XLIndy: Interactive Recognition and Information Extraction in Spreadsheets

Elvis Koci
elvis.koci@tu-dresden.de
Technische Universität Dresden
Dresden, Germany

Maik Thiele
maik.thiele@tu-dresden.de
Technische Universität Dresden
Dresden, Germany

Julius Gonsior
julius.gonsior@tu-dresden.de
Technische Universität Dresden
Dresden, Germany

Oscar Romero
oromero@essi.upc.edu
Universitat Politècnica de Catalunya-BarcelonaTech
Barcelona, Spain

Wolfgang Lehner
wolfgang.lehner@tu-dresden.de
Technische Universität Dresden
Dresden, Germany

ABSTRACT

Over the years, spreadsheets have established their presence in many domains, including business, government, and science. However, challenges arise due to spreadsheets being partially-structured and carrying implicit (visual and textual) information. This translates into a bottleneck, when it comes to automatic analysis and extraction of information. Therefore, we present XLIndy, a Microsoft Excel add-in with a machine learning back-end, written in Python. It showcases our novel methods for layout inference and table recognition in spreadsheets. For a selected task and method, users can visually inspect the results, change configurations, and compare different runs. This enables iterative fine-tuning. Additionally, users can manually revise the predicted layout and tables, and subsequently save them as annotations. The latter is used to measure performance and (re-)train classifiers. Finally, data in the recognized tables can be extracted for further processing. XLIndy supports several standard formats, such as CSV and JSON.

CCS CONCEPTS

• Information systems → Enterprise information systems; Document structure; Information extraction; Mediators and data integration.

KEYWORDS

spreadsheets, table recognition, layout inference, information extraction, visualization, annotation, interactive, excel, add-in

ACM Reference Format:

1 INTRODUCTION

Spreadsheets are intuitive to use and highly effective data processing tools. As such, they have been adopted for various tasks in many different settings. In business, spreadsheets are frequently used for financial analysis and reporting [7]. Governmental institutions use them to collect and make data available (e.g., in open data platforms [3]). In science, spreadsheets act as lab books, or even as sophisticated calculators and simulators [16].

Seeing this wide usage and the concentration of valuable data in spreadsheets, industry and research have recognized the need for automatic processing. Recent attempts, such as Ideas in Excel and Explore in Google Sheets, aim at providing insights and recommendations to users (e.g., summary statistics and charts), based on background analysis of tabular data in the sheet. Other works [1, 3, 5, 17], including ours [10–15], focus on integrating and extracting data from spreadsheets. One of the main concerns comes with data and knowledge being scattered in multiple spreadsheet files. This can lead to information silos, unless appropriate methods are put in place to process these data automatically. Such methods can enhance interoperability, encourage better use, and enable more control over spreadsheet data.

However, spreadsheets are designed primarily for human consumption, and as such they favor customization and visual comprehension. Data are often intermingled with formatting artifacts and textual metadata, which carry domain-specific or even user-specific information (i.e., personal preferences). Multiple tables, with different layout and structure, can be found in the same sheet. Moreover, these tables do not adhere to a predefined formal data model. Altogether, spreadsheets are better described as partially-structured documents, with a significant degree of implicit information.

In this paper, we present XLIndy, which showcases our innovative approaches for tackling some of the aforementioned challenges. The front-end of XLIndy is developed as a Microsoft Excel add-in. We re-utilize the powerful native user interface, while introducing custom panels and menus when needed. The results from the implemented approaches are visually displayed to the user, in order to facilitate fast inspection, comparison, and fine-tuning. Furthermore, the add-in plays the role of a mediator between the native
Excel application and the machine learning back-end. The latter holds utilities and the proposed approaches, which were entirely developed in Python. In this way, we take advantage of the many available and highly efficient Python libraries.

Contributions. In literature we find existing systems attempting information extraction in spreadsheets [4, 6]. Their main objective is to extract and load normalized spreadsheet data into a relational database. Clearly, this enables many possible uses for spreadsheet data. However, these works cover only a small subset of scenarios that might occur in spreadsheets. Instead, we assume any number of tables, with arbitrary arrangement, exhibiting high variability in contents, formatting, and layout. XLIndy is not an end-user product, but rather a framework for testing and interacting with our innovative approaches. Additionally, users can give their feedback (e.g., repairing results), which is used for further improvement. Ultimately, XLIndy provides some support for information extraction, in formats such as CSV and JSON. This already facilitates the re-use of spreadsheet data for the majority of information systems.

Paper Outline. In the following section, we discuss the proposed processing pipeline, and its individual steps. We provide a high-level overview of the XLIndy system, in Section 3. Finally, in Section 4, we outline the expected demonstration of our tool.

2 PROCESSING PIPELINE

We see recognition and information extraction in spreadsheets as a series of steps, which collectively form our processing pipeline, illustrated in Figure 1. Although we cover various aspects of automatic spreadsheet processing, our research focuses mainly on two crucial tasks: layout inference [13, 15] and table identification [10–12, 14]. Subsequently, we adapt approaches from related work, to extract the information from the detected tables.

2.1 Worksheet Analysis

For each *non-empty* cell in the sheet, we collect a variety of features, detailed at [15]. We consider style features, like the font size, alignment, and background color. As well as, we study cell contents, addressing aspects such as value type, length, and special characters/words. Additionally, we pay close attention to formulas, a key spreadsheet functionality, but to some extent overlooked by related work. Here, we capture references (i.e., dependencies between cells), and determine the formula type (e.g., numeric aggregations). Moreover, we investigate the surroundings of a cell, measuring the similarity with its neighbors, in terms of style and content.

Figure 1: Processing pipeline

2.2 Layout Inference

In simple terms, layout inference is the task of segmenting the contents of a document into regions of interest. Typically, the segmentation is based on both geometrical and logical analysis. In this work, we start by inferring the logical layout role of each *non-empty* cell, in a sheet. Subsequently, we group adjacent cells of the same role to form strictly rectangular layout regions (LRs). This second step largely depends on the geometry and the spatial arrangement of non-empty cells. Moreover, note that overall approach can describe arbitrary layouts. It foresees that vertical (tall) and horizontal (wide) LRs can coexist in the same sheet.

Figure 1, illustrates the layout regions for an example sheet. Bold lines indicate borders of LRs, while dashed lines separate the enclosed cells, which share the same layout role. We define seven such roles, shown in Figure 1. *Header* (H) and *Data* (D) are the main ingredients of tables. *Notes* (N) and *Titles* (M) provide meta-information about specific areas or the whole sheet. Cells marked as *Derived* (B) hold numeric aggregations and summary values. *Attributes* describe cells participating in a parent-child relationship (i.e., hierarchy). While, *Other* is a placeholder for everything else.

To infer these layout roles, we use classifiers, which were trained in a supervised fashion. As outlined in [15], we tested five different machine learning algorithms. Based on our evaluation, Random Forest achieves the highest overall accuracy. Particularly, for *Data and Header*, the accuracy is consistently above 90%.

Nevertheless, misclassifications (e.g., the cell marked as DI) can lead to inconsistencies in the inferred layout. At [13] we propose an optional post-processing step, to tackle this challenge (not illustrated in Figure 1). Briefly, this step infers and repairs inconsistencies, taking into account the context from the surrounding layout regions. It considers their label, size, distance, and alignment with the currently in-focus LR.

2.3 Table Recognition

In this task, we attempt to identify areas of the sheet that hold tabular data. This demands an approach with high precision, since even the slightest mistakes, by a row or a column, could lead to false interpretations of the detected tables.

The inferred layout provides a good start for table recognition. However, we still need to tackle a series of challenges. Multiple tables and non-tables (e.g., lists, comments) can coexist in the same sheet. Also, they can be arranged in arbitrary ways, often using both directions: vertical (top-bottom) and horizontal (left-right).

1. It contains a value, which is not entirely made of white space characters.

2. Previous publications use five roles. Here, we refine some and introduce new ones.
The tables themselves exhibit high diversity in terms of layout and structure. Additionally, empty cells, rows, and columns might be present inside the tables. Often, they indicate missing values or formatting artifacts (e.g., visual padding of contents). However, they can be easily misinterpreted, ultimately leading to information loss.

We have proposed several approaches for table recognition in spreadsheets [10, 12, 14]. Initially we employed heuristic- and rule-based methods. Most recently, we adopted genetic-based search and optimization techniques. The last two works, use a graph model to represent the overall layout of the sheet (i.e., the spatial arrangement of the inferred layout regions). Subsequently, the recognition task is formulated as a graph partitioning problem. We look for the optimum partitioning, such that the resulting subgraphs correspond precisely to true tables or non-tables of the sheet.

2.4 Information Extraction

XLIndy supports information extraction from recognized tables. We adapt approaches from related work [8, 17], to analyze tables and infer their schema. Initially, we check for hierarchies on the top rows and the left columns of the table. For instance, in Figure 3, the Header cells of the bottom table are stacked, spanning multiple rows. Clearly, the ones in the lower rows depend on those above. Furthermore, in the left column, months are grouped by quarter (i.e., Attributes). Having inferred hierarchies, we proceed to extract tuples. We traverse the top, and then move to the left hierarchies. An example tuple would be: ['Monitor', '1st Quarter', 'April', 421].

3 SYSTEM OVERVIEW

XLIndy carries out the whole processing pipeline, described in the previous section. The users interact with the tool via a familiar interface, i.e., the Excel desktop application. On top of that, we deploy a custom add-in, which was developed in C#. This add-in triggers the execution of tasks from the pipeline, and subsequently handles the results. Nevertheless, the tasks themselves are performed by Python scripts, which stay at the back-end of the system. While, a local Python service (described in more details in the following sections) manages the communication between the front- and back-end.

Another aspect of the system is the physical layer, which holds spreadsheet, configuration, and temporary run-time files. Here, resides also the gold standard dataset [11], which is not a direct part of the system, but still tightly related to it. After all, on this dataset we train/test the proposed layout inference and table recognition methods. Furthermore, with the help of XLIndy, we can expand the gold standard with new annotated sheets, as outline in Section 3.4.

3.1 Back-end Processes

In an attempt to improve performance and cohesion in the system, we introduce a local Python service, which sits in between the front- and back-end components. One of its roles is to prefetch most of the required code, including custom modules, existing libraries, and serialized (layout inference) classifiers. This improves the execution of time of the developed methods, and gives a more interactive feeling to the user. Nevertheless, during run-time the operations are performed on-demand, triggered by the client add-in. The local service, which is running on the background, receives and then directs the call to the appropriate Python script. Subsequently, it returns the output of the script back to the add-in, which then displays the results to the user.

3.2 Interoperability

At the moment, the .NET Framework has some support3 for Python code. However, it lacks many features and libraries that come with other more popular Python implementations. Therefore, a workaround is to run Python scripts within processes initiated from C# code. Subsequently, the standard output of these processes is parsed, and then displayed to the user.

On the other side, the front-end sends data to the Python scripts, as well. However, operating systems usually impose limitations on the number and memory-size of the arguments passed to processes. To overcome these limitations, for some operations, we use temporary files to store data coming from the front-end. Then, via the local service we instruct the Python scripts to read these files.

3.3 Efficient Reading

The active Excel document is processed by both ends of the system. The front-end handles various operations which require read and/or write permissions. However, read permissions are sufficient for the back-end, since it only needs to collect features from the active sheet. To ensure consistency, if there are updates, the front-end will save the Excel file before making a call to the local service.

Occasionally, we get large documents. Therefore, the back-end employs an efficient reading mechanism. The .xlsx format is in reality a zipped directory4 of XML files, which carry information regarding the cell values, formatting, references, and many other (detailed in the OOXML standard). Therefore, using the openpyxl5 library, we read only XML files needed for the current task.

3.4 User Experience

Figure 3 provides a brief look at the user interface. It captures the state of the tool after the layout inference, and right before table recognition. Using build-in shape objects provided by Excel, XLIndy displays layout regions as colored coded rectangles, overlaying non-empty cells of the sheet. In the illustrated example, there is a misclassification, which the user repairs via the context menu.

3 https://ironpython.net/
4 http://officeopenxml.com/anatomyofOOXML-xlsx.php
At the top Figure 3, we can see a custom ribbon, which acts as the primary menu for XLIndy. From here, the user carries the majority of the provided functionalities. Starting from the left, "Cell Classification" and "Table Recognition" sections allow users to initiate inference and recognition tasks, respectively. The user selects one of the several supported methods from the dropdown list, and depending on the desired task he/she clicks "Classify" or "Recognize". Once the results are displayed, the user can click the "Statistics" button, which opens a custom pane providing an overview of the performance (see Figure 3). The "Feedback" section of the ribbon helps the user navigate the results and revise them, if needed. After the user has reviewed the results, he/she can save them as annotations. These are stored in a special hidden sheet of the current document, allowing future reuse [11]. Moreover, from the ribbon, the user can compare different runs, via the "Compare" button. This will point to the differences, and emphasize the strengths and weaknesses of each run. Finally, the "Export" button dumps data from the selected table areas in one of the supported formats.

Other panes allow the user to change configurations, before executing a task. In this way, users can fine-tune the selected approach, ultimately achieving the desired accuracy. Figure 3 displays the configuration pane for the genetic-based table recognition [14]. This pane opened automatically, when the user selected the "Genetic" method from the drop down list in the ribbon. Furthermore, XLIndy supports a series of actions via a custom context menu. This makes certain operations straightforward. For example, in Figure 3 the user changes the role of a layout region from Data to Derived. Moreover, from this context menu, the user can manually create a tablebox (i.e., a rectangle shape with no fill), to indicate a tabular area. In this way, he/she can correct the table recognition results. Subsequently, the user can export data from tables, using the available options from this menu.

References