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Summary

In this paper we numerically analyse a phase-lag model with two temperatures which

arises in the heat conduction theory. The model is written as a linear partial differen-

tial equation of third order in time. The variational formulation, written in terms of

the thermal acceleration, leads to a linear variational equation, for which we recall an

existence and uniqueness result and an energy decay property. Then, using the finite

element method to approximate the spatial variable and the implicit Euler scheme

to discretize the time derivatives, fully discrete approximations are introduced. A

discrete stability property is proved, and a priori error estimates are obtained, from

which the linear convergence of the approximation is derived. Finally, some one-

dimensional numerical simulations are described to demonstrate the accuracy of the

approximation and the behaviour of the solution.
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1 INTRODUCTION

Problems involving thermal effects are usually analyzed using the Fourier heat conduction theory. However, when we adjoin

this relation with the usual energy equation

c �̇ + div q = 0, c > 0, (1)

we obtain that the heat waves are propagated instantaneously. This is a drawback of the model because the infinite speed of

propagation is not compatible with basic axioms of physics. In the previous equation, q = (qi) is the heat flux vector, � is the

temperature, c is the thermal capacity and a dot over the function denotes its time derivative. To overcome this inconvenience,

several alternative proposals have been considered for the propagation of heat. The most known brings to the hyperbolic damped

equation proposed by Cattaneo and Maxwell2, which eliminates this drawback. Green and Nagdhi9,10,11 also proposed three

thermoelastic theories, where the heat conduction is described in alternative forms by means of the constitutive variables.

In 1995, Tzou15,16 suggested another theory where the heat flux and the gradient of the temperature have a delay in the

constitutive equations, which are given by

qi(x, t + �1) = −k2�,i(x, t + �2), k2 > 0, (2)

where �1 > 0 and �2 > 0 are the delay parameters. As usual, the notation �,i means the derivative of � with respect to the variable

xi, and repeated subscripts mean summation. This equation suggests that the temperature gradient established across a material

volume at position x and time t + �2 results in a heat flux to flow at a different time t + �1. These delays can be understood
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in terms of the microstructure of the material. This theory has several derivations when the heat flux and the gradients of the

temperature and the thermal displacement are replaced by Taylor approximations.

Unfortunately, the proposal of Tzou leads to ill-posed problems in the sense of Hadamard. It can be shown that combining

equation (2) with the energy equation (1) implies the existence of a sequence of elements in the point spectrum with real parts

tending to infinity7. At the same time, Tzou’s theory is not compatible with the basic axioms of thermomechanics8. This suggests

that this theory cannot be accepted nor from the mathematical point of view neither from the thermomechanical point of view.

To obtain a heat conduction theory with delays but without such an explosive behaviour, Quintanilla13 combined the delay

parameters of Tzou with the two-temperatures theory proposed by Chen and Gurtin3,4,5,17. The basic constitutive equation reads

qi(x, t + �1) = −k2T,i(x, t + �2),

where � = T −aΔT , being T and a the inductive temperature and a positive constant, respectively. This heat conduction theory

was studied by Quintanilla and Jordan14. However, it seems very complicated to study it directly and it is usual to consider

several approximations using Taylor developments. In this paper, we consider the following approximations:

q(x, t + �1) ≈ q(x) + �1q̇(x) +
�2
1

2
q̈(x),

T (x, t + �2) ≈ T (x) + �2Ṫ (x).

(3)

It is worth recalling that the field equation obtained with these approximations has been studied recently in12. In particular, the

exponential stability of solutions was proved when 2�2 > �1. The numerical study corresponding to this problem will be the aim

of this paper, providing a fully discrete algorithm for the approximation of the variational formulation of the problem, proving

a discrete stability property and an error estimates result, and performing some numerical simulations.

The paper is outlined as follows. The mathematical model is described in Section 2 following Magaña et al. 12, deriving

its variational formulation and recalling an existence and uniqueness result and an energy decay property proved by the same

authors. Then, in Section 3 a numerical scheme is introduced, based on the finite element method to approximate the spatial

domain and the backward Euler scheme to discretize the time derivatives. A discrete stability property is proved, a discrete

version of the energy decay property is shown, a priori error estimates are deduced for the approximative solutions and, under

suitable regularity assumptions, the linear convergence of the algorithm is obtained. Finally, some one-dimensional numerical

simulations are presented in Section 4.

2 THE MATHEMATICAL MODEL AND ITS VARIATIONAL FORMULATION:
EXISTENCE AND UNIQUENESS

In this section, we describe the model and the conditions on the given data, we provide its variational formulation and we recall

an existence and uniqueness result and an energy decay property (see12 for details).

Let Ω ⊂ ℝ
d , d = 1, 2, 3, be the thermal domain, assumed to be bounded, and denote by [0, Tf ], Tf > 0, the time interval of

interest. The boundary of the body Γ = )Ω is assumed to be Lipschitz, with outward unit normal vector � = (�i)
d
i=1

. For the

sake of simplicity, we assume that the temperature is zero on the whole boundary Γ (i.e. null Dirichlet boundary conditions are

used). Moreover, let x ∈ Ω and t ∈ [0, Tf ] be the spatial and time variables, respectively. In order to simplify the writing, we

do not indicate, in general, the dependence of the functions on x and t.

Let us denote by T (x, t) the inductive temperature (from now on, simply “the temperature”) of the body at point x ∈ Ω and

time t ∈ [0, Tf ].

Following12 and assuming that the body is isotropic and homogeneous, we set the following thermal problem.

Problem P. Find the temperature T ∶ Ω × [0, Tf ] → ℝ such that

c(Ṫ − aΔṪ ) + c�1(T̈ − aΔT̈ ) + c
�2
1

2
(
...
T − aΔ

...
T ) = k2(ΔT + �2ΔṪ ) in Ω × (0, Tf ), (4)

T (x, t) = 0 for a.e. x ∈ Γ, t ∈ [0, Tf ], (5)

T (x, 0) = T0(x), Ṫ (x, 0) = v0(x), T̈ (x, 0) = �0(x) for a.e. x ∈ Ω. (6)
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Remark 1. We note that, proceeding as in the next section, we could also analyse the second model proposed in12, replacing

partial differential equation (4) by the following

c(T̈ − aΔT̈ ) + c�1(
...
T − aΔ

...
T ) = k1ΔT + �4ΔṪ + k2�2ΔT̈ in Ω × (0, Tf ).

However, we skip the details for the sake of simplicity.

In order to obtain the variational formulation of Problem P, let Y = L2(Ω), H = [L2(Ω)]d and denote by (⋅, ⋅)Y and (⋅, ⋅)H the

respective scalar products in these spaces, with corresponding norms ‖ ⋅ ‖Y and ‖ ⋅ ‖H . Moreover, let us define the variational

space E as follows,

E = {z ∈ H1(Ω) ; z = 0 on Γ},

with respective scalar product (⋅, ⋅)E and norm ‖ ⋅ ‖E .

By using Green’s formula and defining the thermal velocity v = Ṫ and the thermal acceleration � = T̈ , we obtain the

variational formulation of Problem P.

Problem VP. Find the thermal acceleration � ∶ [0, Tf ] → E such that �(0) = �0, and, for all � ∈ E and for a.e. t ∈ (0, Tf ),

c(v(t), �)Y + ca(∇v(t),∇�)H + c�1(�(t), �)Y + c�1 a(∇�(t),∇�)H + c
�2
1

2
(�̇(t), �)Y

+c
�2
1

2
a(∇�̇(t),∇�)H + k2(∇T (t),∇�)H + k2�2(∇v(t),∇�)H = 0, (7)

where the temperature T and the thermal velocity v are obtained from the respective equations

v(t) =

t

∫
0

�(s) ds + v0, T (t) =

t

∫
0

v(s) ds + T0. (8)

Problem VP was studied and the following result, which states the existence of a unique solution and an energy decay property,

was proved in12.

Theorem 1. Let the assumptions

c > 0, a > 0, �1 > 0, �2 > 0, k2 > 0, T0, v0, �0 ∈ H2(Ω) (9)

hold. Therefore, Problem VP has a unique solution � with the following regularity

� ∈ C1([0, Tf ];H
2(Ω)).

Moreover, if

2�2 − �1 > 0 (10)

then the energy given by

E(t) =
1

2

{
‖T (t) + �1v(t) +

�2
1

2
�(t)‖2

Y
+ k2(�1 + �2)

(
‖∇T (t)‖2

H
+ a‖ΔT (t)‖2

Y

)
+ k2�

2
1
(∇T (t),∇v(t))H

+
k2�

2
1
�2

2

(
‖∇v(t)‖2

H
+ a‖Δv(t)‖2

Y

)
+ ak2�

2
1
(ΔT (t),Δv(t))Y

}

decays exponentially; i.e. there exist ! > 0 and M > 0 such that

E(t) ≤ ME(0)e−!t, t ≥ 0.

3 FULLY DISCRETE APPROXIMATIONS: AN A PRIORI ERROR ANALYSIS

In this section, we introduce a finite element algorithm for approximating solutions to variational problem VP. This is done in

two steps. First, we consider the finite element space Eℎ ⊂ E given by

Eℎ = {�ℎ ∈ C(Ω) ; �ℎ|T r
∈ P1(T r) ∀ T r ∈  ℎ, �ℎ = 0 on Γ}, (11)
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where Ω is assumed to be a polyhedral domain,  ℎ denotes a triangulation of Ω, and P1(T r) represents the space of polynomials

of global degree less or equal to 1 in T r. Here, ℎ > 0 denotes the spatial discretization parameter. Moreover, we assume that the

discrete initial conditions, denoted by T ℎ
0

, vℎ
0

and �ℎ
0

, are given by

T ℎ
0
= ℎT0, vℎ

0
= ℎv0, �ℎ

0
= ℎ�0, (12)

where ℎ is the classical finite element interpolation operator over Eℎ (see, e.g.,6).

Secondly, the time derivatives are discretized by using a uniform partition of the time interval [0, Tf ], denoted by 0 = t0 <

t1 < … < tN = Tf , and let k be the time step size, k = Tf∕N . Moreover, for a continuous function f (t) let fn = f (tn) and, for

the sequence {zn}
N
n=0

, we denote by �zn = (zn − zn−1)∕k its corresponding divided differences.

Using the classical backward Euler scheme, the fully discrete approximation of Problem VP is the following.

Problem VPℎk. Find the discrete thermal acceleration �ℎk = {�ℎk
n
}N
n=0

⊂ Eℎ such that �ℎk
0

= �ℎ
0

and, for all �ℎ ∈ Eℎ and

n = 1,… , N ,

c(vℎk
n
, �ℎ)Y + ca(∇vℎk

n
,∇�ℎ)H + c�1(�

ℎk
n
, �ℎ)Y + c�1a(∇�

ℎk
n
,∇�ℎ)H + c

�2
1

2
(��ℎk

n
, �ℎ)Y

+ca
�2
1

2
(∇��ℎk

n
,∇�ℎ)H + k2(∇T

ℎk
n
,∇�ℎ)H + k2�2(∇v

ℎk
n
,∇�ℎ)H = 0, (13)

where the discrete temperature and the discrete thermal velocity are then recovered from the relations

vℎk
n

= k

n∑

j=1

�ℎk
j

+ vℎ
0
, T ℎk

n
= k

n∑

j=1

vℎk
j

+ T ℎ
0
. (14)

The classical Lax-Milgram lemma allows to prove that discrete problem VPℎk admits a unique discrete solution. Therefore,

the aim of the section is to provide its numerical analysis.

We have the following discrete stability result.

Lemma 1. Under the assumptions of Theorem 1, it follows that the sequences {T ℎk, vℎk, �ℎk} generated by Problem VPℎk

satisfy the stability estimate:

‖�n‖2Y + ‖∇�n‖2H + ‖vn‖2Y + ‖∇vn‖2H + ‖Tn‖2Y + ‖∇Tn‖2H ≤ C,

where C is a positive constant which is independent of the discretization parameters ℎ and k.

Proof. For the sake of clarity in the writing of this proof, we remove the superscripts ℎ and k in all the variables.

Taking �ℎ = �n as a test function in discrete variational equation (13) we have

c(vn, �n)Y + ca(∇vn,∇�n)H + c�1(�n, �n)Y + c�1 a(∇�n,∇�n)H + c
�2
1

2
(��n, �n)Y

+c
�2
1

2
a(∇��n,∇�n)H + k2(∇Tn,∇�n)H + k2�2(∇vn,∇�n)H = 0.

Thus, keeping in mind that

(��n, �n)Y ≥ 1

2k

{
‖�n‖2Y − ‖�n−1‖2Y

}
,

(∇��n,∇�n)H ≥ 1

2k

{
‖∇�n‖2H − ‖∇�n−1‖2H

}
,

(vn, �n)Y ≥ 1

2k

{
‖vn‖2Y − ‖vn−1‖2Y

}
,

(∇vn,∇�n)H ≥ 1

2k

{
‖∇vn‖2H − ‖∇vn−1‖2H

}
,

we obtain
1

2k

{
‖�n‖2Y − ‖�n−1‖2Y

}
+

1

2k

{
‖∇�n‖2H − ‖∇�n−1‖2H

}
+

1

2k

{
‖vn‖2Y − ‖vn−1‖2Y

}

+
1

2k

{
‖∇vn‖2H − ‖∇vn−1‖2H

} ≤ C
(
‖∇vn‖2H + ‖∇Tn‖2H

)
.

By induction we find that

‖�n‖2Y + ‖∇�n‖2H + ‖vn‖2Y + ‖∇vn‖2H ≤ Ck

n∑

j=1

(
‖∇vj‖2H + ‖∇Tj‖2H

)

+C
(
‖�0‖2Y + ‖∇�0‖2H + ‖v0‖2Y + ‖∇v0‖2H

)
,
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and so, taking into account that

‖Tn‖2Y ≤ Ck

n∑

j=1

‖vj‖2Y + C‖T0‖2Y ,

‖∇Tn‖2H ≤ Ck

n∑

j=1

‖∇vj‖2H + C‖∇T0‖2H ,

we have

‖�n‖2Y + ‖∇�n‖2H + ‖vn‖2Y + ‖∇vn‖2H + ‖Tn‖2Y + ‖∇Tn‖2H

≤ Ck

n∑

j=1

(
‖∇vj‖2H + ‖vj‖2Y

)
+ C

(
‖�0‖2Y + ‖∇�0‖2H + ‖v0‖2Y + ‖∇v0‖2H + ‖T0‖2Y + ‖∇T0‖2H

)
.

Finally, the desired stability estimates are a straightforward consequence of the application of a discrete version of Gronwall’s

inequality (see, e.g.,1).

Now, we have a discrete version of the energy decay property.

Lemma 2. Under the assumptions of Theorem 1, if we define the discrete energy Eℎk
n

in the following form:

Eℎk
n

=
1

2

{
c‖T ℎk

n
+ �1v

ℎk
n

+
�2
1

2
�ℎk
n
‖2
Y
+ ca‖∇T ℎk

n
+ �1∇v

ℎk
n

+
�2
1

2
∇�ℎk

n
‖2
H
+ k2(�1 + �2)‖∇T ℎk

n
‖2
H

+k2�2
�2
1

2
‖∇vℎk

n
‖2
H
+ k2

�2
1

2
(∇T ℎk

n
,∇�ℎk

n
)H

}
,

(15)

then it decays, i.e.
Eℎk

n
− Eℎk

n−1

k
≤ 0.

Proof. In order to simplify the writing of the calculations, we define the discrete function

T̃ ℎk
n

= T ℎk
n

+ �1v
ℎk
n

+
�2
1

2
�ℎk
n
.

Taking wℎ = T̃ ℎk
n

as a test function in discrete variational equation (13), it follows that

c

2k

(
‖T̃ ℎk

n
‖2
Y
− ‖T̃ ℎk

n−1
‖2
Y

)
+

ca

2k

(
‖∇T̃ ℎk

n
‖2
H
− ‖∇T̃ ℎk

n−1
‖2
H

)
+ k2(∇T

ℎk
n
,∇T̃ ℎk

n
)H + k2�2(∇v

ℎk
n
,∇T̃ ℎk

n
)H ≤ 0,

where we use vℎk
n

+ �1�
ℎk
n

+
�2
1

2
��ℎk

n
= �T̃ ℎk

n
.

Taking into account that

(∇T ℎk
n
,∇T̃ ℎk

n
)H ≥ �1

2k

{
‖∇T ℎk

n
‖2
H
− ‖∇T ℎk

n−1
‖2
H

}
+

�2
1

2
(∇T ℎk

n
,∇�ℎk

n
)H ,

(∇vℎk
n
,∇T̃ ℎk

n
)H ≥ 1

2k

{
‖∇T ℎk

n
‖2
H
− ‖∇T ℎk

n−1
‖2
H

}
+

�2
1

4k

{
‖∇vℎk

n
‖2
H
− ‖∇vℎk

n−1
‖2
H

}
,

after easy algebraic manipulations we obtain the decay of the discrete energy.

Now, we obtain the following a priori error estimates result.

Theorem 2. Under the assumptions of Theorem 1, if we denote by (T , v, �) and (T ℎk, vℎk, �ℎk) the respective solutions to

problems VP and VPℎk, then we have the following a priori error estimates, for all �ℎ = {�ℎ
j
}N
j=0

⊂ Eℎ,

max
0≤n≤N

{
‖�n − �ℎk

n
‖2
Y
+ ‖∇(�n − �ℎk

n
)‖2

H
+ ‖∇(vn − vℎk

n
)‖2

H
+ ‖vn − vℎk

n
‖2
Y
+ ‖Tn − T ℎk

n
‖2
Y
+ ‖∇(Tn − T ℎk

n
)‖2

H

}

≤ Ck

N∑

j=1

(
‖�j − �ℎ

j
‖2
Y
+ ‖∇(�j − �ℎ

j
)‖2

H
+ ‖�̇j − ��j‖2Y + ‖∇(�̇j − ��j)‖2H + ‖v̇j − �vj‖2Y + ‖∇(v̇j − �vj)‖2H + I2

j

)

+C max
0≤n≤N ‖�n − �ℎ

n
‖2
Y
+

C

k

N−1∑

j=1

‖�j − �ℎ
j
− (�j+1 − �ℎ

j+1
)‖2

Y
+ C max

0≤n≤N ‖∇(�n − �ℎ
n
)‖2

H
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+
C

k

N−1∑

j=1

‖∇(�j − �ℎ
j
− (�j+1 − �ℎ

j+1
))‖2

H
+ C

(
‖�0 − �ℎ

0
‖2
Y
+ ‖∇(�0 − �ℎ

0
)‖2

H
+ ‖v0 − vℎ

0
‖2
Y
+ ‖∇(v0 − vℎ

0
)‖2

H

+‖∇(T0 − T ℎ
0
)‖2

H
+ ‖T0 − T ℎ

0
‖2
Y

)
, (16)

where Ij denotes the integration error defined by

Ij =

‖‖‖‖‖‖‖

tj

∫
0

∇v(s) ds − k

j∑

l=1

∇vl

‖‖‖‖‖‖‖H
,

and C is a positive constant which is independent of the discretization parameters ℎ and k.

Proof. First, we subtract variational equation (7) at time t = tn for a test function � = �ℎ ∈ Eℎ ⊂ E and discrete variational

equation (13) to obtain, for all �ℎ ∈ Eℎ,

c(vn − vℎk
n
, �ℎ)Y + ca(∇(vn − vℎk

n
),∇�ℎ)H + c�1(�n − �ℎk

n
, �ℎ)Y

+c�1 a(∇(�n − �ℎk
n
),∇�ℎ)H + c

�2
1

2
(�̇n − ��ℎk

n
, �ℎ)Y + k2(∇(Tn − T ℎk

n
),∇�ℎ)H

+c
�2
1

2
a(∇(�̇n − ��ℎk

n
),∇�ℎ)H + k2�2(∇(vn − vℎk

n
),∇�ℎ)H = 0,

and therefore, we find that

c(vn − vℎk
n
, �n − �ℎk

n
)Y + ca(∇(vn − vℎk

n
),∇(�n − �ℎk

n
))H + c�1(�n − �ℎk

n
, �n − �ℎk

n
)Y

+c�1 a(∇(�n − �ℎk
n
),∇(�n − �ℎk

n
))H + c

�2
1

2
(�̇n − ��ℎk

n
, �n − �ℎk

n
)Y

+k2(∇(Tn − T ℎk
n
),∇(�n − �ℎk

n
))H + c

�2
1

2
a(∇(�̇n − ��ℎk

n
),∇(�n − �ℎk

n
))H

+k2�2(∇(vn − vℎk
n
),∇(�n − �ℎk

n
))H

= c(vn − vℎk
n
, �n − �ℎ)Y + ca(∇(vn − vℎk

n
),∇(�n − �ℎ))H + c�1(�n − �ℎk

n
, �n − �ℎ)Y

+c�1 a(∇(�n − �ℎk
n
),∇(�n − �ℎ))H + c

�2
1

2
(�̇n − ��ℎk

n
, �n − �ℎ)Y

+k2(∇(Tn − T ℎk
n
),∇(�n − �ℎ))H + c

�2
1

2
a(∇(�̇n − ��ℎk

n
),∇(�n − �ℎ))H

+k2�2(∇(vn − vℎk
n
),∇(�n − �ℎ))H .

Keeping in mind that

(�̇n − ��ℎk
n
, �n − �ℎk

n
)Y ≥ (�̇n − ��n, �n − �ℎk

n
)Y +

1

2k

{
‖�n − �ℎk

n
‖2
Y
− ‖�n−1 − �ℎk

n−1
‖2
Y

}
,

(∇(�̇n − ��ℎk
n
),∇(�n − �ℎk

n
))H ≥ (∇(�̇n − ��n),∇(�n − �ℎk

n
))H +

1

2k

{
‖∇(�n − �ℎk

n
)‖2

H
− ‖∇(�n−1 − �ℎk

n−1
)‖2

H

}
,

(vn − vℎk
n
, �n − �ℎk

n
)Y ≥ (vn − vℎk

n
, v̇n − �vn)Y +

1

2k

{
‖vn − vℎk

n
‖2
Y
− ‖vn−1 − vℎk

n−1
‖2
Y

}
,

(∇(vn − vℎk
n
),∇(�n − �ℎk

n
))H ≥ (∇(vn − vℎk

n
),∇(v̇n − �vn))H +

1

2k

{
‖∇(vn − vℎk

n
)‖2

H
− ‖∇(vn−1 − vℎk

n−1
)‖2

H

}
,

it follows that, for all �ℎ ∈ Eℎ,

1

2k

{
‖�n − �ℎk

n
‖2
Y
− ‖�n−1 − �ℎk

n−1
‖2
Y

}
+

1

2k

{
‖∇(�n − �ℎk

n
)‖2

H
− ‖∇(�n−1 − �ℎk

n−1
)‖2

H

}

+
1

2k

{
‖vn − vℎk

n
‖2
Y
− ‖vn−1 − vℎk

n−1
‖2
Y

}
+

1

2k

{
‖∇(vn − vℎk

n
)‖2

H
− ‖∇(vn−1 − vℎk

n−1
)‖2

H

}

≤ C

(
‖vn − vℎk

n
‖2
Y
+ ‖∇(vn − vℎk

n
)‖2

H
+ ‖�n − �ℎk

n
‖2
Y
+ ‖∇(�n − �ℎk

n
)‖2

H

+‖�n − �ℎ‖2
Y
+ ‖∇(�n − �ℎ)‖2

H
+ ‖�̇n − ��n‖2Y + ‖∇(�̇n − ��n)‖2H

+‖v̇n − �vn‖2Y + ‖∇(v̇n − �vn)‖2H + ‖∇(Tn − T ℎk
n
)‖2

H

+(��n − ��ℎk
n
, �n − �ℎ)Y + (∇(��n − ��ℎk

n
),∇(�n − �ℎ))H

)
,

where we used several times Cauchy’s inequality

ab ≤ �a2 +
1

4�
b2, for alla, b, � ∈ ℝ, with� > 0,
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and the notations �vn = (vn − vn−1)∕k and ��n = (�n − �n−1)∕k, and we recall that �ℎk
n

= �vℎk
n

and vℎk
n

= �T ℎk
n

.

Therefore, by induction it leads

‖�n − �ℎk
n
‖2
Y
+ ‖∇(�n − �ℎk

n
)‖2

H
+ ‖vn − vℎk

n
‖2
Y
+ ‖∇(vn − vℎk

n
)‖2

H

≤ Ck

n∑

j=1

(
‖vj − vℎk

j
‖2
Y
+ ‖∇(vj − vℎk

j
)‖2

H
+ ‖�j − �ℎk

j
‖2
Y
+ ‖∇(�j − �ℎk

j
)‖2

H

+‖�j − �ℎ
j
‖2
Y
+ ‖∇(�j − �ℎ

j
)‖2

H
+ ‖�̇j − ��j‖2Y + ‖∇(�̇j − ��j)‖2H

+‖v̇j − �vj‖2Y + ‖∇(v̇j − �vj)‖2H + ‖∇(Tj − T ℎk
j
)‖2

H

+(��j − ��ℎk
j
, �j − �ℎ

j
)Y + (∇(��j − ��ℎk

j
),∇(�j − �ℎ

j
))H

)

+C
(
‖�0 − �ℎ

0
‖2
Y
+ ‖∇(�0 − �ℎ

0
)‖2

H
+ ‖v0 − vℎ

0
‖2
Y
+ ‖∇(v0 − vℎ

0
)‖2

H

)
.

Finally, taking into account that

k

n∑

j=1

(��j − ��ℎk
j
, �j − �ℎ

j
)Y =

n∑

j=1

(�j − �ℎk
j

− (�j−1 − �ℎk
j−1

), �j − �ℎ
j
)Y

= (�n − �ℎk
n
, �n − �ℎ

n
)Y + (�ℎ

0
− �0, �1 − �ℎ

1
)Y

+

n−1∑

j=1

(�j − �ℎk
j
, �j − �ℎ

j
− (�j+1 − �ℎ

j+1
))Y ,

k

n∑

j=1

(∇(��j − ��ℎk
j
),∇(�j − �ℎ

j
))H

= (∇(�n − �ℎk
n
),∇(�n − �ℎ

n
))H + (∇(�ℎ

0
− �0),∇(�1 − �ℎ

1
))H

+

n−1∑

j=1

(∇(�j − �ℎk
j
),∇(�j − �ℎ

j
− (�j+1 − �ℎ

j+1
)))H ,

‖∇(Tn − T ℎk
n
)‖2

H
≤ C

(
I2
n
+

n∑

j=1

k‖∇(vj − vℎk
j
)‖2

H
+ ‖∇(T0 − T ℎ

0
)‖2

H

)
,

where we recall that In is the integration error defined previously, using the above estimates and a discrete version of Gronwall’s

inequality (see, again,1) we conclude the proof.

We note that estimates (16) are the basis to obtain the convergence order of the approximations given by Problem VPℎk.

Therefore, as an example, if we assume the following additional regularity

T ∈ C2([0, Tf ];H
2(Ω)) ∩H3(0, Tf ;E), (17)

using the classical results on the approximation by finite elements (see, e.g.,6) we have the following result.

Corollary 1. Let the assumptions of Theorem 2 hold. Under the additional regularity (17) it follows that the approximations

obtained by Problem VPℎk are linearly convergent; that is, there exists a positive constant C , independent of the discretization

parameters ℎ and k, such that

max
0≤n≤N

{
‖�n − �ℎk

n
‖E + ‖vn − vℎk

n
‖E + ‖Tn − T ℎk

n
‖E

} ≤ C(ℎ + k).

4 NUMERICAL SIMULATIONS

In this final section, we describe the numerical scheme implemented in MATLAB for solving discrete problem VPℎk, and we

show some numerical examples to demonstrate the accuracy of the approximations and the behaviour of the solutions.
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Let Eℎ be the finite element space defined in (11) and n = 1, 2,… , N. Given �ℎk
n−1

, eℎk
n−1

, �ℎk
n−1

∈ Eℎ, the discrete thermal

acceleration �ℎk
n

for Problem VPℎk is obtained from equation (13), that is, we solve the following linear problem, for all �ℎ ∈ Eℎ,

ck2(�ℎk
n
, �ℎ)Y + cak2(∇�ℎk

n
,∇�ℎ)H + c�1k(�

ℎk
n
, �ℎ)Y + c�1ak(∇�

ℎk
n
,∇�ℎ)H + c

�2
1

2
(�ℎk

n
, �ℎ)Y

+ca
�2
1

2
(∇�ℎk

n
,∇�ℎ)H + k2k

3(∇�ℎk
n
,∇�ℎ)H + k2�2k

2(∇�ℎk
n
,∇�ℎ)H

= c
�2
1

2
(�ℎk

n−1
, �ℎ)Y + ca

�2
1

2
(∇�ℎk

n−1
,∇�ℎ)H − cak(∇vℎk

n−1
,∇�ℎ)H − ck(vℎk

n−1
, �ℎ)Y − k2k(∇T

ℎk
n−1

,∇�ℎ)H

−k2k
2(∇vℎk

n−1
,∇�ℎ)H − k2�2k(∇v

ℎk
n−1

,∇�ℎ)H .

The discrete temperature and the discrete thermal velocity are then recovered from the relations:

vℎk
n

= k�ℎk
n

+ vℎk
n−1

, T ℎk
n

= k2�ℎk
n

+ kvℎk
n−1

+ T ℎk
n−1

.

The above numerical scheme was implemented using MATLAB on a Intel Core i7 − 3337U @ 2.20GHz and a typical run

(1000 step times and 1000 nodes) took about 0.979 seconds of CPU time.

4.1 Numerical convergence for the approximation of Problem P

In order to show the numerical convergence, we will consider the following academic problem.

Problem P ex. Find the temperature T ∶ [0, 1] × [0, 1] → ℝ such that

Ṫ − Ṫxx + 5(T̈ − T̈xx) +
25

2
(
...
T −

...
T xx) = 2(ΔT + 3Ṫxx) + F in (0, 1) × (0, 1),

T (0, t) = T (1, t) = 0 for a.e. t ∈ (0, 1),

T (x, 0) = Ṫ (x, 0) = T̈ (x, 0) = x(x − 1) for a.e. x ∈ (0, 1),

where the artificial volume force F is given by

F (x, t) = et
5

2
(x2 − x − 2).

We note that Problem Pex corresponds to Problem P with the following data:

Ω = (0, 1), Tf = 1, k2 = 2, �1 = 5, �2 = 3, a = 1, c = 1,

and the initial conditions:

T0(x) = v0(x) = �0(x) = x(x − 1) for x ∈ (0, 1).

The exact solution to Problem Pex is the following:

T (x, t) = etx(x − 1) for all (x, t) ∈ (0, 1) × (0, 1).

The numerical errors given by

max
0≤n≤N

{
‖�n − �ℎk

n
‖E + ‖vn − vℎk

n
‖E + ‖Tn − T ℎk

n
‖E

}
,

and obtained with different discretization parameters ℎ and k, are depicted in TABLE 1 . The convergence of the algorithm is

clearly found. Moreover, the evolution of the error depending on ℎ + k is plotted in FIGURE 1 . We observe that the linear

convergence stated in Corollary 1 is achieved.

If we assume now that there are not volume forces, and we use the final time Tf = 5, the following data

Ω = (0, 1), k2 = 2, �1 = 0.3, �2 = 0.2, a = 1, c = 1

and the initial conditions

T0(x) = x(x − 1) for x ∈ (0, 1), v0 = �0 = 0,

taking the discretization parameters ℎ = k = 10−3, the evolution in time of the discrete energy Eℎk
n

, defined in (15), is plotted

in FIGURE 2 in both natural (left) and semi-log (right) scales. As can be seen, it converges to zero and an exponential decay

seems to be achieved.



NOELIA BAZARRA ET AL 9

ℎ ↓ k → 0.01 0.005 0.002 0.001 0.0005 0.0002 0.0001

1∕23 0.5129493 0.5131588 0.5133687 0.5134525 0.5134970 0.5135245 0.5135338

1∕24 0.2546921 0.2545361 0.2546299 0.2546910 0.2547270 0.2547504 0.2547584

1∕25 0.1281855 0.1269754 0.1268024 0.1268294 0.1268558 0.1268756 0.1268828

1∕26 0.0665330 0.0641768 0.0633975 0.0632941 0.0632958 0.0633096 0.0633159

1∕27 0.0373524 0.0332942 0.0319545 0.0317141 0.0316372 0.0316212 0.0316248

1∕28 0.0250363 0.0186773 0.0163810 0.0159838 0.0158627 0.0158158 0.0158059

1∕29 0.0207857 0.0125074 0.0088742 0.0081922 0.0079935 0.0079238 0.0079090

1∕210 0.0195690 0.0103769 0.0055511 0.0044371 0.0040963 0.0039832 0.0039619

1∕211 0.0192518 0.0097669 0.0043203 0.0027748 0.0022181 0.0020249 0.0019911

1∕212 0.0191716 0.0096078 0.0039493 0.0021589 0.0013866 0.0010685 0.0010109

1∕213 0.0191515 0.0095678 0.0038504 0.0019729 0.0010777 0.0006260 0.0005337

TABLE 1 Example 1: Numerical errors for some ℎ and k.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

FIGURE 1 Example : Asymptotic constant error.

4.2 Example 2: dependence on the diffusion parameter k2

As a second example, we will analyse the dependence on the diffusion parameter k2. Thus, we use the following data:

Ω = (0, 1), Tf = 1, a = 1, �1 = 1, �2 = 4, c = 1,

and the initial conditions:

T0(x) = x(x − 1) for x ∈ (0, 1), v0 = �0 = 0.

Using the discretization parameters ℎ = k = 0.001, in FIGURE 3 we plot the thermal velocity (left) and the thermal acceler-

ation (right) at final time for some values of parameter k2. As can be seen, the solutions increase when the parameter decreases

and they have a quadratic behaviour as expected. Moreover, the solution tends to zero when parameter k2 becomes large.

Finally, in FIGURE 4 the temperature is shown at final time for those values of parameter k2. Now, the solutions are closer

for the different values and they have a similar shape.

4.3 Example 3: comparison with the dual-phase-lag model

As a final example, we will compare the solution with that obtained for the usual dual-phase-lag model (that is, when we assume

a = 0). Thus, we use the following data:

Ω = (0, 1), Tf = 1, k2 = 3, �1 = 1, �2 = 4, c = 1,
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FIGURE 2 Example 1: Evolution in time of the discrete energy in natural (left) and semi-log (right) scales.
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FIGURE 3 Example 2: Thermal velocity and thermal acceleration at final time for different diffusion parameters.

and the initial conditions:

T0(x) = x(x − 1) for x ∈ (0, 1), v0 = �0 = 0.

Using the discretization parameters ℎ = k = 0.001, we plot the thermal velocity (left) and the thermal acceleration (right) at

final time in FIGURE 5 for two values of parameter a. As can be seen, the thermal velocity increases when the diffusion parameter

a is not neglected although both velocities are positive and they have a quadratic behaviour. Instead, the thermal accelerations

are really different, being quadratic and negative the solution corresponding to the dual-phase-lag case, and positive that one

corresponding to the case with viscous diffusion.

Finally, in FIGURE 6 the temperature is shown at final time for these values of parameter a. We can see that both solutions

almost coincide.
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FIGURE 4 Example 2: Temperature at final time for different diffusion parameters.
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FIGURE 5 Example 3: Thermal velocity and thermal acceleration at final time for two values of viscous diffusion parameter a.
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