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Abstract 8 

The development of remote fruit detection systems able to identify and 3D locate fruits provides opportunities to improve the efficiency 9 

of agriculture management. Most of the current fruit detection systems are based on 2D image analysis. Although the use of 3D sensors 10 

is emerging, precise 3D fruit location is still a pending issue. This work presents a new methodology for fruit detection and 3D location 11 

consisting of: (1) 2D fruit detection and segmentation using Mask R-CNN instance segmentation neural network; (2) 3D point cloud 12 

generation of detected apples using structure-from-motion (SfM) photogrammetry; (3) projection of 2D image detections onto 3D space; 13 

(4) false positives removal using a trained support vector machine. This methodology was tested on 11 Fuji apple trees containing a total 14 

of 1455 apples. Results showed that, by combining instance segmentation with SfM the system performance increased from an F1-score 15 

of 0.816 (2D fruit detection) to 0.881 (3D fruit detection and location) with respect to the total amount of fruits. The main advantages of 16 

this methodology are the reduced number of false positives and the higher detection rate, while the main disadvantage is the high 17 

processing time required for SfM, which makes it presently unsuitable for real-time work. From these results, it can be concluded that the 18 

combination of instance segmentation and SfM provides high performance fruit detection with high 3D data precision. The dataset has 19 

been made publicly available and an interactive visualization of fruit detection results is accessible at 20 

http://www.grap.udl.cat/documents/photogrammetry_fruit_detection.html 21 

Keywords: Structure-from-motion; fruit detection; fruit location; Mask R-CNN; terrestrial remote sensing  22 

1. Introduction 23 

The need to provide food for an increasingly large population, while at the same time minimizing the agricultural impact 24 

on the environment, makes it essential to devote as much effort as possible to the development of techniques and methods 25 

that can ensure the increased efficiency, quality, and sustainability of agricultural activities. To achieve this goal, precision 26 

agriculture (PA) is establishing itself as a cornerstone approach which, based on crop information obtained with various 27 

techniques, provides tools for optimizing crop management and making appropriate decisions (ISPA, 2019). The 28 
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monitoring of crops through the combination of sensors, processing systems, and mobile platforms ‒terrestrial, airborne or 29 

spaceborne‒ to carry this instrumentation, are key to providing precise and detailed crop information. Such questions are 30 

usually the starting point of optimization processes. 31 

Knowledge of the spatial (3D) distribution of fruits through their detection and location, with different levels of 32 

resolution ‒within a specific tree and at plot level‒ is of enormous interest in agriculture. Having this information allows 33 

harvest and production estimates to be made, which leads to better planning of harvesting, storage and marketing tasks 34 

(Bargoti and Underwood, 2017; Nuske et al., 2014). With such information, it is also possible to know the spatial 35 

distribution of fruits and yield, and to relate it to the rest of the variables and factors that influence the management of 36 

plantations, such as the strategies of irrigation, fertilization and pruning, the characteristics and variability of the soil 37 

composition, the topographic characteristics of the plot, the size and structure of the trees, pest and disease impact, and so 38 

on. In addition, knowledge of the georeferenced distribution of fruits along the plot can be a starting point for robotized 39 

harvesting, as the harvester robot would have the coordinates of each fruit and could primarily focus on the collection 40 

process itself, with a resulting gain in speed and efficiency. 41 

The characterization of the 3D spatial distribution of fruits, at both tree and plot scale, is a highly active research field. 42 

Commonly used sensors include RGB, multispectral, hyperspectral and thermal cameras, as well as 3D sensor technology 43 

such as LiDAR and depth cameras (RGB-D) (Li et al., 2014; Narvaez et al., 2017). Each of these sensors has its own 44 

strengths and weaknesses when used in real-field conditions, with the best choice depending on the specific application. 45 

Thus, while RGB cameras are economically affordable and user-friendly, they are severely affected by lighting conditions 46 

(Gongal et al., 2015). Both multi and hyperspectral cameras add spectral information beyond RGB bands, allowing the 47 

extraction of a rich set of parameters and vegetation indexes, but they are more expensive and time-consuming. In the case 48 

of thermal cameras, which capture the temperature information of objects, the different thermal inertia between fruits and 49 

background enables their differentiation. However, measurements are affected by the fruit size and the thermal evolution of 50 

the environment along the day, leading to a narrow temporal range of operations in field measurements (Bulanon et al., 51 

2008; Gongal et al., 2015). Both LiDAR and RGB-D systems allow the 3D characteristics of fruits and plants to be directly 52 

obtained by determining the sensor-target distance, with time-of-flight and structured-light the most common measuring 53 

principles. Both systems allow the generation of high density 3D point clouds (coloured in the case of RGB-D sensors) of 54 

plants and fruits. While LiDAR sensors are usually quite expensive and not user-friendly, RGB-D are commonly low-cost 55 

plug-and-play sensors but they lose performance in high luminance environments, which is a drawback under real-field 56 

conditions (Rosell-Polo et al., 2015). Finally, through the post-processing of digital images, photogrammetry techniques are 57 



 
 

being used to obtain 3D representations of different scenarios in many fields, including agriculture (Torres-Sánchez et al., 58 

2018). One of the most successful and commonly used methods is called structure-from-motion (SfM), which identifies 59 

common characteristics in the collected images to infer the camera positions and then build the 3D representation of the 60 

scene (Westoby et al., 2012). 61 

With respect to data processing, many state-of-the-art fruit detection systems use handcrafted features to encode the data 62 

acquired with different sensors and subsequently apply algorithms to obtain the fruit detection and location (Bargoti and 63 

Underwood, 2017; Gené-Mola et al., 2019c). More recently, remarkable progress has been achieved through the 64 

introduction of deep learning, which is based on multiple layer artificial neural networks (Koirala et al., 2019). Most 65 

approaches in fruit detection are based on the analysis of 2D images, although the processing of 3D images is quickly 66 

emerging (Nguyen et al., 2016; Tao and Zhou, 2017). Due to the unstructured environment of tree crops, occlusions of 67 

fruits with other vegetative organs and changing lighting conditions are the main problems that have to be dealt with 68 

(Gongal et al., 2015). To increase fruit visibility, some authors have proposed the use of multi-view imaging (Hemming et 69 

al., 2014), although it may lead to some fruits being counted twice if a proper image registration methodology is not used. 70 

To do so, Stein et al. (2016) proposed the use of epipolar geometry combined with the Hungarian algorithm (Kuhn, 2010). 71 

Similarly, Liu et al. (2018) used the Hungarian Algorithm refined with SfM to track fruits in video fruit counting. In 72 

contrast, Gongal et al. (2016) identified duplicate apples by projecting 2D image detections onto 3D models generated 73 

using RGB-D sensor data. 74 

This work presents a new methodology for fruit detection and 3D location, combining the use of instance segmentation 75 

neural networks and SfM photogrammetry. The Mask R-CNN (He et al., 2017) deep neural network was used to detect and 76 

segment fruits in 2D RGB images. Then, SfM was used to generate an accurate 3D model and locate the detected fruits in 77 

the space. The main advantages of using SfM are that: (1) it is a multi-view approach and, in consequence, presents a 78 

reduced number of fruit occlusions; (2) the registration between images is automatically done, which ensures no double 79 

counting of apples appearing in different images. The remainder of this paper is structured as follows: Section 2 presents 80 

the experimental setup, the acquired dataset, and the methodology pipeline, including a description of the deep neural 81 

network used for fruit detection, the SfM technique used to generate the 3D model, and the projection of 2D image 82 

detections onto the 3D generated model; Section 3 evaluates the detections both in the 2D images and in the 3D model, 83 

while Section 4 discusses the results; Finally, Section 5 presents the conclusions obtained in this study and proposes future 84 

research directions. 85 



 
 

2. Materials and Methods 86 

2.1. Data acquisition. 87 

Tests were carried out in a commercial Fuji apple orchard (Malus domestica Borkh. cv. Fuji) located in the municipality 88 

of Agramunt, Catalonia, Spain (E: 336,297 m; N: 4,623,494 m; 312 m a.s.l., UTM 31T - ETRS89). Trees grown in the 89 

studied orchard were trained in a tall spindle system, with a plantation frame of 4 x 0.9 m and a maximum canopy height 90 

and width of approximately 3.5 m and 1.5 m, respectively. The studied section was formed by 11 consecutive trees from 91 

the same row of trees, containing a total of 1455 apples. Images were acquired at the end of September 2017, at BBCH 92 

phenological growth stage 85 ‒advanced ripening, increase in intensity of cultivar-specific color‒ (Meier, 2001).  93 

In the choice of photographic equipment and its setup, the quality of the photographs was prioritized. An EOS 60D 94 

DSLR Canon camera, with an 18 MP (5184 x 3456 px) CMOS APS-C sensor (22.3 x 14.9mm) was used (Canon Inc. 95 

Tokyo, Japan). Regarding the optics, a Canon EF-S 24mm f/2.8 STM lens was chosen, with a 35 mm film equivalent focal 96 

length of 38 mm and with a field of view of [59° 10 ', 50° 35'] (horizontal, vertical). 97 

A total of 582 photographs were taken, 291 images per row side. No artificial light was used. The photographs were 98 

taken freehand, which allowed an average shooting frequency of 8 photographs per minute. Thus, the lighting conditions 99 

between the first and last photograph were very similar. The east face was photographed in the morning (11:53 - 12:26h) 100 

and the west face in the afternoon (15:27 - 16:05h), with a similar illumination obtained in both faces. 101 

Images were taken from 53 photographic positions (per side). In each position, a vertical sweep of 5-6 photographs was 102 

taken (Fig. 1a) from the lower part (soil-trunk) to the upper part of the trees. The separation between two consecutive 103 

positions was 22 cm (Fig. 1b). These photographic positions defined a line parallel with respect to the apple tree row. The 104 

distance between the camera and the middle plane of the row was around 3 m and the height of the camera above the 105 

ground was 1.7 m (Fig. 1a). With this configuration, the vertical and horizontal overlapping between neighbouring images 106 

was higher than 30% and 90%, respectively (Fig. 2). This dataset has been made publicly available at 107 

www.grap.udl.cat/en/publications/datasets.html (Fuji-SfM dataset).  108 

http://www.grap.udl.cat/en/publications/datasets.html


 
 

 109 
Fig. 1. a) Transversal scheme of the layout and distances of the photographic process. b) Isometric view of three scanned trees showing the separation 110 
between consecutive photographic positions. 111 

 

 
( a ) ( b ) 

Fig. 2. a) Vertical overlapping between two contiguous photographs. b) Horizontal displacement between two adjacent photographic positions. 112 

2.2. Methodology pipeline 113 

As shown in Fig. 3, the proposed fruit detection and location methodology includes the following processing steps: 1) 114 

2D RGB image instance segmentation; 2) 3D point cloud generation using SfM photogrammetry; 3) Projection of 2D 115 

detections onto the 3D point cloud.  116 

Due to the large amount of apples per image and the fact that convolutional neural networks performance decreases 117 

when detecting small objects, before applying the instance segmentation step the images were split into 24 sub-images of 118 

1024x1024 pixels. Then, the convolutional neural network Mask R-CNN (He et al., 2017) was used to detect and segment 119 

the apples (Section 2.2.1). Apple detections and masks in the cropped images were translated to the original images. These 120 



 
 

masked images were used to generate a 3D model by means of SfM photogrammetry, thus, only the 3D model of the 121 

objects of interest (apples) was generated (Section 2.2.2). To count the total number of fruits, and to know which 3D points 122 

belong to each apple, the last step used the camera matrices obtained from SfM camera alignment to project 2D detections 123 

onto 3D point clouds following the pinhole camera model (Section 2.2.3). Further details of the implementation of these 124 

steps are described in the following sub-sections. 125 

 126 

 127 

Fig. 3. Fruit detection and location methodology flowchart. Hexagons represent data preparation steps while rectangles define data processing steps. 128 

 129 

2.2.1. Instance segmentation 130 

The Mask R-CNN (He et al., 2017) deep neural network was used for apple detection and segmentation (instance 131 

segmentation) in acquired 2D RGB images. For an input image, this model provides 2D bounding boxes and semantic 132 

masks for the objects in the scene. It is an extension of the Faster R-CNN (Ren et al., 2017) network that adds a branch for 133 

predicting segmentation masks on each region of interest (RoI). 134 

The operation is depicted in Fig. 4. Two parts can be differentiated in the architecture: the backbone, used for feature 135 

extraction, and the network head for bounding-box recognition (classification and regression) and mask prediction, that is 136 

applied separately to each RoI. 137 



 
 

 138 

Fig. 4. Diagram of Mask R-CNN architecture. 139 

The backbone is a feature pyramid network (FPN) (Lin et al., 2017), a type of fully convolutional network that exploits 140 

the inherent multi-scale, pyramidal hierarchy of deep convolutional networks to construct a feature pyramid map that 141 

provides RoI features from different levels of the feature pyramid according to their scale. 142 

The Mask R-CNN network head is a small network that is slid over the feature map. Each sliding window is mapped to 143 

a lower-dimensional feature. At each sliding-window location, multiple region proposals are simultaneously predicted. The 144 

proposals are parameterized relative to a set of reference boxes, called anchors. An anchor is centred at the sliding window 145 

in question, and is associated with a scale and aspect ratio. This anchor-based design improves computational efficiency 146 

allowing features to be shared without an extra cost for addressing scales. 147 

The obtained features are fed into two sibling fully connected layers—a box-regression layer and a box-classification 148 

layer. The process can be described in two stages. The first stage employs a region proposal network (RPN) to scan the 149 

feature pyramid map provided by the backbone and outputs a set of regions (region proposals) that are candidates to 150 

contain objects. The RoIAlign layer shares the forward pass of a CNN for an image across its subregions. Then, the 151 

features in each region are pooled using bilinear interpolation to maintain a precise alignment. The second stage classifies 152 

the object inside each one of the proposed regions into a set of predetermined classes, refines the bounding box and 153 

provides a pixel level mask for the object. The predictions of the class, bounding box and binary mask for each RoI are 154 

performed in parallel. 155 

We used an existing implementation of the Mask RCNN obtained from Abdulla (2017) with a ResNet-101-FPN 156 

backbone. A model pre-trained in the COCO dataset (Lin et al., 2014) was adapted for Fuji apple detection by restricting 157 



 
 

the number of classes to one and by fine-tuning the model using 12 images containing a total of 1749 manually annotated 158 

apples. This small dataset used to train and validate the Mask RCNN did not include images from trees assessed in the 3D 159 

location approach, ensuring that the data used to test the system was not used for training. In order to have a better relation 160 

between image size and fruit size, and due to the large number of fruits per image, each image was split into 24 sub-images 161 

of 1024x1024 pixels (6 horizontal and 4 vertical divisions, with an overlapping of 213 px in vertical and 192 px in 162 

horizontal). Thus, the dataset used to train and validate the Mask R-CNN consists of 288 sub-images, split into training and 163 

validation as shown in Table 1. Horizontal flipping data augmentation was used to increase the number of training images. 164 

The learning rate was set to 0.001, with a learning momentum of 0.9 and a weight decay of 0.0001. This dataset and the 165 

corresponding annotations have been made publicly available at www.grap.udl.cat/en/publications/datasets.html (Fuji-SfM 166 

dataset).  167 

Table 1. Dataset configuration. 168 

Mask R-CNN training - validation 
Raw image size Sub-image size   
5184 x 3456 px 1024x1024 px   
Training  Validation  No. of fruits (annotated) 
231 sub-images 57 sub-images 1749   
 
Data for 3D point cloud generation 
Raw image size No. of images  
5184 x 3456 px 582 (291 per row side)  
  
3D data    
No. of trees No. of fruits Training Test 
11  1455  3 trees 8 trees 

 169 

2.2.2. 3D point cloud generation 170 

To reconstruct the 3D information from the multiple 2D images, a classical multi-view SfM technique based on bundle 171 

adjustment (Triggs et al., 2000) was employed in each row side. This approach aims to simultaneously determine the 172 

structure (3D coordinates of scene points) and the calibration parameters of each of the cameras that minimize the total 173 

reprojection error. 174 

In particular, Agisoft Professional Photoscan software was employed to perform the 3D reconstruction (v1.4, Agisoft 175 

LLC, St. Petersburg, Russia). The specific software configuration parameters set are detailed in Appendix A, Table A1. 176 

The three main steps followed to generate the 3D point cloud are:  177 

http://www.grap.udl.cat/en/publications/datasets.html


 
 

a. Feature matching: where correspondences between points across different images are computed. 178 

b. Camera estimation: using the previous correspondences, camera parameters and locations are estimated for 179 

each image. 180 

c. Dense reconstruction: camera parameters are used to project 2D image points into their corresponding 3D 181 

locations. 182 

The relationship between 2D image points and 3D locations is described following a pinhole camera model. Let 𝑥𝑥 be a 183 

representation of a 3D point in homogeneous coordinates (a 4-dimensional vector), and let 𝑝𝑝 be a representation of the 2D 184 

image of this point in the pinhole camera (a 3-dimensional vector in homogenous coordinates). Then, the relation between 185 

them can be expressed as: 186 

 𝑝𝑝 = 𝐶𝐶𝑖𝑖 · 𝑥𝑥 , (1) 

where 𝐶𝐶𝑖𝑖 is the 3x4 camera matrix that represents the intrinsic (matrix 𝐾𝐾) and extrinsic (matrix [𝑅𝑅𝑖𝑖  𝑇𝑇𝑖𝑖]) camera parameters 187 

for camera 𝑖𝑖: 188 

 𝐶𝐶𝑖𝑖 = 𝐾𝐾 [𝑅𝑅𝑖𝑖  𝑇𝑇𝑖𝑖] , (2) 

 189 

In our case, as all images were taken with the same camera, intrinsic camera parameters are shared between all images 190 

(no 𝑖𝑖 subindex in matrix 𝐾𝐾). Extrinsic parameters, on the other hand, are different for each image. Thus, rotation matrices 191 

𝑅𝑅𝑖𝑖 and translational vectors 𝑇𝑇𝑖𝑖 are defined for each image and related to the first image of the dataset (camera 𝑖𝑖 = 0 uses 192 

𝑅𝑅0 = 𝐼𝐼 and 𝑇𝑇0 = [0 0 0]).  193 

Fig. 5a represents the 3D point cloud generated using original RGB images. This point cloud was manually annotated, 194 

placing rectangular bounding boxes around each apple (Fig. 5b). A total of 1455 apples were annotated in the point cloud, 195 

which is similar to the total number of apples manually counted in the orchard (1444 apples). The small difference between 196 

the number of annotations and the number of apples counted in the orchard can be attributed to human error during fruit 197 

counting. Annotated 3D bounding boxes were used as ground truth to evaluate the performance of the system in Section 198 

3.2. 199 

By using a mask in the original images ‒obtained with the trained Mask R-CNN described in Section 2.2.1‒ only the 200 

apples (not the entire trees) are reconstructed in Fig. 5c. Using masked images was desirable to only reconstruct the 3D 201 

model of the objects of interest (apples) and to reduce the computational time. As the 3D reconstruction stage is scale 202 

invariant, a set of known markers (depicted in Fig. 5d) separated by 85 cm were used to scale the resulting 3D point cloud 203 

to a real-world scale. 204 



 
 

 205 

Fig. 5. a) Illustration of the 3D point cloud obtained using original RGB images. Yellow rectangles show the positions where reference markers were 206 
placed. b) Annotated point cloud with 3D rectangular bounding boxes placed around each apple. c) Apples 3D point cloud obtained using masked images. 207 
d) Illustration of reference markers used to scale the resulting 3D point cloud. 208 

2.2.3. Projection of 2D detections onto 3D point cloud 209 

Although SfM photogrammetry with masked images allows generation of the 3D model of only the objects of interest 210 

(apples), the resulting point cloud should be clustered in groups of 3D points per apple (3D apple detections) to count and 211 

locate detected fruits.  212 

Knowing the intrinsic camera parameters (matrix K), as well as the pose and orientation of all images (matrix [Ri Ti]), 213 

2D image detections were projected onto the 3D point cloud using the pinhole camera model (Eqs. (1) and (2)). The main 214 

issues to deal with during these projections were: (1) identification of objects (apples) behind detections; (2) unification of 215 

detections of an object detected from different photos.  216 

Fig. 6 illustrates the steps carried out to perform the 2D to 3D projection, showing an example with two images taken 217 

from different positions. To assist visualization, Fig. 6a shows a small region of the scanned scene and Fig. 6b shows the 218 

3D model obtained applying SfM photogrammetry with masked images. In Fig. 6c, detections from image 1 (img1) were 219 

projected onto the 3D point cloud. Due to the position of the camera with respect to the scene, an apple was occluded 220 

behind the green detection. In consequence, after projecting the 2D green detection, the detected and the occluded apples 221 

were clustered within the same group of 3D points (plotted in green in the 3D model of Fig. 6c). To identify objects behind 222 

a detection, a connected components labelling was applied to each 3D projection using the density-based scan algorithm 223 

DBSCAN (Ester et al., 1996). The minimum distance between connected points was set to 3 cm. If more than one group of 224 

connected points were found in a 3D detection, only the nearest (to the camera) was selected. Comparing Fig. 6c and Fig. 225 



 
 

6d, it can be observed how the apple behind the green detection was released after applying DBSCAN. Having the 226 

detections of img1 in the 3D point cloud, the next image (img2) was processed. Detections from img2 that presented an 227 

overlap higher than 50% (IoU > 0.5) with previously detected apples were identified and unified (Fig. 6e), and new 228 

detections with no overlap with previous detections or with IoU < 0.5 were projected onto the 3D point cloud (Fig. 6f). The 229 

process was repeated for all the images used to generate the 3D point cloud. 230 

In order to reduce the number of false positives, a linear support-vector-machine (SVM) was trained to identify and 231 

remove false positive detections. This SVM was fed using 4 features per detection: 232 

• Number of points P that contain a 3D detection. 233 

• Detection volume V.  234 

• Detection density δ = 𝑉𝑉
𝑃𝑃
 . 235 

• Geometric feature 𝛹𝛹 = 27 · λ1𝑛𝑛 · λ2𝑛𝑛 ·  λ3𝑛𝑛, where [λ1𝑛𝑛, λ2𝑛𝑛, λ3𝑛𝑛] are the normalized eigenvalues (so that 236 

λ1𝑛𝑛 + λ2𝑛𝑛 + λ3𝑛𝑛 = 1), obtained applying singular value decomposition (SVD) on the 3D points of a detection. 237 

The applied coefficient of 27 allows 𝛹𝛹 to be bounded between 0 and 1, with 1 being for spherical detections.  238 

The graphical representation of these features is shown in Appendix B, Fig. B 1. In order to train this SVM, 3 trees (out 239 

of 11) containing a total of 434 apples were used as the training dataset. The result of identifying and removing false 240 

positive detections can be observed in Fig. 6g, where the blue detection has been removed.  241 

 242 

Fig. 6. Projection of 2D detections onto 3D point cloud. a) Data acquisition. b) 3D model obtained using structure-from-motion with segmented images. c) 243 
Projection of detections from image 1 (img1) onto the 3D point cloud. d) Identification of apples behind detections. e) Identification of apples appearing in 244 
a new image that were previously detected in other images. f) Projection of a new detection (coloured in purple) from image 2 (img2). g) False positive 245 
removal. 246 



 
 

 247 

3. Results 248 

This section evaluates the fruit detection performance both in the 2D images and in the 3D point cloud. Instance 249 

segmentation results are reported in terms of recall (𝑅𝑅), precision (𝑃𝑃), F1-score and average precision (𝐴𝐴𝑃𝑃) (Zhang and 250 

Zhang, 2009), considering as true positives detections with a ground truth mask overlap higher than 50% (IoU > 0.5). 251 

Similarly, the 3D fruit detection results are assessed in terms of detection rate (𝐷𝐷𝑅𝑅), recall (𝑅𝑅), precision (𝑃𝑃), false positive 252 

rate (𝐹𝐹𝑃𝑃𝑅𝑅), muti-detection rate (𝑀𝑀𝐷𝐷𝑅𝑅), and F1-score, as follows: 253 

𝐷𝐷𝑅𝑅 = 𝐿𝐿𝐿𝐿
𝑇𝑇  , (3) 

𝑅𝑅 = 𝑇𝑇𝑃𝑃
𝑇𝑇  , (4) 

𝑃𝑃 = 𝑇𝑇𝑃𝑃
𝐿𝐿  , (5) 

𝐹𝐹𝑃𝑃𝑅𝑅 = 𝐹𝐹𝑃𝑃
𝐿𝐿  , (6) 

𝑀𝑀𝐷𝐷𝑅𝑅 = 𝑀𝑀𝐿𝐿
𝐿𝐿  , (7) 

𝐹𝐹1 = 2 𝑅𝑅·𝑃𝑃
𝑅𝑅+𝑃𝑃 , (8) 

where 𝑇𝑇 is the total number of fruits in the dataset, 𝐷𝐷 is the number of detections, 𝐿𝐿𝐷𝐷 is the number of labels detected 254 

(annotations bounding boxes detected), 𝑇𝑇𝑃𝑃 is the number of true positives (detection with a ground truth overlap higher 255 

than 50%), 𝐹𝐹𝑃𝑃 is the number of false positives (detection with a ground truth overlap lower than 50%), and 𝑀𝑀𝐷𝐷 is the 256 

number of multi-detections produced when a single apple is detected multiple times.  257 

3.1. 2D detection results  258 

Table 2 presents instance segmentation results after training Mask R-CNN during 18 epochs (number of epochs not 259 

presenting overfitting). Results show an AP of 0.8599, and an F1-score of 0.8573. Although the best balance between P and 260 

R was achieved with a confidence threshold of 0.9, all detections classified as “apple” (confidence level > 0.5) where used 261 

for the 3D point cloud generation. This is because an increase of false positives (lower precision) is not as critical as 262 

decreasing the recall, since to build the 3D model an object has to be seen in, at least, two different images. Then, false 263 

positive objects that are only detected in one image will be automatically removed when applying SfM photogrammetry.  264 

  



 
 

Table 2. Instance segmentation results at different confidence levels. Best F1-score result is in bold type. 265 

Confidence R P F1 
0.5 0.8779 0.7622 0.8160 
0.55 0.8746 0.7737 0.8211 
0.6 0.8746 0.7840 0.8268 
0.65 0.8729 0.7991 0.8344 
0.7 0.8680 0.8117 0.8389 
0.75 0.8663 0.8242 0.8447 
0.8 0.8663 0.8333 0.8495 
0.85 0.8647 0.8465 0.8555 
0.9 0.8597 0.8569 0.8583 
0.95 0.8399 0.8761 0.8576 
AP 0.8599   

Fig. 7 shows 6 selected images from the validation dataset and the corresponding fruit detections, allowing a qualitative 266 

evaluation of instance segmentation results. As can be observed, most of the apples were successfully detected, including 267 

highly occluded or shadowed ones. In addition, Mask-RCNN masked correctly the pixels belonging to an apple, even when 268 

apples were visually split by branch or leaves, which is of interest to generate the 3D model of only apples when applying 269 

SfM. It was also observed that some of the detections reported as false positive were actually apples miss-annotated due to 270 

human error when labeling (pink rectangles in Fig. 7 b-d,f). Other false positives were wrong detections at the image 271 

borders, in parts of the image presenting a similar pattern to apples (red rectangles in Fig. 7 b-d), or multi-detections (blue 272 

rectangles in Fig. 7 a,e-f). As for the apples not detected, it can be seen that false negatives (yellow rectangles in Fig. 7 a-273 

b,e) were apples cut at the image borders, highly occluded and/or small apples. To overcome the increase of false positives 274 

and negatives at image borders, a certain overlap between sub-images was considered when splitting the original image into 275 

sub-images (Section 2.2.1). Thus, detection failures at image borders did not affect the performance of the 3D model.  276 



 
 

 277 

Fig. 7. Selected examples of instance segmentation results to show correct detections (colour masks), false positives due to network failures (red 278 
rectangles), false positives due to miss-annotated apples (pink rectangles), false positives due to multi-detections (blue rectangles), and false negatives 279 
(yellow rectangles). For each capture, the original sub-image (left) and the corresponding detections (right) are shown. 280 

3.2. 3D location results 281 

This section evaluates quantitatively and qualitatively the performance of the proposed methodology for 3D fruit 282 

detection and location. Table 3 presents the detection rates achieved in the training (3 trees, 434 apples) and test (8 trees, 283 

1021 apples) datasets. Results show a high detection rate (DR=0.991) with low false detections (FDR=0.037). However, 284 

because some apples were clustered in a unique detection (as shown in Fig. 9) and due to the presence of multi-detections 285 

(MDR=0.106), the recall and precision decreased to 0.906 and 0.857, respectively, which represents an F1-score of 0.881. 286 

Table 3. 3D fruit detection and location results from training and test datasets. 287 

  DR R P FDR MDR F1-score 

Training dataset 0.984 0.905 0.881 0.038 0.081 0.893 

Test dataset 0.991 0.906 0.857 0.037 0.106 0.881 



 
 

For yield prediction, the percentage of detected fruits and false positives is not as important as having a high correlation 288 

between the number of detections (𝐷𝐷 = 𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 + 𝑀𝑀𝐷𝐷) and the actual number of fruits in the trees (𝑇𝑇) (Linker, 2017). 289 

Fig. 8 illustrates the correspondence between 𝐷𝐷 and 𝑇𝑇 in all trees of the dataset (11 trees). Results show the existence of a 290 

linear correlation between these variables, presenting a coefficient of determination of R2=0.80 and a root mean square 291 

deviation of 6.42% of fruits.  292 

 293 

Fig. 8. Linear regression between the number of detections (D) and the actual number of fruits per tree (T). 294 

For a qualitative evaluation, the reader is referred to inspect an interactive 3D visualization of the test scene and the 295 

corresponding fruit detections by opening the following link in a web-browser: 296 

http://www.grap.udl.cat/documents/photogrammetry_fruit_detection.html. Using the side menu, the reader can either 297 

visualize the scanned scene, the 3D point cloud of the apples obtained using SfM with masked images, or the apple 298 

detections obtained after 2D-3D projection and false positive removal steps.  299 

The obtained point cloud showed higher 3D data precision compared with data provided by other sensors used for fruit 300 

detection, such as LiDAR or depth-cameras (Gené-Mola et al., 2019a, 2019b; Gongal et al., 2016; Nguyen et al., 2016; Tao 301 

and Zhou, 2017; Williams et al., 2019). Moreover, most of the apples were correctly detected, identifying the 3D points 302 

that belong to each apple. The presence of false positives is almost non-existent (FDR=0.037), while most of the multi-303 

detections appeared in apples seen from both sides of the row of trees, when the detection from one side did not overlap 304 

sufficiently (they were not unified) with the detection from the other tree side. In contrast, as shown in Fig. 9, some groups 305 

of apples were unified in a single detection, which explains the difference between the detection rate and the recall values 306 

reported in Table 3. This is because when two apples were detected in a single detection, only one true positive is counted 307 

to compute the recall metric. 308 

http://www.grap.udl.cat/documents/photogrammetry_fruit_detection.html


 
 

 309 

Fig. 9. Illustration of 3D fruit detection and location results from the test dataset: a) 3D visualisation of the scanned scene. b) Test scene with coloured 310 
fruit detections. A zoom view is shown to assist the visualization of the detections in the first tree of the dataset. Black circles show two examples where 311 
two apples were unified in a single detection. The reader is referred to the following link for an interactive 3D visualization of test fruit detection results: 312 
http://www.grap.udl.cat/documents/photogrammetry_fruit_detection.html  313 

4. Discussion 314 

This paper proposes a combination of instance segmentation neural networks and SfM for fruit detection and 3D 315 

location. By projecting 2D segmentation masks onto the 3D point cloud, results showed an increase of 2.8% in recall (from 316 

0.878 to 0.906), 9.5% in precision (from 0.762 to 0.857) and 6.5% in F1-score (from 0.816 to 0.881). This difference could 317 

be even larger because 2D instance segmentation results were evaluated with respect to the number of visible fruits in the 318 

images –since it was not possible to estimate the number of occluded fruits in the 2D images–, while the 3D fruit detection 319 

was evaluated with respect to the total number of fruits in the tree. The use of SfM helped to increase the detection rate 320 

because of the multi-view approach of this technique. As stated by Hemming et al. (2014), due to the unstructured 321 

environment of orchards most fruits are partially/fully occluded from a single viewpoint, and thus multi-view imaging 322 

increases fruit detectability. When using multi-view imaging, an image registration is necessary to not double-count apples 323 

appearing in different images. In this work, this registration was automatically done by projecting 2D detections onto the 324 

3D point cloud; even so, results showed a 10.6% multi-detection rate. Other authors have proposed similar approaches: 325 

Gongal et al. (2016) reported an error of 21.1% when identifying duplicate apples by projecting 2D image detections onto 326 

3D models from RGB-D sensors, while Stein et al. (2016) used the 3D point cloud acquired from LiDAR-based sensors to 327 

identify multi-detections, although they did not assess the performance of this multi-detection identification. Using SfM not 328 

http://www.grap.udl.cat/documents/photogrammetry_fruit_detection.html


 
 

only helped to increase the detection rate, but also decreased the number of false detections, because, to build the 3D point 329 

cloud, an object has to be detected in at least two different images, but the same false positive is not likely to be detected in 330 

two different images. Then, false positives only detected in one image were automatically removed. This fact, combined 331 

with the use of an SVM to identify false positives, explains the increase of 11.9% in precision, from 0.762 (2D image 332 

detections) to 0.881 (3D detections).  333 

Although it is difficult to compare results from different datasets, our implementation of Mask R-CNN (F1-334 

score=0.8583) performed similarly to other state-of-the-art fruit detection works based on deep convolutional neural 335 

networks, which reported F1-score values between 0.73 and 0.97 (Koirala et al., 2019). Mask R-CNN is not as fast as other 336 

object detection networks used for fruit detection ‒ such as YOLO (Redmon and Farhadi, 2018; Tian et al., 2019) ‒, but it 337 

has the advantage of providing segmentation masks for each detection, which is necessary in our application to obtain the 338 

proper 3D location when projecting 2D detections onto the 3D point cloud. As for the 3D apple location performance, few 339 

works have provided 3D detection rates with respect to the total amount of fruits in trees. For instance, Stein et al. (2016) 340 

reported a good correlation (R2=0.9) between the number of fruits detected and the actual number of fruits in the trees, but 341 

the methodology was not assessed in terms of precision, recall and F1-score (or similar metrics). Tao and Zhou (2017) 342 

reported a similar 3D detection performance to that of our methodology (F1-score = 0.921), but they tested the system on a 343 

smaller dataset of 59 apples. Finally, comparing the presented methodology with respect to other computer vision systems 344 

used in fruit harvesting robots, our system performed well compared to most of those presented in Bac et al. (2014) and 345 

Williams et al. (2019), which reported detection rates below 85%. However, the presented methodology is not suitable for 346 

harvesting robots because it cannot work at real-time due to the computationally-intensive processing of SfM (Wang et al., 347 

2019). Nevertheless, the evolution of computing hardware and the development of efficient algorithms could overcome this 348 

limitation in the future. 349 

 Finally, from a qualitative/visual analysis of the 3D data, the point cloud obtained using SfM presented a higher 350 

precision compared with other sensors used for 3D fruit location, such as LiDAR-based and depth cameras (Gené-Mola et 351 

al., 2019a; Nguyen et al., 2016; Tao and Zhou, 2017). This suggests that the methodology could potentially be used to 352 

measure fruit size, which, combined with the good correlation between the number of fruit detections and the number of 353 

total fruits in the tree, would allow computation of fruit load in weight (yield estimation).  354 



 
 

5. Conclusions 355 

This work proposes the combination of instant segmentation neural networks and structure-from-motion (SfM) for apple 356 

detection and 3D location. Due to the multi-view approach on which SfM is based, results showed a small number of fruit 357 

occlusions compared with other fruit detection systems, reporting a detection rate of 99.1%. However, 8.5% of the apples 358 

were grouped in detections with more than one apple, with the result that the recall rate decreased to 0.906. Another 359 

advantage of using SfM was the reduction of false positives. Since SfM only generates the 3D model of those objects 360 

appearing in, at least, two different images, false positives only detected in one image were automatically discarded. This 361 

false positive reduction from SfM, combined with the use of a support vector machine to identify false positive detections, 362 

produced an increase in the precision metric from 0.762 (2D image detections) to 0.857 (3D detections). 3D location results 363 

reported an F1-score of 0.881 with respect to the total amount of fruit on the trees, with the conclusion that the proposed 364 

methodology performs well compared to other state-of-the-art 3D fruit location systems. The main disadvantage of this 365 

methodology is that, due to the computationally-intensive operations of SfM, it cannot process the data in real-time, which 366 

is an important limitation for its application in harvesting robots. However, the evolution of computing hardware and the 367 

development of efficient algorithms could overcome this issue in the future. The dataset and the corresponding annotations 368 

have been made publicly available, being the first dataset for 3D photogrammetric fruit detection and location. Due to the 369 

high spatial precision obtained with SfM and the good correlation between the number of detections and the actual number 370 

of fruits in the tree (R2=0.8), future works should extend the methodology to measure fruit size and, consequently, perform 371 

fruit yield estimations. 372 
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Appendix A. Parameter values used for 3D point cloud generation 383 

Table A1. Configuration set to perform the 3D reconstruction using Agisoft Professional Photoscan (v1.4, Agisoft LLC, St. Petersburg, 384 
Russia). 385 

Step Parameter Configuration set Description 

Camera 
alignment 

Accuracy High Images used in original size 
Key point limit 100000 Upper limit of feature points per image 
Tie point limit 10000 Upper limit of matching points per image 

Dense 
cloud 

Quality Medium Images downscaled by factor of 16 (4 times per side) 
Depth filtering Mild Filter used to sort out outliers 

 386 

Appendix B. False positive feature analysis 387 

  

Fig. B 1 Graphical representation of apple detection features. The features analysed are the volume, number of points, the geometric parameter Ψ, and the 388 
detection point density δ. False positives are represented in red crosses; true positives are represented in blue diamonds. This analysis was performed on 389 
the training data set and was used to train the SVM for false positives identification (explained in Section 2.2.3). 390 
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