Information content versus word length in random typing

Ramon Ferrer-i-Cancho ${ }^{1, *}$ and Fermín Moscoso del Prado Martín ${ }^{2,3,4}$
${ }^{1}$ Complexity \& Quantitative Linguistics Lab
Departament de Llenguatges i Sistemes Informàtics, TALP Research Center, Universitat Politècnica de Catalunya, Campus Nord, Edifici Omega Jordi Girona Salgado 1-3. 08034 Barcelona, Catalonia (Spain)
${ }^{2}$ Laboratoire de Psychologie Cognitive (UMR6146)
CNRS \& Aix-Marseille Université I, Marseille, France
${ }^{3}$ Laboratoire Dynamique du Langage (UMR5596)
CNRS \& Université de Lyon II, Lyon, France
${ }^{4}$ Institut Rhône-Alpin de Systèmes Complexes, Lyon, France

E-mail: rferrericancho@lsi.upc.edu and fermin.moscoso-del-prado@gmail.com

Abstract

Recently, it has been claimed that a linear relationship between a measure of information content and word length is expected from word length optimization and it has been shown that this linearity is supported by a strong correlation between information content and word length in many languages (Piantadosi et al. 2011, PNAS 108, 3825-3826). Here, we study in detail some connections between this measure and standard information theory. The relationship between the measure and word length is studied for the popular random typing process where a text is constructed by pressing keys at random from a keyboard containing letters and a space behaving as a word delimiter. Although this random process does not optimize word lengths according to information content, it exhibits a linear relationship between information content and word length. The exact slope and intercept are presented for three major variants of the random typing process. A strong correlation between information content and word length can simply arise from the units making a word (e.g., letters) and not necessarily from the interplay between a word and its context as proposed by Piantadosi et al. In itself, the linear relation does not entail the results of any optimization process.

Keywords: Zipf's law of brevity, random typing, uniform information density.
PACS numbers: 89.70.-a Information and communication theory
89.75.Da Systems obeying scaling laws
05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion 02.30.Lt Sequences, series, and summability

Submitted to: Journal of Statistical Mechanics: theory and experiment (JSTAT)

1. Introduction

In his pioneering research, G. K. Zipf showed that more frequent words tend to be shorter [1], and parallels of this brevity law have been reported for the behavior of other species 2, 3. Recently, it has been argued that "average information content is a much better predictor of word length than frequency" and that this "indicates that human lexicons are efficiently structured for communication by taking into account interword statistical dependencies." [4, p. 1]. According to the uniform information density hypothesis (e.g., [5]), "language users make choices that keep the number of bits of information communicated per unit of time approximately constant" and thus "the amount of information conveyed by a word should be linearly related to the amount of time it takes to produce -approximately, its length- to convey the same amount of information in each unit of time" [4, p. 1]. Here it will be shown that hitting keys from a keyboard at random (e.g., [6, 7]) generates words that reproduce this linear relationship. Therefore, the observation of such a linear relationship does not constitute unequivocal evidence for any kind of optimal choices made by speakers.

Throughout this paper, C denotes contexts and W denotes words. As in Ref. 4], the context of a word consists of a fixed number of preceding words, and the information content of a word w is given by

$$
I(w)=-\sum_{c} p(C=c \mid W=w) \ln p(W=w \mid C=c)
$$

The expected information content of words of length ℓ is defined as [4]

$$
\begin{equation*}
I(\ell)=\sum_{\|w\|=\ell} p(W=w \mid\|w\|=\ell) I(w), \tag{1}
\end{equation*}
$$

where $\|w\|$ is the length (in letters) of a word w and ℓ is a fixed parameter value. In this study, we detail some connections between $I(w)$ and standard information theory measures. The definition of $I(w)$ that we borrow from Ref. [4] is somewhat idiosyncratic in relation to standard information-theory. We found that, Ref. [8], the reference supplied in Ref. [4] as a justification for Eq. [1, does not in fact justify the equation in any evident way. In this study we demonstrate that $I(\ell)$ is a linear function of ℓ for a general class of random typing processes. The only requirement is that the context is defined by means of neighbouring words (as in [4]) or that empty words (words of length zero) are allowed as in many variants of the random typing process [6, 9, 10].

2. Connections with standard information theory

We now introduce our basic notation and conventions. The self-information of an event that has probability p is $-\ln p$. We consider C and W independent if and only if $p(C=c, W=w)=p(C=c) p(W=w)$. As usual, by the definition of conditional probability, independence implies both $p(C=c \mid W=w)=p(C=c)$ and $p(W=w \mid C=c)=p(W=w)$, for any individual c and w. Therefore, under independence between C and W, it holds that $I(w)=I_{0}(w)=-\ln p(W=w)$, that is
to say, $I(w)$ is just the self-information of w. The expected self-information content of a word of length ℓ is

$$
\begin{align*}
I_{0}(\ell) & =-\sum_{\|w\|=\ell} p(W=w \mid\|w\|=\ell) \ln p(W=w) \\
& =-\sum_{\|w\|=\ell} p(W=w \mid\|w\|=\ell) \ln p(W=w,\|w\|=\ell) . \tag{2}
\end{align*}
$$

In sum, under independence between C and $W, I(\ell)$ and $I_{0}(\ell)$ coincide.
The conditional entropy is defined as,

$$
\begin{align*}
H(W \mid C) & =\sum_{c} p(C=c) H(W \mid C=c) \\
& =-\sum_{c} p(C=c) \sum_{w} p(W=w \mid C=c) \ln p(W=w \mid C=c) \tag{3}
\end{align*}
$$

Given only the joint probability, i.e. $p(W=w, C=c)$, one can use Bayes' Theorem for calculating the conditional and marginal probabilities, as it was done in previous work [4] and is assumed by various information theoretic models of Zipf's law for word frequencies [11, 12]. Simple application of Bayes' Theorem to the definition of $H(W \mid C)$ in (3) shows that the conditional entropy is the expectation of $I(w)$:

$$
\begin{align*}
H(W \mid C) & =-\sum_{c} \sum_{w} p(W=w, C=c) \ln p(W=w \mid C=c) \\
& =-\sum_{w} p(W=w) \sum_{c} \frac{p(W=w, C=c)}{p(W=w)} \ln p(W=w \mid C=c) \\
& =-\sum_{w} p(W=w) \sum_{c} p(C=c \mid W=w) \ln p(W=w \mid C=c) \\
& =\sum_{w} p(W=w) I(w)=E[I(w)] . \tag{4}
\end{align*}
$$

It is not difficult to see that $I_{0}(w)$ is the upper bound of $I(w)$ and $H(C \mid w)$ is its lower bound; formally,

$$
\begin{equation*}
H(C \mid w) \leq I(w) \leq I_{0}(w) \tag{5}
\end{equation*}
$$

As for a lower bound of $I(w)$, the relative entropy (or Kullback-Leibler divergence) between the context conditional probability and the word conditional probability is 13

$$
\begin{aligned}
D(p(C=c \mid W=w) \| p(W=w \mid C=c))= & \sum_{c} p(C=c \mid W=w) \ln \frac{p(C=c \mid W=w)}{p(W=w \mid C=c)} \\
= & \sum_{c} p(C=c \mid W=w) \ln p(C=c \mid W=w) \\
& -\sum_{c} p(C=c \mid W=w) \ln p(W=w \mid C=c) \\
= & I(w)-H(C \mid w)
\end{aligned}
$$

Therefore $I(w) \geq H(C \mid w)$ by the non-negativity of the relative entropy [13]. As for the upper bound of $I(w)$, the non-negativity of mutual information, i.e. $I(W ; C)=$ $H(W)-H(W \mid C) \geq 0$ [13] and (4), yields

$$
H(W \mid C) \quad \leq H(W)
$$

$$
\begin{aligned}
\sum_{w} p(W=w) I(w) & \leq-\sum_{w} p(W=w) \ln p(W=w) \\
& =\sum_{w} p(W=w) I_{0}(w)
\end{aligned}
$$

if and only if $I(w) \leq I_{0}(w)$, as we wanted to prove. Combining (1) and (5) results in

$$
\begin{equation*}
I_{C}(\ell) \leq I(\ell) \leq I_{0}(\ell) \tag{6}
\end{equation*}
$$

where $I_{C}(\ell)$ is defined as

$$
I_{C}(\ell)=\sum_{\|w\|=\ell} p(W=w \mid\|w\|=\ell) H(C \mid w) .
$$

3. Information content versus length in random typing

Random typing [6, 10] is a process in which a sequence of characters is produced by sampling randomly from a set of possible characters. Here we consider a generalized random typing model based upon variants allowing for unequal letter probabilities as in [7, 10] and allowing one to specify a minimum word length [14].

Assume that characters are produced from an alphabet $\Sigma=\left\{\sigma_{0}, \ldots, \sigma_{i}, \ldots, \sigma_{\lambda-1}\right\}$, where λ is the alphabet size, σ_{0} represents the word delimiter (i.e., the space character) and the remaining characters of Σ are letters. We assume that all the characters in Σ are produced at random and independently, with the only exception that two instances of the space character must be separated by at least ℓ_{0} intervening characters other than the space. In such model, the production of a word is separated into two phases: generation of the space-free prefix of length ℓ_{0}, and generation of the remainder. S is a random variable taking values from Σ as generated by the random typing process. $p_{\Sigma}(S=s)$ is defined as the probability of producing character s as the k-th character after the last space produced (or after the beginning of the sequence if no space has been produced yet), for any value $k \geq \ell_{0} \cdot p_{\Sigma \backslash\left\{\sigma_{0}\right\}}(S=s)$ is the same probability as $p_{\Sigma}(S=s)$ for values of $k<\ell_{0}$. The abbreviation $p_{0}=p_{\Sigma}\left(S=\sigma_{0}\right)$ will be used hereafter. We assume that $p_{\Sigma}(S=s)>0$ for all characters in Σ with the additional constraint that $p_{0}<1$. $p_{\Sigma \backslash\left\{\sigma_{0}\right\}}(S=s)$ is defined in terms of $p_{\Sigma}(S=s)$,

$$
p_{\Sigma \backslash\left\{\sigma_{0}\right\}}(S=s)=\left\{\begin{array}{cl}
\frac{p_{\Sigma}(S=s)}{1-p_{0}} & \text { if } s \neq \sigma_{0} \\
0 & \text { if } s=\sigma_{0}
\end{array}\right.
$$

The generalized random typing process with unequal letter probabilities is defined by λ parameters: ℓ_{0} and the $\lambda-1$ probabilities $p_{\Sigma}\left(S=\sigma_{i}\right)$ for $0 \leq i \leq \lambda-2$ with

$$
p_{\Sigma}\left(S=\sigma_{\lambda-1}\right)=1-\sum_{i=0}^{\lambda-2} p_{\Sigma}\left(S=\sigma_{i}\right)
$$

Notice the additional parameter ℓ_{0} that is not considered in other versions of the random typing model and allows for unequal character probabilities [7, 10].

In the remainder of this section we start by proving that $I_{0}(\ell)$ is a linear function of ℓ, providing exact analytical expressions for its slope and intercept. We continue by showing that $I(\ell)$ can be inferred from $I_{0}(\ell)$. If the context is defined by words, as in

Ref. [4], then $I(\ell)=I_{0}(\ell)$ because our generalized random typing process produces words independently from the previous ones. If the context are characters, then $I(\ell)=I_{0}(\ell)$ is also warranted when $\ell_{0}=0$ because this is the case where self-repulsion of the space is suppressed. When $\ell_{0}>0$, (6) indicates that $I(\ell)$ cannot exceed $I_{0}(\ell)$.

In order to calculate the probability of producing a concrete word $w=$ $s_{1}, \ldots, s_{i}, \ldots, s_{\ell}$, where s_{i} is the i-th character from Σ of w, we use the shorthand

$$
\mathcal{P}_{i, j}=\prod_{h=i}^{j} p_{\Sigma}\left(S=s_{h}\right)
$$

By the independence between characters (except for space self-repulsion at distances smaller than ℓ_{0}), the probability that a random word W that has length ℓ coincides with $w=s_{1}, \ldots, s_{i}, \ldots, s_{\ell}$ is

$$
\begin{align*}
p(W=w,\|w\|=\ell) & =\left(\prod_{i=1}^{\ell_{0}} p_{\Sigma \backslash\left\{\sigma_{0}\right\}}\left(S=s_{i}\right)\right)\left(\prod_{i=\ell_{0}+1}^{\ell} p_{\Sigma}\left(S=s_{i}\right)\right) p_{0} \\
& =\frac{p_{0}}{\left(1-p_{0}\right)^{\ell_{0}}}\left(\prod_{i=1}^{\ell} p_{\Sigma}\left(S=s_{i}\right)\right) \\
& =\frac{p_{0}}{\left(1-p_{0}\right)^{\ell_{0}}} \mathcal{P}_{1, \ell} \tag{7}
\end{align*}
$$

the probability that a word has length ℓ is

$$
p(\|w\|=\ell)=p_{0}\left(1-p_{0}\right)^{\ell-\ell_{0}}
$$

and the probability of a word w given its length is therefore

$$
\begin{align*}
p(W=w \mid\|w\|=\ell) & =\frac{p(W=w,\|w\|=\ell)}{p(\|w\|=\ell)} \\
& =\frac{1}{\left(1-p_{0}\right)^{\ell}} \mathcal{P}_{1, \ell} \tag{8}
\end{align*}
$$

Applying (7), the self-information of a word w of length ℓ is

$$
\begin{equation*}
-\ln p(W=w,\|w\|=\ell)=b-\sum_{i=1}^{\ell} \ln p_{\Sigma}\left(S=s_{i}\right) \tag{9}
\end{equation*}
$$

where b is defined as

$$
\begin{equation*}
b=\ln \frac{\left(1-p_{0}\right)^{\ell_{0}}}{p_{0}} \tag{10}
\end{equation*}
$$

Combining (8) and (9) with the definition of $I_{0}(\ell)$ in (2), gives

$$
I_{0}(\ell)=\frac{1}{\left(1-p_{0}\right)^{\ell}} \sum_{s_{1}, \ldots, s_{\ell}} \mathcal{P}_{1, \ell}\left(b-\sum_{i=1}^{\ell} \ln p_{\Sigma}\left(S=s_{i}\right)\right)
$$

Bearing in mind that

$$
\begin{aligned}
\sum_{s_{1}, \ldots, s_{\ell}} \mathcal{P}_{1, \ell} & =\sum_{s_{1} \in \Sigma \backslash\left\{\sigma_{0}\right\}} \ldots \sum_{s_{i} \in \Sigma \backslash\left\{\sigma_{0}\right\}} \ldots \sum_{s_{\ell} \in \Sigma \backslash\left\{\sigma_{0}\right\}} \mathcal{P}_{1, \ell} \\
& =\sum_{s_{1} \in \Sigma \backslash\left\{\sigma_{0}\right\}} \ldots \sum_{s_{i} \in \Sigma \backslash\left\{\sigma_{0}\right\}} \ldots \sum_{s_{\ell} \in \Sigma \backslash\left\{\sigma_{0}\right\}} \prod_{h=1}^{\ell} p_{\Sigma}\left(S=s_{h}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{s_{1} \in \Sigma \backslash\left\{\sigma_{0}\right\}} \ldots \sum_{s_{i} \in \Sigma \backslash\left\{\sigma_{0}\right\}} \ldots \mathcal{P}_{1, \ell-1} \sum_{s_{\ell} \in \Sigma \backslash\left\{\sigma_{0}\right\}} p_{\Sigma}\left(S=s_{\ell}\right) \\
& =\left(1-p_{0}\right) \sum_{s_{1} \in \Sigma \backslash\left\{\sigma_{0}\right\}} \ldots \sum_{s_{i} \in \Sigma \backslash\left\{\sigma_{0}\right\}} \ldots \sum_{s_{\ell-1} \in \Sigma \backslash\left\{\sigma_{0}\right\}} \mathcal{P}_{1, \ell-1} \\
& =\left(1-p_{0}\right)^{2} \sum_{s_{1} \in \Sigma \backslash\left\{\sigma_{0}\right\}} \ldots \sum_{s_{i} \in \Sigma \backslash\left\{\sigma_{0}\right\}} \ldots \sum_{s_{\ell-2} \in \Sigma \backslash\left\{\sigma_{0}\right\}} \mathcal{P}_{1, \ell-2} \\
& =\ldots \\
& =\left(1-p_{0}\right)^{\ell},
\end{aligned}
$$

one can write

$$
\begin{equation*}
I_{0}(\ell)=b+\frac{1}{\left(1-p_{0}\right)^{\ell}} \sum_{s_{1}, \ldots, s_{\ell}} \mathcal{P}_{1, \ell}\left(-\sum_{i=1}^{\ell} \ln p_{\Sigma}\left(S=s_{i}\right)\right) . \tag{11}
\end{equation*}
$$

Notice that

$$
\begin{array}{ll}
\sum_{s_{1}, \ldots, s_{\ell}} \mathcal{P}_{1, \ell}\left(-\ln p_{\Sigma}\left(S=s_{i}\right)\right. & = \\
\sum_{s_{1}, \ldots, s_{j-1}, s_{j+1}, \ldots, s_{\ell}}\left[\mathcal{P}_{1, j-1} \mathcal{P}_{j+1, \ell} \sum_{s_{j} \in \Sigma \backslash\left\{\sigma_{0}\right\}}-p_{\Sigma}\left(S=s_{j}\right) \ln p_{\Sigma}\left(S=s_{j}\right)\right]= \\
\left(H_{\Sigma}(S)+p_{0} \ln p_{0}\right) \sum_{s_{1}, \ldots, s_{j-1}, s_{j+1}, \ldots, s_{\ell}} \mathcal{P}_{1, j-1} \mathcal{P}_{j+1, \ell} \\
\left(H_{\Sigma}(S)+p_{0} \ln p_{0}\right)\left(1-p_{0}\right)^{\ell-1}, \tag{12}
\end{array}
$$

where

$$
\begin{align*}
H_{\Sigma}(S) & =-\sum_{s \in \Sigma} p_{\Sigma}(S=s) \ln p_{\Sigma}(S=s) \\
& =-\sum_{s \in \Sigma \backslash\left\{\sigma_{0}\right\}} p_{\Sigma}(S=s) \ln p_{\Sigma}(S=s)-p_{0} \ln p_{0} \tag{13}
\end{align*}
$$

is the character entropy after the space-free prefix of length ℓ_{0}. Therefore, applying (12) to (11) one finally obtains $I_{0}(\ell)=a \ell+b$, where

$$
a=\frac{1}{1-p_{0}}\left(H_{\Sigma}(S)+p_{0} \ln p_{0}\right)
$$

and b is defined as in (10). Notice that the slope a is always positive because $H_{\Sigma}(S) \geq 0$ as any entropy and, according to (13), $H_{\Sigma}(S)>p_{0} \ln p_{0}$ provided that $\lambda>1$ (recall that no character from Σ has probability zero of occurring after the free-space prefix). Therefore, $I_{0}(\ell)$ grows linearly with ℓ for $\lambda>1$.

Table 1 summarizes the parameters of the linear relationship between $I_{0}(\ell)$ for our generalized random typing process and two particular cases: (a) equal letter probabilities (all characters except the space must be equally likely) [14] and (b) equal character probabilities (all characters including the space are equally likely) and empty words are allowed, i.e. $\ell_{0}=0$ [9]. Notice that (b) is a particular case of (a). Variant (a) [14 means that

$$
p_{\Sigma}(S=s)=\left\{\begin{array}{cl}
\frac{1-p_{0}}{\lambda-1} & \text { if } s \neq \sigma_{0} \\
p_{0} & \text { if } s=\sigma_{0}
\end{array}\right.
$$

Table 1. Summary of the linear dependency between the self-information content as a function of word length, $I_{0}(\ell)=a+b$, and related quantities for three major variants of the random typing process. $H_{\Sigma}(S)$ is the entropy of characters after the free-space prefix of length ℓ_{0}, p_{0} is the probability of space and λ is the cardinality of Σ. p_{s} is used as a shorthand for $p_{\Sigma}(S=s)$.

	Random typing				
	Generalized	Equal letter probabilities [14]	Equal character probabilities (with $\ell_{0}=0[9$)		
a	$\frac{1}{1-p_{0}}\left(H_{\Sigma}(S)+p_{0} \ln p_{0}\right)$	$\ln \frac{\lambda-1}{1-p_{0}}$	$\ln \lambda$		
b	$\ln \frac{\left(1-p_{0}\right)^{e_{0}}}{}$	$\ln \frac{\left(1-p_{0}\right)^{k_{0}}}{}$	$\ln \lambda$		
$H_{\Sigma}(S)$	$-\sum_{s \in \Sigma \backslash\left\{\sigma_{0}\right\}} \begin{gathered} p_{0} \ln p_{s} \\ -p_{0} \ln p_{0} \end{gathered}$	$\begin{array}{r} \left(1-p_{0}\right) \ln \frac{p_{0}-1}{1-p_{0}} \\ -p_{0} \ln p_{0} \end{array}$	$\ln \lambda$		
p_{0}	p_{0}	p_{0}	$\frac{1}{\lambda}$		
$p(W=w,\\|w\\|=\ell)$	$\frac{p_{0}}{\left(1-p_{0}\right)^{2}} \mathcal{P}_{1, \ell}$	$\frac{\left(1-p_{0}\right)^{\left(\ell-\ell_{0}\right)} p_{0}}{(\lambda-1)^{\ell}}$	$\frac{1}{\lambda}$		
$p(W=w \mid\\|w\\|=\ell)$	$\frac{1}{\left(1-p_{0}\right)^{2}} \mathcal{P}_{1, \ell}$	$\frac{1}{(\lambda-1)^{2}}$	$\frac{1}{(\lambda-1)^{2}}$		

and is defined only by three parameters: ℓ_{0}, λ and p_{0}. The random typing process defined in [6] is a particular case with $\ell_{0}=0$. In a random typing process with equal letter probabilities, the character entropy after the space-free prefix is

$$
\begin{aligned}
H_{\Sigma}(S) & =(\lambda-1)\left(-\frac{1-p_{0}}{\lambda-1} \ln \frac{1-p_{0}}{\lambda-1}\right)-p_{0} \ln p_{0} \\
& =\left(1-p_{0}\right) \ln \frac{\lambda-1}{1-p_{0}}-p_{0} \ln p_{0} .
\end{aligned}
$$

Variant (b), the simplest random typing that has ever been presented to our knowledge, is defined with only one parameter, i.e. $\lambda\left(\ell_{0}=0\right.$ and $p_{0}=1 / \lambda$ in that case). (b) is known as the fair die rolling experiment [9] (see [7] for a version with $\ell_{0}=1$ and $p_{0}=1 / \lambda$).

4. Conclusion

We have shown that $I(\ell)=a \ell+b$ does not imply that speakers have made optimal choices as argued in (4). Uniform information density or related hypotheses (e.g., 5) are not at all necesary to account for the linear correlation between $I(\ell)$ and ℓ : typing at random yields the same dependency independently from context. Our main point is that a linear correlation between information content and word length may simply arise internally, from the units making a word (e.g., letters) and not necessarily from the interplay between words and their context as suggested in [4]. However, future research should investigate if the parameters of the linear relationship predicted by random typing coincide with those of real texts or if a linear relationship is sufficient to account for the actual dependency between $I(\ell)$ and ℓ in real languages as it is suggested by the long-range correlations in texts at the level of words [15] or letters [16, 17] and
the differences between random typing and real language at the level of the distribution of word frequencies [14, 18] or word lengths [19].

Acknowledgments

This work was supported by the project OpenMT-2 (TIN2009-14675-C03) from the Spanish Ministy of Science and Innovation (RFC).

References

[1] G. K. Zipf. The psycho-biology of language. Houghton Mifflin, Boston, 1935.
[2] S. Semple, M. J. Hsu, and G. Agoramoorthy. Efficiency of coding in macaque vocal communication. Biology Letters, 6:469-471, 2010.
[3] R. Ferrer-i-Cancho and D. Lusseau. Efficient coding in dolphin surface behavioral patterns. Complexity, 14(5):23-25, 2009.
[4] S. T. Piantadosi, H. Tily, and E. Gibson. Word lengths are optimized for efficient communication. Proceedings of the National Academy of Sciences, 108(9):3526-3529, 2011.
[5] T. F. Jaeger. Redundancy and reduction: Speakers manage syntactic information density. Cognitive Psychology, 61(1):23-62, 2010.
[6] G. A. Miller and N. Chomsky. Finitary models of language users. In R. D. Luce, R. Bush, and E. Galanter, editors, Handbook of Mathematical Psychology, volume 2, pages 419-491. Wiley, New York, 1963.
[7] W. Li. Random texts exhibit Zipf's-law-like word frequency distribution. IEEE T. Inform. Theory, 38(6):1842-1845, 1992.
[8] U. Cohen Priva. Using information content to predict phone deletion. In Proceedings of the 27th West Coast Conference on Formal Linguistics, pages 90-98. Cascadilla Proceedings Project, Somerville, MA, 2008.
[9] R. Suzuki, P. L. Tyack, and J. Buck. The use of Zipf's law in animal communication analysis. Anim. Behav., 69:9-17, 2005.
[10] B. Conrad and M. Mitzenmacher. Power laws for monkeys typing randomly: the case of unequal probabilities. IEEE Transactions on Information Theory, 50(7):1403-1414, 2004.
[11] M. Prokopenko, N. Ay, O. Obst, and D. Polani. Phase transitions in least-effort communications. J. Stat. Mech., page P11025, 2010.
[12] R. Ferrer i Cancho. Zipf's law from a communicative phase transition. European Physical Journal B, 47:449-457, 2005.
[13] T. M. Cover and J. A. Thomas. Elements of information theory. Wiley, New York, 2006. 2nd edition.
[14] R. Ferrer-i-Cancho and R. Gavaldà. The frequency spectrum of finite samples from the intermittent silence process. Journal of the American Association for Information Science and Technology, 60(4):837-843, 2009.
[15] M. Montemurro and P. A. Pury. Long-range fractal correlations in literary corpora. Fractals, 10:451-461, 2002.
[16] W. Ebeling and T. Pöschel. Entropy and long-range correlations in literary English. Europhysics Letters, 26(4):241-246, 1994.
[17] F. Moscoso del Prado Martín. The universal 'shape' of human languages: spectral analysis beyond speech. PLoS ONE, page in press, 2011.
[18] R. Ferrer-i-Cancho and B. Elvevåg. Random texts do not exhibit the real Zipf's-law-like rank distribution. PLoS ONE, 5(4):e9411, 2009.
[19] D.-Y. Manin. Zipf's law and avoidance of excessive synonymy. Cognitive Science, 32(7):1075-1098, 2008.

