2.3 Develop the FS workflow 59

3.2.4 Develop the representation 59

3.2.5 Final complete test . 60

3.2.6 Final steps . 60

3.3 Estimated time . 61

3.4 Gantt chart . 62

3.5 Alternatives and action plan 62

3.5.1 Complexity of the workflow 63

3.5.2 Bugs . 64

3.5.3 Optimizations . 64

3.6 Changes regarding the original planning 65

4 Economic planning 67

4.1 Direct Costs . 68

4.1.1 Hardware . 68

4.1.2 Software . 68

4.1.3 Human Resources . 69

4.1.4 Total Direct Costs . 70

4.2 Indirect Costs . 70

4.3 Total direct and indirect costs 71

4.4 Contingency Costs . 72

4.5 Total costs . 73

4.6 Budget tracking . 73

4.7 Economic deviations . 74

5 Sustainability 77

5.1 Environmental . 77

5.2 Social . 78

5.3 Economic . 78

5.4 Sustainability Matrix . 79

6 Conclusion 80

6.1 Future work . 82

Bibliography 84

List of Figures

2.1 Diagram of the workflow . 12

2.2 Layout of the UI . 32

2.3 PCA plot . 35

2.4 Fisher scores (the red line divides the kept and discarded fea-

tures) . 35

2.5 ReliefF scores . 36

2.6 Heatmap of the remaining variables 37

2.7 BER per component . 38

2.8 Error rate per amount of variables selected per component . . 38

2.9 Projection of the samples to the subspace of the two best prin-

cipal components . 39

2.10 AUROC plot of the first component 39

2.11 CIM of all the variables and samples 40

2.12 Loadings and relevance of the selected variables in the first

component . 40

2.13 PCA and Fisher Scores of Golub et al. 42

2.14 PCA and ReliefF Scores of Golub et al. (remaining 712 genes) 43

2.15 Heatmap of the 100 remaining genes after ReliefF 44

2.16 Error rates and selected variables per component for the re-

maining 100 genes . 45

2.17 Projection of the samples in the subspace of the two components 46

2.18 AUROC of the first component 47

2.19 CIM of the final selected variables and samples 48

2.20 Loadings of the first component, the color indicating the class

each gene contributes to . 49

2.21 Loadings of the 10 most relevant genes 50

2.22 Gene expression for the 25 more relevant genes of each class[1] 51

2.23 PCA and fisher scores of the random dataset 54

2.24 Error rates and selected variables per component for the re-

maining 200 genes . 54

2.25 AUROC of the first component of the random dataset 55

2.26 CIM of the final selected variables and samples from the ran-

dom dataset . 56

3.1 Gantt chart of the project . 62

List of Tables

3.1 Estimated development time of the different parts of the project 61

4.1 Costs of the hardware . 68

4.2 Costs of the software . 68

4.3 Costs of the human resources 69

4.4 Costs of the human resources per task 70

4.5 Total direct costs . 70

4.6 Total indirect costs . 71

4.7 Total direct and indirect costs 71

4.8 Contingency costs . 72

4.9 Total costs . 73

4.10 Costs of the human resources: re-planned 74

4.11 Difference between initial and actual costs 75

5.1 Sustainability matrix . 79

Chapter 1

Introduction

For a long time, humans have been trying to understand the full nature of

organic life. Many advances have been made and we have a good understand-

ing of a very big amount of different data and facts. However, the further

biology advances, the harder it is to understand the data we possess. In

order to comprehend the behavior of cells, organs, and a whole organism at

molecular level, we need to study omics data, which are responsible for the

translation of biological molecules into the structure, function and dynamics

of an organism.

Thanks to the latest advances in Computer Science, there has been a big

development in the field of Machine Learning, allowing computers to find

solutions to problems much faster than a human being would.

In this project, we aim to use Machine Learning techniques and algo-

rithms in order to create a software capable of reducing a set of omics data

exponentially to a much smaller subset of them, leaving only the most related

data to the differentiation of a sample between two known classes.

1

1.1 Formalization of the problem

The problems this project aims to solve are high-dimensional data analysis,

and the difficulty of having to build and test that data analysis software by

oneself. Although the final software developed in this project will be able

to work with any kinds of high-dimensional data, this project is designed to

analyze omics data. After inputting the data the user possesses, the output

should be a whole set of data indicating the entire process those data have

gone through, and graphics and explanations of the results at the end of it

and during each one of its parts. The software must also be accurate, easy

to use and ready for the user to use it at any moment.

1.2 Objectives

In this section there are defined the different objectives and goals that, with

this project, I aim to achieve and complete:

• First of all, I need to acquire knowledge about machine learning, omics

and basically every subject that could have relationship with the next

steps to develop, since having a good base of knowledge is essential.

• I want to develop a workflow able to reduce a set of variables of a

problem to a much smaller set of them that contains the most relevant

ones to the problem the user is analyzing.

• I want to develop an interface to guide the user through the entire

analysis process, giving them feedback and allowing them to customize

the parameters of every step.

2

• Finally, I need to validate the project using data from other studies in

order to test the accuracy of the results and the execution time.

1.3 Actors involved

In this section there are listed the different actors involved in the project,

and what their role on it is.

1.3.1 Developer

The developer will be the person in charge of developing the software. That

means their job will be to investigate on Machine Learning, collect infor-

mation, techniques and algorithms, find tools to implement them, build the

workflow, develop the user interface, build the feedback and results reports,

and test the performance of the complete software. I will be the person in

charge of performing all of these tasks.

1.3.2 Project director

The project director will be the person who will guide the developer through

the different problems he might face, give advice on how to continue when

reaching certain milestones and, in general, making sure the project is fin-

ished and working in time. Luis Antonio Belanche Muñoz will be the director

of this project.

3

1.3.3 Beneficiaries

The beneficiaries will be the people who will make use of this project. It can

be the scientist community, having a fast and already available way to obtain

results from certain data without having to go through the trouble of finding

the tools and building the software themselves; it can be students or people

who are starting to work with machine learning, to learn about different ways

to analyze and process data; or it could be curious people who just want to

play around with some data and see if they find something interesting.

1.4 State of the art

Machine learning is the branch of artificial intelligence that studies algorithms

and statistical models that computer systems use to be able to perform tasks

and solve problems without explicitly programming them for that purpose,

but building a mathematical model of sample data, known as training data,

in order to make predictions or decisions when computing the data from real

cases.

In the last years, big improvements in machine learning have been made.

It is everywhere in our daily lives, in the camera of our mobile phone[2], in

our e-mail’s inbox[3], nowadays even self-driving cars are being made[4].

However, different cases require different machine learning techniques and

algorithms, as not all of them are useful for each problem. Omics refers to a

field of biology that ends in -omics, such as genomics, and omics data is data

obtained studying these fields. With the new technologies, we can extract

much more information from these sources[5][6]. Because of this, the amount

of features, attributes and variables collected from each sample has increased

exponentially[7]. This makes omics data become a high-dimensional environ-

4

ment, and so is the data we will use in this project, since they belong to the

field of genomics.

According to recent researches in the field, when dealing with high-

dimensional data, researchers first have to take care of the high complexity of

the data, being crucial to reduce it. Because of this, a Feature Selection (FS)

approach becomes crucial and non trivial. FS is the process of selecting a

subset of relevant features from a data model to construct a new and reduced

one. This provides a deeper insignt into the underlying processes that are

the foundation of the data, improves the performance of the computation of

the machine learning step, produces better model results avoiding overfitting

and avoids the curse of dimensionality[9], which describes problems that arise

when analyzing and organizing data in high-dimensional spaces that do not

happen in low-dimensional spaces, for example the increase and then decrease

of the predictive power of a classifier as the number of dimensions/features

used increases with a fixed amount of training data, also known as Hughes

phenomenon[10]. However, using FS requires knowing if there are redundant

features in the dataset that are irrelevant for the study of it.

The most common way to deal with the FS problem is to use a vari-

able ranking method to remove the least promising variables[11], known as

filter methods. Although these methods have been broadly used in computa-

tional biology for cancer classification using microarray data[12], correlation

filters could remove features that are irrelevant by themselves but become

useful in combination. To solve this problem, new algorithms were pro-

posed to combine the original variables into a new and smaller subset of

features, for example Principal Component Analysis (PCA) which, accord-

ing to Ringner[32], can reduce the dimensionality of the samples to at most

the number of samples without losing information. PCA methods can reduce

5

the number of variables by looking into the dependencies without considering

the final learning model.

In 1997, a stragegy combining a FS algorithm with a learning/classification

appeared. It is called wrapper methods. Wrapper methods evaluate sub-

sets of variables which allows to detect the possible interactions between

variables[14]. However, these methods have two disadvantages: when the

number of observations is insufficient, there is a risk of increasing overfitting;

when the number of variables is large, the computation time increases.

A new technique that tried to combine the advantages of both previ-

ous methods, called embedded methods, was proposed. Embedded methods

combine feature selection with the learning process, reducing the dataset and

classificating at the same time[15]. These methods are less computationally

intensive than wrapper methods, but they are specific to one learning ma-

chine. The most common technique are decision tree algorithms, which select

a feature in each recursive step of the tree growth, and partition the initial

set into subsets based on a value test with the selected feature. This process

is repeated until a new partition adds no value to the predictions.

Clustering methods have also been proposed as gene selection techniques.

Most FS techniques assume that the features are independent. However, it

is know that this is untrue, since genes interact with each other. Clustering

methods cluster together a subset of strongly related features as a new unique

feature, reducing the amount of variables and also being able to improve the

performance of the classifiers that will later use this data[16].

In order to analyze data, Principal Components Analysis (PCA) was

invented in 1901 by Karl Pearson[32]. It is a procedure that converts a

set of observations of possibly correlated variables into a set of values of

linearly uncorrelated variables called ”principal components”. PCA first tries

6

to maximize the variance of the first component, and then tries to maximize

the variance of the rest under the constraint that they are orthogonal to the

previous one.

We also have Partial Least Squares regression (PLS), which is an exten-

sion of the Multiple Linear Regression model, and has gained much attention

in the analysis of high dimensional genomic data[17].

Discriminant Analysis (DA) is a statistical tool that aims to assess the

adequacy of a classification. In 1930, 3 different people (Fisher, Hoteling and

Mahalanob) were trying to solve the same problem via 3 different methods.

Later, their methods would combine to devise what is today called Discrim-

inant Analysis. It is widely used to determine which predictor variables are

related to the dependant variable and to predict the value of it given cer-

tain values of the predictor variables. Its basis is also the Multiple Linear

Regression model.

PLS was not originally designed for classification and discrimination prob-

lems, but has often been used for that purpose[18][19]. This way, PLS and

DA have been used together as PLS-DA and, more recently, as sparse PLS-

DA (sPLS-DA), allowing to perform variable classification and selection in

one step, with multiple classes and unifying data from multiple datasets[31].

1.5 Scope

The scope of this project is pretty wide. The main purpose of it is to offer a

Machine Learning tool to analyze a set of high-dimensional data. This tool

is made for the purpose of analyzing omics data, but it works as well for any

kind of high-dimensional data. Since it is a generalized tool for any kinds of

data and studies, the results it outputs might not be as good as other more

7

specific tools and workflows. However, it still offers fast and accurate results

to start a new investigation with.

This tool will offer three steps in its workflow: a fast filter for a quick

removal of a high percentage of the total variables, a slower but more accurate

one which will be optional, and a last step of variable analysis and selection.

Each one of these steps will offer several parameters that the user will be able

to freely customize, also with graphical feedback. At the end of the workflow,

the user will be able to download a pdf report of the entire process, showing

all the data and graphs the user wants.

This tool will be served as a web service, which means that it will be used

via an internet explorer, regardless of it being run locally or online.

1.6 Obstacles

There are many possible obstacles to face while developing this project:

First of all, The tools we will be using to write the code are brand new

for us, including the code itself. Because of this, a period of practise and

familiarization will be needed in order to get used to it. However, since

it is a software project, we still expect to find new peculiarities and little

adversities every day.

Another problem is that the subject of Machine Learning, although fa-

miliar, is new for me in the context of development. Because of this it will be

very important to read as much as possible about every step of the process in

order to offer a tool fully devised under a solid knowledge of what it covers.

However, the main problem will be time. It will take time to properly

use the language, the tools and the methods and algorithms. Also, as previ-

ously stated, to retrieve all the information we need about all of them. The

8

processing of the data in the developed software is relatively slow too, and in

case it has not been properly coded, the time might increase exponentially,

leading to more code fixing and optimization.

1.7 Methodology

We will develop this project using Scrum methodology, since it is ideal for

projects with high flexibility, where the requirements are rapidly changing

and needing regular reviews and feedback from the director.

1.7.1 Reviews and meetings

Since intensive feedback from the professor in charge of the project will be

very important because of the problems or doubts that might be arised from

the development process of it, biweekly meetings will be held, apart from

contacting via email every time it is needed. This way we assure good com-

munication and a nice way to review the completed work, solve the problems

we might encounter, and clear the path for our next steps.

1.7.2 Development tools

For the development of the code we have selected the R language. It is a very

popular programming language, widely used among statisticians and data

miners for developing statistical software and data analysis. Since machine

learning directly involves both statistics and, of course, data analysis, it is

also used to develop software and tools in this field, and has many packages

with algorithms and other functions that we might need. We will also use

RStudio, the official IDE for R, which provides a document editor, an R

command line, and a plot viewer, among other features.

9

To save, version and manage the code we will use GitHub.

The rest of materials, such as data to test the software, will be provided

by the director.

1.7.3 Validation

In order to validate our project, we need to compare our results to the results

or conclusions of a study that analyzes the same data. We can not compare

the results of all the studies in the world, so this validation will not be 100%

accurate, but we can test a small set.

Also, since a relevant part of this project will be the presentation, meaning

the user interface, the director and the developer will both test the usability

of the software, suggesting and implementing the necessary changes in order

to make the user experience as satisfying as possible.

10

Chapter 2

Design and implementation

2.1 Summary

In this chapter we explain the design and the implementation of both the

workflow and the user interface. We will explain how we did it and why we

took certain decisions along the process.

2.2 Workflow

In this section we explain the design and implementation of the algorithms

and techniques in the workflow, without going into detail about the user

interface and graphical visualization (that part will be left for a later section).

2.2.1 Design

Since the problem we are trying to solve deals with omics data, it is designed

to take into consideration certain peculiarities they possess, such as many

relationships between variables. However, this workflow is able to work with

any kinds of data. The only requirement is that each and every sample of

11

those data must belong to one and only one of two classes and this informa-

tion must be inside the inputted dataset.

The datasets can be input in two formats: csv (comma separated values)

and RData. The reason for this is because csv is a widely acknowledged

format for managing data, with just the right amount of information: values

of a row separated by commas, and rows separated by a like break[21]. Many

languages include tools for writing and reading csv files, R included. Because

of this, it is very probable that many datasets are stored in csv files, or

that people know how to write them in one from any source, and we can

immediately receive the dataset and process the data. We also accept RData

because it is the native way R has to manage data, so if somebody happens

to have a dataset saved in an RData file we can also process it more easily

than a csv file.

This workflow will consist of three parts, each one of them is increasingly

complex, slow and accurate, all of it ending in a final result with the last

selected features.

Figure 2.1: Diagram of the workflow

The workflow parts are the following:

Fisher scoring

First we have Fisher scoring. This is a very fast algorithm, but it is inaccurate

because the feature evaluation it performs is univariate, which means that

it does not take into consideration the relationships that might be present

between variables, which are actually characteristic of omics data. It also

12

does not handle feature redundancy, which means that if two variables pro-

vide the same information, either relevant or not, this algorithm will not give

any of them a special treatment and will be always executed the same way.

There is a more advanced algorithm, called Generalized Fisher Scoring[22],

which overcomes redundancy trying to jointly select features. However, we

chose not to use this algorithm because, although it proves to be useful pro-

cessing certain kinds of data, it still does not solve the relationships between

variables problem, and adds more complexity to the step. Thus, in order to

keep it simple and quick, we use the standard algorithm.

Fisher Scoring relies on the intuition that features with high quality

should assign similar values to instances in the same class and different values

to instances from different classes.

This way, the score of the i-th feature Si will be calculated as:

Si =
|X(0)

i −X
(1)
i |√

n0 × var(Xi)(0) + n1 × var(Xi)(1)

where X
(y)
i is the mean of the values of the variable i in the samples of the

class y, ny is the amount of samples of the class y and var(Xi)
(y) is the

variance of the values of the variable i among all the samples of the class y.

Right after calculating the score for every single one of the features in

the dataset, the workflow will keep for the next steps only the amount of

variables chosen by the user, expecting to be keeping the x more informative

out of them. However, as explained before, it is an univariate algorithm and,

for this reason, it needs to be the first step the data goes through, as a way

to quickly get rid of the biggest amount of individually irrelevant data. And

ease the execution of the next steps.

This step will always be executed, and the user will be able to keep any

positive amount of variables for the next steps.

13

ReliefF

In the middle part of our workflow we have ReliefF. This one is also a filtering

algorithm, but it is more complex as it introduces a series of improvements

to the calculation of the variables quality. This is an optional step that the

user can select if they want to perform or not. There are reasons why they

would want to use it, explained in the next lines, and reasons why they would

not, such as the extra execution time of the workflow. Either way, we let the

user choose.

ReliefF belongs to the Relief family of algorithms. The majority of heuris-

tic measures for estimating the quality of the attributes, such as Fisher Scor-

ing, assume the conditional independence of the attributes. However, Re-

lief algorithms do not make this assumption. This way, they are efficient,

aware of the contextual information, and can correctly estimate the quality

of attributes in problems with strong dependencies and interactions between

attributes, such as ours[24].

The basic Relief algorithm is as follows: assuming that samples I1, I2, ..., In

in the instance space are described by a vector of attributes Ai, i = 1, ..., a,

where a is the number of explanatory attributes, and are labeled with the

target value τj

14

Algorithm 1 Basic Relief algorithm

1: Set all weights W [A] := 0.0;

2: for i := 1 to m do

3: randomly select an instance Ri;

4: find nearest hit H and nearest miss M ;

5: for A := 1 to a do

6: W [A] = W [A] − diff(A,Ri,H)/m + diff(A,Ri,M)/m;

7: end for

8: end for

The key idea[25] is that, given a randomly selected instance Ri, Relief

searches for the two nearest neighbors: one from the same class (H), and one

from the different class (M). It updates the quality estimation W [A] for all

attributes A depending on their values for Ri, M and H. If instances Ri and

H have different values of the attribute A then the attribute A separates two

instances with the same class which is not desirable so we decrease the qual-

ity estimation W [A]. On the other hand if instances Ri and M have different

values of the attribute A then the attribute A separates two instances with

different class values which is desirable so we increase the quality estimation

W [A]. Then, this whole process is repeated m times. Function diff(A, I1,

I2) calculates the difference between the values of the attribute A for two in-

stances I1 and I2. For numerical attributes, which is our case, it is calculated

as:

diff(A, I1, I2) =
|value(A, I1)− value(A, I2)|

max(A)−min(A)

Two years later, an extension called ReliefF is created based on the orig-

inal Relief. It is similar to it, but adds a few improvements, some that do

not matter in our context, such as not being limited to two class problems

15

or that can deal with incomplete data, since the workflow will not work with

data with these features; and some that do improve it for our problem, such

as being more robust and, most importantly, searching for k of its nearest

neighbors instead of just one. This algorithm is as follows:

Algorithm 2 ReliefF algorithm

1: Set all weights W [A] := 0.0;

2: for i := 1 to m do

3: randomly select an instance Ri;

4: find k nearest hits Hj;

5: for all class C 6= class(Ri) do

6: from class C find k nearest misses Mj(C);

7: end for

8: for A := 1 to a do

9: W [A] = W [A]−∑k
j=1 diff(A,Ri, Hj)/(m · k)+

10:
∑

C 6=class(Ri) [P (C)
1−P (class(Ri))

∑k
j=1 diff(A,Ri,Mj(C))]/m · k;

11: end for

12: end for

Similarly to Relief, it selects a random instance Ri, but then searches for

k of its nearest neighbors of the same class and k nearest neighbors of each

different class. It updates the quality estimation W [A] depending on their

values for Ri, hits Hj and misses Mj(C). The update formula is similar to

the one in Relief, except that ReliefF averages the contribution of all the hits

and the misses. The contribution for each class of the misses is weighted with

the prior probability of that class P (C) (which will always be 1 for our case

since we will only have two classes problems). Then again, the algorithm

repeats itself m times. To deal with incomplete data, the diff changes and

treats missing values probabilistically. However, we can leave this part out of

16

the explanation because our workflow does not accept datasets with missing

data.

This way, using this algorithm, we can let the user customize the number

k of nearest neighbors, and the number m of repetitions. Then, like in the

first step, the user inputs the amount of variables that wants to keep after

this one and discards the rest for the last step.

sPLS-DA

The last step is the most important one. In this step we will make use

of sparse PLS-DA, a variant of PLS-DA that performs variable selection

and classification in one step. This workflow is for data analysis and not

prediction, and for this reason we do not care about the classification part,

but we do want the variable selection part as a way to reduce even more the

amount of variables returned by the entire process.

First we have to talk about the origins of it. Partial Least Squares (PLS)

was not originally designed for classification and discrimination problems,

but it has often been used for that purpose[26][27]. Basically, PLS will try

to find the multidimensional direction in the X space that explains the max-

imum multidimensional variance direction in the Y space. PLS regression

is particularly suited when the matrix of predictors has more variables than

observations, which is the case in high-dimensional data, and when there is

multicollinearity among X values, meaning that one variable in a multiple

regression model can be linearly predicted from the others with a substantial

degree of accuracy, which is also the case in omics data due to the inter-

actions among the variables that characterize them. Then, more recently,

Partial Least Squares-Discriminant Analysis (PLS-DA) was developed. This

new approach is a variant of PLS that can be used when the response variable

17

Y is categorical. This technique is specially suited to deal with models with

many more predictors than observations, and with multicollinearity[28][29],

so this technique is perfect for our project. It’s important to say, though, that

PLS-DA performs much better when the dataset contains a small amount of

significant variables in comparison to noisy ones, and the more clustered the

classes are, the better PLS-DA will be able to select features[30].

PLS-DA works as follows: assume X is a n×m matrix and y is the class

label vector, the principal components of PLS-DA can be formulated as the

eigenvectors of the non-singular portion of the covariance matrix C, given

by:

C =
1

(n− 1)2
XTCnyy

TCnX

The iterative process computes the loading vectors a1, ..., ad, which give

the importance of each feature in that component. In iteration h, PLS-DA

has the following objective:

max
(ah,bh)

cov(Xhah, yhbh)

where bh is the loading for the label vector yh, X1 = X and Xh and yh are

the error matrices after transforming with the previous h− 1 components.

Sparse PLS-DA (sPLS-DA) is just a variant of PLS-DA that makes a

sparsity assumption, which means that assumes that only a subset of the

variables are responsible for driving the biological event or effect that is

being measured. sPLS-DA has been shown to be successful with applications

where the number of features far outnumbers the number of samples[31].

Thus, sPLS-DA not only calculates the importance of each variable, but it

is also able to select the subset of the variables that it believes are enough

to correctly separate all the samples between all the classes they belong to.

18

This step will be mandatory and after executing it, with all the param-

eters inputted by the user, the workflow will return the last results, which

will be the variables that sPLS-DA selected, along with their loadings vector.

Also, it needs to return proof of that the variables selected and their loadings

are actually good enough to discriminate between the data between the two

classes they belong to.

2.2.2 Implementation

In this section, the implementation of each part of the project will be ex-

plained, allowing to have an understanding on why certain decisions were

taken and what are the results that the workflow returns.

This workflow makes use of the R packages CORElearn[33] and mixOmics[34]

Before starting with the explanation of each part, it is worth mentioning

that, in order to make the project clearer for me and other developers that

might want to look deeper into the code, as well as to avoid repeated code,

I encapsulated the implementation of each part into a different function.

This way, in order to apply one of the parts, only the function needs to be

executed. Also, to solve certain problems caused by the user interface, I

added a debug parameter to each function, that allows us to see more data

about the calculations made and certain plots that, unless exclusive to the

workflow part, will be shown as examples in the next section where we detail

the design and implementation of the user interface. Its use will be detailed

when explaining each function.

19

The functionality of each function is:

• Applying PCA (for informative purposes only)

• Applying Fisher Scoring

• Applying ReliefF

• Applying tuning of sPLS-DA

• Applying sPLS-DA

• Applying the entire workflow

Applying PCA

The signature of this function is:

apply pca = function(dataset, classes, components = 10, debug = TRUE)

dataset contains the data that will be analyzed by PCA.

classes contains the vector of class to sample of the dataset.

components is the maximum amount of components that PCA will try to

obtain from dataset.

debug, if TRUE, will output in a different window a plot showing the cal-

culated principal components, and the samples of the two first components

plotted in a two dimensional space.

This step makes use of the pca function, from the package mixOmics,

which takes dataset and components as parameters, and calculates the set

amount of components. This is purely done for informational purposes, to

show if there is by any change a configuration of the variables that maximizes

their variance. This calculation of the PCA will be executed three times in

the workflow:

20

• When the dataset is uploaded.

• When Fisher scoring is applied.

• When ReliefF is applied.

This way we will be able to see the effect of each step of the workflow,

and quickly observe if there is actually a source of variance in the data.

As said, when debug == TRUE, this function shows two plots: the first

one is a plot where we can see the principal components and their explained

variance, and the second one shows the samples as clustered points placed

according to their projection in the smaller subspace spanned by the compo-

nents.

This function returns the result of the pca function, which contains all

the information about the components.

Applying Fisher Scoring

The signature of this function is:

apply fisher = function(dataset, positive, negative,

features to keep, debug = TRUE)

dataset contains the full dataset that will be analyzed by Fisher Scoring.

positive contains a list of the indices of the samples belonging to the posi-

tive class of the dataset

negative contains a list of the indices of the samples belonging to the neg-

ative class of the dataset.

features to keep is an integer specifying the amount of best features that

will be selected from the original dataset after analyzing it with Fisher Scor-

ing.

21

debug, if TRUE, will output in different windows plots showing information

about the process that is being executed.

The Fisher Scoring algorithm was written manually, and it makes use of

positive and negative. We apply it to every variable in dataset, then sort

the variables in descending order according to their score, and return these

scores and the best features to keep variables in dataset.

With debug == TRUE, it also outputs in a new window a plot with the

scores from highest to lowest.

Applying ReliefF

The signature of this function is:

apply relieff = function(dataset, classes, nearest neighbors,

features to keep = 500, iterations = 0, estimator = ’ReliefFexpRank’,

debug = TRUE)

dataset contains the data the user wants to analyze with ReliefF.

classes contains a list with the class of each sample with each index match-

ing the index of that sample in dataset.

nearest neighbors is an integer that specifies the amount of nearest neigh-

bors of each variable ReliefF will calculate.

features to keep is an integer that specifies the amount of best features

that will be selected from dataset after analyzing it with ReliefF.

iterations integer that specifies the amount of iterations that the ReliefF

algorithm will perform. If it contains a positive number, that number will

be the amount of iterations that will be performed. On the other hand, 0,

-1 and -2 can be chosen, those meaning the number of samples of dataset,

the natural logarithm of the number of samples, and the squared root of the

number of samples, respectively.

22

estimator is a string that specifies the name of the evaluation method used.

There are many that could be used, all of them specified in the manual

of CORElearn[35], but here we will be using only two: ReliefFequalK and

ReliefFexpRank.

debug, if TRUE, will output in different windows plots showing information

about the process that is being executed.

This step makes use of the CORElearn library. It provides us with the

function attrEval, which works as an interface to multiple methods of vari-

ables evaluation. It has multiple ways to work, but I will not explain all of

them, instead I will explain the way it is implemented in this project. In this

case, we give it the classes list, dataset having been previously casted to

a data frame, the estimator name, the amount of iterations to perform,

and the amount of nearest neighbors. This returns us a list of the scores

of each variable in the dataset, which we will use to, again, keep only the

features to keep best ones. Then, just like we did with the Fisher Scor-

ing step, we return the scores of the variables and the new dataset with the

selected variables.

As said, we use two different estimators:

• With ReliefFequalK, the weight of the k nearest instances are the

same.

• With ReliefFexpRank, the weight of the k nearest instances decreases

exponentially with increasing rank, which is good in case we want to

take into account conditional dependences between attributes.

With debug == TRUE, this step will also show a plot with the scores of

each variable in descending order, but in this case it also shows a heatmap

of the expression of the variables selected by ReliefF.

23

Applying tuning of sPLS-DA

The signature of this function is as follows:

apply plsda perf = function(dataset, classes, components = 10,

cv folds = 5, cv repeats = 10, debug = TRUE)

dataset contains the data to be used for tuning sPLS-DA.

classes contains a list with the class of each sample with each index match-

ing the index of that sample in dataset.

components is an integer that specifies the maximum amount of principal

components that this function will try to compute.

cv folds is an integer specifying the amount of cross validation folds that

will be performed.

cv repeats is an integer that specifies the amount of cross validation repe-

titions that will be performed.

debug, if TRUE, will show several plots with information of the different steps

that this function has been performing.

This step makes use of the mixOmics library too. It provides a lot of

functionalities to analyze omics data, and the functions plsda, perf and

tune.splsda will be used here.

plsda, as its name indicates, executes PLS-DA to analyze a certain set

of data. It uses dataset as the data to analyze, classes to indicate the

class of each sample, and components to know how many components to

compute. This function is used in conjunction with perf, because this one is

used to analyze the analysis performed by plsda. It uses the data returned

by that function, plus cv folds and cv repeats. This function is just to

test, by classifying the data with the results returned by plsda, how good

the analysis was.

tune.splsda is a method that returns a configuration for the most op-

24

timal, fast and accurate analysis with sPLS-DA. It uses dataset, classes,

components, cv folds and cv repeats. It also uses an internally fixed vari-

able called list keepX, which contain a list of numbers from 5 to 100 in

steps of 5. This function is executed as follows:

• Compute a principal component c.

• For each amount of variables vars in list keepX, perform sPLS-DA

with c and keeping vars.

• Test the performance using cv folds and cv repeats, and from that

obtain the Balanced Error Rate (BER).

• Save c and the vars that obtained the best BER.

• Repeat the above steps for components times, but using also all the

previously saved c and vars.

This tuning function returns the most optimal amount of components

and variables to consider in each component to correctly analyze the data,

along with data that proves that this is actually the best configuration to

analyze our data with sPLS-DA. It does this by doing classification steps

while selecting the data, being able to observe which amount of variables

and components classifies the inputted dataset with the lowest error and in

the shortest time.

This step returns the data of the test performed before the tuning, the

data of the tuning, the amount of components to use, and the amount of

important features in each component.

25

If debug == TRUE, this step will show in separate windows a plot showing

the BER of the PLS-DA, and a plot showing the BER for every amount of

components and every amount of variables used in each component, high-

lighting the best performing choices.

Applying sPLS-DA

This function has the following signature:

apply splsda = function(dataset, classes, variables to keep, components

= 10, cv folds = 5, cv repeats = 10, debug = TRUE)

dataset contains the data the user wants to analyze.

classes contains a list with the class each sample belongs to.

variables to keep contains a list with the amount of variables to use in

each selected component.

components is an integer specifying the amount of components chosen to be

analyzed with sPLS-DA.

cv folds is an integer specifying the amount of cross validation folds to be

executed for validating the analysis.

cv repeats is an integer specifying the amount of cross validation repetitions

to be executed for validating the analysis.

debug, if TRUE, will show plots and more information in different windows to

the user.

In this last step of the workflow, we finally perform the last analysis, sPLS-

DA. It uses the function perf and splsda (also from the package mixOmics)

which, given dataset, classes, components and variables to keep, will

do partially the same as PLS-DA, but it will also continually select variables

from the components until, in the end, it has selected the amount of variables

specified in variables to keep for each component respectively. Then, perf

26

is used again in order to validate the analysis just performed.

This function returns the results obtained by the execution of sPLS-DA

and the results of the validation.

If debug == TRUE, this function will show several informational plots in

different windows. First of all, it will show the samples as clustered points

placed according to their projection in the smaller subspace spanned by the

two first components. Then, it shows the Area Under the Receiver Operating

Characteristics (AUROC) plot of the first component sPLS-DA returned.

AUROC is a method to test how much the model is capable of distinguishing

between classes. The result goes from 0 to 1, and the higher the result, the

better the model is at classifying the data between two classes with only the

components and variables chosen to perform sPLS-DA. Then, the last plot

shown is the BER of the model, in this case after having used sPLS-DA.

Applying the entire workflow

The signature of this function is as follows:

apply workflow = function(dataset, classes, nearest neighbors,

fisher variables = 5000, relieff variables = 500, pca components

= 10, cv folds = 5, cv repeats = 10, debug=TRUE)

dataset contains the full dataset to analyze.

classes contains a list with the class of each sample of the dataset.

nearest neighbors is an integer that specifies the amount of nearest neigh-

bors of each variable ReliefF will calculate.

fisher variables is an integer that specifies the amount of best variables

the workflow will keep after executing Fisher Scoring.

relieff variables is an integer that specifies the amount of best variables

the workflow will keep after executing ReliefF.

27

pca components is an integer that specifies the amount of components that

will be computed in every step that requires to compute them. That is, in

PCA, PLS-DA, sPLS-DA and sPLS-DA tuning.

cv folds is an integer that specifies the amount of cross validation folds

that will be executed in every step that performs cross validation, which are

PLS-DA, sPLS-DA and sPLS-DA tuning.

cv repeats is an integer that specifies the amount of cross validation rep-

etitions that will be executed in every step that performs cross validation.

Those are PLS-DA, sPLS-DA and sPLS-DA tuning.

debug is a boolean that specifies if the workflow will be executed with debug-

ging data or not. It is used in all the functions and its effects have already

been explained in each one of them.

This step basically executes all the steps without stops, one after another.

It first casts the dataset into a matrix. Then extracts from classes the

sample indexes belonging to each class, and starts executing the functions.

This function returns the results of the sPLS-DA analysis, returned by

apply splsda. This is a function that is supposed to be used from R’s

interactive console, in order to find bugs or crashes, and for this reason it

will not be used by a regular user.

28

2.3 User interface

The workflow previously described could simply be executed in a terminal

emulator or a command line. However, one of the problems we wanted to

solve is not having a friendly user interface to use the tool that has been made.

There are many tools and frameworks with machine learning functionalities,

but most of them provide a set of functions or methods to add to your code.

In our case, we provide all of that, along with a user friendly interface to

interact with the data that is being analyzed in real time.

2.3.1 Design

First of all we need the answer to two separate questions: what would the

user want to customize, and what would the user want to see?

It is important, for a tool that aims to provide the most complete func-

tionality, to allow the user to easily customize every parameter that is going

to have an impact on the results they will get. In this project we allow the

user to customize everything except for one thing: the list of amounts of vari-

ables that are candidates for being the most optimal for a certain component

when tuning sPLS-DA (that is, a list named list keepX, mentioned in the

above section about apply plsda perf).

On the other hand, the user would also want to see as much information

as possible about everything their data is going through. For each part of

the workflow there are different kinds of information that it would be good

to retrieve:

29

• When applying Fisher Scoring: The only important data to show

here is the ordered scores of the variables, for the user to know how

many of them approximately would be the best to select for the next

steps.

• When applying ReliefF: Again, we want to know the scores of the

variables in order to know how many of them would not be necessary for

the last step of the analysis. Also, it might be interesting to visually see

a plot with the expression of the selected variables, since after ReliefF

there should be few enough remaining to start seeing some patterns, if

there were any.

• When applying PLS-DA tuning: In this case we are basically inter-

ested in knowing how many components and variables per component

have been selected.

• When applying sPLS-DA: This is the step in which we want to

have the biggest amount of information. We want to know if there is

a real differentiation between the two classes of samples that are being

analyzed, we want proof of it, and we want to know which variables

cause that.

• When applying every step: For the purpose of just having more

information, we would want to know the principal components of all

the variables remaining in each step of the workflow, in order to start

seeing from the very beginning if there is some relationship between

the features of a sample and its class.

30

2.3.2 Implementation

For this part, I chose to use the library shiny. Shiny provides an entire

framework to build a user interface in the form of a web service. It makes

the developer able to easily build it with functions that provide different

layouts, inputs for the back end, informational outputs and even interactive

plots. It also provides everything needed to automatically host the web page

and allow connections from a local network. Shiny is the most popular and

complete framework and, for all these reasons, it was a safe bet to choose it

to make the interface.

This part was also, like the workflow, implemented by parts.

The explanation will be divided in two sections: the server (back end),

and the ui (the front end). This is because the implementation of the code

also requires to be divided between these two parts.

UI (front end)

Shiny calls the front end the UI part of the code, because everything coded

in this part will be only related to the HTML code that, when the app is

executed, will be generated and served to the user. Shiny also allows the

edition of JavaScript and CSS code, but it is only used to show an animation

when the workflow is executing any step.

In the UI you can define a layout for the web page. In this case, we want

a part to input the data, and another part to see the results. Since the inputs

are going to be mostly numbers and, in general, data that are represented in

a small amount of space, while the results will be mostly bigger graphs and

plots, we chose one called ”sidebar layout”. It shows a thinner section at a

side of the page, in contrast to the other part of it (Figure 2.2).

31

Figure 2.2: Layout of the UI

In the sidebar we can divide the different parts of the workflow. First

of all we have an input for providing the data to the server. Then, each

part of the workflow has some parameters to customize, the choice to not

see some plots (except in Fisher Scoring), and a button to apply that part

of the workflow and start the next one. Finally, there is a button to export

the results in a pdf file and save it.

In the main panel, the different plots and messages thrown by the server

will be shown in order. Starting from the top, the user will see the error

messages thrown when a part of the workflow has not been well executed.

Then, there will be the PCA plot, showing the principal components after

applying every single step. After that, there are the plots of Fisher Scoring,

then the plots of ReliefF, the plots of the PLS-DA tuning and the plots of

32

the results given by sPLS-DA. Due to particularities of Shiny, the plots that

the user chooses not to see will still take some blank space in the main panel,

because Shiny reserves that static space for the plot since the startup of the

app.

Server (back end)

The first thing needed to be done by the back end is augmenting the max-

imum size of the data uploaded. The size that Shiny allows in its default

configuration is too small to even upload the test datasets I used, so it had

to be manually changed (I set it to 100MB, but it can be easily changed to

any size0).

Then, before starting with the more in-depth explanations, there are two

concepts that are important to talk about: observed events and reactive

variables.

• First there are the observed events. An event is an interaction the

user does with any element of the web page. In Shiny, using the func-

tion observeEvent, you can encapsulate a part of code which will only

be executed when the user triggers an event targeting the element spec-

ified in the first parameter of that function. This encapsulated code

is created in a context different from the rest of the code, and thus

variables used in there that had been given a different value in other

previous parts of the code will behave in unexpected ways. To solve

this problem, Shiny provides reactive variables.

33

• Reactive variables are functions that store the data they receive as

parameters, and return the data they contain when executed. They

are special and essential because, contrary to regular variables, these

actually change in all parts of the code, regardless of the encapsulation

they are in, and for this reason they can be used to pass data from the

code of one event to another without any loss of information.

At this point, all the necessary reactive variables are declared and initial-

ized as NULL. After this, all the events need to be declared.

The first event we declare is triggered when the user uploads a file. It first

checks that the uploaded file is a csv or RData file. If it is not, it outputs an

error message in the UI and stops the execution of the rest of the code. If it

is, it checks that the file contains the data necessary to be analyzed: in the

case of a csv file, the whole dataset just needs a column called ”class” with

the class of each sample, and in the case of an RData file, it needs a data

frame or matrix-like structure with the data and a vector-like structure, also

called ”class”, which again contain the class of each sample. In both cases,

there must be no missing data. After this checks have passed, the samples

are divided between classes, and a plot showing the 10 principal components

(Figure 2.3) and a plot showing the ordered Fisher scores (Figure 2.4) are

shown, and the default values of the inputs indicating the amount of variables

to keep after Fisher and ReliefF are automatically set to a 10% and a 1% of

the total, respectively.

34

Figure 2.3: PCA plot

Figure 2.4: Fisher scores (the red line divides the kept and discarded features)

35

Then, pressing the button to apply Fisher filter, the specified amount of

variables will be saved and passed to the next step of the workflow, and a

new PCA plot will be shown, in this case using only the reduced dataset. In

case the checkbox to apply ReliefF has been deactivated, nothing will happen

with that data, the parameters set will be ignored, and pressing the button

to apply it will leave it as it came from the Fisher filter. Otherwise, the data

will be analyzed with ReliefF, using the parameters the user has set. Then,

a plot showing the score of each variable (Figure 2.5) will be generated, and

a plot showing a heatmap of the remaining variables after discarding the rest

(Figure 2.6) will be shown in case the user marked the checkbox indicating

so.

Figure 2.5: ReliefF scores

36

Figure 2.6: Heatmap of the remaining variables

After this, pressing the button to apply ReliefF will save the indicated

amount of best variables (or just use the ones obtained by fisher, if ReliefF

was deactivated), the PCA plot will be updated with only said variables,

and the PLS-DA tuning will take place. It will be performed with the input

amount of components, cross validation folds and cross validation repeti-

tions. After this process, two plots will be shown: one showing the BER per

principal component (Figure 2.7), and one indicating the error rate per every

amount of variables possible per principal component (Figure 2.8). This is

the slowest step and might take some time to obtain the results.

37

Figure 2.7: BER per component

Figure 2.8: Error rate per amount of variables selected per component

Then, pressing the button to apply sPLS-DA will run it with the settings

already tuned, and the last exhaustive analysis will be performed. When

the analysis has been completed, four new plots, all of them being optional,

will appear. The first one depicts a clustered bidimensional representation

of the samples projected to the subspace of the two principal components

that explain most of the variance between them (Figure 2.9); the second one

shows the AUROC of the first component (Figure 2.10); the third one shows

a Clustered Image Map (CIM) of all the selected variables (Figure 2.11),

which is basically a heatmap showing more information about the class each

sample belongs to and clustering the samples and variables according to their

correlation; and the last one shows the loadings of the first component (Figure

38

2.12), also showing a number indicating their relevance in said component.

Additionally, a table will show up with the variables from the first component

that have been selected.

Figure 2.9: Projection of the samples to the subspace of the two best principal

components

Figure 2.10: AUROC plot of the first component

39

Figure 2.11: CIM of all the variables and samples

Figure 2.12: Loadings and relevance of the selected variables in the first

component

40

Finally, if the user presses the button to download the pdf report, he will

receive in a matter of seconds a full pdf file with all the information about

the data they uploaded, the changes it had gone through in the different

parts of the workflow, all the plots they decided to get, and finally a list

with all the selected variables. This not only allows the user to use the

results of the analysis in an offline environment, but it also gives them more

information about the analysis that has just been performed. Shiny does not

allow multiple plots to be rendered in the place of one, and for this reason

some of them do not appear in the webpage (for example, AUROC or the

loadings of all the selected components), but R can draw as many plots as

desired in the pdf, so the user will see all the information that was hidden

before.

2.4 Experimentation

2.4.1 An experiment with real data (Golub et al. 1999)

To test and experiment with our workflow, we will pretend to be researchers

who want to know if the genes of a person are relevant to the kind of leukemia

that person is a patient of. We will use the data of Molecular Classification of

Cancer: Class Discovery and Class Prediction by Gene Expression Monitor-

ing [1], and we will validate our results against the ones that study obtained.

To start, we downloaded and formatted as csv an improved version of the

dataset they used as necessary to be inputted to our software (that means

each row is a sample, each column is a feature, and there must be a column

called ”class” which distinguishes the class each sample belongs to). This

dataset consists in the original 38 bone marrow samples (27 ALL, 11 AML)

of the original dataset plus 34 more samples (20 ALL, 14 AML), for a total of

41

72 samples (47 ALL, 25 AML). Also, the amount of features is also improved:

the initial dataset contained 6817 genes, but the one we use contains 7129.

First of all, we observe the following plots, given by PCA and Fisher

Scoring (Figure 2.13).

Figure 2.13: PCA and Fisher Scores of Golub et al.

From what we can see, PCA is detecting that some principal components

explain much of the variance of the data we have, which is a good indicator

of that the genes might give might have a relevance to which type of cancer

the person they belong to has. As we can see in the Fisher plot, there are

also some genes with a high score, but it rapidly decreases and stabilizes.

As said in previous sections, the software automatically sets the amount of

variables to keep as a 10% of the total, 712 in this case, so we will leave it

like that.

42

Pressing the button to apply Fisher will get us another PCA plot, and

one with the ReliefF scores (Figure 2.14).

Figure 2.14: PCA and ReliefF Scores of Golub et al. (remaining 712 genes)

The ReliefF analysis was performed with these data: 50 nearest neighbors,

the amount of iterations performed was equal to the amount of variables, and

the estimator was ReliefFexpRank.

As we can see, the principal components have not changed much, which

is good because it means that the almost 6500 variables Fisher Scoring left

out were mostly not relevant to wether a sample is of one class of the other.

Observing the ReliefF scores, we can see again that only a few have higher

scores than the rest. Since the 10% of 712 is smaller than 100 (the minimum

amount of variables possible to be kept after ReliefF), we can keep all those

100 variables and, according to the plot, we would not be leaving out any of

the most relevant ones.

43

Also, for informational purposes, we can take a look at the heatmap we

chose to be shown (Figure 2.15).

Figure 2.15: Heatmap of the 100 remaining genes after ReliefF

Although we do not see information about the classes of the samples at

this point, we see how a pattern is starting to be generated, clearly separating

the genes at the most left part of the heatmap, which have a higher expression

in the samples clustered at the bottom part of it, with the rest of them, giving

us the impression that genes may have a clear relevance to determining which

44

kind of cancer, between the two that are being studied, a patient will suffer

of.

Clicking the button to apply ReliefF, the PLS-DA tuning will start. The

tuning is executed with the default parameters: 5 principal components, 5

cross validation folds and 10 cross validation repetitions. This step shows us

these plots:

Figure 2.16: Error rates and selected variables per component for the re-

maining 100 genes

As we can see, the error rates with one component are really low and

don’t change much with the next components. The second plot shows the

reason: the maximum amount of variables possible to select per component

is 100, but we already only have 100 genes, so selecting all of them in the first

variable is the most optimal option. We can see, by the results of the next

components, that this is indeed true: selecting more or less variables does not

45

change the error rate, represented more or less by a flat line, because all the

variables are the best choice to divide the two classes. However, the tuning

selected two components, since, apparently, the second component with 10

variables improves a little the error of the classification.

If we press the button to apply this tuning and execute sPLS-DA, we

will get the final results. Going by parts, we first see the projection of the

samples in a two dimensional plot (Figure 2.17):

Figure 2.17: Projection of the samples in the subspace of the two components

Being the X axis the projection in the first component, and the Y axis

the projection in the second, we clearly see that the samples are almost

perfectly clustered, except for two cases, one of each class, that are close to

the opposite cluster.

46

Next let’s observe the AUROC of the first component:

Figure 2.18: AUROC of the first component

We can see that the predictive model is very accurate. In fact, the out-

come, indicated by the legend, is 0.9949 which confirms that, using our 72

samples, there is a clear and very well defined difference between our classes

according to the gene expression of the samples.

47

Let’s observe now the CIM:

Figure 2.19: CIM of the final selected variables and samples

48

It is clear now that there is a difference between the gene expression of

people of one class and the other. The purple lines (drawn manually, not

automatically obtained) divide the map in clusters of closely related genes

and samples. We can see that the samples, like in the above plot (Figure

2.17) are armost perfectly separated, except for two of them that ended up

in the opposite cluster, as the color in the leftmost part of the plot indicates.

We can also see that the genes are divided in two groups, being the ones at

the left the genes for which a higher expression means pertainance to the

AML class, and a lower expression means belonging to the opposite class,

and the other way around.

Finally, let’s take a look at the selected variables and their loadings:

Figure 2.20: Loadings of the first component, the color indicating the class

each gene contributes to

49

Figure 2.21: Loadings of the 10 most relevant genes

These 10 genes are the first ones of the 100 that have been selected as

the most relevant ones out of the entire set of variables. We will use them

to draw some conclusions. We can consider that these are the ones that are

the most relevant to separate the samples in two classes. Also, according to

the loadings plot (Figure 2.20), these are useful to define the samples of the

AML class.

50

Now, if we take a look at the results of Golub et al.’s study:

Figure 2.22: Gene expression for the 25 more relevant genes of each class[1]

51

As we can see, from the selected 10 ones some appear in the plot of the

original study (Figure 2.21), such as Zyxin (X95735), CD33 (M23197) and

Adipsin (M84526). A total of 6 of them appear, all of them in the bottom half

of the figure, which means that, indeed, they are relevant when determining

that a sample belongs to the AML class. However, there are 4 that still do

not seem to match any of the 25 most relevant genes for Golub et al. There

are some reasons for this to happen, but the three main ones could be: we

have more genes, and those 4 could belong to the extra ones the original

analysis could not analyze; we have twice as many samples, so the analysis

now performed could have considered that those genes that for Golub et al.

were not important, are indeed relevant to the problem with the new data we

possess; and finally, the algorithms and techniques have evolved since 1999,

and it is very possible that these new techniques that our workflow makes use

of could make new discoveries on this field. If we take a look at more recent

studies[36][37], in which they used the same data as I did, we can see that

indeed, among the top ranked genes there are X17042, U46499 and L09209,

which were not in Golub’s study but appear in our analysis, and the first two

of them do not just appear as interesting genes, but they are also among the

ones of the highest interest for the problem.

Taking all of this into consideration, we can say that this software has

provided for a robust and accurate analysis, arriving to very correct results

with a high rate of precision, and a good selection of genes that indeed

matches the ones of previous studies, reinforcing the hypothesis of that the

genes of a person will define the kind of leukemia they will suffer of. Also,

the entire process, from loading the web page to dowloading the pdf report,

including all human input and change of parameters, has been performed

in roughly 1 minute and 10 seconds, becoming really fast and having saved

52

a lot of time that otherwise should have been spent in implementing the

different steps, testing the workflow, adding the representation in plots and

performing it with the data to analyze.

2.4.2 An example with random data

In this case, I will use a dataset without any relevant or important data.

For this purpose I made a quick script in python, which will be uploaded

to the repository along with the rest of the project files, that generates a

csv file processable by the workflow. This file contains 100 samples (50 of

the ”AAA” class, and 50 of the ”BBB” class) with 20000 genes each, for a

total of 2 million genes. The gene expression is a random value from -100 to

100, with no relationship of dependencies with other genes or samples. The

purpose is to show that, indeed, the software will return results proving that

in this dataset there is not a clear indicator of the fact that the separation

of the classes is caused by the genes.

Starting by the same way, the data will be uploaded and the first plots

will be shown (Figure 2.23).

These plots should already be explanatory enough: the extremely low

fisher scores and explained variance of the principal components is a great

indicator of the fact that these genes and classes have no relationship among

them whatsoever. So our hypothesis was true: the genes of this dataset do

not have any relevance in the definition of the class of their sample.

53

Figure 2.23: PCA and fisher scores of the random dataset

However, for curiosity, I will continue the workflow. After applying Fisher

Scoring and ReliefF, keeping a 10% of the variables in each step, we are left

with 200 variables. The PLS-DA tuning has considered that, with those 200

variables, the best choice is to use 195 for the lowest error rate (Figure 2.24),

which is expected for random data because of not following any pattern.

Figure 2.24: Error rates and selected variables per component for the re-

maining 200 genes

54

What is really interesting is the AUROC and CIM of these selected vari-

ables (Figures 2.25 and 2.26). Not only does it find certain relationships

between the variables and classes in the dataset, but it is also able to per-

fectly classify the genes in their classes with a 100% accuracy, and if we look

at the CIM, although at first sight it appears to be nonsensical, we can ac-

tually see that the genes of higher expression of the AAA class are clustered

at the right side of the map and the others at the left, while the genes of the

BBB class look the opposite. Of course, this does not mean that the selected

genes are relevant to the problem, all the data was randomly generated after

all, and as said after the first step, the low variance of scores and components

meant that there can not be a clear indicator of separation between classes.

However, this experiment can tell us about the power of this software, since it

has been shown to be able to extract even the smallest amount of important

information hidden in the middle of a big amount of completely irrelevant

data, and all of that done in roughly 2 minutes and 30 seconds.

Figure 2.25: AUROC of the first component of the random dataset

55

Figure 2.26: CIM of the final selected variables and samples from the random

dataset

56

Chapter 3

Temporal planning

3.1 Planning and scheduling

This project will take approximately 5 months, from January 11th, 2019 to

June 16th, 2019, a few days before starting the presentations.

It is worth mentioning that there is a margin of error in the planning of

the whole project, and revision and changes might and probably will have

to be made in order to correctly achieve the objectives. However, since the

project is planned to be finished days before the presentation there will be

time to correct and solve all the inconvenients that could be found.

3.2 Task descriptions

3.2.1 Acquire background in genomics and machine

learning

The first task to be made is learn about the subjects I will be working on.

From the first day I have been reading literature on the usage of machine

57

learning in the analysis of omics data. Starting with Molecular Classifica-

tion of Cancer: Class Discovery and Class Prediction by Gene Expression

Monitoring [1], which is considered one of the most important researches on

applying genomic tools, such as DNA microarrays, to cancer research, lead-

ing to important discoveries about leukemia. Because of this, it could be

considered the base of everything I will be working on later so reading and

understanding it was very important. Also, I read some more papers[?][?][?],

all about the usage of machine learning techniques to analyze and profile the

gene expression of different illnesses. Finally, I read about the state-of-the-

art on microarray datasets and feature selection methods[?] in order to have

an understanding of the different methods and techniques developed in the

last years and their correctness and precision when being used with certain

datasets.

3.2.2 Learn to use the tools

The language I will be using to develop this project will be R, and the IDE

will be RStudio. It is not a new language, but a long time has passed since I

used it for the last time. Also, I did not use it very thoroughly nor I used it

for machine learning. Because of this, a certain period of time is needed in

order to become familiar with it once again. To achieve this, I will be learning

the basics and then developing a little project with help from a book called

”Data Analysis and Graphics Using R”[?]. This task should not take longer

than 2 or 3 weeks to complete. However, it is very important tto understand

everything that has been done in order to easily apply it to the features of

the actual project.

58

3.2.3 Develop the FS workflow

This is one of the two core tasks of this project: to develop the feature

selection workflow. First of all it is important to know and understand the

format of the data I will be working with. It will probably be not very

different in comparison to the data I would have used in the previous task,

but it is still worth taking a look at. Then, a study of different methods and

algorithms will have to be made. There are many different ways to develop

a workflow and not all of them work the same. Actually, the results can

be very different just by using a different algorithm in a certain step of it,

according to the data shown in [?]. It is also very important to test the

correctness of the results but also the time it takes the workflow to complete

the execution, since not only does it have to be accurate, but also relatively

fast, so optimizing, if necessary, the critical parts of the code becomes a very

important subtask to perform. This task should take around 4 weeks to be

completed, spending most of the time on the implementation of the workflow

and the rest on analyzing and testing it.

3.2.4 Develop the representation

This is the second core task of this project. In order to present the results and

analyze them in a more visual way, it is necessary to graphically represent

them. In this task I will first analyze the format of the results. This is crucial

to develop the correct way to represent them in a humanly readable form.

Of course, testing that the outputted graphs and results are correct is also

required. I expect this task to take shorter to perform than the previous

task since the data to use will be much smaller. However, after having it

done it will need to be integrated with the FS workflow in order to have

59

an entire project capable of performing both tasks one after the other. So,

the expected amount of time needed to do all of this is also no more than 4

weeks.

3.2.5 Final complete test

Once the code is done, right after finishing the integration of the graphic

representation with the FS workflow, it will be necessary to test everything

together, so as to find out if something is not going as expected when exe-

cuting both parts of the software at the same time. Part of this task is also

solving the problems found while testing and optimizing the last inefficient

parts of the code, and the plan is not to change anything else after this has

been done. This task should be pretty short and it is expected to take no

longer than one week to be done.

3.2.6 Final steps

These final steps are basically collecting information. First of all, the docu-

mentation about the project needs to be done. This is something that will

be done at the same time as the code is being written, in order not to lose

any information about the process, but final reviews of it all and some up-

dates will have to be made afterwards. Secondly, I will do the slides for the

presentation and the preparation of it. This will be the last task to be done

before the end of it. It should not take longer than two weeks, but I could

take as long as I needed until the days to present it.

60

3.3 Estimated time

The times the tasks will take to be done are calculated according to my

available working time, which is approximately 4 hours a day (actual times

may vary), and shown in the following table.

Task Time (in hours)

Acquire background in genomics and machine learning 140

Learn to use the tools 84

Develop the FS workflow 140

Develop the representation 132

Final complete test 28

Final steps 56

Total 580

Table 3.1: Estimated development time of the different parts of the project

61

3.4 Gantt chart

The following figure shows the Gantt chart of the project.

Figure 3.1: Gantt chart of the project, generated with

https://app.ganttpro.com

3.5 Alternatives and action plan

The biweekly meetings and continuous communication via email with the

professor will allow us to make as many changes as needed to the original

planning of the project. However, the duration of this project has been set

with a margin of a few days between the planned end and the start of the

presentations, giving us time to spend on changes we could possibly need

or just time to recover because of possible external problems. All the steps

of this project are important so we can not skip a single one of them if a

62

previous time is taking us too long to finish, which is also a reason why

these extra days may become of good use. Despite this, as said before, the

communication with the professor will be very important to overcome the

problems we might encounter during the development as soon as possible.

In conclusion, the project is feasible in the 580 planned hours of develop-

ment.

Some of the problems we might find to do everything in the planned span

of time will be explained below.

3.5.1 Complexity of the workflow

It is not a trivial task to find a workflow that returns us precise and correct

results relatively fast, which is why research on the different algorithms and

techniques will have to be made apart from the first readings of the project,

since there will be tools that are already made and uploaded in packages

ready to download and use, but the information about them will still be very

important to know and understand so as to know what are we actually going

to do with the data. We don’t expect a lack of documentation because all

of these techniques and algorithms should have been made according to a

research that hopefully will be easily found online. However, if this is not

the case, we will be forced to find a different path for the workflow because

of the importance of the knowledge about everything it is doing from start

to end.

63

3.5.2 Bugs

Since, as said before, R is a sort of new language to me, it is very probable

that bugs will appear in the code and changes will have to be made. However,

these are generally easily solvable problems and will not delay us more than

a few hours.

3.5.3 Optimizations

Once the code is complete some parts may execute slower than expected.

Notice that a ”fast” execution will take minutes, and if not properly coded,

parts of the code as simple as the data import may take even hours to finish.

This is not acceptable because of the time it would take to test it just once,

and even if the results were correct enough, the time needed to execute it at

least once would make users lose a lot of time waiting for them. This could

cause delays, but it is something we would have been working on since the

beginning in order to avoid this kind of bit problems in the end, because

of the fact that we would have found them very early in the development

process anyway.

64

3.6 Changes regarding the original planning

In Figure 3.1 we can see the original planned schedule, specifying the tasks

that had to be performed and the time they originally needed to be fully

done. Originally, the project was planned to take no more than 5 months.

However, a big adjustment had to be made, doubling the planned time up

to 10 months. The reasons for this are:

• Having to attend more university classes.

• Working part-time until July, then starting a full-time job.

• An increase in the complexity of the originally planned project and its

features.

• Other personal reasons.

Thus, a readjustment was made, allowing me to have twice the time to

perform all the tasks and deliver the project completely finished. However,

the objectives of the project are not only the same as the originally planned,

but they go further: in the beginning, the planned project was supposed to

analyze data related to the diagnose of Amyotrophic Lateral Sclerosis (ALS).

However, we decided that the project could have a better and wider scope,

and thus it was redesigned, allowing the analysis of any data, which is related

to the third item in the previous list. The tasks, however, still remain the

same and have the same duration, except for developing the workflow and

the representation, which would take all the extended time the project was

given.

65

In the original planning, the time schedule planned produced the times

specified in Table 3.1. However, having re-planned the project, we need to

recalculate the time spent on the third and fourth task. The dedicated time

was of one hour from Monday to Friday, and five hours on Saturdays, Sundays

and festive days. As said, the only modified tasks were developing the FS

workflow and the representation. These tasks were supposed to take around

one month to be finished each, from March the 18th to May the 19th, but

with the new schedule they were finished on around August the 18th. Thus,

recalculating the time now, we get that it took (1×5+4×2)×22 = 286h. If

we add four hours for every festive day and holidays, we can add 10×4 = 40

more hours, for a total of 326 hours spent. This also makes 54 more hours

than initially planned, for a total of 634 for the entire project.

66

Chapter 4

Economic planning

In this part we explain the details of the cost of all the resources we will need

in order to develop the project, including hardware, software and human

resources.

To calculate the amortizations, we will use the following formula:

UH ∗ P

Y ∗ 365 ∗H

UH = Usage Hours

P = Price of the item

Y = Years of useful life

H = Hours of usage a day

67

4.1 Direct Costs

4.1.1 Hardware

Here we show a table with the different costs of the hardware we will need

for the development process. Since no material resources are needed apart

from a computer, that is the only item we will put in the table.

Product Price Units Useful life Amortization

Lenovo ThinkPad X260 850 e 3 5 years 67.53 e

Total 2550 e 202.60 e

Table 4.1: Costs of the hardware

4.1.2 Software

Most of the resources we will use are digital, and we will try to make use of

as many open source and free resources as possible. Here we show them.

Product Price Units Useful life Amortization

Kubuntu 18.10 0 e 3 ∞ 0 e

R 3.5.2 0 e 2 ∞ 0 e

RStudio Desktop 1.1.463 0 e 2 ∞ 0 e

LaTeX 0 e 3 ∞ 0 e

GitHub 0 e 2 ∞ 0 e

LibreOffice 6.2 0 e 3 ∞ 0 e

Total 0 e 0 e

Table 4.2: Costs of the software

68

4.1.3 Human Resources

A project is not developed by itself, so we will need people of different profiles

to make it in time who, of course, will be paid for it. We will have a project

manager, but since the main tasks of the entire development process are

coding and analyzing data, we will assume that the manager will work less

hours than the rest of the people involved.

In the following charts we will break down the costs of the human re-

sources, showing the cost of each task and then the totals.

All the salary data has been obtained from https://www.payscale.com/,

which shows us the average salaries for different jobs according to the city,

experience and sector.

Profile Salary Units Estimated work time Cost

Project manager 15.65 e/h 1 290 h 4538.50 e

Software engineer 12 e/h 1 580 h 6960 e

Data scientist 13.50 e/h 1 580 h 7830 e

Total 19328.50 e

Table 4.3: Costs of the human resources

So, if we assume each hour of work will cost us 19328.50/580 = 33.325 e,

and that all members of the team will work equally on every task:

69

Task Estimated duration Cost

Acquire background in genomics and ML 140 h 4665.50 e

Learn to use the tools 84 h 2799.30 e

Develop the FS workflow 140 h 4665.50 e

Develop the representation 132 h 4398.90 e

Final complete test 28 h 933.10 e

Final steps 56 h 1866.20 e

Total 580 h 19328.50 e

Table 4.4: Costs of the human resources per task

4.1.4 Total Direct Costs

Type Cost

Hardware 2550 e

Software 0 e

Human Resources 19328.50 e

Total 21878.50 e

Table 4.5: Total direct costs

4.2 Indirect Costs

The main indirect costs we will have are electricity and internet. For the

electricity, we will calculate it considering these constants:

Price of electricity in Spain = 0.1255e/kWh

Hours of usage of the laptops = 580 h

Power of the laptop = 3 * 45 W = 135 W = 0.135 kW

70

0.1255 e/kWh * 580 h * 0.135 kW ≈ 9.83e

About the internet, a 50Mb internet connection would be more than

enough to satisfy all of our requirements. This costs 31 e a month, and since

the duration of the project is approximately 5 months, we would have to pay

31e/month * 5 months = 155 e.

The total of our indirect costs is in the following table:

Item Cost

Electricity 9.83 e

Internet 155 e

Total 164.83 e

Table 4.6: Total indirect costs

4.3 Total direct and indirect costs

Type Cost

Direct 21878.50 e

Indirect 164.83 e

Total 22043.33 e

Table 4.7: Total direct and indirect costs

71

4.4 Contingency Costs

We tried to plan the project as accurately as possible. However, as stated

in previous reports, some inconveniences could happen that would delay the

project some days. Since the presentations start the first week of July, there

could only be two additional weeks of development. This does not affect the

price of the hardware and the software, but it does add to the cost of the

human resources, the electricity and the internet. Here are the additional

costs for everything:

Type Cost

Human resouces 2304.40 e

Electricity 0.95 e

Internet 31 e

Total 2336.35 e

Table 4.8: Contingency costs

72

4.5 Total costs

To calculate the total costs for this project, we need to also add a 21% VAT.

This leaves us with these costs:

Type Cost

Direct 26472.99 e

Indirect 199.44 e

Contingency 2826.98 e

Total 29499.41 e

Table 4.9: Total costs

4.6 Budget tracking

In order to keep track of the money we will be having to pay, as well as the

variations we might have to make and the extra expenses we could have, we

will check the amount of worked hours at the end of each task and calculate

a deviation of the cost. This deviation will be calculated as follows:

Costdeviation = (EC −RC) ∗RH

EC = Estimated cost of the task

RC = Real cost of the task

RH = Real hours the task took to perform

This way, we will be able to see how well estimated the cost and duration

of each task were and if we are delaying the project too much. As explained

before, we will have extra time to finish it in case we need it, but with this

deviation we will be able to see if the time we are taking is close to the

73

expected or inside the margin given, or if we are going to have to perform

some task faster than estimated in order to stay in it.

4.7 Economic deviations

There were also changes in the economic planning of the project too.

First of all, the redefinition of the temporal planning in the previous

section makes obvious that there would be changes in the economic planning

too. In the original planning, we set that the human resources costs (Table

4.3).

However, with the new planning, we have these costs:

Profile Salary Units Estimated work time Cost

Project manager 15.65 e/h 1 317 h 4961.05 e

Software engineer 12 e/h 1 634 h 7608 e

Data scientist 13.50 e/h 1 634 h 8559 e

Total 21128.05 e

Table 4.10: Costs of the human resources: re-planned

74

Not only that, but we also need to modify the costs of electricity accord-

ingly. With the new planning, though, the costs are these:

Price of electricity in Spain = 0.1255e/kWh

Hours of usage of the laptops = 634 h

Power of the laptop = 3 * 45 W = 135 W = 0.135 kW

0.1255 e/kWh * 634 h * 0.135 kW ≈ 10.74e

And of course, the cost of internet also grows. Initially we had planned

that internet would be used for 5 months, for a total of 155e. Knowing that

the months spent on the project would be twice the initial ones, the internet

costs grow to 310e.

Because of the new planning of the project, the costs have grown notice-

ably. However, we already took this into consideration and added contin-

gency costs to the initial planning to avoid this (Table 4.8). In the following

table we calculate the difference between the initial costs and the new costs,

and between this difference and the contingency costs:

Type Initial costs New costs Rise of costs Remaining

Human resouces 19328.50 e 21128.05 e 1799.55 e 504.85 e

Electricity 9.83 e 10.74 e 0.91 e 0.04 e

Internet 155 e 310 e 155 e -124 e

Total 19328.50 e 21128.05 e 1955.46 e 380.89 e

Table 4.11: Difference between initial and actual costs

As we can see, the contingency costs were more than enough to deal with

the rescheduling of the project, so even though the costs of several parts have

changed, we already had a plan to deal with them.

75

In conclusion, although the economic planning has also changed, a good

initial planning regarding the contingency has allowed us to not change the

initial costs.

76

Chapter 5

Sustainability

5.1 Environmental

In this project, the only material resources used have been the computer and

the electricity.

According to Lenovo[38], their company has been given several social and

environmental sustainability certifications, so we can consider using one of

their laptops, although still requires the use of natural resources, does not

become a threat to the nature and the environment.

In the case of electicity, since the project has been done at home, I have

used the energy that we have contracted here. It does not come from re-

newable sources. However, Being the computer a laptop, it can be recharged

and used without being connected to the power, which makes it consume less

energy and become much more ecologic than a regular PC.

Once the project is done, no more energy nor computers will be needed

from my part since the code and its documentation will be uploaded in a

remote repository and storage.

77

5.2 Social

This project is not only a source of knowledge about computer science for the

developer, but also a very good way to learn about some basics of biology.

I have learned about the properties of genes, proteines, and in general any

molecule that belong to the omics fields, the way they interact with each

other, how important they are in the functions they perform in an organic

body, and how to treat and analyze them using computer science.

It also provides a great tool for studying those data that can be used by

both experienced and novice people, for it has a great interface and feedback

every step of the workflow and, as proved in previous sections, is also very

accurate and fast. For this reason, it is excellent to be used in the previous

stages of a new study in order to have a first quick answer to the formulated

hypothesis, and also have some guidance to understand which could be the

more interesting parts of the data to look more into.

In this way, it is nothing but beneficial for all sorts of people, for the

purpose of research and education, and could be helpful in the path leading

to the solution of many biological problems and mysteries.

5.3 Economic

The cost of every task and resource of this project is clearly stated in previous

sections. This project is not cheap, even less if we take into consideration

that it is supposed to be open source and free to use by every single person in

the world. However, the costs are mostly human, since the costs of electricity,

internet and hardware are something that almost every person including me

has to pay regardless of what they are working on, and the software is all

free.

78

Also, since this was a project for university supposed to be done by only

me, the human costs in reality are also null, so economically the making of

this project has been absolutely free. Additionally, it will be free software,

thus being available for every person that is interested in using it for any pur-

pose, even modifying it if desired, and becoming not an economical problem

at all.

5.4 Sustainability Matrix

Here we present the sustainability matrix in a scale from 0 to 10. In case of

the risks, instead we will show negative points, that will be the amount of

points to subtract from the other sections.

PPP Exploitation Risks

Environmental 8 10 -1

Social 10 10 0

Economic 10 10 0

Table 5.1: Sustainability matrix

79

Chapter 6

Conclusion

During the development of this project I have been in touch with many things

completely new for me. The language R was the only thing I was a little

familiar with, and it still became a struggle to change my mindset to work

with something so different from what I usually use. Along the year, I have

been in a constant process of learning, understanding and coding everything

from mathematical formulas to even the user interface of a web page.

The result has been a tool that efficiently solves all the problems proposed

at the very beginning:

• I learned a lot about the state of the art in the field of Machine Learning.

I had to research through many scientific documents, journals, code...

To find inspiration in what I wanted to do, and to find the tools and

ways to achieve my proposed objectives. Also, the subject majority of

documents I went through was biology and computer science together,

so I also learned about the ways molecules interact with each other and

how and why they are important in all functions of organic bodies.

80

• I built a complete workflow, with a big rate of customization, that was

able to reduce the initial amount of data to a very small part of it losing

a very small part of relevant information in the process.

• It was tested using it to analyze the famous ALL/AML leukemia dataset,

comparing the results to the ones of many other studies, and success-

fully asserting that they were, indeed, very correct, and more than that,

they all were generated and returned very quickly.

• I developed a web user interface, allowing the upload of the data in

multiple formats, customization of multiple parameters of the work-

flow, and exhaustive but quickly obtained feedback as plots and graphs

depicting the analysis and transformations the data goes through.

• Apart from that, an additional objective accomplished that was not in

the initial ones, but that I still developed, was the generation of a final

downloadable report of all the workflow the data has gone through,

including all the plots and graphs generated in the way.

In the end we can see that this project successfully accomplished all the

initially set objectives, and even more, although the initial planning had

to be remade: we have a complete, fast, accurate and user-friendly tool

to analyze and study biological data in amounts as big as required. This

project is stored in its own repository, which can be found in the following

URL: https://github.com/Jrryy/TFG

81

6.1 Future work

I have been working on the development of this project for almost a year, and

although it has ended up being very robust, I am aware of its weak spots.

There is a list of certain parts of it that could be improved, and as a plan

for future work, that should be the first of all to work on:

• First of all, it accepts data in different formats, but those formats are

very specific and only a slight difference would make the system not

recognize the data and throw an error message. It would be great

to accept data files that are represented in the most common formats

around the scientific world.

• Sometimes, the plots are not 100% correctly drawn. The title, for

example, appears cut out in several occasions, but most commonly in

the pdf report, which might cause certain difficulties to understand

what those graphs represent.

• The code went through a lot of trial and error writings, and for this

reason some parts of it are difficult to read and some add execution

time that is probably unnecessary. Writing clean code is the first rule

for a programmer, for other people and for himself to have an easier

time understanding and improving the code, so a refactor of it all would

be also very important.

• There are many checks for errors throughout the entire code, making

sure that the user does not try to break the software or make it crash

at some point, but there probably are more parts and ways to make it

crash that I have not taken into consideration. Thus, the project would

need a process of quality assurance, trying to exploit every possible part

82

and adding error checks in every single one of them, to make it 100%

robust.

These being the weakest points of the project to work on in the future,

there is also a list of other features and upgrades that it could go through,

not being errors or limitations, but more of new additions for the users to ,in

general, improve their experience:

• Make some plots interactive. For example, it would be great if we, as

users, instead of selecting the number of variables writing a number we

could click on the plot whever we want the limit to be.

• Allow the user to select the amount of variables per component that

the PLS-DA tuning tests.

• Allow the user to deactivate the tuning and select the components and

variables to analyze with sPLS-DA by himself.

• Parallelize the different parts of the code. While it is true that I already

added a parallelism option to the ReliefF step (basically, it will check

if there are enough cores available to parallelize that whole process), it

does not seem to work properly. Either way, the Fisher Scoring and Re-

liefF steps can both be parallelized, which would improve the execution

time of the workflow, being overall useful with bigger datasets.

• Deploy the project to an online server. So far, this project can be

downloaded and used locally by any person. However, it would also be

an improvement if people could use it through their browser, without

having to download the project and all the dependencies it has, and it

could be used by multiple users simultaneously.

• Allow analysis of data with more than two classes.

83

Bibliography

[1] Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP,

Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD. ”Molec-

ular classification of cancer: class discovery and class prediction by gene

expression monitoring.” Science. 1999; 286:531-7.

https://doi.org/10.1126/science.286.5439.531

[2] Duong CN, Quach KG, Le N, Nguyen N, Luu K. ”MobiFace: A

Lightweight Deep Learning Face Recognition on Mobile Devices”, Nov

2018

https://arxiv.org/pdf/1811.11080.pdf

[3] Bhowmick A, Hazarika SM. ”Machine Learning for E-mail Spam Filter-

ing: Review, Techniques and Trends”, Jun 2016

https://arxiv.org/pdf/1606.01042.pdf

[4] Li D, Zhao D, Zhang Q, Chen Y. ”Reinforcement Learning and Deep

Learning based Lateral Control for Autonomous Driving”, Oct 2018

https://arxiv.org/pdf/1810.12778.pdf

[5] Lynch C. ”Big data: How do your data grow?” Nature. 2008;

455(7209):28-9.

https://doi.org/10.1038/455028a PMID: 18769419

84

[6] Perez-Riverol Y, Bai M, da Veiga Leprevost F, Squizzato S, Park YM,

Haug K, et al. ”Discovering and linking public omics data sets using the

Onics Discovery Index.” Nature biotechnology. 2017; 35(5):406-9.

https://doi.org/10.1038/nbt.3790 PMID: 28486464

[7] Saeys Y, Inza I, Larranaga P. ”A review of feature selection techniques

in bioinformatics.” Bioinformatics. 2007; 23(19):2507-17.

https://doi.org/10.1093/bioinformatics/btm344 PMID: 17720704

[8] Perez-Riverol Y, Kuhn M, Vizcáıno JA, Hitz M-P, Audain E ”Accu-

rate and fast feature selection workflow for high-dimensional omics data.”

PLoS ONE. 2017; 12(12): e0189875.

https://doi.org/01.1371/journal.pone.0189875

[9] Bellman R. ”Dynamic programming and Lagrange multipliers.” Proceed-

ings of the National Academy of Sciences. 1956; 42(10):767-9

[10] Hughes, G.F. ”On the mean accuracy of statistical pattern recognizers”.

IEEE Transactions on Information Theory. 1968; 14 (1): 55–63.

https://doi.org/10.1109/TIT.1968.1054102

[11] Michalak K, Kwasnicka H. ”Correlation-based feature selection strategy

in classification problems. International Journal of Applied Mathematics

and Computer Science.” 2006; 16:503-11.

[12] Wang Y, Tetko IV, Hall MA, Frank E, Facius A, Mayer KE, et

al. ”Gene selection from microarray data for cancer classification-a

machine learning approach.” Computational biology and chemistry.

2005; 29(1):37-46.

https://doi.org/10.1016/j.compbiolchem.2004.11.001 PMID:

15680584.

85

[13] Ringner M. ”What is principal component analysis?” Nature biotech-

nology. 2008; 26(3):303-4.

http://doi.org/10.1038/nbt0308-303 PMID: 18327243.

[14] Phuong TM, Lin Z, Altman RB. ”Choosing SNPs using feature selec-

tion.” Proceedings / IEEE Computational Systems Bioinformatics Con-

ference, CSB. IEEE Computational Systems Bioinformatics Conference.

2005; 301-309.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.511

.7735&rep=rep1&type=pdf PMID 16447987.

[15] Lal TN, Chapelle O, Weston J, Elisseeff A. ”Embedded Methods.” Fea-

ture Extraction. Studies in Fuzziness and Soft Computing. 2005; 207.

https://doi.org/10.1007/978-3-540-35488-8 6

[16] Song Q, Ni J, Wang G. ”A fast clustering-based feature subset selection

algorithm for high-dimensional data.” IEEE Trans. Knowl. Data Engi-

neering. 2013; 25(1):1-14.

[17] Boulesteix AL and Strimmer K. ”Partial least squares: a versatile tool

for the analysis of high-dimensional genomic data.” Briefings in bioinfor-

matics, 2006; 8(1):32-44.

[18] Nguyen DV and Rocke DM. ”Tumor classification by partial least

squares using microarray gene expression data.” Bioinformatics, 2002;

18(1):39–50.

https://doi.org/10.1093/bioinformatics/18.1.39

[19] Barker M and Rayens W. ”Partial least squares for discrimination.” J.

Chemometrics, 2003; 17:166-173.

https://doi.org/10.1002/cem.785

86

[20] Lê Cao KA, Boitard S, Besse P. ”Sparse PLS discriminant analysis:

biologically relevant feature selection and graphical displays for multiclass

problems.” BMC Bioinformatics, 2011; 12(1).

https://doi.org/10.1186/1471-2105-12-253

[21] Shafranovich Y. ”Common Format and MIME Type for Comma-

Separated Values (CSV) Files.” IETF Tools, 2005.

https://tools.ietf.org/html/rfc4180#section-2

[22] Q. Gu, Z. Li, J. Han. ”Generalized Fisher score for feature selection.”

arXiv preprint, 2012.

https://arxiv.org/abs/1202.3725

[23] Charu CA. ”Data Classification: Algorithms and Applications.” Chap-

man & Hall/CRC, 2014.

[24] Sikonja MR, Kononenko I. ”Theoretical and empirical analysis of ReliefF

and RReliefF.” Machine Learning, 2003; 53(1-2):23–69.

http://lkm.fri.uni-lj.si/rmarko/papers/robnik03-mlj.pdf

[25] Kira K, Rendell LA. 1992. ”A practical approach to feature selection.”

Proceedings of the ninth international workshop on Machine learning

(ML92), 1992; 249-256.

https://sci2s.ugr.es/keel/pdf/algorithm/congreso/kira1992.pdf

[26] Tan Y, Shi L, Tong W, Gene Hwang G, Wang C. ”Multi-class tumor

classification by discriminant partial least squares using microarray gene

expression data and assessment of classification models.” Computational

Biology and Chemistry, 2004; 28(3):235-243.

https://doi.org/10.1016/j.compbiolchem.2004.05.002

87

[27] Nguyen D, Rocke D. ”Tumor classification by partial least squares using

microarray gene expression data.” Bioinformatics, 2002; 18:39.

http://dx.doi.org/10.1093/bioinformatics/18.1.39

[28] Fordellone M, Bellincontro A, Mencarelli F. ”Partial least squares dis-

criminant analysis: A dimensionality reduction method to classify hyper-

spectral data” 2018.

https://arxiv.org/pdf/1806.09347.pdf

[29] Brereton RG, Lloyd GR. ”Partial least squares discriminant analysis:

taking the magic away.” Journal of Chemometrics, 2014; 28(4):213–225.

https://doi.org/10.1002/cem.2609

[30] Ruiz-Perez D, Narasimhan G. ”So you think you can PLS-DA?” Bioin-

formatics, 2017.

https://doi.org/10.1101/207225

[31] Chung D, Keles S. ”Sparse partial least squares classification for high

dimensional data.” Statistical applications in genetics and molecular bi-

ology, 2010; 9(1)

[32] Pearson K. ”On lines and planes of closest fit to systems of points in

space” The London, Edinburgh, and Dublin Philosophical Magazine and

Journal of Science, 1901; 2(11):559-572

https://doi.org/10.1080/14786440109462720

[33] Robnik-Sikonja M. ”CORElearn v1.53.1” 2018.

http://lkm.fri.uni-lj.si/rmarko/software/

[34] Déjean S, Lê Cao KA, González I, et al. ”mixOmics v3.9” 2019.

http://mixomics.org/

88

[35] Robnik-Sikonja M. ”CORElearn v1.53.1: attrEval method details” 2018.

https://www.rdocumentation.org/packages/CORElearn/versions/1.53.1/

topics/attrEval#l details

[36] Bø TH, Jonassen I. ”New feature subset selection procedures for classi-

fication of expression profiles.” Genome Biology, 2002; 3(4):research0017

https://doi.org/10.1186/gb-2002-3-4-research0017

[37] Mahmoud AM, Maher BA. ”A Hybrid Reduction Approach for Enhanc-

ing Cancer Classification of Microarray Data.” International Journal of

Advanced Research in Artificial Intelligence (IJARAI), 2014; 3(10)

http://dx.doi.org/10.14569/IJARAI.2014.031001

[38] Lenovo’s sustainability report.

https://www.lenovo.com/us/en/social responsibility

/sustainability reports/

89

