
UNIVERSITAT POLITÈCNICA DE CATALUNYA

STUDY: ANALYSIS OF PLANETARY SPACECRAFT IMAGES FOR
ATMOSPHERE DYNAMICS STUDIES USING CROSSCORRELATION

TOOLS AND PLANETARY IMAGE NAVIGATION SOFTWARE

REPORT

A thesis submitted by Martí Sierra Salvadó for the Bachelor’s Degree in Aerospace
Vehicle Engineering

June 10, 2019

Directed by:
Enrique García Melendo

Co-director:
Manel Soria Guerrero

Acknowledgements

"I would like to thank Enrique García and Manel Soria for their unconditional support
throughout this project, and make a special mention to Roger Sala, without whom it
would have been impossible to achieve the objectives set. Also dedicate the work done to
my family and friends. . . "

1

Abstract

Atmospheric science is the study of the Earth’s atmosphere, its processes and the inter-
actions with other atmospheres. However, it has been extended to the field of planetary
science and the study of atmospheres of the planets of the solar system. In the same way
that the Earth’s atmosphere, the planetary atmospheres are affected by other atmospheres
and by varying degrees of energy, leading to the formation of dynamic weather systems,
such as the anticyclonic storm on Jupiter, called the Great Red Spot [53]. In this way, the
objective of the scientists is to know the evolution of this storms by performing simulations.

This study aims to process planetary images taken by interplanetary probes with the
objective of obtaining the longitudes and latitudes of the pixels, so that the locations of
the meteorological phenomena are known and can serve as validation of simulations [2].
For the cases studied, the images are in RAW format, i.e. as captured by the spacecraft
camera, and its image file format, called VICAR, was developed by the NASA’s JPL to
transport images from space missions. The VICAR format predates the standard image
formats, such as PNG, TIF, FITS, among others, so it has been necessary to develop a
decoder capable of reading and converting the images to the aforementioned conventional
formats.

Thus, starting from specialized software in this field, such as PLIA [46, 9], the objective
has been to understand the algorithms that it implements and develop an own program
capable of carrying them out, based on the the library SPICE developed by the NASA’s
JPL. In this sense, until obtain the longitudes and latitudes of the images, an initial
program has been developed capable of reading the original images (RAW) taken by the
interplanetary probes, optical distortions have been calibrated and corrected by specialized
software (CISSCAL), and a solver able to implement the navigation algorithms involved
in the PLIA code has been developed, which also estimates the navigation error for an
automatic adjustment.

At the end of this study, the objectives have been achieved and the results have been
compared with the specialized software, obtaining satisfactory results. Looking ahead,
more space missions can be tested, more specifically, the next objective is to focus on the
Juno probe, which is presented as a challenge due to its operationality.

2

Contents

I General introduction 13

1 Overview 14

1.1 Aim . 14

1.2 Scope . 15

1.3 Requirements . 15

1.4 Justification . 15

1.5 Collaboration . 16

II Planetary Images Navigation 17

2 Introduction to the spacecrafts 18

2.1 Introduction to Cassini-Huygens . 18

2.1.1 Mission Overview . 18

2.1.2 Cassini Orbiter Instruments . 19

2.2 Introduction to Voyager . 21

2.2.1 Mission Overview . 21

2.2.2 Voyager Instruments . 22

2.3 Imaging Science Subsystem . 24

3 ISS Image Reading 25

3.1 PDS ISS Data Archive . 25

3.2 ISS Vicar Image Format . 26

3.2.1 Overview . 26

4

Contents Martí Sierra Salvadó

3.2.2 Labels . 27

3.2.3 Image area . 35

3.3 ISS Image Reading Software . 35

3.3.1 Planetary Virtual Observatory and Laboratory (PVOL) 36

3.3.2 Vicarread.m . 41

4 ISS Image Calibration: CISSCAL 44

4.1 Introduction . 44

4.2 Setting Up the Environment . 44

4.3 Starting CISSCAL . 45

4.4 Default Options File . 47

4.5 CISSCAL User Manual . 48

5 Image Navigation 50

5.1 Planetary Laboratory for Image Analysis (PLIA) 50

5.1.1 Setting Up the Environment . 50

5.1.2 PLIA User Manual . 51

5.2 Developed Software . 53

5.2.1 MATLAB Prototype . 54

5.2.2 C Solver . 60

6 Results and Validation 83

7 Environmental impact 96

8 Conclusions 97

5

List of Figures

1.1 Frame of the simulation [2] . 16

2.1 Cassini Spacecraft Diagram [38] . 21

2.2 Voyager Spacecraft Diagram [21] . 23

3.1 Basic structure of a VICAR file [6] . 27

3.2 VICAR file organization types [6] . 30

3.3 VICAR file image area [6] . 35

3.4 "File" Menu [7] . 37

3.5 File slection form [7] . 37

3.6 Filter options form [7] . 38

3.7 List of images of the Cassini probe loaded [7] 39

3.8 Image selection [7] . 40

3.9 Route selection form for the dump [7] . 40

4.1 CISSCAL GUI [3, 44] . 47

4.2 Batch Mode dialog [3, 44] . 49

5.1 Planetocentric (θ) and planetographic (φ) coordinates [58] 52

5.2 Navigated image of Jupiter through MATLAB 57

5.3 Image projection of Jupiter . 59

5.4 Illumination angles [49] . 73

6.1 Navigated image of Jupiter through C solver 83

6.2 Illuminated area from real image . 84

6

List of Figures Martí Sierra Salvadó

6.3 Illuminated area from real image + Moon correction 85

6.4 Navigation error . 85

6.5 Navigation image corrected (Limits method) 86

6.6 Navigation image corrected (Centroid method) 87

6.7 Navigation error corrected (Limits method) 87

6.8 Navigation error corrected (Centroid method) 88

6.9 Image projection (Limits method) . 88

6.10 Image projection (Centroid method) . 89

6.11 Image projection (PLIA) . 89

6.12 Image projection (PLIA) . 90

6.13 Image projection reducing illumination value (Limits method) 90

6.14 Image projection reducing illumination value (Centroid method) 91

6.15 Navigated image of entire Jupiter . 92

6.16 Image projection (Limits method) . 92

6.17 Image projection (Centroid method) . 93

6.18 Image projection (PLIA) . 93

6.19 Image projection (PLIA) . 94

6.20 Image projection in RGB format . 95

7

List of Algorithms

1 Vicarread.m algorithm . 41
2 Vicarlabels.m algorithm . 42
3 Convert_images_all_folders.m algorithm 43
4 Convert_images_one_folder.m algorithm 43
5 Navega_cassini_pA.m algorithm Part 1 54
6 Navega_cassini_pA.m algorithm Part 2 55
7 initSPICEd.m algorithm . 57
8 Navega_cassini_pB.m algorithm Part 1 58
9 Navega_cassini_pB.m algorithm Part 2 59
10 Navega_cassini.c algorithm Part 1 . 63
11 Navega_cassini.c algorithm Part 2 . 64
12 Navega_cassini.c algorithm Part 3 . 65
13 set_home_kernels algorithm . 65
14 only_download algorithm . 66
15 home_images algorithm . 67
16 read_lbl algorithm . 67
17 read_param algorithm . 68
18 furnsh_d_all algorithm . 69
19 furnsh_d algorithm Part 1 . 69
20 furnsh_d algorithm Part 2 . 70
21 furnsh_d algorithm Part 3 . 71
22 furnsh_t algorithm . 71
23 read_utctime algorithm . 72
24 generappm algorithm . 72
25 generalonlat algorithm . 74
26 navegatots.py algorithm . 75
27 worksplit algorithm . 75
28 Navega_cassini_pB_C.m algorithm Part 1 76
29 Navega_cassini_pB_C.m algorithm Part 2 77
30 Navega_correction.m algorithm Part 1 78
31 Navega_correction.m algorithm Part 2 79

8

List of Algorithms Martí Sierra Salvadó

32 Navega_correction.m algorithm Part 3 80
33 Moon_correction.m algorithm Part 1 80
34 Moon_correction.m algorithm Part 2 81
35 Limits_correction.m algorithm . 81

9

Acronyms

ASCII American Standard Code for Information Interchange.

ASI Italian Space Agency.

CAPS Cassini Plasma Spectrometer.

CCD Charged-Coupled Device.

CDA Cosmic Dust Analyzer.

CICLOPS Cassini Imaging Central Laboratory for Operations.

CIRS Composite Infrared Spectrometer.

CISSCAL Cassini Imaging Science Subsystem Calibration.

CNMC National Commission of Markets and Competition.

CRS Cosmic Ray Subsystem.

EOL End of File Label.

ESA European Space Agency.

FOV Field of View.

GCP Grupo de Ciencias Planetarias.

IDL Interactive Data Language.

INMS Ion and Neutral Mass Spectrometer.

IRIS Infrared Interferometer Spectrometer and Radiometer.

ISS Imaging Science Subsystem.

10

Acronyms Martí Sierra Salvadó

JPL Jet Propulsion Laboratory.

LECP Low-Energy Charged Particles.

LEMPA Low-Energy Magnetospheric Particle Analyser.

LEPT Low-Energy Particle Telescope.

MAG Magnetometer.

MIMI Magnetospheric Imaging Instrument.

MPI Message Passing Interface.

NAC Narrow-Angle Camera.

NASA National Aeronautics and Space Administration.

PDS Planetary Data System.

PLIA Planetary Laboratory for Image Analysis.

PLS Plasma Science.

PPM Portable Pixmap.

PPS Photopolarimeter Subsystem.

PRA Planetary Radio Astronomy.

PVOL Planetary Virtual Observatory and Laboratory.

PWS Plasma Wave Subsystem.

RADAR Radio Detection and Ranging.

RGB Red, Green, Blue.

RPWS Radio and Plasma Wave Spectrometer.

RSP Remote Sensing Palette.

RSS Radio Science Subsystem.

SCLK Spacecraft Clock Count.

TCS Telecommunications Subsystem.

11

Acronyms Martí Sierra Salvadó

UPV/EHU University of the Basque Country.

UVIS Ultraviolet Imaging Spectrograph.

UVS Ultraviolet Spectrometer.

VIMS Visual and Infrared Mapping Spectrometer.

WAC Wide-Angle Camera.

12

Part I

General introduction

13

Chapter 1

Overview

In planetary science, it is important to dispose of images of planets, processed so that the
latitude and longitude of each pixel are known. Notably, for the study of the atmosphere of
giant planets, such as Jupiter and Saturn, it is wanted to know the evolution of storms from
images taken by interplanetary probes, like Cassini and Voyager, and also from terrestrial
or space telescopes like the Hubble, and be able to compare them with simulations [2].

The process from the RAW image obtained by the spacecraft cameras to the images
projected to a longitude/latitude plane involves several complex computations. Research
groups specialized in planetary science have developed tools to do so. Among them, the
Planetary Laboratory for Image Analysis (PLIA), developed at the Grupo de Ciencias
Planetarias (GCP) in the University of the Basque Country (UPV/EHU) [46, 9].

The main goal of this TFG has been to understand the basic algorithms involved in a code
such as PLIA and to implement them in MATLAB, using the library SPICE developed by
the Jet Propulsion Laboratory (JPL).

The results obtained with the software developed have been compared with those obtained
using PLIA.

1.1 Aim

In this way, the aim of this study is to process and navigate images of giant planets taken
during exploration missions of the outer solar system, carried out by the main interplane-
tary spacecrafts, such as the Cassini-Huygens and the Voyager programs, with the purpose
of carrying out a subsequent image analysis using planetary image navigation software.

14

1.2. Scope Martí Sierra Salvadó

1.2 Scope

Throughout this project, it is intended to understand the main algorithms implemented
by PLIA and to program them in MATLAB, using the NASA’s JPL SPICE library, an
information system developed to assist NASA scientists in planning and interpreting sci-
entific observations from space-borne instruments, and to assist NASA engineers involved
in modeling, planning and executing activities needed to conduct planetary exploration
missions.

Moreover, some functions of specialized software (PVOL, CISSCAL) for the selection,
calibration and navigation of the images have also been implemented as MATLAB codes.

The design and implementation of graphic user interfaces for the algorithms implemented
has been considered out of the scope of the TFG.

1.3 Requirements

Beyond this project, the added purpose of this study is that the developed solvers can be
used by professionals working in the analysis of planetary images. Therefore, the source
code must be clear and understandable, it must use good programming techniques and
must be accompanied by the relevant documentation.

In order to create a proper solver, first prototype programs should be developed through
MATLAB and final solvers should be written in C and PYTHON to ensure that the results
are computed and delivered as fast as possible.

1.4 Justification

As already mentioned, in the realization of simulations it is very important to have real
data with which to compare the results. As an example, in Figure 1.1 a numerical result
of the simulation of [2] can be seen.

The analysis and navigation of real planetary images is of great importance when it
comes to obtaining relevant data and real images of storms on planets, such as the red
spot of Jupiter, so that the simulations performed on the behavior of these storms can be
contrasted with the reality.

Furthermore, the existing specialized software for the processing and navigation of inter-
planetary images are written in programming languages not frequently used. Thus, this
study intends to carry out an alternative software that allows to easily read, convert and
display this type of files, for a better use and later analysis, and to program and build im-

15

1.5. Collaboration Martí Sierra Salvadó

Figure 1.1: Frame of the simulation [2]

age processing and navigation solvers with languages understandable by anyone, through
the use of more optimal, sophisticated and easier-to-use software.

1.5 Collaboration

This program is based on a NASA’s information system called SPICE, which is capable
of interpreting science information from space-borne instruments. Although the SPICE
system is an important part in the development of this study, this document does not
provide a detailed explanation of its operation, that can be found in the TFG of Roger
Sala Marco.

16

Part II

Planetary Images Navigation

17

Chapter 2

Introduction to the spacecrafts

In this chapter, a brief introduction to the main spacecrafts launched on missions to the
outer solar system is made. As said before, the spacecrafts on which this study is focused
are the Cassini-Huygens and the Voyager programs.

Thus, for each spacecraft, an overview of the mission carried out is made, as well as a
description of the its science sensors, focusing on the imaging systems.

2.1 Introduction to Cassini-Huygens

In this section, an overview of the mission carried out by the Cassini probe is made, as
well as a description of its science sensors.

2.1.1 Mission Overview

Cassini-Huygens was a collaboration between the National Aeronautics and Space Admin-
istration (NASA), the European Space Agency (ESA) and the Italian Space Agency (ASI).
It was an unmanned space mission whose objective was to study the planet Saturn and its
systems, including its rings and natural satellites. The spacecraft consisted of two main
elements: the Cassini probe and the Huygens descent module [54, 39].

The launch took place on October 15, 1997, with a Titan IVB/Centaur rocket of two
stages, and after a seven-year voyage that included four gravity-assist maneuvers, one of
them in Jupiter (December 2000), Cassini entered the orbit of Saturn on July 1, 2004. It
then began a four-year mission that included more than 70 orbits around the ringed planet
and its moons. Cassini completed its initial four-year mission in June 2008 [40].

After the primary mission, NASA announced a two-year extension, through September

18

2.1. Introduction to Cassini-Huygens Martí Sierra Salvadó

2010, named the Cassini Equinox Mission, coinciding with the Saturn’s equinox, which
occurred in August 2009, when the sun shone directly on the equator and then began to
illuminate the northern hemisphere and the rings’ northern face. Another extension was
announced on September 28, 2010, through the Saturnian summer solstice in May 2017,
named the Cassini Solstice Mission[54, 40] .

For the final destination of the Cassini probe, it was decided to send it to an orbit of very
high eccentricity in which, after performing 20 orbits, made its final approach to the giant
planet, burning in its atmosphere on September 15, 2017. This last phase was named by
NASA as Grand Finale [54, 40, 39].

2.1.2 Cassini Orbiter Instruments

Optical Remote Sensing: These instruments studied Saturn and its rings and moons
in the electromagnetic spectrum [37].

• CIRS – Composite Infrared Spectrometer: Captured infrared light and split
the light into its component wavelengths (or colours). Analysing an object’s light, it
can be determined its temperature, but also its composition [26].

• ISS – Imaging Science Subsystem: Consisting of a wide-angle and a narrow-
angle digital camera, they were sensitive to visible wavelengths, and each of them
had several filters to select the wavelengths to be sampled in each image [28].

• UVIS – Ultraviolet Imaging Spectrograph: Created pictures by observing ul-
traviolet light. Some gases become visible in ultraviolet lengths, so the spectrograph
could determine the composition of those gases by splitting the light into its compo-
nent wavelengths (similar to CIRS) [35].

• VIMS – Visual and Infrared Mapping Spectrometer: Collected both visible
and infrared wavelengths. Scientists could learn about the composition of materials
from which the light is reflected or emitted [36].

Fields, Particles and Waves: These instruments studied the dust, plasma and fields
around Saturn [37].

• CAPS – Cassini Plasma Spectrometer: An in-situ instrument, detecting and
analysing plasma in the vicinity of the spacecraft. The data measured was used
to learn about the composition, density, flow, velocity and temperature of ions and
electrons in Saturn’s magnetosphere, helping to determine the sources of plasma [25].

19

2.1. Introduction to Cassini-Huygens Martí Sierra Salvadó

• CDA – Cosmic Dust Analyzer: Detected dust particles, determining their charge,
speed, size and in which direction they were going. When those particles smash into
the instrument’s detectors, it can be determined their composition [27].

• INMS – Ion and Neutral Mass Spectrometer: Determined the chemical, el-
emental and isotopic composition of the gaseous and volatile components of the
neutral particles and the low energy ions in the atmosphere and ionosphere of Titan,
magnetosphere of Saturn, and the ring environment [29].

• MAG – Magnetometer: Recorded the direction and strength of magnetic fields
around the spacecraft [30].

• MIMI – Magnetospheric Imaging Instrument: Had three sensors that worked
together to detect energetic charged particles in the excited gas, or plasma, around
Saturn, and atoms without an electric charge (neutral atoms) [31].

• RPWS – Radio and Plasma Wave Spectrometer: Detected radio and plasma
waves, as well as the plasma medium through which Cassini passed, using a suite of
antennas and sensors [33].

Microwave Remote Sensing: These instruments used radio waves to map atmospheres,
determine the mass of moons, collect data of ring particle size, and unveil the surface of
Titan [37].

• RADAR – Radio Detection and Ranging: Sent radio waves at surfaces and,
by recording slight differences in the signal’s arrival time and wavelength back at the
spacecraft, the instrument created pictures of the landscapes upon which it reflected
[32].

• RSS – Radio Science Subsystem: Sent radio signals through, near or even bounc-
ing off of objects in the Saturn system, helping scientists learn about the objects with
which the radio waves interact [34].

SPICE – Navigation and Pointing information: Information system to assist NASA
scientists in planning and interpreting scientific observations from space-borne instruments,
and to assist NASA engineers involved in modelling, planning and executing activities
needed to conduct planetary exploration missions [51].

20

2.2. Introduction to Voyager Martí Sierra Salvadó

Figure 2.1: Cassini Spacecraft Diagram [38]

2.2 Introduction to Voyager

In this section, an overview of the mission carried out by the Voyager program is made, as
well as a description of its science sensors.

2.2.1 Mission Overview

The Voyager program is an American scientific program that employs two robotic probes,
Voyager 1 and Voyager 2, to study the outer Solar System. The twin probes were launched
by NASA in separate months in the summer of 1977 to take advantage of a favourable
alignment of Jupiter, Saturn, Uranus and Neptune [57].

As originally designed, the Voyagers were to conduct closeup studies of Jupiter and
Saturn, the rings of Saturn, and the larger moons of the two planets. To accomplish their
two-planet mission, the spacecraft were built to last five years. But as the mission went on,

21

2.2. Introduction to Voyager Martí Sierra Salvadó

and with the successful achievement of all its objectives, the additional flybys of the two
outermost giant planets, Uranus and Neptune, proved possible, so their two-planet mission
became four and their five-year lifetimes stretched to 12 and is now near thirty-seven years
[11].

2.2.2 Voyager Instruments

The prime mission science payload consisted of 10 instruments (11 investigations including
radio science) [22]. Target body or remote sensing instruments included:

• ISS – Imaging Science Subsystem: Utilized a two-camera system (narrow-
angle/wide-angle) to provide imagery of Jupiter, Saturn and other objects along
the trajectory [13, 57].

• PPS – Photopolarimeter Subsystem: Utilized a 0.2 m telescope fitted with
filters and polarization analysers, covering eight wavelengths in the region between
235 and 750 nm, to gather information on surface texture and composition of Jupiter,
Saturn, Uranus and Neptune and information on atmospheric scattering properties
and density for these planets [17, 57].

• IRIS – Infrared Interferometer Spectrometer and Radiometer: Acting as
three separate instruments, it can determine the temperature of a body or substance,
the composition of an atmosphere or a surface and the amount of sunlight reflected
by a body [14, 57].

• UVS – Ultraviolet Spectrometer: Sensitive to ultraviolet light (wavelength range
of 40 to 180 nm), it was designed to measure the scattering properties of the lower
planetary atmospheres and to look for certain elements and compounds whose emis-
sion colour in the ultraviolet light spectrum is known [20, 57].

Fields, waves and particles sensors included:

• PLS – Plasma Science: Measured the low energy ions and electrons of the plasma,
determining its flow speed and direction, its density and its temperature [19, 57].

• LECP – Low-Energy Charged Particles: Utilized two subsystems, the Low-
Energy Particle Telescope (LEPT) and the Low-Energy Magnetospheric Particle
Analyser (LEMPA), to determine the concentration of particles (particles of higher
energy than PLS) in the solar wind and measure their velocity and direction [15, 57].

• CRS – Cosmic Ray Subsystem: Looking only for very energetic particles in
plasma, it provides information on the energy content, origin, accelerations process,
life history, and dynamics of cosmic rays in the galaxy [12, 57].

22

2.2. Introduction to Voyager Martí Sierra Salvadó

• MAG – Magnetometer: Designed to measure and represent the planetary mag-
netic fields of Jupiter, Saturn, Uranus and Neptune, investigate the interactions
between the solar wind and the magnetospheres of these planets, as well as the
interactions of the satellites of these planets with their magnetosphere/solar wind
environments [16, 57].

• PWS – PlasmaWave Subsystem: Provided measurements of the electron-density
profiles at Jupiter and Saturn, as well as information on local wave-particle interac-
tion, covering a frequency range of 10 Hz to 56 kHz [18, 57].

• PRA – Planetary Radio Astronomy: Utilized a sweep-frequency radio receiver
to study the radio-emission signals from Jupiter and Saturn, covering two frequency
bands, from 20.4 to 1300 kHz and from 2.3 to 40.5 MHz [18, 57].

The Radio Science Subsystem (RSS) investigation utilized the on-board and ground
elements of the Telecommunications Subsystem (TCS) to determine the physical properties
of planets and satellites (masses, gravity fields, densities. . .) and the amount and size
distribution of material in the Saturn rings and the ring dimensions [57].

Figure 2.2: Voyager Spacecraft Diagram [21]

23

2.3. Imaging Science Subsystem Martí Sierra Salvadó

Unlike Cassini, when Voyager program began its missions, there was no SPICE system
yet. Therefore, the existing SPICE files referring to the Voyager program missions were
made later, once this system was implemented. This has resulted in a series of problems
that have prevented the navigation of the images of said planetary program.

2.3 Imaging Science Subsystem

In this chapter, an overview of the Imaging Science Subsystem is presented. Since both
Cassini and Voyager present a similar imaging tool, and finally the images of the Voyager
have not been able to be navigated, only the Cassini ISS is explained.

The Cassini ISS consists of two fixed focal length telescopes, a Narrow-Angle Camera
(NAC) and a Wide-Angle Camera (WAC). The NAC is 95 cm long and 40 cm x 33 cm
wide, and has a focal length of 2002.70 +/- 0.07 mm in the clear filter, while the WAC is
55 cm long and 35 cm x 33 cm wide, and has a focal length of 200.77 +/- 0.02 mm in the
clear filter [41, 42, 28, 3].

The two cameras together have a mass of 57.83 kg, and sit on the Remote Sensing Palette
(RSP), fixed to the body of the Cassini Orbiter, between the Visual and Infrared Mapping
Spectrometer (VIMS) and the Composite Infrared Spectrometer (CIRS), and above the
Ultraviolet Imaging Spectrograph (UVIS) [3].

The NAC is an f/10.5 reflecting telescope with an image scale of 6 µrad/pixel, a 0.35 deg
x 0.35 deg Field of View (FOV), and a spectral range from 200 nm - 1100 nm. Its filter
wheel subassembly carries 24 spectral filters: 12 filters on each of two wheels [41, 28, 3].

The optical train of the WAC is an f/3.5 refractor with a 60 microrad/pixel image scale,
a 3.5 deg x 3.5 deg FOV, and a spectral range from 380 nm - 1050 nm. Its filter wheel
subassembly carries 18 spectral filters: 9 filters on each of two wheels [42, 28, 3].

Due to its long focal length, which makes it particularly susceptible to temperature
effects, the NAC is thermally isolated from the RSP in order to minimize the effects of
RSP thermal transients on the NAC image quality. The WAC has less stringent image
quality requirements, and so its temperature is maintained by the RSP to which it is
attached [41, 42, 3].

24

Chapter 3

ISS Image Reading

In this chapter, the different processes that can be used for reading and displaying the
VICAR files, as well as the particularities of the latter, are explained.

So, this chapter is divided into 3 sections:

• PDS ISS Data Archive: Summary of how the ISS Data is organized.

• ISS VICAR Image Format: Description of the ISS VICAR files.

• Reading Software: Presentation of the Planetary Virtual Observatory and Labo-
ratory (PVOL) and the developed MATLAB code, Vicarread.m.

3.1 PDS ISS Data Archive

The Planetary Data System (PDS) is a long-term archive of digital data products returned
from NASA’s planetary missions and research programs. It is a federation of "nodes"
supporting research into specific disciplines, and the "Imaging Node" of the PDS is the
Cartography and Imaging Sciences Discipline Node, which stores NASA’s primary digital
image collections from past, present and future planetary missions [45, 43].

For each archive volume containing the images there is a VOLUME_ID. The following
naming conventions are followed [23]:

VOLUME_ID = <spacecraft><instrument>_<number>

Where:

spacecraft = 2-character spacecraft identifier, e.g. CO ("Cassini Orbiter").
instrument = instrument identifier, e.g. ISS.

25

3.2. ISS Vicar Image Format Martí Sierra Salvadó

number = 4-digit value, where the first value is 1 for Jupiter, 2 for Saturn, 3 for carto-
graphic maps, and 0 for calibration, and where the next 3 values is the sequential numbering
of the volume starting with 001 [3].

Each volume of these contains a series of folders and files, the most important of which is
the one called "DATA", which contains all data files, ordered by time or spacecraft clock
count (SCLK) [23, 3].

The images contained in the "DATA" folder are of VICAR format and are named by the
spacecraft clock count. The following naming conventions are followed [23, 3]:

Image file = <camera><SCLK time>_<version>.IMG

Where:

camera = 1-character instrument identifier (N=NAC, W=WAC).
SCLK time = 10-digit value of spacecraft clock at time of shutter close.
version = version number of the file.

So, for example, an image file named W1832898283_4.IMG would indicate the fourth
version of a Wide Angle Camera image taken at SCLK time 1832898283. Each image
file has its corresponding detached label file which follows the same naming convention as
above except with ".LBL" as the filename extension. Example: W1832898283_4.LBL.

3.2 ISS Vicar Image Format

VICAR is a set of computer programs and procedures designed to facilitate the acquisition,
processing and handling of digital image data. The VICAR image processing language was
defined by the NASA’s Jet Propulsion Laboratory (JPL) and implemented in 1966 to
process image data produced by the planetary exploration program [10].

The following is an overview of the basic structure of VICAR files, as well as a description
of their content. Any VICAR files written out must include all the system label items
defined below.

3.2.1 Overview

The basic structure of a VICAR file is shown below.

26

3.2. ISS Vicar Image Format Martí Sierra Salvadó

Figure 3.1: Basic structure of a VICAR file [6]

A VICAR file consists of two major parts: the labels, which describe what the file is, and
the image area, which contains the actual image. The labels are potentially split into two
parts, one at the beginning of the file, and one at the end. Normally, only the labels at the
front of the file are present. However, if the End of File Label (EOL) keyword in the system
label (described below) is equal to 1, then the EOL labels are present. This happens if the
labels expand beyond the space allocated for them [6].

The VICAR file is treated as a series of fixed-length records, of size RECSIZE (see below).
The image area always starts at a record boundary, so there may be unused space at the
end of the label, before the actual image data starts [6].

3.2.2 Labels

The label consists of a sequence of "keyword=value" pairs that describe the image, and
is made up entirely of ASCII characters. Each keyword-value pair is separated by spaces.
The keyword is a text keyword (string), up to 32 characters in length, that identifies the
label item, and the value is the information portion of the label item; may be of type string,
integer, real, or double, and may be multi-valued. Spaces may appear on either side of the
equals character (=), but are not normally present [6].

The first keyword is always LBLSIZE, which specifies the size of the label area in bytes.
LBLSIZE is always a multiple of RECSIZE, even if the labels don’t fill up the record. If the
labels end before LBLSIZE is reached (the normal case), then a 0 byte terminates the label
string. If the labels are exactly LBLSIZE bytes long, a null terminator is not necessarily

27

3.2. ISS Vicar Image Format Martí Sierra Salvadó

present. The size of the label string is determined by the occurrence of the first 0 byte, or
LBLSIZE bytes, whichever is smaller [6].

As said before, if the system keyword EOL has the value 1, then EOL labels exist at the
end of the image area (see above). The EOL labels, if present, start with another LBLSIZE
keyword, which is treated exactly the same as the main LBLSIZE keyword. Note that the
main LBLSIZE does not include the size of the EOL labels [6].

The label is divided into three logical parts: System labels, Property labels, and History
labels, in that order [6]. These parts are described later in this section.

Label values

The label values may be of three types: integer, real, or string [6].

• Integer: A sequence of digits (0-9), with an optional sign (+/−). There must be no
embedded blanks in the integer, including between the sign and the number [6].

• Real: A sequence of digits (0-9) including a decimal point (.), an optional sign (+/−),
and an optional exponent (one of the letters EeDd followed by a base-10 exponent in
integer format). The letter E is greatly preferred for indicating the exponent. There
must be no embedded blanks in the real number. The number must contain either
a decimal point or an exponent, or else it is considered an integer. The number of
significant digits is variable, so the number may be read as either single or double
precision [6].

• String: A string is a sequence of ASCII characters enclosed in single quotes (’). A
single quote may be included in the string by doubling it (e.g. ’can”t’) [6].

A keyword may have more than one value by enclosing the values in parentheses and
separating the values with commas. The collection of values is treated like an array for
that keyword. All values in a multivalued label item must be of the same type. Spaces
may exist around the parentheses or the commas, but are not normally present [6].

Examples:

LBLSIZE=1024; FORMAT=’BYTE’; LATITUDE=45.3;
COORDS=(5.7,-3.2E+2); COMMENTS=(’Wow, this is a comment!’, ’This can”t be real’);
EXTRA_SPACES = (1, 2,3, 4 , -5); ...

System labels

System labels describe the format of the image and how to access it. They are always the
first labels in the file. The system labels extend from the beginning of the file until the

28

3.2. ISS Vicar Image Format Martí Sierra Salvadó

first PROPERTY or TASK keyword, or until the end of the label (if there are no property
or history labels) [6].

Some system label items are mandatory, while others are optional. The mandatory ones
are mentioned below. However, when writing a new file, all system label items should
normally be included [6].

The currently defined system label items are listed below. They generally appear in the
order listed, but the items order is no guaranteed, except that LBLSIZE must always be
first. So, any program that reads the label must be able to handle any order of label items
[6].

• LBLSIZE, integer, mandatory: The size of the label storage area, in bytes. It is
always the first thing in the file. This label appears twice if EOL labels are present;
once at the beginning of the file and once at the beginning of the EOL labels. The
size specified applies only to the section (main or EOL) that the LBLSIZE item is in
[6].

• FORMAT, string, mandatory: The data type of the pixels in the image. Valid values
are [6]:

◦ BYTE: one byte unsigned integer, range 0 to 255.

◦ HALF: two byte signed integer, range −32768 to 32767.

◦ FULL: four byte signed integer, range −2147483648 to 2147483647.

◦ REAL: single-precision floating point number.

◦ DOUB: double-precision floating point number.

◦ COMP: complex number, composed of two REALs in the order (real, imagi-
nary).

The following values are obsolete, but may appear in some older images:

◦ WORD: same as HALF.

◦ LONG: same as FULL.

◦ COMPLEX: same as COMP.

• TYPE, string: The kind of file this is. TYPE defaults to IMAGE (standard VICAR
image file) [6].

• BUFSIZ, integer, mandatory: This label item is obsolete, but it still must be present
for historical reasons. In new files, it is set equal to RECSIZE.

• DIM, integer: The number of dimensions in the file, which is always equal to 3. Some
older images may have a DIM of 2, in which case some labels are present [6].

29

3.2. ISS Vicar Image Format Martí Sierra Salvadó

• EOL, integer: A flag indicating the existence of EOL labels. If EOL=1, the labels
are present. If EOL=0 (or is absent), no EOL labels are present, and the entire label
string is at the front of the file [6].

• RECSIZE, integer, mandatory: The size in bytes of each record in the VICAR file.
It may be calculated with the formula NBB+N1*pixel_size (see Figure 3.3) [6].

• ORG, string: The organization of the file. While N1 is always the fastest-varying
dimension, and N3 is the slowest, the terms Samples, Lines, and Bands may be
interpreted in different ways. ORG specifies which interpretation to use, and defaults
to BSQ. The valid values are [6]:

◦ BSQ: Band SeQuential. The file is a sequence of bands. Each band is made up
of lines, which are in turn made up of samples. So, N1=Samples, N2=Lines,
and N3=Bands. This is the most common case.

◦ BIL: Band Interleaved by Line. The file is a sequence of lines. Each line is
made up of bands, which are in turn made up of samples. So, N1=Samples,
N2=Bands, and N3=Lines.

◦ BIP: Band Interleaved by Pixel. The file is a sequence of lines. Each line is
made up of samples, which are in turn made up of bands. So, N1=Bands,
N2=Samples, and N3=Lines.

The three organizations are depicted graphically below.

Figure 3.2: VICAR file organization types [6]

• NL, integer, mandatory: The number of lines in the image (same as N2 for BSQ or
N3 for BIL and BIP) [6].

30

3.2. ISS Vicar Image Format Martí Sierra Salvadó

• NS, integer, mandatory: The number of samples in the image (same as N1 for BSQ
and BIL or N2 for BIP) [6].

• NB, integer, mandatory: The number of bands in the image (same as N3 for BSQ,
N2 for BIL, or N1 for BIP) [6].

• N1, integer: The size (in pixels) of the first (fastest-varying) dimension. If not present,
it defaults to NS or NB, as appropriate [6].

• N2, integer: The size of the second dimension. If not present, it defaults to NL, NS,
or NB, as appropriate [6].

• N3, integer: The size of the third (slowest-varying) dimension. If not present, it
defaults to NL or NB, as appropriate [6].

• N4, integer: This item was to have been used for four-dimensional files, but this has
not yet been implemented. It defaults to 0 [6].

• NBB, integer: The number of bytes of binary prefix before each record. Each and
every record consists of the pixels of the fastest-varying dimension, optionally pre-
ceded by a binary prefix. The size (in bytes, not pixels) of this binary prefix is given
by NBB, which defaults to 0 [6].

• NLB, integer: The number of lines (records) of binary header at the top of the file.
The optional binary header occurs once in the file, between the main labels and the
image data. The size of the binary header in bytes is given by NLB*RECSIZE, since
NLB is a line count. NLB defaults to 0. Note that the binary header also includes
space reserved for the binary prefix (NBB), since NBB goes into RECSIZE. The
binary header and the binary prefix together make up the binary label (see Section
3.2.3) [6].

• HOST, string: The type of computer used to generate the image. It is used only for
documentation. HOST defaults to VAX-VMS [6].

• INTFMT, string: The format used to represent integer pixels (BYTE, HALF, and
FULL) in the file. If INTFMT is not present, it defaults to LOW. Note that INTFMT
should be present even if the pixels are a floating-point type. The valid values are
[6]:

◦ HIGH: High byte first, big endian.

◦ LOW: Low byte first, little endian.

For INTFMT=HIGH, the high-order byte is first for HALF and FULL, while for
INTFMT=LOW the low-order byte is first and all the bytes are swapped (i.e. 4321
instead of 1234). The representations for BYTE are identical in HIGH and LOW.

31

3.2. ISS Vicar Image Format Martí Sierra Salvadó

• REALFMT, string: The format used to represent floating-point pixels (REAL, DOUB,
and COMP) in the file. If REALFMT is not present, it defaults to VAX. Note that
REALFMT should be present even if the pixels are an integral type. The valid values
are [6]:

◦ IEEE: IEEE 754 format, with the high-order bytes (containing the exponent)
first.

◦ RIEEE: Reverse IEEE format. Just like IEEE, except the bytes are reversed,
with the exponent last.

◦ VAX: VAX format. Single precision is in VAX F format, double precision is in
VAX D format.

• BHOST, string: The type of computer used to generate the binary label. It can take
the same values with the same meanings as HOST. The reason BHOST is separate
is that the data in the binary label may be in a different host representation than
the pixels [6].

• BINTFMT, string: The format used to represent integers in the binary label. It can
take the same values with the same meanings as INTFMT. The reason BINTFMT is
separate is that the data in the binary label may be in a different host representation
than the pixels [6].

• BREALFMT, string: The format used to represent floating-point data in the binary
label. It can take the same values with the same meanings as REALFMT. The reason
BREALFMT is separate is that the data in the binary label may be in a different
host representation than the pixels [6].

• BLTYPE, string: The type of the binary label. This is not a data type, but is a
string identifying the kind of binary label in the file. It is used for documentation
[6].

Example:

The system label for a typical file is shown below. Although carriage returns have been
inserted for clarity, none actually exist in the file.

LBLSIZE=1024 FORMAT=’BYTE’ TYPE=’IMAGE’ BUFSIZ=20480 DIM=3 EOL=0
RECSIZE=512 ORG=’BSQ’ NL=512 NS=512 NB=1 N1=512 N2=512 N3=1 N4=0
NBB=0 NLB=0 HOST=’VAX-VMS’ INTFMT=’LOW’ REALFMT=’VAX’
BHOST=’VAX-VMS’ BINTFMT=’LOW’ BREALFMT=’VAX’ BLTYPE=”

32

3.2. ISS Vicar Image Format Martí Sierra Salvadó

Property Labels

Property labels describe properties of the image in the image domain. They contain other
current information about the file, such as the map projection used, a lookup table, or
latitude/longitude information for the image [6].

Property labels are divided into named sets called properties. Each property is made up
of zero or more label items that contain the actual property information. The name space
for each property is independent, so the same label item keyword may be used in more
than one property. Only one property of a given name may exist [6].

Property labels are located between the system and the history labels. They start with
the first occurrence of the keyword PROPERTY, and end with the first occurrence of the
keyword TASK or the end of the labels (if there are no history labels). It is quite possible
that no property labels exist in a file, in which case there would be no PROPERTY
keywords [6].

Each property begins with a PROPERTY keyword, which has a string value. This value
is the name of the property set. The PROPERTY keyword is followed by the label items
that make up the property. The set continues until the next PROPERTY keyword, or the
end of the property labels [6].

Label items within a property must not use the keywords DAT_TIM, LBLSIZE, PROP-
ERTY, TASK, or USER. A simple display program could ignore the property labels com-
pletely [6].

Example:

Below is an example of what a property label with two properties might look like. Also,
carriage returns have been inserted for clarity, and do not exist in the label.

PROPERTY=’MAP’ PROJECTION=’mercator’ LAT=34.2 LON=177.221
PROPERTY=’LUT’ RED=(1,2,3,4,5,6,7,8) GREEN=(8,7,6,5,4,3,2,1)
BLUE=(1,1,1,3,5,7,8,8)

History Labels

History labels describe the processing history of the image. Each processing step has an
entry (called a TASK) in the history label. Each task can optionally have label items
further describing the task (such as parameters to the program). They should contain only
historical information; however, they often contain current state information that should
be in a property label, since property labels are new and not yet well utilized [6].

History labels are divided into sets called tasks. Each task is made up of three mandatory
label items, and zero or more label items that contain additional history information. The

33

3.2. ISS Vicar Image Format Martí Sierra Salvadó

name space for each task is independent, so the same label item keyword may be used in
more than one task. Each task has a task name associated with it, which is the name of
the program that created that part of the history label. However, the task names are not
unique. Several tasks may have the same name. Each occurrence of the task name is called
an instance, so the task name and the instance combine to uniquely identify the task set
[6].

History labels are located after the system and the property labels. They start with the
first occurrence of the keyword TASK, and end with the end of the labels. It is possible
that no history labels exist in a file, in which case there would be no TASK keywords [6].

Each history task begins with a TASK keyword, which has a string value. This value is
the name of the task. The instance is derived by counting the number of previous TASK
keywords with the same task name; it is not stored explicitly in the label. The TASK
keyword is followed by a USER and a DAT_TIM keyword [6]:

• USER: String specifying the username of the account that ran the program.

• DAT_TIM: String specifying the date the program was run, in the format Www
Mmm dd hh:mm:ss yyyy, where Www is the three-letter day of the week, Mmm is
the three-letter month, and the rest are digits.

Following the USER and DAT_TIM keywords are the optional label items with further
history information. The task set continues until the next TASK keyword, or until the end
of the labels.

Label items within a task must not use the keywords DAT_TIM, LBLSIZE, PROPERTY,
TASK, or USER. A simple display program could ignore the history labels completely [6].

Example:

Below is an example of a typical history label with several tasks in it. Although carriage
returns have been inserted for clarity, none actually exist in the file.

TASK=’GEN’ USER=’RGD059’ DAT_TIM=’Thu Sep 24 17:31:50 1992’ IVAL=0.0
SINC=1.0 LINC=1.0 BINC=1.0 MODULO=0.0 TASK=’COPY’ USER=’RGD059’
DAT_TIM=’Thu Sep 24 17:31:54 1992’ TASK=’LABEL’ USER=’RGD059’
DAT_TIM=’Thu Sep 24 17:32:54 1992’ TASK=’F2’ USER=’RGD059’
DAT_TIM=’Thu Sep 24 17:33:07 1992’ FUNCTION=’in1+10’ TASK=’STRETCH’
USER=’RGD059’ DAT_TIM=’Thu Sep 24 17:33:55 1992’ PARMS=’AUTO-STRETCH:
0 to 0 and 138 to 255’

34

3.3. ISS Image Reading Software Martí Sierra Salvadó

3.2.3 Image area

Following the labels (or between the label parts if there are EOL labels) is the image area.
The structure and content of the image area are described in this section [6].

The image area is made up of records RECSIZE in length. Each record contains one line
of data (for BSQ), i.e. one set of N1 pixels, plus the binary prefix, if any. If NBB=0, the
binary prefix does not exist. A set of N2 records comprises a band (for BSQ), and a set of
N3 bands makes up the image. The image is optionally preceded by NLB records of binary
header. If NLB=0, the binary header does not exist [6].

The structure of the image area is shown below.

Figure 3.3: VICAR file image area [6]

Binary labels are the least well-defined part of the VICAR file format. Binary labels
consist of two parts: binary headers, which occur once at the top of the file, and binary
prefixes, which occur before every image record. For most purposes, especially for simple
display programs, binary labels can be ignored. Most of the time, they are not even present
[6].

3.3 ISS Image Reading Software

In this section, first the existing software to view and select Cassini images is presented,
called Planetary Virtual Observatory and Laboratory (PVOL), and then the developed

35

3.3. ISS Image Reading Software Martí Sierra Salvadó

MATLAB program is presented, called Vicarread.m, which allows reading and displaying
the images.

3.3.1 Planetary Virtual Observatory and Laboratory (PVOL)

Introduction

PVOL stands for Planetary Virtual Observatory and Laboratory and is a searchable
database of ground-based observations of solar system planets. It is an image management
system, so images in a certain collection can be added/edited/deleted/searched/filtered
[47, 48].

It is a very useful tool, since most of the software are focused on the navigation of images,
as is the case of PLIA, explained in Section 5.1, and not so much in the management actions
of these images, since it is not easy to manage collections with thousands of files, such as
the one used in this project (see Section 3.1).

The PVOL system is based on two elements that can work independently: a WEB system
(PVOLweb) and a Windows application (PVOL++). Throughout this study, only the
PVOL++ application is used, since all the databases and images are already downloaded
[1].

Thus, the PVOL++ browser facilitates the selection and storage of the desired images,
serving at the same time as a viewer of said images, which are difficult to visualize through
the programs included in a conventional computer, due to its format (VICAR).

Next, the requirements for the installation and use of the PVOL++ application and the
necessary files for the selection and visualization of the images are specified, and the basic
order of operations for the selection and storage process of the images is explained step by
step.

Set Up the Environment

For the installation of PVOL++, the only requirement is that the computer on which
PVOL++ is going to run has Windows as the operating system [1].

In addition, PVOL is a database developed at the Grupo de Ciencias Planetarias (GCP)
in the University of the Basque country (UPV/EHU) [47], so some contact with this asso-
ciation is needed in order to obtain the PVOL++ browser.

Regarding this study, the tutor Enrique García Melendo participated in the development
of said browser, so there have been no problems in obtaining it.

36

3.3. ISS Image Reading Software Martí Sierra Salvadó

PVOL++ User Manual

Below is a brief description of the main actions to be performed in the PVOL++ browser
in order to load the images in the system and view, select and store them in the specified
destination folder.

• Load list of Cassini images (local database): The loading process of the Cassini
database is already indicated in the software, as "default configuration". The actions
to be carried out can be summarized in the following [7]:

◦ Request the local database load: It is done by selecting "Open local database"
in the "File" menu.

Figure 3.4: "File" Menu [7]

◦ If the default configuration was not used, the program would ask the user to
indicate the place where the configuration and database files are located.

Figure 3.5: File slection form [7]

37

3.3. ISS Image Reading Software Martí Sierra Salvadó

◦ Set the search parameters: It is done by filling out the form that is presented
to the user.

Figure 3.6: Filter options form [7]

As it can be seen in Figure 3.6, the form presents the following filter options [7]:

− Target: Target body of the images, e.g. Jupiter.
− Volume: Volume of images to be displayed, e.g. COISS_1001.
− Date: The images can be filtered according to the specified date range.
− Camera: The images can be filtered according to the camera with which

they were taken, e.g. NAC.

38

3.3. ISS Image Reading Software Martí Sierra Salvadó

− Filters: The images taken usually present two different types of optical
filters, so the images can be filtered according to the filters with which they
were taken.

In the process of image filtering, it must be taken into account that not all
the objectives of the images are present in all the volumes, so empty lists may
appear [7]. Once the search parameters are set, the following result is obtained
is:

Figure 3.7: List of images of the Cassini probe loaded [7]

At this point, if the user is working with an indicated database, a message may
appear indicating that the image has not been found, instead of the image of
the selected planet, as seen in Figure 3.7. It can be for several reasons [7]:

− Perhaps the corresponding volume of images (COISS_1001 in Figure 3.6)
is not inserted in the equipment.

− Perhaps the base search path for images is not established. Select the "Set
image base path" option in the "File" menu and enter the path to the
corresponding directory.

• The selection of determined images is done using the buttons with the "+" and "−"
symbols in the toolbar, or through the "Add selected item" and "Remove selected
item" options in the "MyList" menú. The selected images are marked with a red dot
in the list [7].

39

3.3. ISS Image Reading Software Martí Sierra Salvadó

Figure 3.8: Image selection [7]

If the list of images is saved in a text file (with the option "Save to file" in the
"MyList" menu), the points turn green [7].

If the user wants to dump all the selected images to a certain directory of the user’s
filesystem, it must be requested using the "Get" button in the toolbar or with the
option "Get files!" from the "MyList" menu. A form appears requesting the path of
the directory in which the user wants to save the files, as presented below [7]:

Figure 3.9: Route selection form for the dump [7]

Once the route is specified, the program copies all the image files to the destination
directory, as well as the associated "Label" or navigation files. In addition, a file of

40

3.3. ISS Image Reading Software Martí Sierra Salvadó

type ’.XML’ is created, which contains the labels associated with the selected image
so that it can be opened using the PLIA software [7].

3.3.2 Vicarread.m

Alternatively to the PVOL++ browser, a MATLAB code has been developed in order to
read and display any VICAR image, as well as to save the information stored in them. So,
the pseudocode of the algorithm is as follows:

Vicarread.m algorithm
Input data: image name (path of the file may be needed);
vicar ← Structure with the labels of the image file. Call Vicarlabels.m function;
Read the image file using the fopen function;
Seek for the position of the first image pixel using the fseek function;
num_records ← Number of records = Number of rows of the image;
n ← Depends on the image format;
switch vicar.FORMAT do

case ’BYTE’
n ← 1 (one byte unsigned-integer);

case ’HALF’
n ← 2 (two byte signed-integer);

case ’REAL’
n ← 3 (single-precision floating point);

end switch
endianness ← Depends on the endianness of the image;
switch vicar.INTFMT do

case ’HIGH’
endianness ← ’b’ (big-endian);

case ’LOW’
endianness ← ’l’ (little-endian);

end switch
for i ← 1:num_records do

First reads the binary prefix of the record (or row), if needed;
Switch case n: reads the image record and saves pixels data using the fread function;
pixels ← Array keeping the data of all the records;

end for
pixels ← Switch case n: converts pixels data into displayable data;
Close the image file using the fclose function;
return pixels, vicar ;

As presented in Section 3.2, the VICAR files consist of two major parts: the labels and

41

3.3. ISS Image Reading Software Martí Sierra Salvadó

the image area. So, in order to know where the image area starts and read it properly,
is also important to read the labels that the file contains, from which relevant parameters
can be obtained, such as the dimensions of the image, in what format the image is, among
others.

This task is carried out by the function called Vicarlabels.m, which can be seen in the
diagram above. So, the pseudocode of the algorithm is as follows:

Vicarlabels.m algorithm
Input data: image name (path of the file may be needed);
Read the image file using the fopen function;
Get the labels of the file as a single string using the fgetl function;
l ← String containing the labels of the file;
Split each label using the strsplit function;
s ← Cell array containing the labels;
metadata_dict ← Structure that will be filled with the labels;
for i ← 1:length(s) do

Each label consists of a "tag=value" pair. To fill the metadata_dict structure, the
tag-value pair must be divided into two single strings, using the strsplit function;
C ← Cell array containing the pair tag-value;
tag ← C{1}; value ← C{2};
metadata_dict ← Assign value to structure field using the setfield function;
Loop until tag=’TASK’ (History labels are irrelevant for the purpose of the code);

end for
Close the image file using the fclose function;
return metadata_dict ;

Unlike the PVOL++ browser, which has its own image viewer, to be able to choose the
images that are interesting among all the available ones, these have to be converted to a
format displayable by the basic programs of any computer.

Therefore, once the Vicarread.m function has been developed, a small code has been
created which reads all the VICAR files of a data volume and stores them in the specified
format. This code consists of two functions, called Convert_images_all_folders.m and
Convert_images_one_folder.m, respectively. Next, the pseudocode of the algorithm of
each of them is shown:

42

3.3. ISS Image Reading Software Martí Sierra Salvadó

Convert_images_all_folders.m algorithm

Input data: path of the folders with the images and format to which the images will
be converted;
List the files and folders in the current folder using the dir function;
files ← Structure with the list of files and folders;
For each folder in the files structure, call Convert_images_one_folder.m function;

Convert_images_one_folder.m algorithm

Input data: folder with images to be converted and format to which the images will
be converted;
List the VICAR files (.IMG extension) in the current folder using the dir function;
files ← Structure with the list of VICAR files;
For each file in the files structure, call Vicarread.m function to read it and save it in the
specified format using the imwrite function;

Once all the available images have been converted, they can be displayed without prob-
lems and choose the ones that are most interesting. When all the chosen images are already
taken, they are calibrated for later navigation.

As it is presented in the next chapter, the calibration of the images is carried out by
means of a function called "Batch Mode" available in the CISSCAL software, which allows
to calibrate a large number of images at the same time.

Thus, all the images could have been calibrated before choosing the ones of most inter-
est. However, the calibration process is not as fast as just converting them, so it is only
important to calibrate the necessary images.

43

Chapter 4

ISS Image Calibration: CISSCAL

4.1 Introduction

CISSCAL is the Cassini Imaging Science Subsystem Calibration (CISSCAL) software and
it was developed by the Cassini Imaging Central Laboratory for Operations (CICLOPS).
It performs standard CCD calibration steps such as bias and dark subtraction and flatfield
correction, as well as ISS-specific calibrations such as bitweight correction and removal of
2-Hz noise. CISSCAL only reads and writes images in VICAR format [3, 4, 44].

Many of the calibration options included in said software are difficult to implement and
would involve excessive effort for the purpose marked in this study, so, unlike the software
for reading and navigating images, in which alternative programs have been developed to
those already existing, the calibration process has been carried out using CISSCAL.

Thus, in this chapter, the calibration process is explained in detail and the CISSCAL
software is examined minutely.

4.2 Setting Up the Environment

CISSCAL is written in the Interactive Data Language (IDL), and thus requires IDL (version
5.5 or later) to be installed on the computer on which CISSCAL is going to be run, and
its executable placed in the user’s PATH [3, 44]. Throughout this project, the user uses
version 6.1 of IDL to run version 3.6 of CISSCAL.

Once IDL has been installed, the first step is to set the preferences of the system, indi-
cating the main directories and paths to look for. It is done by selecting "Preferences" in
the "File" menu. Among the tabs that appear, only two of them must be modified [3, 44]:

44

4.3. Starting CISSCAL Martí Sierra Salvadó

• Startup: Set the "IDL Main directory" and the "Working Directory" with the corre-
sponding paths.

• Path: Set the main directories in which to search for files.

Finally, the user needs only to edit the cisscal.pro IDL file to define the CISSCAL-specific
environment variables: CisscalDir, CalibrationBaseDir, and ImageBaseDir. Assuming a
Windows environment, that the user has installed CISSCAL in the home directory (e.g.
C:/) in a subdirectory named "cisscal3.6", and that the calibration support directory
"calib" has been downloaded, the following lines should be filled in the cisscal.pro IDL
file as follows [3, 44]:

• CisscalDir = ‘C:/cisscal3.6/’

• CalibrationBaseDir = ‘C:/calib/’

• ImageBaseDir = ‘C:/images/’

Specifically, CisscalDir specifies the location of the CISSCAL software files, Calibra-
tionBaseDir specifies the location of the calibration support directories, and ImageBaseDir
is the default directory where CISSCAL looks for images to be calibrated [3, 44].

4.3 Starting CISSCAL

CISSCAL is launched by typing "@cisscal" at the IDL prompt, or "idl cisscal" from the
terminal prompt. Doing so, the main graphics widget is launched [3, 44].

The CISSCAL menu bar contains several pull-down menus. The menu buttons are labeled
"File", "Image", "Tools", "Help", "Log Options" and "Batch Mode". Below the menu
bar is a text window which logs to the GUI any messages generated by CISSCAL. Various
logging options can be adjusted by the user from the "Log Options" menu item, as discussed
below [3, 44].

To the right of the log window is a list of calibration options to be set by the user. These
options are executed in the order listed, and can be toggled on and off using the buttons
in the "On/Off" column. The calibration options are [3, 44]:

• LUT conversion: A reverse-lookup table is applied to the image to convert the pixel
values from an 8-bit range (0 to 255) to a 12-bit range (0 to 4096). This option only
applies to images with a DATA_CONVERSION_TYPE of "TABLE".

• Bitweight correction: Corrects for uneven bit-weighting. It is not applied to LOSSY-
compressed or TABLE-encoded images.

45

4.3. Starting CISSCAL Martí Sierra Salvadó

• Subtract bias: The "bias" is the zero-exposure DN level of the CCD chip.

• Remove 2-Hz noise: Cassini ISS images suffer from a particularly bothersome type
of coherent noise that results in a horizontal banding pattern across the image. This
noise is introduced during image readout, and has been found to have two peaks in
its power spectrum near 2 Hz.

• Subtract dark: Remove the dark current and the residual bulk image (RBI) effect.

• A-B pixel pairs: Remove the bright/dark pixel pair artifacts created by the anti-
blooming mode, only produced when anti-blooming mode is ON.

• Linearize: Corrects for non-linearity of the CCD response.

• Flatfield: Dustring removal and flatfield removal.

• Convert DN to flux: Multiplies image by appropriate gain to yield electrons, divides
by exposure time, divides by optics area and solid angle, and divides by the sys-
tem transmission integrated over wavelength for the given filter combination (called
"efficiency").

• Correction factors: Filter-specific correction factors to force the observation and the-
ory to match.

• Geometric correction: Performs a 2-D distortion transformation on the image array,
to account for the geometric distortion introduced by the optical system.

With the exception of the geometric correction, the default value for each of these options
is "ON" [3, 44]. The default options are explained in Section 4.4.

To the immediate left of the calibration option names is another column of buttons
which toggles the "Option Parameters" field for that option. These parameters appear
in the lower right of the GUI. Some calibration options does not have any user-definable
parameters, while others have many, and can be controlled quite specifically (see Figure
4.1) [3, 44].

When an image is read into CISSCAL, another field pops up at the bottom of the GUI
which gives the keyword values pulled out of the VICAR label. This table is not editable,
and is for information purposes only [3, 44].

The general order of operations in CISSCAL is as follows [3, 44]:

1. Read in an image file by clicking on the "Open" button in the "File" menu.

2. Select the desired calibration options.

46

4.4. Default Options File Martí Sierra Salvadó

3. Select the desired parameters for each calibration option. With the "Save calibration
options file" and the "Load calibration options file" buttons in the "File" menu, the
current calibration options can be saved and a previously-saved calibration options
file can be loaded, respectively.

4. Go to "Calibrate Image" under the "Image" menu to execute desired calibration
steps in the order listed.

5. Save output to a real-format VICAR image file by clicking the "Save Image" button
in the "File" menu.

This is the general order of operations for a single image file, but the procedure to be
followed for the calibration of a set of images is shown in Section 4.5.

Figure 4.1: CISSCAL GUI [3, 44]

4.4 Default Options File

The CISSCAL default calibration options are specified in the cisscal_default_options.txt
file included with the CISSCAL distribution. This file is user-editable, though care should
be taken not to corrupt the formatting [3, 44].

47

4.5. CISSCAL User Manual Martí Sierra Salvadó

The default options file consists of a list of 23 keywords and their values, separated by a
colon. Unlike the first 22 keywords, which are calibration option, the 23rd is the default
output filename suffix, which replaces the input filename suffix when the output VICAR
file is written. This is initially set to ’.IMG.cal’ [3, 44].

4.5 CISSCAL User Manual

This project intends to use CISSCAL with the objective of calibrating a large number
of images at the same time, so the user needs only to know how the "Batch Mode" op-
tion works. In this mode the "Open" button is not used at all, and images are read in
sequentially and individually.

In batch mode, the user selects the calibration options and option parameters he or she
desires, as usual, but then clicks on the "Calibrate Batch. . . " button in the "Batch Mode"
menu item instead of "Calibrate Image." Doing so, a separate dialog is brought up, from
which the user sets the following batch options (see Figure 4.2) [3, 44]:

• Input Directory: Directory containing images to be calibrated.

• Input Filter/File List: See description below.

• Output Directory: Where calibrated images are written.

• Output Filename Extension: File suffix to replace that of the input image filename
(‘.IMG.cal’ set in the default options file).

• Dark Subtraction Options: Allows user to specify a list of dark files corresponding
to each image (only used instead of the interpolation dark model). In this project,
the "Interpolation model" option is always used.

If the "Input Filter" toggle is selected, the user can enter a regular expression to designate
which files in the directory are to be calibrated. The default is *.IMG, or all image files.
Another example would be N* or W*, i.e. all NACs or WACs [3, 44].

Alternatively, the user can specify use of a file list. This is just an ASCII text file
containing a single-columned list of the names of images to be processed. If this file is
located in the Input Directory, then full image path names are not necessary.

This last option is not used because the input filename suffix of all the images to be
calibrated is ‘.IMG’, so the "Input Filter" option is always used [3, 44].

In addition, in the batch mode the images are saved automatically in the indicated
Output Directory, so the "Save image" button in the "Image" menu is not used. Likewise,

48

4.5. CISSCAL User Manual Martí Sierra Salvadó

the images are saved in VICAR format, but this output VICAR file is not identical to the
input file. The primary differences are [3, 44]:

• Output image is in real (floating-point) format instead of integer.

• Output image lacks binary header (including overclocked and extended pixels).

• VICAR label has PROCESSING HISTORY TEXT keyword appended, with record
of calibration tasks performed.

• VICAR label has CALIBRATION STAGE keyword appended, which allows CISS-
CAL to automatically resume calibration of a partially-calibrated image at the same
stage that it left off.

In addition to the calibrated VICAR file, an additional file of type ’.SAV’ is created, which
contains the data of the calibrated image so that it can be opened using the PLIA software,
presented below [3, 44].

Figure 4.2: Batch Mode dialog [3, 44]

49

Chapter 5

Image Navigation

5.1 Planetary Laboratory for Image Analysis (PLIA)

PLIA is the Planetary Laboratory for Image Analysis software and it was developed at
the Grupo de Ciencias Planetarias (GCP) in the University of the Basque country (UP-
V/EHU). It is an IDL based software, like CISSCAL, for planetary image processing and
navigation [9, 8].

Up to now, this software has been used to analyze images obtained by spacecrafts such
as Cassini or Galileo, so in this project it serves as validation of the results obtained with
the own developed software.

5.1.1 Setting Up the Environment

Similar to CISSCAL, PLIA is written in the Interactive Data Language (IDL), and thus
requires IDL to be installed on the computer on which PLIA is going to be run, and its
executable placed in the user’s PATH [7]. Throughout this project, the user uses version
7.1.1 of IDL to run version 3.3 of PLIA.

Once IDL has been installed, the first step is to set the preferences of the system, indi-
cating the main directories and paths to look for. It is done by selecting "Preferences" in
the "Window" menu. Among the tabs that appear, only the "Route" option in the "IDL"
tab must be modified. The path of the PLIA executable must be added [7].

The user also needs to edit two files: the plia.ini configuration file and the plia.pro IDL
file [9].

• The plia.ini file is readed by plia.pro and configures basic settings for PLIA. It must
be placed in the PLIA directory [7]. In this file, one parameter must be modified:

50

5.1. Planetary Laboratory for Image Analysis (PLIA) Martí Sierra Salvadó

◦ Image_Directory : Directory where to look for the images to navigate. Example:
’C:/images/’.

During the navigation with PLIA, the kernel (see Section 5.2) files are not used, so
the parameters referring to them can be left by default.

• The plia.pro file is the PLIA executable and some parameters of its code must be
modified [7]:

◦ Installation_path: Path of the PLIA excutable. Example: ’C:/PLIA/’

◦ Directory : Path of the PLIA excutable. Example: ’C:/PLIA/’

5.1.2 PLIA User Manual

Once PLIA is launched, the main graphics widget appears. The PLIA menu bar contains
several pull-down menus, but as in this project this software has been used as validation,
only the following buttons have been used: "File" and "Analysis".

• The "File" menu presents the basic function to open and save files. This main
functions are [7]:

◦ "Open" button: To open the desired image file, depending on the planetary
mission (Cassini, Venus Express, Mars Express, among others). For the PLIA
validation, only calibrated Cassini images have been tested, so they must be
previously calibrated by CISSCAL (’.SAV’ file, see Section 4.5)1.

◦ "Write Image" button: To save the processed images in the specified format
(png, jpg, fits, among others).

◦ "IDL Sessions" button: To save the actual PLIA session or read and continue
with a previous one.

• The "Analysis" menu presents the main navigation options. The most relevant ones
are [7]:

◦ "Measure Image" button: To calculate the range of longitudes and latitudes
associated with the planet or satellite of the image and create a grid with that
range that surrounds the object in the image.
It is worth mentioning the importance of the coordinates with which the longi-
tudes and latitudes of a planet or satellite are measured. Thus, the two most
relevant coordinate systems are:

1Also a ’.XML’ file is needed, so the calibrated image must be previously selected by the PVOL++
browser (see Section 3.3.1).

51

5.1. Planetary Laboratory for Image Analysis (PLIA) Martí Sierra Salvadó

− Planeotcentric (or Geocentric) coordinates : The latitude is referred to the
equatorial plane and the polar axis, and the longitude is measured eastwards
(i.e. positive in the sense of rotation) from the prime meridian [50].

− Planeotgraphic (or Geodetic) coordinates : The latitude is defined as the
angle between equatorial plane and a vector through the point of interest
that is normal to the biaxial ellipsoid reference surface of the body. The
longitude of the sub-observation point increases with time, i.e. to the west
for prograde rotators and to the east for retrograde rotators [50].

Figure 5.1: Planetocentric (θ) and planetographic (φ) coordinates [58]

The PLIA software computes longitudes on the so-called System III [8], that
is, planetocentric coordinates, with a range of longitudes and latitudes of [0,
2π] and [-π/2, π/2] respectively, but with the longitudes measured westwards
(i.e. positive in the opposite sense of rotation). So, the developed software
must be adapted to work with this system as well, in order to ensure a properly
validation.

◦ "Edit navigation" button: To manually correct the position of the grid in the
image.

◦ "Grid options" button: To specify whether or not the grid is shown, or to define
the precision of such grid.

◦ "Geometrical projections" button: Once the image has been measured, this
option allows to create different geometrical projections of a specified range of
longitudes and latitudes. In this study, only the planisphere projection has been
tested.

52

5.2. Developed Software Martí Sierra Salvadó

5.2 Developed Software

In this section, the developed software for the navigation of planetary images is presented.
First, an initial prototype in MATLAB has been developed, and then the same has been
built in C, presenting improvements and with the possibility of starting up in parallel.

As mentioned at the beginning of the study, these developed solvers are based on the
NASA’s SPICE library, and the required information for the navigation of the planetary
images is contained in the so-called kernel files2.

Among the different types of existing kernels, the most important for the realization of
this project is the so-called "Camera matrix" kernel (C-Kernel or CK), because a CK
file holds orientation data for a spacecraft or a moving structure on the spacecraft [51].
Hence, without this kernel, it would be impossible to know the orientation of the camera of
the spacecraft at all times, so it would be impossible to perform the navigation of images
presented in this study.

This aspect has made it impossible to navigate images taken during the Voyager program,
since the primary Voyager mission occurred in advance of the existence of SPICE, so the
existing CK files are reconstructions made years later, with varying degrees of success.

Continuing with the developed software, before going into more detail, there are a se-
ries of parameters that are mandatory for the navigation of any planetary image. These
parameters are:

• Image time: Date when the image to navigate was taken.

• Target body : Name of the target body seen on the image, e.g. ’JUPITER’.

• Body-fixed frame: Name of a body-fixed reference frame centered on the target body,
e.g. ’IAU-JUPITER’.

• Observing body : Name of the observing body, e.g. ’CASSINI’.

• Instrument : Instrument name of the observing body with which the image was taken.

• Aberration: Aberration corrections to be applied.

• Computation method : Computation method to be used, e.g. ’ELLIPSOID’.

Both programs are focused on the navigation of planetary images taken by the Cassini
probe. Nevertheless, more space missions have been tested with more or less success, such
as Voyager.

2It is recommended to read the project carried out for the author’s colleague Roger Sala Marco in order
to expand the knowledge about the SPICE library and about the kernel files.

53

5.2. Developed Software Martí Sierra Salvadó

5.2.1 MATLAB Prototype

This first MATLAB prototype is divided into two parts:

• Part A: MATLAB code called Navega_cassini_pA.m which computes the range of
longitudes and latitudes of all the pixels of a given image, as well as the illumination
angles of each of them.

• Part B: MATLAB function called Navega_cassini_pB.m which displays a projection
image of a specified range of longitudes and latitudes contained in the navigated
image.

Part A

The part A of the MATLAB prototype is a set of MATLAB and SPICE functions, so
first, a pseudocode of the global algorithm is presented, and later the algorithms of each
MATLAB function are shown. In Appendix A.1, each SPICE function is described, and
the inputs and outputs involved are discussed.

Thus, the pseudocode of the global algorithm is as follows:

Navega_cassini_pA.m algorithm Part 1

Call the initSPICEd.m function to load all kernel files;

Call the Vicarread.m function to read the VICAR image and return the labels structure;
img ← Array with the values of the image pixels;
utctim ← Image time from the labels structure (string);

et ← Call the cspice_str2et function to convert the utctim into Ephemeris Time;

radii ← Call the cspice_bodvrd function to get the radii of the target body;

Call the cspice_gipool function to get the geometry parameters;
NPX/NPY ← Number of image samples(columns)/lines(rows);

code ← Call the cspice_bodn2c function to get the instrument ID code;

Call the cspice_getfov function to return the field-of-view (FOV) parameters;
bounds ← Set of vectors pointing to the corners of the instrument FOV;

img3(NPY,NPX,3) ← Original image in RGB format (3-flats double precision matrix,
where each of them corresponds to a colour channel: 1=Red, 2=Green, 3=Blue);

54

5.2. Developed Software Martí Sierra Salvadó

Navega_cassini_pA.m algorithm Part 2
S ← Structure with the data necessary for the image projection;
S.img ← img ;
S.lonmat ← Array keeping the longitudes of the image pixels;
S.latmat ← Array keeping the latitudes of the image pixels;
for i ← 1:NPX do

for j ← 1:NPY do
dvec ← Pointing vector emanating from the observer to the corresponding pixel
(see explanation later);

For each image pixel, call the cspice_sincpt function to determine if it belongs to
the target body;

found ← Logical indicating whether or not the pixel belongs to the target (if so,
found=1);

spoint ← 3-vector (body-fixed frame) defining the surface intercept point on the
target body, if exists;

if found = 1 then
Call the cspice_reclat function to convert the spoint vector to latitudinal
coordinates;
lat ← Planetocentric latitude measured in radians;
lon ← Planetocentric longitude measured in radians;
Longitude correction (see explanation later): lon ← −lon;
if lon < 0 then

lon ← lon+2π;
end if

Call the cspice_ilumin function to compute the illumination angles at spoint ;
img3(j,i,1) ← 1 (range [0,1]);
S.lonmat(j,i) ← lon;
S.latmat(j,i) ← lat ;

else
img3(j,i,3) ← 1 (range [0,1]);

end if
end for

end for
SDAT ← Table shortcut where the S structure is saved;
Unload the kernels and clean the kernel pool using the cspice_kclear function.

In order to compute the longitude and latitude of each pixel, a 3-vector defining the pointing
vector emanating from the observer to the pixel is needed, called dvec. As the vectors
pointing to the corner pixels are already set in the bounds parameter, the dvec vector can

55

5.2. Developed Software Martí Sierra Salvadó

be obtained as follows:

dvec =
[
c1(1) ∗ (1− lx(i)) + c2(1) ∗ lx(i), c1(2) ∗ (1− ly(j)) + c3(2) ∗ ly(j), 1

]
.

Where:

c1(1) = bounds(1,1) is the x-component of the vector pointing to the upper-left pixel
c2(1) = bounds(1,2) is the x-component of the vector pointing to the upper-right pixel
c1(2) = bounds(2,1) is the y-component of the vector pointing to the upper-left pixel
c3(2) = bounds(2,3) is the y-component of the vector pointing to the lower-right pixel
lx is an array from 0 to 1 with NPX increments
ly is an array from 0 to 1 with NPY increments

As said in the previous pseudocode, the longitudes and latitudes obtained through the
cspice_reclat function are planetocentric, measured eastwards, but the range of longitudes
is [−π, π], so they must be corrected in order to ensure the same coordinate system as in
the PLIA software.

To obtain increasing westwards longitudes instead of eastwards ones, the only thing that
must be done is to multiply all the longitudes by -1 (opposite longitudes); to obtain a range
of longitudes of [0, 2π], 2π must be added to the values in the range [-π,0].

Finally, in order to verify which pixels belong to the target body, the original image has
been generated in RGB format, modifying the values of each pixel according to whether or
not they belong to the target body, according to the cspice_sincpt function. Thus, if the
pixel belongs to the target body, its value changes to 1 in the first flat of the img3 matrix,
providing more red colour, but if not, its value changes to 1 in the third flat, providing
more blue colour.

The result is the original image with the pixels coloured red or blue according to whether
or not they belong to the target body. Below is a sample of the image obtained from
navigating a Jupiter image taken by the Cassini probe:

56

5.2. Developed Software Martí Sierra Salvadó

Figure 5.2: Navigated image of Jupiter through MATLAB

The navigated image seems to be correct, but may have some wrong pixels that must be
corrected. The correction process is explained in Section 5.2.2.

Next, the pseudocode of the algorithm of the initSPICEd.m function is presented3:

initSPICEd.m algorithm

Input data: METAKR ← Cell structure of two columns: the second column contains
the names of the kernels, and the first the URLs where to download them;

Specify the working paths:
HOMESPICE ← Path of the folder with the SPICE archives;
IMGFOLDER ← Path of the folder with the image to navigate;

for i ← 1:length(METAKR) do
if i = Odd number then

url ← METAKR{i};
continue (jump to the next i value);

end if
Check if the kernel is downloaded. If not, download the kernel from url using the
websave function;
Load the kernel using the cspice_furnsh function;

end for

3The algorithm of the Vicarread.m function has already been presented in Section 3.3.2

57

5.2. Developed Software Martí Sierra Salvadó

There is an additional MATLAB function called osi.m which exchanges the symbols ’\’
and ’/’ if needed.

Part B

As said before, this part B consists on obtaining an image shred of the original one by
specifying the corresponding range of longitudes and latitudes.

In order to avoid running the image navigation every time a image projection is wanted,
the code has been divided in the parts A and B already mentioned, so that with part B
all the desired projections can be made without running part A again. Therefore, as seen
in its pseudocode, part A saves a table shortcut (.mat file) with the structure containing
all the relevant information for the realization of the image projections.

Thus, the pseudocode of the algorithm is as follows:

Navega_cassini_pB.m algorithm Part 1

Load the SDAT.mat table shortcut using the load function;
Create an interpolating function (interpolant) using the scatteredInterpolant function;
Fimg ← scatteredInterpolant(S.lonmat(:), S.latmat(:), double(S.img(:))). The inter-
polant fits a surface of the form S.img(:) = Fimg(S.lonmat(:), S.latmat(:));
Specify the range of longitudes and latitudes:

llon ← Left limit longitude;
rlon ← Right limit longitude;
dlon ← Longitude increments;
ulat ← Upper limit latitude;
llat ← Lower limit latitude;
dlat ← Latitude increments;

if llon > rlon then
lon1 ← llon;
lon2 ← rlon;

else
lon1 ← rlon;
lon2 ← llon;

end if

if ulat > llat then
lat1 ← ulat ;
lat2 ← llat ;

else
lat1 ← llat ;

58

5.2. Developed Software Martí Sierra Salvadó

Navega_cassini_pB.m algorithm Part 2
lat2 ← ulat ;

end if

lons ← lon1:dlon:lon2 ;
lats ← lat1:dlat:lat2 ;

Create 2-D grid coordinates using the meshgrid function;
[lonv, latv] ← meshgrid(lons, lats). Returns a 2-D grid coordinates based on the coordi-
nates contained in vectors lons and lats ;

Get the values of the image projection by evaluating the 2-D grid coordinates with the
Fimg interpolation function;
img2 ← Fimg(lonv, latv);

As established in part A of the MATLAB prototype, the longitudes decrease eastwards
and the latitudes southwards, so in an image projection the longitudes should decrease
rightwards and the latitudes downwards.

Thus, in the previous pseudocode, llon should be higher than rlon, and ulat should
be higher than llat. However, if for some reason it were the other way around, nothing
would happen because the highest latitude and longitude are assigned to lon1 and lat1,
respectively, so it is always true that lon1>lon2 and lat1>lat2.

Below is the image projection of the Great Red Spot of Jupiter shown in Figure 5.2:

Figure 5.3: Image projection of Jupiter

It should be mentioned that the scatteredInterpolant MATLAB function does not exist
in C language and that it is very difficult to implement manually. Therefore, only part A

59

5.2. Developed Software Martí Sierra Salvadó

has been translated into C language, while part B has been modified to be able to read
the files generated by the C solver.

5.2.2 C Solver

The developed MATLAB prototype only allows one image to be navigated at a time. Even
so, the execution time is too high, so it has been decided to translate it into C language
to improve it and get the results as fast as possible. Thus, this C solver corresponds to
the improved version of the part A of the MATLAB prototype, so the algorithms are quite
similar. The most notable improvements are:

• A set of images can be navigated at the same time, not only one.

• The solver loads only the necessary kernels.

• The solver can be executed in parallel using a Python routine (see later).

As in the algorithm of part A of the MATLAB code, in this section a first global algorithm
of the solver is presented, and later the functions that have appeared are discussed. Fur-
thermore, in Appendix A.2, each SPICE function is described, although most are already
explained in Appendix A.1.

In this way, this solver is divided into two C files:

• Navega_cassini.c: Main code of the solver.

• kernel_d.c: Code with most functions. They are loaded as an own library called
kernel_d.h.

Thus, the global algorithm of the Navega_cassini.c code is presented first, and later the
rest of the functions that intervene.

Main code

This solver has been developed in an Ubuntu 18.04 environment, based on Linux, so the
C codes are compiled by the command window. Since the solver is divided into two codes,
both must be run at the same time, so an executable file called scompile has been created.
It contains the path of the SPICE archives, called HOMESPICE, and the command to
compile the solver, which is:

gcc Navega_cassini.c kernel_d.c -I $HOMESPICE/include $HOMESPICE/lib/*.a -lm

60

5.2. Developed Software Martí Sierra Salvadó

The command above generates a file called a.out with the compiled program, ready to be
executed. Its name can be changed, for example, to navega by adding the command -o
navega at the end of the previous command.

To make the scompile file executable, the following command is used: chmod +x scompile;
and to execute it: ./scompile. The scompile file must be executed from its destination
folder, where the C files must also be found.

Before focusing on the algorithms, there is a set of text files essential for the proper
functioning of the solver. These are:

• parameters.txt : File with the mandatory parameters presented at the beginning of
Section 5.2. 2-column file: the first column contains the label of the parameter, and
the second the corresponding data. The parameters must have the following labels,
in the specified order:

◦ obsrvr = e.g. ’CASSINI’

◦ instnm = e.g. ’CASSINI_ISS_NAC’

◦ target = e.g. ’JUPITER’

◦ fixref = e.g. ’IAU-JUPITER’

◦ method = e.g. ’ELLIPSOID’

◦ abcorr = e.g. ’NONE’

• lbl_images.txt : File with the names of the images to be navigated. They must be
ordered by date (same order as by name).

• genericker_cassini.txt : File with the URLs and names of all the generic kernels of
the Cassini missions4. 2-column file: the second column contains the names of the
kernels, and the first the web’s URLs where to download them.

• ck_cassini.txt : File with the URLs and names of all the CK kernels of the Cassini
missions. Same structure as genericker_cassini.txt file.

• spk_cassini.txt : File with the URLs and names of all the SPK kernels of the Cassini
missions. Same structure as genericker_cassini.txt file5.

These text files are recommended to be in the same destination folder as the scompile and
the C files.

Once the solver is compiled, the following command is used to execute it:
4Generic kernels are those that do not depend on time (FK, IK, LSK, PCK and SCLK). For a deeper

knowledge about kernel files, it is recommended to read the project made by Roger Sala Marco.
5The CK and SPK kernels are divided into two separate files because they require different functions

to read the information they contain.

61

5.2. Developed Software Martí Sierra Salvadó

./navega mode ./kernels ./Images/ lbl_images.txt parameters.txt genericker_cassini.txt
ck_cassini.txt spk_cassini.txt

Where:

./navega is the compiled solver.
mode is the execution mode. The developed solver presents two execution modes: 0, in

which the program downloads all the kernels, and 1, in which, the program navigates the
images.
./kernels is the path of the kernels folder.
./Images is the path of the folder with the images.
lbl_images.txt is the file with the name of the images to navigate.
parameters.txt is the file with the input parameters.
genericker_cassini.txt is the file with the URLs and names of the generic kernels.
ck_cassini.txt is the file with the URLs and names of the CK kernels.
spk_cassini.txt is the file with the URLs and names of the SPK kernels.

Once the previous command is executed, the program receives the following variables:

argc: Integer that contains the number of arguments entered in the command.
argv : Double pointer to an array of characters that contains the parameters passed in

the same order in which they were written.

In this case, argc contains the value 9, and argv[0] contains ./navega, argv[1] contains
mode, this way until argv[8]6, which contains spk_cassini.txt.

There are also a list of libraries that must be included on the code for its proper functioning:

#include <stdio.h> −→ Required for performing input and output declarations.
#include <stdlib.h> −→ Required for performing general functions.
#include <unistd.h> −→ Provides access to the POSIX operating system API.
#include <string.h> −→ Required for manipulating arrays of characters.
#include "SpiceUsr.h" −→ Performs SPICE user interface declarations.
#include "kernel_d.h" −→ Own library with most of the developed functions.

Next, the pseudocode of the global algorithm of the Navega_cassini.c code is shown:
6Note that, unlike MATLAB, in which the indexes start at 1, in C language they begin at 0, so argv is

an array with 9 positions, with indexes from 0 to 8.

62

5.2. Developed Software Martí Sierra Salvadó

Navega_cassini.c algorithm Part 1

if argc 6= 9 then
An error message is printed on screen, indicating the correct command to execute
the solver. The current execution is interrupted;

end if
int mode ← argv[1]. The execution mode, read it as character, is assigned to the variable
mode. First it is converted to an integer using the atoi C routine;
if mode < 0 || mode > 0 then

An error message is printed on screen and the current execution is interrupted. The
mode value must be 0 or 1;

end if
Check if the kernels folder exists using the set_home_kernels function. If not, create
it;
if mode == 0 then

Download all the kernels using the only_download function;
else

Check if the Images folder exists using the home_images function. If not, interrupt
the execution;

char **images ← Double pointer to an array of characters that contains the names
of the images to navigate. The allocation is done using the read_lbl function, which
also returns the number of images to navigate (length);

char **param ← Double pointer to an array of characters that contains the manda-
tory input parameters. The allocation is done using the read_param function;

ets[length] ← Initialize array of Ephemeris Times;
Load the generic kernels (required for the str2et_c function below) using the
furnsh_d_all function (cas=1, see furnsh_d_all algorithm later);
for i ← 0:length−1 do

char *utctim ← Pointer to an array of characters that contains the dates when
the images were taken. The allocation is done using the read_utctime function;
Convert each date in *utctim to Ephemeris Time using the str2et_c function;
ets[i] ← Ephemeris Times of the corresponding image;

end for
Load the CK kernels using the furnsh_d_all function (cas=2).
Load the SPK kernels using the furnsh_d_all function (cas=3).
radii ← Call the bodvrd_c function to get the radii of the target body;
code ← Call the bodn2c_c function to get the instrument ID code;
Call the gipool_c function to get the geometry parameters;
NX/NY ← Number of image samples(columns)/lines(rows);

63

5.2. Developed Software Martí Sierra Salvadó

Navega_cassini.c algorithm Part 2

Call the getfov_c function to return the field-of-view (FOV) parameters;
bounds ← Set of vectors pointing to the corners of the instrument FOV;
for k ← 0:length−1 do

Navigation process for each image:
m ← Pointer to an array of integers that allocates 0s and 1s depending on whether
the corresponding pixel belongs to the target body or not;
lonmat ← Pointer to an array of doubles that allocates the longitude of each
pixel;
latmat ← Pointer to an array of doubles that allocates the latitude of each pixel;
solar ← Pointer to an array of doubles that allocates the solar angle of each pixel;
for j ← 0:NY−1 do

for i ← 0:NX−1 do
dvec ← Pointing vector emanating from the observer to the corresponding
pixel;
For each image pixel, call the sincpt_c function to determine if it belongs
to the target body;
found ← Logical indicating whether or not the pixel belongs to the target
(if so, found=SPICETRUE);
spoint ← 3-vector (body-fixed frame) defining the surface intercept point
on the target body, if exists;
if found then

m ← 1;
Call the reclat_c function to convert the spoint vector to latitudinal
coordinates;
lat ← Planetocentric latitude measured in radians;
lon ← Planetocentric longitude measured in radians;
Convert lat and lon from radians to degrees using the convrt_c func-
tion;
Longitude correction: lon ← −lon;
if lon < 0 then

lon ← lon+360;
end if
lonmat ← lon
latmat ← lat ;
Call the ilumin_c function to compute the illumination angles at
spoint ;
incdnc ← Solar angle in radians;
Convert incdnc from radians to degrees using the convrt_c function;
solar ← incdnc;

64

5.2. Developed Software Martí Sierra Salvadó

Navega_cassini.c algorithm Part 3
else

m ← 0;
lonmat ← −1000;
latmat ← −1000;
solar ← −1000;

end if
end for

end for
Generate a Portable PixMap (.ppm) red-blue image using the generappm function;
Generate a text file with the longitudes and latitudes of the image pixels using
the generalonlat function;

end for
Unload the kernels and clean the kernel pool using the kclear_c function.

end if

Relevant functions

As said before, most of the functions seen in the previous algorithm are in the kernel_d.c
file, but not all, since some are declared in the Navega_cassini.c file.

The pseudocodes of the algorithms of the functions seen above are presented below:

set_home_kernels algorithm

Input data: argv[2] ← Path of the kernels folder;
homekernels ← argv[2] ;
Check if the folder exists using the exists_c function;
if exists_c(homekernels) == SPICEFALSE then

Call the system to create a folder with the name in homekernels using the system
function. The command is mkdir -p homekernels ;
end if
return homekernels (available for all the functions below);

65

5.2. Developed Software Martí Sierra Salvadó

only_download algorithm

Input data: The text files with the URLs and names of the kernels (argv[6], argv[7]
and argv[8]);

kfile ← 3-row array containing the kernels text files:
kfile[0] ← argv[6] ;
kfile[1] ← argv[7] ;
kfile[2] ← argv[8] ;

for i = 0:2 do
Open kfile[i] in reading mode (’r’) using the fopen function;
while true do

For each line of the file:
l ← Read the line using the fgets function;
Get the length of the line using the strlen function;
Check that is not a empty line:
if strlen(l) == 0 then

continue;
end if

Check for comments on the line:
for j = 0:strlen(l) do

if l[j] == ’#’ then
l[j] = ’/0’ (force the end of line);

end if
end for
Check that is not a empty line again (if the whole line was a comment, it has
been converted to a blank line);

Scan the line to get the URL and the name of the kernel :
wname ← URL of the kernel ;
kname ← Name of the kernel ;

fullkname ← Path of kname in the homekernels folder;
Check if kname exists in the homekernels folder using the exists_c function;
if exists_c(fullkname) == SPICEFALSE then

Call the system to download kname from wname using the system function.
The command is wget -P wname;

end if
end while
Close the file using the fclose function;

end for

66

5.2. Developed Software Martí Sierra Salvadó

home_images algorithm

Input data: argv[3] ← Path of the Images folder;
Check if the folder exists using the exists_c function;
if exists_c(argv[3]) == SPICEFALSE then

An error message is printed on screen and the current execution is interrupted;
end if

read_lbl algorithm

Input data: argv[4] ← Text file with the names of the images to navigate;
count ← 0 (initialize a counter);
**images ← Memory allocation using the malloc routine;
Open the file in reading mode (’r’) using the fopen function;
while true do

For each line of the file:
l ← Read the line using the fgets function;
Get the length of the line using the strlen function;
Check that is not a empty line:
if strlen(l) == 0 then

continue;
end if

Check for comments on the line:
for j = 0:strlen(l) do

if l[j] == ’#’ then
l[j] = ’/0’ (force the end of line);

end if
end for
Check that is not a empty line again (if the whole line was a comment, it has been
converted to a blank line);
Scan the line to get the name of corresponding image:

lbl ← Name of the image;

images[count] ← lbl ;
count++;

end while
length ← count (number of images to navigate);
Close the file using the fclose function;
return images, length;

67

5.2. Developed Software Martí Sierra Salvadó

read_param algorithm

Input data: argv[5] ← Text file with the mandatory input parameters;
count ← 0 (initialize a counter);
param_lbl ← Initialize array of parameters;
**param ← Memory allocation using the malloc routine;
p ← Array with the labels of the parameters, allocated in a specific order;
p ← {"obsrvr", "instnm", "target", "fixref", "method", "abcorr"};
Open the file in reading mode (’r’) using the fopen function;
while true do

For each line of the file:
l ← Read the line using the fgets function;
Get the length of the line using the strlen function;
Check that is not a empty line:
if strlen(l) == 0 then

continue;
end if

Check for comments on the line:
for j = 0:strlen(l) do

if l[j] == ’#’ then
l[j] = ’/0’ (force the end of line);

end if
end for
Check that is not a empty line again (if the whole line was a comment, it has been
converted to a blank line);

Scan the line to get the label and the value of the corresponding parameter:
param_lbl[count] ← Label of the parameter;
value ← Value of the parameter;

Compare param_lbl[count] and p[count] using the strcmp function;
if strcmp(param_lbl[count], p[count]) ! = 0 then

An error message is printed on screen and the current execution is interrupted;
end if
param[count] ← value;
count++;

end while
Close the file using the fclose function;
return param;

68

5.2. Developed Software Martí Sierra Salvadó

furnsh_d_all algorithm

Input data: Text file with the corresponding kernels to load (argv[6], argv[7] or argv[8]);
ets ← Array of Ephemeris Times;
length ← Number of images to navigate;
Function mode (cas=1, cas=2 or cas=3, respectively);

Open the file in reading mode (’r’) using the fopen function;
while true do

For each line of the file:
l ← Read the line using the fgets function;
Get the length of the line using the strlen function;
Check that is not a empty line:
if strlen(l) == 0 then

continue;
end if

Check for comments on the line:
for j = 0:strlen(l) do

if l[j] == ’#’ then
l[j] = ’/0’ (force the end of line);

end if
end for
Check that is not a empty line again (if the whole line was a comment, it has been
converted to a blank line);

Scan the line to get the URL and the name of the kernel :
wname ← URL of the kernel ;
kname ← Name of the kernel ;

Call the furnsh_d function to load kname;
end while
Close the file using the fclose function;

furnsh_d algorithm Part 1

Input data: kname ← Kernel to load;
ets ← Array of Ephemeris Times;
length ← Number of images to navigate;
cas ← Function mode;

Check that homekernels folder has been set. If not, an error message is printed on
screen, indicating that the set_home_kernels function must be called first. The current
execution is interrupted;
fullkname ← Path of kname in the homekernels folder;
Check if kname exists in the homekernels folder using the exists_c function;

69

5.2. Developed Software Martí Sierra Salvadó

furnsh_d algorithm Part 2

if exists_c(fullkname) == SPICEFALSE then
An error message is printed on screen, indicating that the download of all the kernels
is needed. The current execution is interrupted;

end if
ids ← Initialize cell array of ID codes;
cover ← Initialize cell array of coverage windows;
switch cas do

case 1
Load fullkname using the furnsh_c function;

case 2
Reinitialize ids array using the scard_c function;
ids ← Find the set of ID codes of all objects in fullkname using the ckobj_c function
(CK file);
Get the cardinality of ids using the card_c function;
for i = 0:card_c(ids) do

obj ← ids[i]
Reinitialize cover array using the scard_c function;
ids ← Find the coverage window in fullkname for obj using the ckcov_c func-
tion (CK file);
Call the furnsh_t function to check the coverage window and load fullkname
if needed. Also a parameter indicating if fullkname has been loaded (load) is
returned (if so, load=1);
if load == 1 then

break;
end if

end for
case 3

Reinitialize ids array using the scard_c function;
ids ← Find the set of ID codes of all objects in fullkname using the spkobj_c function
(SPK file);
Get the cardinality of ids using the card_c function;
for i = 0:card_c(ids) do

obj ← ids[i]
Reinitialize cover array using the scard_c function;
ids ← Find the coverage window in fullkname for obj using the spkcov_c
function (SPK file);
Call the furnsh_t function to check the coverage window and load fullkname
if needed. Also a parameter indicating if fullkname has been loaded (load) is
returned (if so, load=1);

70

5.2. Developed Software Martí Sierra Salvadó

furnsh_d algorithm Part 3
if load == 1 then

break;
end if

end for
default

An error message is printed on screen, indicating that the function mode is not valid.
The current execution is interrupted;

end switch

furnsh_t algorithm

Input data: cover ← Coverage window;
kname ← Number of images to navigate;
ets ← Array of Ephemeris Times;
length ← Number of images to navigate;

niv ← Get the cardinality of cover using the wncard_c function;
for j = 0:niv do

Get the left and right endpoints of the j interval in cover window;
et1 ← Left endpoint of the j interval in cover ;
et2 ← Right endpoint of the j interval in cover ;
for i = 0:length−1 do

Check if ets[i] is between the endpoints of the j interval in cover ;
if ets[i] >= et1 && ets[i] <= et2 then

fullkname ← Path of kname in the homekernels folder;
Load fullkname using the furnsh_c function;
load ← 1;
break;

end if
end for
if load ← 1 then

break;
end if

end for
return load ;

71

5.2. Developed Software Martí Sierra Salvadó

read_utctime algorithm

Input data: argv[3] ← Path of the folder with the images to navigate;
images[i] ← Name of the corresponding image;

fullimage ← Path of images[i] in the argv[3] folder;
utctim ← Command to get the date when the image was taken. The command is grep
IMAGE_TIME fullimage.LBL |cut -d\"=\" -f 2 |tr -d ’\’ |tr -d ’ ’ ;
Call the system to execute the utctim command using the popen function in reading
mode (’r’);
utctim ← Get the result of the popen execution using the fgets function;
Close the popen execution using the pclose function;
return utctim;

generappm algorithm

Input data: argv[3] ← Path of the folder with the images to navigate;
ppm ← PPM file (name of the image + .ppm extension);
NX ← Number of image samples;
NY ← Number of image lines;
m ← Array of 0s and 1s;
solar ← Solar angles of the image pixels;

path ← Path of ppm in the argv[3] folder;
Create an empty ppm file using the fopen function in writing (binary) mode (’wb’);
Write the header in ppm using the fprintf function (see PPM file later);
Check for each image pixel if it belongs to the target body:
for py = 0:NY-1 do

for px = 0:NX-1 do
Initialize color array:

color[0] ← 0;
color[1] ← 0;
color[2] ← 0;

if m = 1 then
if solar < 90 then

color[0] ← 255;
end if

else
color[2] ← 255;

end if
Write in ppm the values of color of the corresponding pixel using the fwrite
function;

end for
end for

72

5.2. Developed Software Martí Sierra Salvadó

The Portable Pixmap (PPM) format is an image file format designed to generate color
RGB images. Each PPM file starts with a two-byte magic number, P3 or P6, depending
on its encoding (ASCII or binary) [55]. In the generappm function, in which the PPM
image is written in binary format, the header is as follows:

P6 ← Two-byte magic number (RGB colour image in binary)
NX NY ← Width and height of the image in pixels
255 ← Maximum value for each colour

As mentioned in Section 5.2.1, an image in RGB format consists of a 3-flats double precision
matrix, where each of them corresponds to a colour channel: 1=Red, 2=Blue and 3=Green.
In this way, in PPM files, a 0 value in each channel represents the colour black, and a 255
value in each channel represents the colour white.

Therefore, going back to the algorithm above, if the pixel does not belong to the target
body, its colour is blue (255 value in the third channel), but if does, its colour depends
on its solar angle, so that if the pixel is illuminated, its colour is red (255 value in the
first channel), but if it is not, its value is black. The following figure shows the different
illumination angles computed by the ilumin_c function:

Figure 5.4: Illumination angles [49]

As it can be seen in Figure 5.4, the solar angle (inc.) is the angle between the surface
normal vector at the corresponding point and the point-sun vector. Thus, the first points

73

5.2. Developed Software Martí Sierra Salvadó

with no illumination, called terminator or twilight zone [56], are those in which the point-
sun vector is tangent to the surface. This corresponds to a solar angle of 90º, so the
illuminated points are those in which the solar angle is less than 90º.

generalonlat algorithm

Input data: argv[3] ← Path of the folder with the images to navigate;
lonlat ← Longitudes and latitudes file (name of the image + _lonlat.txt);
NX ← Number of image samples;
NY ← Number of image lines;
m ← Array of 0s and 1s;
lonmat ← Longitudes of the image pixels;
latmat ← Latitudes of the image pixels;

path ← Path of lonlat in the argv[3] folder;
Create an empty lonlat file using the fopen function in writing (binary) mode (’wb’);
for py = 0:NY-1 do

for px = 0:NX-1 do
Write in lonlat the coordinates in pixels (px and py), the longitude (lonmat) and
the latitude (latmat) of the corresponding pixel using the fwrite function;

end for
end for

Python routine

As mentioned before, the goal of translating the MATLAB prototype to C language is to
reduce the execution time and obtain the results as soon as possible. The best way to do
this is to start the program in parallel, that is, distributing the work to be done between
the different computer processors.

First, it was thought to run the program through Message Passing Interface (MPI), so
that each processor made a part of the navigation. However, the program is designed to
navigate more than one image at a time, so it is more obvious to distribute the images
among the different processors. In this way, the work of each processor is independent, so
programming by MPI is not very useful. So, finally a python code has been made, which
equally distributes the images to be navigated between the different processors.

The Ubuntu 18.04 environment incorporates by default a python interpreter, so a python
file, called navegatots.py, has been developed in order to run the C solver in parallel. Thus,
this python file must be executed from its destination folder, where the C files must also
be found. Once the solver is compiled through the scompile file, the following command is
used to execute it: python navegatots.py.

The pseudocode of the python file algorithm is shown below:

74

5.2. Developed Software Martí Sierra Salvadó

navegatots.py algorithm

fname ← File with the names of the images to be navigated;
NP ← Number of processors between which images to be navigated are distributed;
Execute the solver to download all the kernel files using the navega command with
mode=0 ;
Open and read fname;
Create an empty file of images for each processor, called file_p.txt, where p is the number
of the corresponding processor;

Get the initial and final image indexes for each processor using the worksplit function;
Write the images to be navigate by each processor to each corresponding file_p.txt ;
For each processor, execute the solver to navigate the images in the corresponding
file_p.txt using the navega command withmode=1 (file_p.txt instead of lbl_images.txt);

Below is the pseudocode of the worksplit algorithm:

worksplit algorithm

Input data: start ← Index of the first image to be navigated, equal to 0;
end ← Index of the last image to be navigated (number of images − 1);
me ← Number of the corresponding processor;
P ← Number of processors;

Calculate the number of images to be navigated: N ← end − start + 1 ;
mystart ← start ;
remainder ← Get the remainder of dividing the total number of images by the number
of processors (remainder of N/P);
if P > N then

An error message is printed on screen, indicating that there are too many processors.
The current execution is interrupted;

end if
for pp = 0:P-1 do

if pp < remainder then
myshare ← N/P + 1 (integer number, without decimals);

else
myshare ← N/P (integer number, without decimals);

end if
if pp == me then

break;
end if
mystart ← myend + 1;

end for
return mystart, myend ;

75

5.2. Developed Software Martí Sierra Salvadó

Image projection

Finally, the part B of the MATLAB prototype has been modified to be able to read the
files generated by the C solver. This new code, unlike the old one, makes the projections
of a set of images, so first the lbl_images.txt file is loaded.

Then, for each image, the corresponding text file with the longitudes and latitudes gen-
erated with the C solver (lonlat file) is loaded. Both files are loaded using the importdata
function.

In addition, in the new code appears a newMATLAB function, calledNavega_correction.m,
that serves to correct the possible errors of the navigation made in C, aspect that had not
been taken into account in the MATLAB prototype.

Hence, the algorithm is as follows:

Navega_cassini_pB_C.m algorithm Part 1

Load the data of lbl_images.txt file using the importdata function;
folder ← Path of the folder where to look for the navigation images and files;
files ← Cell array with the names of the images navigated;
for i = 1:length(files) do

A ← Load the data of the corresponding lonlat file of files[i] ;
A(:,1) ← X pixel (column);
A(:,2) ← Y pixel (row);
A(:,3) ← Longitude;
A(:,4) ← Latitude;

img ← Call the Vicarread.m function to read files[i] and get the values of the image
pixels;

Correct the longitudes and latitudes of the image navigation using the
Navega_correction.m function;

img2 ← double(img’);
Create an interpolating function (interpolant) using the scatteredInterpolant function;
Fimg ← scatteredInterpolant(A(:,3), A(:,4), img2(:)). The interpolant fits a surface
of the form img2(:) = Fimg(A(:,3), A(:,4));

Specify the range of longitudes and latitudes:
llon ← Left limit longitude;
rlon ← Right limit longitude;
dlon ← Longitude increments;
ulat ← Upper limit latitude;
llat ← Lower limit latitude;
dlat ← Latitude increments;

if llon > rlon then

76

5.2. Developed Software Martí Sierra Salvadó

Navega_cassini_pB_C.m algorithm Part 2
lon1 ← llon;
lon2 ← rlon;

else
lon1 ← rlon;
lon2 ← llon;

end if

if ulat > llat then
lat1 ← ulat ;
lat2 ← llat ;

else
lat1 ← llat ;
lat2 ← ulat ;

end if

lons ← lon1:dlon:lon2 ;
lats ← lat1:dlat:lat2 ;

Create 2-D grid coordinates using the meshgrid function;
[lonv, latv] ← meshgrid(lons, lats). Returns a 2-D grid coordinates based on the
coordinates contained in vectors lons and lats ;

Get the values of the image projection by evaluating the 2-D grid coordinates with
the Fimg interpolation function;
img2 ← Fimg(lonv, latv);

end for

For the correction of the navigations, the function Navega_correction.m presents two
methods, both with the same degree of success. In both methods, first of all, a navigation
of the image is generated according to its illumination, that is, according to the values of
the pixels. Thus, for the correction only the pixels corresponding to the daylight side of
the target body are taken into account, without having those corresponding to the night
side.

In this way, a minimum value of light must be defined in order to differentiate the illu-
minated area from the unlighted area and from the space. This value defines the degree of
success of the correction, regardless of the method used. However, in some images, moons
appear orbiting the target body, so that the lighting values are usually the same. Thus,
the generated navigations have to be corrected so that the possible moons do not appear
illuminated.

The first method is to find the limits of the daylight side of the target body, both in
the navigation generated through the illumination, which would be the correct navigation,
and in the navigation generated through the C solver, which may has some errors. Then,

77

5.2. Developed Software Martí Sierra Salvadó

compare the limits and calculate the difference in pixels, to know the deviation of the C
navigation and move the matrices of longitudes and latitudes according to it.

The second method is to find the centroid of the daylight side of the target body, both in
the navigation generated through the illumination and in the navigation generated through
the C solver. Then, compare the centroids and calculate the difference in pixels, to know the
deviation of the C navigation and move the matrices of longitudes and latitudes according
to it.

Next, the pseudocode of the algorithm of the Navega_correction.m function is presented:

Navega_correction.m algorithm Part 1

Input data: A ← Array with the navigation data of files[i] ;
folder ← Path of the folder where to look fr the navigation images and

files;
files[i] ← Name of the image whose navigation is to be corrected;
n ← Correction method;

af ← Call the Vicarread.m function to read files[i] from folder and get the values of the
image pixels;
B ← Reshape the matrix of longitudes using the reshape function;
B ← B’ (transposed matrix);
C ← Reshape the matrix of latitudes using the reshape function;
C ← C’ (transposed matrix);

Generate the image navigation through the illumination values:
ilum ← Minimum illumination value of the daylight side of the target body;
bf ← Initialize the image navigation generated through the illumination values (double
precision RGB image);
for i = 1:size(af,1) do

for j = 1:size(af,2) do
if af < ilum then

bf(i,j,3) ← 1;
else

bf(i,j,1) ← 1;
end if

end for
end for
Correct the bf image in case there is a moon using the Moon_correction.m function (see
algorithm later);
b ← Read the corresponding ppm image of files[i] from folder using the imread function;
Correction process:
switch n do

case 1

78

5.2. Developed Software Martí Sierra Salvadó

Navega_correction.m algorithm Part 2

Get the limits of bf and b using the Limits_correction.m function (see algorithm
later);
hl_pix ← Left limit deviation: |xl_original−xl_navigated |;
hr_pix ← Right limit deviation: |xr_original−xr_navigated |;
if hr_pix > hl_pix then

if xr_original > xr_navigated then
h_pix ← hr_pix ;

else
h_pix ← −hr_pix ;

end if
else

if xl_original > xl_navigated then
h_pix ← hl_pix ;

else
h_pix ← −hl_pix ;

end if
end if
vu_pix ← Upper limit deviation: |yu_original−yu_navigated |;
vl_pix ← Lower limit deviation: |yl_original−yl_navigated |;
if vl_pix > vu_pix then

if yl_original > yl_navigated then
v_pix ← vl_pix ;

else
v_pix ← −vl_pix ;

end if
else

if yu_original > yu_navigated then
v_pix ← vu_pix ;

else
v_pix ← −vu_pix ;

end if
end if
Shift b, B and C using the imtranslate function (error due to rotation is not
considered);

case 2
s_original ← Get the pixel coordinates of the centroid of bf using the regionprops
function (’centroid’ mode);
s_navigated ← Get the pixel coordinates of the centroid of b using the regionprops
function (’centroid’ mode);

79

5.2. Developed Software Martí Sierra Salvadó

Navega_correction.m algorithm Part 3

h_pix ← Horizontal deviation: round(|s_original(1)−s_navigated(1)|);
if s_original(1) < s_navigated(1) then

h_pix ← −h_pix ;
end if
if s_original(2) < s_navigated(2) then

v_pix ← −v_pix ;
end if
Shift b, B and C using the imtranslate function (error due to rotation is not
considered);

end switch
B ← B’ (transposed matrix);
B ← B(:) (matrix of longitudes as single column);
C ← C’ (transposed matrix);
C ← C(:) (matrix of latitudes as single column);
return B, C ;

As mentioned before, the appearance of a moon in the image is a problem for the correc-
tion process, so it must be corrected beforehand. For this, the difference in size between
the moon and the target body has been used.

In the case of the target body, the number of consecutive illuminated pixels is almost
always high, while in the moon the value are low. Thus, a correction factor (m) has been
established, so that a consecutive series of illuminated pixels is considered part of the target
body only if it has more than m values, otherwise it is considered part of the moon. Below
is the pseudocode of the algorithm of the Moon_correction.m function:

Moon_correction.m algorithm Part 1
Input data: bf ← Image navigation generated through the illumination values;
Convert bf to gray scale image using the rgb2gray function;
b ← Generate a binary image from bf using the imbinarize function;
B ← Recognize the shapes in b using the bwboundaries function;
Get the number of pixels of the largest shape (target body shape):
max ← Initialize the maximum value of pixels of a shape;
for i = 1:size(B,1) do

m ← size(Bi,1);
if m) > max then

max ← m;
end if

end for

80

5.2. Developed Software Martí Sierra Salvadó

Moon_correction.m algorithm Part 2

bf(:,:,1) ← Remove the shapes with less than max pixels using the bwareaopen function;
bf(:,:,3) ← Compute the complement of the bf(:,:,1) image using the imcomplement
function;
return bf ;

In the following pseudocode, the algorithm of the Limits_correction.m function is shown:

Limits_correction.m algorithm

Input data: a ← Image navigation whose limits are to be computed (bf or b);
xl ← 1e5 (initialize left pixel limit);
xr ← 0 (initialize right pixel limit);
for i = 1:size(a,1) do

jl ← Find the first 1 value in a(i,:,1) using the find function (’first’ mode);
jr ← Find the last 1 value in a(i,:,1) using the find function (’last’ mode);
if jl < xl then

xl ← jl ;
end if
if jr > xr then

xr ← jr ;
end if

end for
yu ← 1e5 (initialize upper pixel limit);
yl ← 0 (initialize lower pixel limit);
for j = 1:size(a,2) do

iu ← Find the first 1 value in a(:,j,1) using the find function (’first’ mode);
il ← Find the last 1 value in a(:,j,1) using the find function (’last’ mode);
if iu < yu then

yu ← iu;
end if
if il > yl then

yl ← il ;
end if

end for
return xl, xr, yu, yl ;

In addition to the two correction methods already explained, a third method has been
tried based on image registering, using the detectSURFFeatures [24] MATLAB function,
so that the characteristics of both navigations are detected, a transformation matrix is
estimated and the corrected navigation is obtained. However, the transformation matrix

81

5.2. Developed Software Martí Sierra Salvadó

obtained is not applicable to the matrices of longitudes and latitudes, so this correction
method does not allow to obtain the corrected longitudes and latitudes7.

7Visit [24] to see correction process.

82

Chapter 6

Results and Validation

In this chapter, the results of navigating different interplanetary images by means of the
C solver are presented, as well as the subsequent projection and correction processes by
means of MATLAB. In this sense, the results obtained are compared with those of PLIA,
so that they are contrasted and validated.

First of all, as seen in Section 5.2.2, once the solver is run in C, a PPM image with the
colours red, blue and black is generated, depending on the area of the image. Thus, the
result of navigating the same image as that of Figure 5.2 through C gives the following
result:

Figure 6.1: Navigated image of Jupiter through C solver

83

Martí Sierra Salvadó

Unlike Figure 5.2, now the generated image presents a third zone of black colour, which
corresponds to the area of the unlighted planet, which in this case is a small portion.

At first glance, it seems that the obtained result resembles that obtained by the MATLAB
prototype. However, this image alone can not ensure that the navigation is correct, so it
is necessary to check it with a correct navigation of the original RAW image, so that the
errors can be seen, if there are any.

To do this, first an image like the one of Figure 5.2 has been generated, based on the
values of the pixels of the original RAW image, that is, according to the illumination of
each of them. Thus, as seen in the Navega_correction.m algorithm, a minimum value
of light has been established (0.10) in order to differentiate the pixels belonging to the
illuminated side of the planet of those belonging to the non-illuminated side or to space,
so that the correction is carried out taking into account only the pixels belonging to the
illuminated side. In this way, an image like the PPM one is obtained, which would be an
approximate representation of the correct navigation:

Figure 6.2: Illuminated area from real image

In Figure 6.2, the pixels belonging to the unlit side are blue, so the same in Figure 6.1
are coloured blue in order to satisfy the same conditions.

However, as can be seen, the image obtained presents problems when moons appear,
since their lighting is usually similar to that of the planet. So, before proceeding with the
navigation error, Figure 6.2 is corrected by the Moon_correction.m function, so that the
moon does not appear, obtaining the following result:

84

Martí Sierra Salvadó

Figure 6.3: Illuminated area from real image + Moon correction

Thus, the combination of Figures 6.1 and 6.3 gives the following result:

Figure 6.4: Navigation error

85

Martí Sierra Salvadó

The error in pixels is coloured green and yellow, depending on the type of error:

• The green error corresponds to pixels that in the SPICE image are considered part
of the illuminated side of the planet, but that actually are part of the unlighted side
or space.

• The yellow error corresponds to pixels that are part of the illuminated side of the
planet, but that in the SPICE image are considered part of the unlighted side or
space.

This differentiation of colors allows to know how the pixels of the SPICE image should be
moved, as well as the longitudes and latitudes, during the correction process. In this way,
it can be observed that the error is considerable, so it must be corrected in order to obtain
the real longitudes and latitudes of each pixel.

As seen in the Navega_correction.m algorithm, the correction process can be carried out
by two different methods, so the results must be compared in order to verify its correct
functioning. In this way, for each method, the correction process is carried out and the
image projection is generated, for a subsequently validation validated using the PLIA
software. Below are the SPICE images corrected with both methods:

Figure 6.5: Navigation image corrected (Limits method)

86

Martí Sierra Salvadó

Figure 6.6: Navigation image corrected (Centroid method)

In both methods, the pixels of the navigated image are moved to the left and slightly
upwards.

Once the correction process has been completed, the images are combined again as in
Figure 6.4, so that the result should not have the green and yellow areas corresponding to
the unlighted side and space. The following are the combination images for both methods:

Figure 6.7: Navigation error corrected (Limits method)

87

Martí Sierra Salvadó

Figure 6.8: Navigation error corrected (Centroid method)

The adjustment of the navigated image seems to be better using the first method. How-
ever, the illuminated part of the planet may be larger or smaller, because it is restricted
by an imposed minimum value of lighting, so it can only be confirmed by generating the
projections and comparing them with those of PLIA.

Therefore, the projections of the Great Red Spot generated with each method and gener-
ated by the PLIA software are shown below:

Figure 6.9: Image projection (Limits method)

88

Martí Sierra Salvadó

Figure 6.10: Image projection (Centroid method)

Figure 6.11: Image projection (PLIA)

The first conclusion that can be made is that the projections with the two correction
methods are quite similar to the one generated by PLIA, but some deviations are appreci-
ated:

• In the lower part of Figures 6.9 and 6.10, part of a moon that was in transit at the
time of the photo is observed. In contrast, in Figure 6.11, this moon does not appear,
so it can be assumed that the latitudes of Figures 6.9 and 6.10 are slightly displaced
downwards.

• On the right side of Figure 6.11, a small part of what appears to be a cloud is observed.
In contrast, in Figure 6.9 and 6.10, the cloud portion is larger (less pronounced in
Figure 6.9), so it can be assumed that the longitudes are slightly shifted to the right.

89

Martí Sierra Salvadó

However, the navigation made by the PLIA software is not perfect and requires a manual
adjustment. Once this adjustment is made, the following projection is obtained:

Figure 6.12: Image projection (PLIA)

Unlike Figure 6.11, the moon can now be seen in the lower part of the projection, so that
the latitudes of the projections in Figures 6.9 and 6.10 are correct. Even so, the error of
the longitudes remains.

Looking at Figure 6.1, it can be seen that the part of the planet corresponding to the
unlit side only affects the longitudes (no black area appears on the bottom of the planet),
so it is no coincidence that Figures 6.9 and 6.10 only present error due to the longitudes.
This fact leads one to think that this error can be corrected by a better delimitation of
the unlighted side of the planet, so that, if the longitudes are shifted to the right, it means
that the unlit side of the planet should be smaller, so that the minimum value of lighting
should be lower.

Applying this reasoning, if the minimum illumination value is reduced from 0.10 to 0.03,
the following projections are obtained:

Figure 6.13: Image projection reducing illumination value (Limits method)

90

Martí Sierra Salvadó

Figure 6.14: Image projection reducing illumination value (Centroid method)

In the second method, the fact of reducing the minimum value of lighting has not served
and the same projection has been obtained. However, in the first method, this change has
worked and a projection has been obtained practically equal to that of Figure 6.12, which
leads to think that the first method is better, as expected.

The fact that it is an image in which the planet is not seen completely, since it is in
a corner of the image, if the navigation error occurs towards "outside the image", the
illuminated planet area is reduced, so with the second correction method the centroid may
not be well calculated.

At the same time, in this image there are only two limits for the first method correction,
on the left and below. If the whole planet were to appear in the image, there would be four
limits, so the limits with a higher error would be used. In this way, a better adjustment
through the limit with no unlit area is expected, because the illuminated planet zone is
clearer due to a greater illumination gradient with respect to the space. However, if a later
correction is needed, as the longitudes are corrected by the limit with no unlighted planet,
the variation of the minimum illumination would not change the projection.

Thus, the entire previous procedure has been done with the following image, in which
the entire planet appears:

91

Martí Sierra Salvadó

Figure 6.15: Navigated image of entire Jupiter

In this case the error can be seen without having to combine images. Therefore, the
projections of the Great Red Spot generated with each method and generated by the PLIA
software are shown below:

Figure 6.16: Image projection (Limits method)

92

Martí Sierra Salvadó

Figure 6.17: Image projection (Centroid method)

Figure 6.18: Image projection (PLIA)

In this case, the minimum illumination value has been set to 0.03, due to the better result
obtained in the previous case. Thus, the projections made with both methods appear to
be the same, so both present the same error. This fact already suggests that if the planet is
seen completely, both methods are equally correct with a properly minimum illumination
value.

Besides, in the first method, the limits of the right and of the bottom have been used to
correct the image, since they are the limits in which a greater error appears. Therefore,
since the side of the unlighted planet is on the left limit, it is expected that when the
minimum value of illumination is changed, the projection with this method will not be
affected. However, a better delimitation of the illumination side in the right limit favours
an initial better correction.

93

Martí Sierra Salvadó

Looking at Figure 6.18, some spots can be seen in the lower left side of the image. In
Figures 6.16 and 6.17, these same spots appear to be displaced to the left, which means
that their longitudes are displaced to the right.

However, as in the previous case, the image projected by PLIA must be corrected man-
ually, so that the following projection is obtained:

Figure 6.19: Image projection (PLIA)

In this case, both Figures 6.16 and 6.17 are practically equal to the corrected PLIA
projection in Figure 6.19, so no other correction is needed.

This reaffirms that the second method correction does not work well in images in which
the entire planet does not appear, but that works just as well as the first method in images
with the entire planet. Moreover, in the first method, it is preferable to use as limits those
with no unlighted side of the planet, due to a better delimitation between the illuminated
side of the planet and the space.

A final conclusion that is made from the results presented is that the navigations carried
out with the developed program are quite good and closely resemble those generated by
specialized software such as PLIA. Additionally, the degree of error of the images is not
always the same, that is, in some images the error is considerable, while in others there
is almost no error. This fact suggests that the error in the navigations may be due to
orientation errors of the CK kernels or because the kernels loaded in the program are not
appropriate.

Finally, the projections can be obtained in RGB format by superposing the projection
of the same image taken by each filter. Due to the small errors of the navigations, the
projections of a same image may not fit perfectly, but some manually correction can be
made if so.

So, below is the projection of Great Red Spot of the image of Figure 6.1 in RGB format:

94

Martí Sierra Salvadó

Figure 6.20: Image projection in RGB format

95

Chapter 7

Environmental impact

In this chapter, the environmental impact that the completion of this project has meant is
presented.

As mentioned in the Budget document, the costs related to the author’s displacements
have not been taken into account, so neither the environmental impact of the same1.

Thus, the only environmental impact of this project is due to carbon dioxide (CO2)
emissions and radioactive waste generated during the obtaining of the electricity used by
the computers.

This environmental impact of the electricity depends on the energy sources used for its
generation. According to the National Commission of Markets and Competition (CNMC,
for its acronym in Spanish, Comisión Nacional de los Mercados y la Competencia) [5], the
energy marketed in Spain represents a national average of 0.26 kgCO2eq/kWh and 0.51
mg/kWh of radioactive waste in 2018, so throughout this project 9.97 kgCO2eq and 19.56
mg of radioactive waste have been produced.

According to the author’s latest electric bill, these values rise to 0.43kgCO2eq/kWh and
0.76 mg/kWh of radioactive waste, so these values would translate into 16.49 kgCO2eq and
29.15 mg of radioactive waste.

1The displacements have been made through public transport, so they would not have been taken into
account as environmental impact.

96

Chapter 8

Conclusions

At the end of this study, it can be affirmed that the objectives set at the beginning of
the project have been achieved. A decoder for reading and converting the RAW images
in VICAR format and a program capable of implementing the PLIA algorithms have
been developed successfully, obtaining results quite similar to those of specialized software.
In addition, a program capable of automatically correcting navigational errors has been
developed, which in the PLIA software must be done manually.

As it has been shown, the program has allowed, from images of planets, to obtain the
longitudes and latitudes of the pixels in order to know the location of clouds or storms at
all times, such as the Great Red Spot of Jupiter. Thus, through the different navigations
of the Great Red Spot, videos can be made with which to know and observe the evolution
of the storm.

From here, the next steps would be to refine the developed solver and adapt it to work
with more spacecraft, such as Galileo or New Horizons, and try to find alternatives for
spacecrafts in which the kernels are not good enough to perform navigation, as has hap-
pened with Voyager. In this sense, the end of this project has been left ready to enter with
a computational approach in the Juno probe, which is presented as a challenge due to its
image and transmission systems.

97

Bibliography

[1] A. M. Juez – Grupo de Ciencias Planetarias, University of the Basque Country UP-
V/EHU. PVOL – Planetary Virtual Observatory & Laboratory (PPT), 2006. [Online;
accessed 5-June-2019]. URL: https://svo.cab.inta-csic.es/docs/files/svo/
Public/Meetings/SVO_thematic_network_First_Meeting/PVOL_SVO-06042006.
ppt.

[2] A. P. Gasull. Analysis and study of a shallow water model code for applications to
planetary atmospheres , 2018.

[3] B. Knowles – Cassini Imaging Central Laboratory for Operations (CICLOPS), Space
Science Institute. Cassini Imaging Science Subsystem (ISS) Data User’s Guide (PDF),
2018. [Online; accessed 5-June-2019]. URL: http://www.ciclops.org/sci/docs/
iss_data_user_guide_180916.pdf.

[4] Cassini Imaging Central Laboratory For Operations (CICLOPS). Cassini ISS CAL-
ibration (CISSCAL), 2018. [Online; accessed 5-June-2019]. URL: http://ciclops.
org/sci/cisscal.php?js=1.

[5] Comisión Nacional de los Mercados y la Competencia (CNMC), 2019. [Online; ac-
cessed 5-June-2019]. URL: https://gdo.cnmc.es/CNE/resumenGdo.do?anio=2018.

[6] Deen, Robert G. – Jet Propulsion Laboratory (JPL), California Institute of Technol-
ogy. The VICAR file format (PDF), 1994. [Online; accessed 5-June-2019]. URL:
https://www-mipl.jpl.nasa.gov/external/VICAR_file_fmt.pdf.

[7] E. G. Melendo. Provider of software and installation and help manuals, 2019.

[8] F. Bagenal & R. J. Wilson, LASP – University of Colorado. Jupiter Coordinate
System, 2016.

[9] Hueso, R., Legarreta, J., Rojas, J.F., Peralta, J., Pérez-Hoyos, S., del Río-
Gaztelurrutia, T., Sánchez Lavega, A. The Planetary Laboratory for Image Analysis .
Advances in Space Research, 46(9):1120–1138, 2010. doi:10.1016/j.asr.2010.05.
016.

98

https://svo.cab.inta-csic.es/docs/files/svo/Public/Meetings/SVO_thematic_network_First_Meeting/PVOL_SVO-06042006.ppt
https://svo.cab.inta-csic.es/docs/files/svo/Public/Meetings/SVO_thematic_network_First_Meeting/PVOL_SVO-06042006.ppt
https://svo.cab.inta-csic.es/docs/files/svo/Public/Meetings/SVO_thematic_network_First_Meeting/PVOL_SVO-06042006.ppt
http://www.ciclops.org/sci/docs/iss_data_user_guide_180916.pdf
http://www.ciclops.org/sci/docs/iss_data_user_guide_180916.pdf
http://ciclops.org/sci/cisscal.php?js=1
http://ciclops.org/sci/cisscal.php?js=1
https://gdo.cnmc.es/CNE/resumenGdo.do?anio=2018
https://www-mipl.jpl.nasa.gov/external/VICAR_file_fmt.pdf
http://dx.doi.org/10.1016/j.asr.2010.05.016
http://dx.doi.org/10.1016/j.asr.2010.05.016

Bibliography Martí Sierra Salvadó

[10] Jet Propulsion Laboratory (JPL), California Institute of Technology. VICAR User’s
Guide, 1994. [Online; accessed 5-June-2019]. URL: https://www-mipl.jpl.nasa.
gov/PAG/public/vug/vugfinal.html.

[11] Jet Propulsion Laboratory (JPL), California Institute of Technology. Voyager – Plan-
etary Voyage, 2019. [Online; accessed 5-June-2019]. URL: https://voyager.jpl.
nasa.gov/mission/science/planetary-voyage/.

[12] Jet Propulsion Laboratory (JPL), California Institute of Technology. Voyager – Space-
craft – Cosmic Ray Subsystem (CRS), 2019. [Online; accessed 5-June-2019]. URL:
https://voyager.jpl.nasa.gov/mission/spacecraft/instruments/crs/.

[13] Jet Propulsion Laboratory (JPL), California Institute of Technology. Voyager – Space-
craft – Imaging Science Subsystem (ISS), 2019. [Online; accessed 5-June-2019]. URL:
https://voyager.jpl.nasa.gov/mission/spacecraft/instruments/iss/.

[14] Jet Propulsion Laboratory (JPL), California Institute of Technology. Voyager – Space-
craft – Infrared Interferometer Spectrometer and Radiometer (IRIS), 2019. [Online; ac-
cessed 5-June-2019]. URL: https://voyager.jpl.nasa.gov/mission/spacecraft/
instruments/iris/.

[15] Jet Propulsion Laboratory (JPL), California Institute of Technology. Voyager – Space-
craft – Low-Energy Charged Particles (LECP), 2019. [Online; accessed 5-June-2019].
URL: https://voyager.jpl.nasa.gov/mission/spacecraft/instruments/lecp/.

[16] Jet Propulsion Laboratory (JPL), California Institute of Technology. Voyager –
Spacecraft – Magnetometer (MAG), 2019. [Online; accessed 5-June-2019]. URL:
https://voyager.jpl.nasa.gov/mission/spacecraft/instruments/mag/.

[17] Jet Propulsion Laboratory (JPL), California Institute of Technology. Voyager – Space-
craft – Photopolarimeter Subsystem (PPS), 2019. [Online; accessed 5-June-2019].
URL: https://voyager.jpl.nasa.gov/mission/spacecraft/instruments/pps/.

[18] Jet Propulsion Laboratory (JPL), California Institute of Technology. Voyager – Space-
craft – Planetary Radio Astronomy (PRA) and Plasma Wave Subsystem (PWS), 2019.
[Online; accessed 5-June-2019]. URL: https://voyager.jpl.nasa.gov/mission/
spacecraft/instruments/pws/.

[19] Jet Propulsion Laboratory (JPL), California Institute of Technology. Voyager –
Spacecraft – Plasma Science (PLS), 2019. [Online; accessed 5-June-2019]. URL:
https://voyager.jpl.nasa.gov/mission/spacecraft/instruments/pls/.

[20] Jet Propulsion Laboratory (JPL), California Institute of Technology. Voyager – Space-
craft – Ultraviolet Spectrometer (UVS), 2019. [Online; accessed 5-June-2019]. URL:
https://voyager.jpl.nasa.gov/mission/spacecraft/instruments/uvs/.

99

https://www-mipl.jpl.nasa.gov/PAG/public/vug/vugfinal.html
https://www-mipl.jpl.nasa.gov/PAG/public/vug/vugfinal.html
https://voyager.jpl.nasa.gov/mission/science/planetary-voyage/
https://voyager.jpl.nasa.gov/mission/science/planetary-voyage/
https://voyager.jpl.nasa.gov/mission/spacecraft/instruments/crs/
https://voyager.jpl.nasa.gov/mission/spacecraft/instruments/iss/
https://voyager.jpl.nasa.gov/mission/spacecraft/instruments/iris/
https://voyager.jpl.nasa.gov/mission/spacecraft/instruments/iris/
https://voyager.jpl.nasa.gov/mission/spacecraft/instruments/lecp/
https://voyager.jpl.nasa.gov/mission/spacecraft/instruments/mag/
https://voyager.jpl.nasa.gov/mission/spacecraft/instruments/pps/
https://voyager.jpl.nasa.gov/mission/spacecraft/instruments/pws/
https://voyager.jpl.nasa.gov/mission/spacecraft/instruments/pws/
https://voyager.jpl.nasa.gov/mission/spacecraft/instruments/pls/
https://voyager.jpl.nasa.gov/mission/spacecraft/instruments/uvs/

Bibliography Martí Sierra Salvadó

[21] Jet Propulsion Laboratory (JPL), California Institute of Technology. Voyager – Space-
craft Instruments, 2019. [Online; accessed 5-June-2019]. URL: https://voyager.
jpl.nasa.gov/mission/spacecraft/instruments/.

[22] Jet Propulsion Laboratory (JPL), California Institute of Technology. Voyager – The
Spacecraft, 2019. [Online; accessed 5-June-2019]. URL: https://voyager.jpl.nasa.
gov/mission/spacecraft/.

[23] M. R. Showalter et al. How to Obtain Cassini Data via NASA’S Planetary Data
System (PDF), 2019. [Online; accessed 5-June-2019]. URL: https://pds-imaging.
jpl.nasa.gov/help/How_to_obtain_Cassini_data.pdf.

[24] MathWorks. Buscar rotación y escala de imágenes mediante la com-
binación de funciones automáticas , 2019. [Online; accessed 5-June-
2019]. URL: https://es.mathworks.com/help/images/examples/
find-image-rotation-and-scale-using-automated-feature-matching.html.

[25] NASA Solar System Exploration. Cassini Plasma Spectrometer (CAPS) | Cassini
Orbiter, 2018. [Online; accessed 5-June-2019]. URL: https://solarsystem.
nasa.gov/missions/cassini/mission/spacecraft/cassini-orbiter/
cassini-plasma-spectrometer/.

[26] NASA Solar System Exploration. Composite Infrared Spectrometer
(CIRS) | Cassini Orbiter, 2018. [Online; accessed 5-June-2019]. URL:
https://solarsystem.nasa.gov/missions/cassini/mission/spacecraft/
cassini-orbiter/composite-infrared-spectrometer/.

[27] NASA Solar System Exploration. Cosmic Dust Analyzer (CDA) | Cassini Or-
biter, 2018. [Online; accessed 5-June-2019]. URL: https://solarsystem.
nasa.gov/missions/cassini/mission/spacecraft/cassini-orbiter/
cosmic-dust-analyzer/.

[28] NASA Solar System Exploration. Imaging Sciecne Subsystem (ISS) | Cassini
Orbiter, 2018. [Online; accessed 5-June-2019]. URL: https://solarsystem.
nasa.gov/missions/cassini/mission/spacecraft/cassini-orbiter/
imaging-science-subsystem/.

[29] NASA Solar System Exploration. Ion and Neutral Mass Spectrometer
(INMS) | Cassini Orbiter, 2018. [Online; accessed 5-June-2019]. URL:
https://solarsystem.nasa.gov/missions/cassini/mission/spacecraft/
cassini-orbiter/ion-and-neutral-mass-spectrometer/.

[30] NASA Solar System Exploration. Magnetometer (MAG) | Cassini Orbiter, 2018.
[Online; accessed 5-June-2019]. URL: https://solarsystem.nasa.gov/missions/
cassini/mission/spacecraft/cassini-orbiter/magnetometer/.

100

https://voyager.jpl.nasa.gov/mission/spacecraft/instruments/
https://voyager.jpl.nasa.gov/mission/spacecraft/instruments/
https://voyager.jpl.nasa.gov/mission/spacecraft/
https://voyager.jpl.nasa.gov/mission/spacecraft/
https://pds-imaging.jpl.nasa.gov/help/How_to_obtain_Cassini_data.pdf
https://pds-imaging.jpl.nasa.gov/help/How_to_obtain_Cassini_data.pdf
https://es.mathworks.com/help/images/examples/find-image-rotation-and-scale-using-automated-feature-matching.html
https://es.mathworks.com/help/images/examples/find-image-rotation-and-scale-using-automated-feature-matching.html
https://solarsystem.nasa.gov/missions/cassini/mission/spacecraft/cassini-orbiter/cassini-plasma-spectrometer/
https://solarsystem.nasa.gov/missions/cassini/mission/spacecraft/cassini-orbiter/cassini-plasma-spectrometer/
https://solarsystem.nasa.gov/missions/cassini/mission/spacecraft/cassini-orbiter/cassini-plasma-spectrometer/
https://solarsystem.nasa.gov/missions/cassini/mission/spacecraft/cassini-orbiter/composite-infrared-spectrometer/
https://solarsystem.nasa.gov/missions/cassini/mission/spacecraft/cassini-orbiter/composite-infrared-spectrometer/
https://solarsystem.nasa.gov/missions/cassini/mission/spacecraft/cassini-orbiter/cosmic-dust-analyzer/
https://solarsystem.nasa.gov/missions/cassini/mission/spacecraft/cassini-orbiter/cosmic-dust-analyzer/
https://solarsystem.nasa.gov/missions/cassini/mission/spacecraft/cassini-orbiter/cosmic-dust-analyzer/
https://solarsystem.nasa.gov/missions/cassini/mission/spacecraft/cassini-orbiter/imaging-science-subsystem/
https://solarsystem.nasa.gov/missions/cassini/mission/spacecraft/cassini-orbiter/imaging-science-subsystem/
https://solarsystem.nasa.gov/missions/cassini/mission/spacecraft/cassini-orbiter/imaging-science-subsystem/
https://solarsystem.nasa.gov/missions/cassini/mission/spacecraft/cassini-orbiter/ion-and-neutral-mass-spectrometer/
https://solarsystem.nasa.gov/missions/cassini/mission/spacecraft/cassini-orbiter/ion-and-neutral-mass-spectrometer/
https://solarsystem.nasa.gov/missions/cassini/mission/spacecraft/cassini-orbiter/magnetometer/
https://solarsystem.nasa.gov/missions/cassini/mission/spacecraft/cassini-orbiter/magnetometer/

Bibliography Martí Sierra Salvadó

[31] NASA Solar System Exploration. Magnetospheric Imaging Instrument
(MIMI) | Cassini Orbiter, 2018. [Online; accessed 5-June-2019]. URL:
https://solarsystem.nasa.gov/missions/cassini/mission/spacecraft/
cassini-orbiter/magnetospheric-imaging-instrument/.

[32] NASA Solar System Exploration. RADAR | Cassini Orbiter, 2018. [Online; accessed
5-June-2019]. URL: https://solarsystem.nasa.gov/missions/cassini/mission/
spacecraft/cassini-orbiter/radio-detection-and-ranging/.

[33] NASA Solar System Exploration. Radio and Plasma Wave Science
(RPWS) | Cassini Orbiter, 2018. [Online; accessed 5-June-2019]. URL:
https://solarsystem.nasa.gov/missions/cassini/mission/spacecraft/
cassini-orbiter/radio-and-plasma-wave-science/.

[34] NASA Solar System Exploration. Radio Science Subsystem (RSS) | Cassini
Orbiter, 2018. [Online; accessed 5-June-2019]. URL: https://solarsystem.
nasa.gov/missions/cassini/mission/spacecraft/cassini-orbiter/
radio-science-subsystem/.

[35] NASA Solar System Exploration. Ultraviolet Imaging Spectrograph
(UVIS) | Cassini Orbiter, 2018. [Online; accessed 5-June-2019]. URL:
https://solarsystem.nasa.gov/missions/cassini/mission/spacecraft/
cassini-orbiter/ultraviolet-imaging-spectrograph/.

[36] NASA Solar System Exploration. Visible and Infrared Mapping Spec-
trometer (VIMS) | Cassini Orbiter, 2018. [Online; accessed 5-June-2019].
URL: https://solarsystem.nasa.gov/missions/cassini/mission/spacecraft/
cassini-orbiter/visible-and-infrared-mapping-spectrometer/.

[37] NASA Solar System Exploration. Cassini Orbiter | Spacecraft, 2019. [Online; accessed
5-June-2019]. URL: https://solarsystem.nasa.gov/missions/cassini/mission/
spacecraft/cassini-orbiter/.

[38] NASA Solar System Exploration. Diagrama of the Cassini Spacecraft, 2019. [Online;
accessed 5-June-2019]. URL: https://solarsystem.nasa.gov/resources/12943/
diagram-of-the-cassini-spacecraft/.

[39] NASA Solar System Exploration. Overview | Cassini, 2019. [Online; accessed 5-June-
2019]. URL: https://solarsystem.nasa.gov/missions/cassini/overview/.

[40] PDS Cartography and Imaging Sciences Node, JPL, NASA. Cassini–Huygens,
2018. [Online; accessed 5-June-2019]. URL: https://pds-imaging.jpl.nasa.gov/
portal/cassini_mission.html.

101

https://solarsystem.nasa.gov/missions/cassini/mission/spacecraft/cassini-orbiter/magnetospheric-imaging-instrument/
https://solarsystem.nasa.gov/missions/cassini/mission/spacecraft/cassini-orbiter/magnetospheric-imaging-instrument/
https://solarsystem.nasa.gov/missions/cassini/mission/spacecraft/cassini-orbiter/radio-detection-and-ranging/
https://solarsystem.nasa.gov/missions/cassini/mission/spacecraft/cassini-orbiter/radio-detection-and-ranging/
https://solarsystem.nasa.gov/missions/cassini/mission/spacecraft/cassini-orbiter/radio-and-plasma-wave-science/
https://solarsystem.nasa.gov/missions/cassini/mission/spacecraft/cassini-orbiter/radio-and-plasma-wave-science/
https://solarsystem.nasa.gov/missions/cassini/mission/spacecraft/cassini-orbiter/radio-science-subsystem/
https://solarsystem.nasa.gov/missions/cassini/mission/spacecraft/cassini-orbiter/radio-science-subsystem/
https://solarsystem.nasa.gov/missions/cassini/mission/spacecraft/cassini-orbiter/radio-science-subsystem/
https://solarsystem.nasa.gov/missions/cassini/mission/spacecraft/cassini-orbiter/ultraviolet-imaging-spectrograph/
https://solarsystem.nasa.gov/missions/cassini/mission/spacecraft/cassini-orbiter/ultraviolet-imaging-spectrograph/
https://solarsystem.nasa.gov/missions/cassini/mission/spacecraft/cassini-orbiter/visible-and-infrared-mapping-spectrometer/
https://solarsystem.nasa.gov/missions/cassini/mission/spacecraft/cassini-orbiter/visible-and-infrared-mapping-spectrometer/
https://solarsystem.nasa.gov/missions/cassini/mission/spacecraft/cassini-orbiter/
https://solarsystem.nasa.gov/missions/cassini/mission/spacecraft/cassini-orbiter/
https://solarsystem.nasa.gov/resources/12943/diagram-of-the-cassini-spacecraft/
https://solarsystem.nasa.gov/resources/12943/diagram-of-the-cassini-spacecraft/
https://solarsystem.nasa.gov/missions/cassini/overview/
https://pds-imaging.jpl.nasa.gov/portal/cassini_mission.html
https://pds-imaging.jpl.nasa.gov/portal/cassini_mission.html

Bibliography Martí Sierra Salvadó

[41] PDS Cartography and Imaging Sciences Node, JPL, NASA. Introduction to the
Cassini Imaging Science Subsystem: Narrow Angle Camera, 2018. [Online; accessed
5-June-2019]. URL: https://pds-imaging.jpl.nasa.gov/data/cassini/cassini_
orbiter/coiss_2101/catalog/issna_inst.cat.

[42] PDS Cartography and Imaging Sciences Node, JPL, NASA. Introduction to the
Cassini Imaging Science Subsystem: Wide Angle Camera, 2018. [Online; accessed
5-June-2019]. URL: https://pds-imaging.jpl.nasa.gov/data/cassini/cassini_
orbiter/coiss_2101/catalog/isswa_inst.cat.

[43] PDS Cartography and Imaging Sciences Node, JPL, NASA, 2019. [Online; accessed
5-June-2019]. URL: https://pds-imaging.jpl.nasa.gov/.

[44] PDS Ring-Moon System Node, JPL, NASA. CISSCAL User Guide (PDF), 2009.
[Online; accessed 5-June-2019]. URL: https://pds-rings.seti.org/cassini/iss/
cisscal_manual.pdf.

[45] PDS: The Planetary Data System, NASA, 2019. [Online; accessed 5-June-2019]. URL:
https://pds.nasa.gov/.

[46] PLIA: The Planetary Laboratory for Image Analysis, 2010. [Online; accessed 5-June-
2019]. URL: http://www.ajax.ehu.es/PLIA/.

[47] PVOL – Planetary Virtual Observatory and Laboratory, 2019. [Online; accessed 5-
June-2019]. URL: http://pvol2.ehu.eus/pvol2/.

[48] R. Hueso et al. – University of the Basque Country UPV/EHU. The Planetary Virtual
Observatory and Laboratory (PVOL) and its integration into the Virtual European
Solar and Planetary Access (VESPA) (PDF), 2017. [Online; accessed 5-June-2019].
URL: https://arxiv.org/ftp/arxiv/papers/1701/1701.01977.pdf.

[49] The Navigation and Ancillary Information Facility (NAIF), JPL, NASA. Illumin
SPICE function, 2017. [Online; accessed 5-June-2019]. URL: https://naif.jpl.
nasa.gov/pub/naif/toolkit_docs/C/cspice/ilumin_c.html.

[50] The Navigation and Ancillary Information Facility (NAIF), JPL, NASA.
An Overview of Reference Frames and Coordinate Systems in the SPICE
Context (PDF), 2019. [Online; accessed 5-June-2019]. URL: https:
//naif.jpl.nasa.gov/pub/naif/toolkit_docs/Tutorials/pdf/individual_
docs/17_frames_and_coordinate_systems.pdf.

[51] The Navigation and Ancillary Information Facility (NAIF), JPL, NASA. SPICE
Concept, 2019. [Online; accessed 5-June-2019]. URL: https://naif.jpl.nasa.gov/
naif/spiceconcept.html.

102

https://pds-imaging.jpl.nasa.gov/data/cassini/cassini_orbiter/coiss_2101/catalog/issna_inst.cat
https://pds-imaging.jpl.nasa.gov/data/cassini/cassini_orbiter/coiss_2101/catalog/issna_inst.cat
https://pds-imaging.jpl.nasa.gov/data/cassini/cassini_orbiter/coiss_2101/catalog/isswa_inst.cat
https://pds-imaging.jpl.nasa.gov/data/cassini/cassini_orbiter/coiss_2101/catalog/isswa_inst.cat
https://pds-imaging.jpl.nasa.gov/
https://pds-rings.seti.org/cassini/iss/cisscal_manual.pdf
https://pds-rings.seti.org/cassini/iss/cisscal_manual.pdf
https://pds.nasa.gov/
http://www.ajax.ehu.es/PLIA/
http://pvol2.ehu.eus/pvol2/
https://arxiv.org/ftp/arxiv/papers/1701/1701.01977.pdf
https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/ilumin_c.html
https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/ilumin_c.html
https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/Tutorials/pdf/individual_docs/17_frames_and_coordinate_systems.pdf
https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/Tutorials/pdf/individual_docs/17_frames_and_coordinate_systems.pdf
https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/Tutorials/pdf/individual_docs/17_frames_and_coordinate_systems.pdf
https://naif.jpl.nasa.gov/naif/spiceconcept.html
https://naif.jpl.nasa.gov/naif/spiceconcept.html

Bibliography Martí Sierra Salvadó

[52] Trigo-Rodriguez, J.M., Sánchez-Lavega, A., Gómez, J.M., Lecacheux, J., Colas, F.,
Miyazaki, I. The 90-day oscillations of Jupiter’s Great Red Spot revisited. Planetary
and Space Science, 48(4):331–339, 2000. doi:10.1016/s0032-0633(00)00002-7.

[53] Wikipedia contributors. Atmospheric science — Wikipedia, The Free Encyclopedia,
2019. [Online; accessed 5-June-2019]. URL: https://en.wikipedia.org/w/index.
php?title=Atmospheric_science&oldid=890789242.

[54] Wikipedia contributors. Cassini–Huygens —Wikipedia, The Free Encyclopedia, 2019.
[Online; accessed 5-June-2019]. URL: https://en.wikipedia.org/w/index.php?
title=Cassini%E2%80%93Huygens&oldid=899344218.

[55] Wikipedia contributors. Netpbm format — Wikipedia, The Free Encyclopedia, 2019.
[Online; accessed 5-June-2019]. URL: https://en.wikipedia.org/w/index.php?
title=Netpbm_format&oldid=883066379.

[56] Wikipedia contributors. Terminator (solar) — Wikipedia, The Free Encyclopedia,
2019. [Online; accessed 5-June-2019]. URL: https://en.wikipedia.org/w/index.
php?title=Terminator_(solar)&oldid=879256178.

[57] Wikipedia contributors. Voyager program—Wikipedia, The Free Encyclopedia, 2019.
[Online; accessed 5-June-2019]. URL: https://en.wikipedia.org/w/index.php?
title=Voyager_program&oldid=900124465.

[58] Wikiwand. Latitude —Wikiwand, 2019. [Online; accessed 5-June-2019]. URL: https:
//www.wikiwand.com/en/Latitude.

103

http://dx.doi.org/10.1016/s0032-0633(00)00002-7
https://en.wikipedia.org/w/index.php?title=Atmospheric_science&oldid=890789242
https://en.wikipedia.org/w/index.php?title=Atmospheric_science&oldid=890789242
https://en.wikipedia.org/w/index.php?title=Cassini%E2%80%93Huygens&oldid=899344218
https://en.wikipedia.org/w/index.php?title=Cassini%E2%80%93Huygens&oldid=899344218
https://en.wikipedia.org/w/index.php?title=Netpbm_format&oldid=883066379
https://en.wikipedia.org/w/index.php?title=Netpbm_format&oldid=883066379
https://en.wikipedia.org/w/index.php?title=Terminator_(solar)&oldid=879256178
https://en.wikipedia.org/w/index.php?title=Terminator_(solar)&oldid=879256178
https://en.wikipedia.org/w/index.php?title=Voyager_program&oldid=900124465
https://en.wikipedia.org/w/index.php?title=Voyager_program&oldid=900124465
https://www.wikiwand.com/en/Latitude
https://www.wikiwand.com/en/Latitude

	I General introduction
	Overview
	Aim
	Scope
	Requirements
	Justification
	Collaboration

	II Planetary Images Navigation
	Introduction to the spacecrafts
	Introduction to Cassini-Huygens
	Mission Overview
	Cassini Orbiter Instruments

	Introduction to Voyager
	Mission Overview
	Voyager Instruments

	Imaging Science Subsystem

	ISS Image Reading
	PDS ISS Data Archive
	ISS Vicar Image Format
	Overview
	Labels
	Image area

	ISS Image Reading Software
	Planetary Virtual Observatory and Laboratory (PVOL)
	Vicarread.m

	ISS Image Calibration: CISSCAL
	Introduction
	Setting Up the Environment
	Starting CISSCAL
	Default Options File
	CISSCAL User Manual

	Image Navigation
	Planetary Laboratory for Image Analysis (PLIA)
	Setting Up the Environment
	PLIA User Manual

	Developed Software
	MATLAB Prototype
	C Solver

	Results and Validation
	Environmental impact
	Conclusions

