1. Introduction

Insect-borne diseases (Vector diseases) affect millions of people every year, especially in tropical and subtropical countries [1]. The pathogens transmitted by these insects are responsible for most infectious diseases on the planet [2]. Examples of these diseases transmitted to humans include malaria, dengue fever, filariasis, yellow fever, chikungunya, Zika virus, West Nile virus, Japanese encephalitis and others [3-7].

Peila et al. [1], shows that among basic precautions to prevent transmitted diseases are the use of repellents. Repellents are substances that act to inhibit insects, producing a barrier that prevents contact between the vector and human or animal skin [8]. The substances may be from both synthetic and natural origin.

The most efficient insect repellents are DEET (N, N-diethyl-meta-toluamide) from synthetic origin and citronella essential oil from natural origin [9]. However, there are other products that can also be used as insect repellents from synthetic origin, such as: DEPA (N, N-Diethyl Phenylacetamide), Icaridin, IR3535 and Permethrin and, of natural origin: Carapa guianesis, Atemisia vulgaris, Ocimim., basilicum, Cinnamomum camphora, Corymbia citriodora, Eucalyptus sp, Cymbopogon, Mentha pulegium, [10-14].

All those products are the basis of most commercial repellents; however the action of these repellents is of short duration, due to the volatility of the chemical compounds of these
products and, therefore they offer an uncontrolled release. The authors [15] have shown that there would be an alternative to control their release based on the complexation of the active principle (the repellent oil). Thus, the repellent will have its prolonged effect and will protect the user longer.

The active principle can be used in repellent products, applied to the skin via spray or can be used on textiles. According to Lis Arias et al. [16] when used in textiles, these products become biofunctional, enabling the delivery of assets for cosmetotextiles applications. Due to its specific response, biofunctional textiles are especially useful when the textile comes into close contact with the skin [17]. Thus, these products can be used as insect repellents, reducing the number of infections caused by these vectors [18].

2. Repellent

(Table 1) shows the main synthetic compounds and a brief description.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEET</td>
<td>DEET is the most common repellent used in the world and the repellent properties of this product can be attributed to activation of olfactory receptor neurons (ORNs) in mosquito antennae. DEET has a strong repelling action and its use is not recommended during pregnancy and to children [19,20].</td>
</tr>
<tr>
<td>DEPA</td>
<td>DEPA was developed from the unavailability of a chemical component for the production of DEET in India. It has low toxicity and is used for various vector species [21].</td>
</tr>
<tr>
<td>ICARIDIN</td>
<td>Icaridin or 2-(2-hydroxyethyl)-1-methylpropylstyrine 1-piperidine carboxylate is a volatile oil that is effective in repelling mosquitoes, flies, bees, ticks and fleas. It has a longer lasting action than DEET [22].</td>
</tr>
<tr>
<td>IR3535</td>
<td>IR3535 or 3-(N-n-butyl-N-acetyl)-aminopropionic acid ethylester, is a natural derivative of amino acid β-alanine, it has no skin contact toxicity making it a repellent that can be applied to children, but it has lower repellency than DEET [23].</td>
</tr>
<tr>
<td>PERMETHRIN</td>
<td>It has high toxicity to the environment and no adverse effect on humans. Can be used in feed and food, clothing and still has many applications in agriculture and animal health [20].</td>
</tr>
</tbody>
</table>

Table 2 shows the main essential oils from plants used as insect repellents. These oils have a large number of bioactive compounds, allowing application in various industries [24].

<table>
<thead>
<tr>
<th>Compound</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andiroba</td>
<td>Andiroba oil is known for its insecticidal and medicinal uses as an anti-rheumatic, analgesic, anti-inflammatory and healing agent. Also, it is used in soaps, candles and cosmetics due to its insect repellent power. The compounds responsible for this effect are tetrnanortriterpenoids, limonoids or meliacins [25,26].</td>
</tr>
<tr>
<td>Citronella</td>
<td>Citronella oil is composed of citronellol, geraniol, limonene, methyl isoeugenol, among other compounds. This oil has been used as an insect repellent, also in aromatherapy, in deodorants, showing health benefits [27]. Citronella oil still has several biological effects, including: antifungal, antibacterial, antioxidant and insect repellent activities [24,28, and 29].</td>
</tr>
<tr>
<td>Lemon eucalyptus</td>
<td>The main element is 1,8-cineole (cineole or eucalyptol), oil used in various areas, including perfumery, pharmaceuticals and nutraceuticals. Lemon eucalyptus is the only CDC approved herbal repellent for use in endemic malaria [30,31].</td>
</tr>
</tbody>
</table>
Due to the properties of repellent agents, they can be applied to textile articles further extending their action. These applications are possible by textile finishing processes.

3. Textile Finishing

Textile finishing processes consist of a series of operations applied to fabrics in order to improve their properties. These processes can occur in three ways: physical, chemical and biological, as shown in (Figure 1).

![Figure 1: Textile finishing classification.](image)

The techniques used for finishing will depend, basically, on the structure and type of fiber (natural or chemical) that will be used [32]. Some of the desired properties are acquired with functional finishes, such as: bactericidal properties [33] drug release [34] and gas adsorption [35]. For these properties to have a function on the skin, it is necessary that agents be applied on the tissue surface, make the bioactive complexation and release into the skin, bringing benefits to the user [36].

Thus, the effect of the active ingredient will be prolonged due to the protection provided by the complexing agent. In the development of new properties for the fabric, one of the factors that must be considered is the finish durability; it means the prolongation of the effect is essential for the commercialization of the textile article.

There are several protection methods. Table 3 shows some techniques of protection of active ingredients used as repellent agents.
Table 3: Techniques for the protection of active ingredients used for insect repellency.

<table>
<thead>
<tr>
<th>TECHNIQUE</th>
<th>ACTIVE PRINCIPLE</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclodextrin</td>
<td>Citronella</td>
<td>[15]</td>
</tr>
<tr>
<td>Microcapsule</td>
<td>Eucalyptus</td>
<td>[37]</td>
</tr>
<tr>
<td>Micro/Nanoemulsion</td>
<td>Andiroba</td>
<td>[38]</td>
</tr>
<tr>
<td>Liposome</td>
<td>DEET</td>
<td>[39]</td>
</tr>
<tr>
<td>Hydrogel</td>
<td>IR3535</td>
<td>[40]</td>
</tr>
<tr>
<td>Solid Lipid Micro/nanoparticle</td>
<td>DEET</td>
<td>[41]</td>
</tr>
</tbody>
</table>

Figure 2 shows gelatin and gum arabic microcapsules as wall materials and citronella essential oil as active ingredient [42].

![Citronella insect repellent microcapsules](image)

Figure 2: Citronella insect repellent microcapsules.

On the other hand, after the process of inclusion or microencapsulation, it is necessary to release the trapped active principle, at a desired rate. Costa and Lobo [43] point out that the release of those encapsulated substances generally follows, basically, three mechanisms: diffusion, activation release and polymeric breakdown / erosion. The control of these mechanisms, can cause the effect of prolongation of active principle to occur, providing greater durability of the final and desired effect. Figure 3 shows in general the production steps of a functional textile article.

![Application of active ingredients on textile substrates](image)

Figure 3: Application of active ingredients on textile substrates.

Regardless of the complexation or immobilization, technique used, the release of the active principle (natural or synthetic) will be responsible for the repellency. Islam et al. [44] shows that the mechanism of action of repellents is related to the formation of a vapor layer on
the skin with an unbearable odor to the insect that deflects the path, preventing contact with the host. Thus when the active principle is released from the tissue it will form a layer on the skin causing the insect direction change, avoiding its contact on the user who uses the textile.

Thus, in this system it is important to relate the type of fiber with the compound to be impregnated in the fabric. Both must have interaction to make the finish effective. Figure 4 shows the main characteristics that a fabric must have to be a repellent biofunctional article.

![Figure 4: Characteristics of an insect repellent textile article.](image)

The repellent textile product, as suggested by Tavares et al. [20]), to be accepted in the market of repellents, must accomplish, as main characteristics:

- Repel the largest number of insect species;
- Nontoxic;
- Do not irritate the skin;
- Odorless to humans and an unbearable odor to mosquitoes;
- Water resistance (washing);
- Good resistance to friction and abrasion;
- Low cost.

4. Repellence Activity Tests

There are several methods that can be used for to check the efficiency of the system formed with repellents. Generally, the majority of these methods, need the intervention of human beings, and therefore, they are submitted to some severe regulations, (Figure 5).
Figure 5: The human landing catch (HLC) method for measuring the efficacy of topical repellents under field conditions. Mosquitoes alighting on the treated and exposed lower leg were aspirated by a mouth aspirator and kept in Falcon tubes for species identification in the laboratory. Apart from the treated area the whole body was fully protected by a jump suit, a bee keeper’s hat and latex gloves through which mosquitoes cannot bite [45].

A method used for the evaluation of mosquito behavior while searching for a host is suggested by Ribeiro et al., [46]. The system consists of two acrylic boxes (25 cm × 21 cm × 60 cm), one corresponding to the control and other to the test. Each box is divided into two equal chambers (A and B). In chamber B a anesthetized and immobilized Rattus norvegicus (Wister lineage) is introduced as a blood-feeding bait. In chamber A, 100 A. stephensi (not fed, 3 to 5 days old) are released, allowing passage from one chamber to another. Therefore, four tests are performed on treated and untreated tissues. Each sample must be 25 x 21 cm and stay in the boxes for 60 minutes. Thus the records of the number of mosquitoes passing from chamber A to chamber B are done. At the end of the test, the number of live mosquitoes is counted. And one can calculate the blood feeding reduction index (BFI):

\[BFI = 100 - \frac{\text{treated} \times 100}{\text{control}} \]

Where the term \textit{treated} represents the proportion of fed females captured in the test tunnel and the control represents the proportion of fed females captured in the control tunnel.

Another way to evaluate repellency in textile articles is proposed by Zhang et al. [28], Cao et al. [47] and Shiomura et al. [48]. In this case, adult insects about 2 weeks old are used. Solutions with different concentrations of the active ingredient to be tested are prepared and applied to 6 cm diameter filter paper, half of the paper is applied to the active principle solution (150 µL) and the other half to the solution without the principle active (150 µL), only the solvent. The solvent is then evaporated and the paper is placed in a petri dish. Insects are placed on the paper surface and counted after 2 and 4h. The repelling percentage (RP) is calculated by following the equation:
Where \(N_c \) is the number of insects present on half of paper with no active ingredient and \(N_t \) is the number of insects present on half of treated paper.

\[
RP(\%) = \left(\frac{(N_c - N_t)}{(N_c + N_t)} \right)
\]

5. Conclusion

Vectors are responsible for the transmission of various diseases worldwide, mainly in tropical and subtropical countries. The use of repellents, natural or synthetic, is an alternative to prevent the spread of diseases such as dengue, yellow fever, malaria, Zika virus and others.

However, applying some repellents on the skin may cause allergies and short protection due to the volatility of these products. Thus the protection of the active agent and its controlled release can increase the protective effect against these vectors, as well as reduce the unwanted effects on the user's skin.

For better protection these encapsulated or complex repellents can be applied to textiles, clothing, curtains, rugs and other products. These products are called textile finishes and can help with mosquitoes and the diseases caused by them. Textile articles create repellent barriers by keeping mosquitoes away from their wearer. Thus, textiles can be used in various forms for the purpose of repelling.

6. References

