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Abstract— The proper sequencing and optimal loading of 

chillers is one of the major avenues for energy efficiency 

improvement in existing heating, ventilating and air conditioning 

installations. The main enabler for the success of such 

applications is the access to accurate chiller performance maps 

that allow to operate the equipment in optimal conditions. 

However, current solutions are excessively reliant on maps 

obtained through suboptimal means, such as manufacturer 

datasheets, extensive instrumentation campaigns or burdensome 

modelling and simulation methodologies. Furthermore, recent 

studies show that strategies based on model-predictive control 

may lead to increased savings by anticipating the future cooling 

de- mand and scheduling the operation of the chillers, selecting 

the optimal operation configuration and ex- tending the 

remaining life by reducing switching. In this regard, this study 

presents a novel data-driven and multi-criteria chiller 

orchestration strategy that combines a chiller performance 

characterization stage for obtaining performance maps based on 

a neural network-based learning methodology and a state-of- the-

art hybrid load forecasting scheme for calculating the future load 

profiles. The effectiveness of the proposed methodology is tested 

with experimental data from a multi-chiller installation in a 

tertiary sec- tor building, where nearly a 20% average 

performance increase is achieved compared to the standard real-

time controller of the HVAC installation. 

Keywords—chiller scheduling, deep learning, demand-side 

management, model-predictive control, optimal chiller loading. 

1. INTRODUCTION 

Heating, Ventilating and Air Conditioning (HVAC) 
systems are one of the main energy consumers in buildings, 
accounting for up to 40% of their total energy consumption [1] 
. Naturally, HVAC systems have become a target of study that 
currently represents a great deal of scientific effort f or the 
reduction of energy consumption and preservation of resources 
[2] . Two main avenues are possible for tackling this problem, 
either by implementing strategies for reducing power demand, 
or by improving the efficiency of the involved energy systems. 
On the avenue of improving energy efficiency, production 
equipment such as chillers are one of the areas that present the 
greatest potential for improvement [3] since these are one of 
the largest consumers in buildings, especially in the residential 
and tertiary sector where they can account for up to 40% of the 
building’s energy consumption [4] . This is especially true in 
multi-chiller plants commonly found in medium to large 
buildings, where proper chiller loading and coordination is 
critical for increasing efficiency, and achieving an optimal 
control solution is of great interest with many studies 
attempting to tackle this issue with a variety of methods [5]. 
The potential for improvement is due to the fact the Coefficient 
of Performance (COP) of production equipment is not uniform 
throughout their operation range, meaning that differences in 
the control strategy of multi-chiller systems can lead to 
significant changes in the energy consumption result [ 6 , 7 ]. 
Indeed, a recent study concluded that up to 70% of the annual 
power consumption occurred while the chillers were operating 
at low Partial Load Ratio (PLR) which is the range were the 
coefficient of performance of chillers is typically at its lowest 

[8] , while a study evaluating ideal operation levels concluded 
there was a potential for improvement of up to 23.4% [9] . 
Thus, a strategy able to optimally control the chillers’ operation 
has the potential to increase the operational efficiency of the 
overall system, minimizing the energy consumption by 
ensuring that each machine operates at its optimal COP while 
considering the affecting operating state, like weather 
conditions, inlet temperature from the distribution bus and 
future load demand. 

A. Literature review 

The chiller sequencing and optimal loading problems refer 
to the necessity to find a strategy for coordinating the operation 
of a group of chillers in order to meet the cooling demand 
while minimizing energy consumption, in terms of the loading 
ratio of each chiller [10] and the sequence at which they should 
be turned on or off according to the cooling load requirements 
[11] . A thorough review of the related state-of-the-art reveals 
that this is a complex problem having several facets that need 
to be carefully considered in order to achieve a performant 
solution. The main key aspects identified are: (i) the need of 
chiller performance characterization; (ii) the objective function 
of the controller and (iii) the choice of optimization strategy 
and implementation. Regarding the chiller performance 
characterization, chiller sequencing and optimal loading 
methodologies rely on the capability of mapping control 
actions to expected performance in or- der to select the chiller’s 
settings that lead to their operation at optimal COP, given a set 
of operating conditions [12] . The most common approach in 
recent methodologies is the utilization of manufacturer-
provided datasheets that specify the performance ac- cording to 
specific operating conditions or the simulation and modeling of 
the equipment using software tools like TRNSYS [13] . For 
example, performance data obtained from datasheet lookup 
tables were employed for implementing a predictive HVAC 
controller based on a mixed-integer approach, which has the 
down- side of providing only static figures and not considering 
all affecting parameters [14]. Instead, a study focused on the 
determination of a probabilistic approach for chiller 
replacement discussed the utilization of simulation compared 
to other methods, concluding that these could be viable for 
energy estimation if calibrated using measured data [15] . Even 
though the employment of such solutions in control 
applications is useful for research purposes, in practice, it is 
essential to have performance maps that accurately reflect the 
actual behavior of the equipment considering the multiple 
affecting factors besides the PLR, such as weather conditions, 
operating state and aging. In contrast, a methodology for 
optimizing the operation of a chiller plant employed a data-
driven approach based on the modeling of the chiller group 
using a neural network and the implementation of a two-level 
algorithm, which allowed to achieve energy savings of 14% 
under simulation [16]. Another key aspect of the problem is the 
selection of a proper objective function for the optimization 
process. The de facto standard objective function is based on 
the aggregate power consumption of the group of chillers, 
being a useful strategy when the minimization of the used 
energy is the ultimate goal of the solution [13]. However, the 
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need to tackle other concerns indicate that a multi-objective 
strategy may be preferred. In particular, some studies make 
reference to the switching problem, which can be described as 
the frequency and magnitude of changes to the relevant control 
settings. An application of real-time HVAC optimization 
looked into minimizing the disturbances caused by controller 
actions, comparing rate-limited setpoint reset to controlled 
step- changes [17]. The conclusions reflect that frequent 
changes to control variables may lead to system instability, 
especially when simultaneous and having large magnitude, thus 
showing that in practice limiting the amount of changes and 
moderating their delta is desirable. Furthermore, another 
argument for considering the minimization of switching is that 
increased control changes may lead to energy losses and faster 
equipment degradation due to the dynamics of the equipment 
and their mechanical wear [18]. Finally, when suitable 
performance maps are available and an appropriate objective 
function is determined, an optimization algorithm needs to be 
applied to carry out the control of the group of chillers in an 
efficient manner. Mainly two types of methodologies can be 
found on the literature, i) generic global optimization tools and 
ii) specific heuristics-based controller implementations. 
Generic global optimization tools are common in chiller 
control applications, a study of air-cooled chillers optimal 
control used random forests to implement an empirical model 
of the chillers and then applied generic algorithms to carry out 
the estimation of the optimal values of the control parameters 
[19]. 

Similarly, particle swarm optimization was employed to 
adjust the control parameters of a water-cooled chiller plant, 
simulated using Modelica models adjusted using empirical data 
in [20] . However, controller implementations of this type are 
slow and have a randomness component, thus both their results 
and runtime are undeterministic by nature. Instead, other 
researchers have focused on the design of control algorithms 
that implement specific heuristics, making the controllers more 
computationally efficient and robust, which is a desirable 
property of the system even though the global optimum may 
not consistently be achieved by this means [21]. 

B. Innovative contribution 

In consideration of the described shortcoming in the state of 
the art solutions for the chiller loading and sequencing 
problem, this research proposes a novel methodology for the 
optimal control of chiller groups by combining data-driven 
performance map modeling of the chillers and a thermal 
demand forecasting method- ology in order to implement a 
multi-objective model-predictive controller. Specifically, the 
originality of this work consists on the following key aspects of 
the developed control strategy: i The integration of data-driven 
COP maps of the involved equipment, defining their 
performance depending on their operating conditions and 
considering several affecting factors (multi- variate approach); 
ii The integration of a short-term forecasting model of the 
building’s future thermal demand, considering affecting factors 
such as the weather and the building’s occupancy patterns, to 
pro- vide accurate and reliable demand requirements to the 
optimization stage; iii The consideration of the thermal 
dynamics of the building, taking advantage of the distribution 
system’s thermal capacity, re- calculating and adjusting their 
operating setpoints for scheduling the operation over the time 
horizon; iv The definition of a strategy considering multiple 
criteria for the determination of the optimal control sequence of 
the chillers, including the minimization of energy usage and 
switching. 

C. Paper organization 

This paper is organized as follows. Section 2 present an 
overview of the energy system models employed, specifically 
the modeling of the performance of HVAC equipment and the 
forecasting of cooling demand. Section 3 defines the 
optimization problem formulation and presents the proposed 
control strategy, focusing on the implementation of the control 
algorithm that optimizes the sequencing and loading of the 
chillers by taking advantage of the performance map and future 
load. Section 4 describes the facility that was used as test 
environment. Section 5 shows the experimental results that 
were obtained from the implementation of the proposed control 
strategy in the test environment. Finally, the conclusions of this 
work are presented and discussed in Section 6. 

2. ENERGY MODELLING 

For the development and implementation of this study, two 
kinds of energy models are employed: i) performance model of 
the HVAC equipment, used for estimating the expected power 
characteristics at a given environment conditions and control 
actions, and ii) load forecasting model, used for predicting the 
future cooling needs of the building. This section describes the 
motivation behind the selection of these models based on the 
modeling requirements and explains their implementation. 

 

2.1. Performance modeling of HVAC equipment 

A wide range of energy management strategies is 
dependent on the availability of HVAC information related to 
the operational performance of production equipment for the 
implementation of applications such as maintenance and 
control solutions [22, 23]. An important reduction of the 
operating costs through the optimal use of energy resources can 
be accomplished by these functionalities [24], but their success 
relies on operating performance data being accessible [25]. 
Recent studies have adopted a variety of approaches with the 
objective of incorporating equipment operating performance 
maps in their solutions. Nevertheless, the process of 
implementing models that can be interpreted in order to 
estimate the power characteristics of the equipment when 
subjected to a control input and a set of state variables is still a 
challenging problem [26]. Solutions based around 
manufacturer-provided data, though being common in control 
applications, face issues relating to lack of accessibility, a 
mismatch between the standardized testing conditions and the 
real operating environment [27], lack of comprehensive 
consideration of the affecting variables and insufficient 
granularity [28]. An- other set of solutions is based on 
simulation tools, which support the accurate modelling of 
equipment contingent on the knowledge of the machine’s 
physical equations, proper tuning of their parameters to achieve 
sufficient reliability [29] and requiring the participation of 
domain experts for their usage [30]. Furthermore, these 
approaches do not reflect the current state of operation, which 
is bound to drift from the initial parameters due to faults and 
aging during the system’s lifecycle [31]. Accordingly, data-
driven approaches have received an attention increase due to 
their capacity to offer general solutions that can provide 
suitable results regardless of the type of equipment and 
complexity of the installation, supporting the extraction of non- 
linear relationships between signals [16]. Neural network-
based methods are a common solution, as corroborated by a 
review of modeling methods for HVAC systems which shows 
several related applications [32]. However, coming up with 
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reduced and generic sets of variables that allow the 
characterization of the performance in all cases is not feasible, 
which requires the methodology to be able to consider a large 
set of influencing variables [33]. Thus, deep learning methods, 
in particular, are especially well suited to solve this problem 
due to their capacity for feature learning [34]. 2.1.1. 

Performance modeling implementation A deep neural 
network trained in an unsupervised manner by means of 
stacked sparse autoencoders is an efficient way to dis- cover 
features in the operating behavior of a HVAC production 
installation, allowing the transformation of the data to a latent 
space that can then be mapped to the power characteristics of 
the ma- chines by implementing further supervised learning. 
For the implementation of the performance map models, 
initially a dataset is extracted from the database that stores the 
historical operation of the building’s HVAC equipment, 
including consumed and produced power, control commands, 
state variables and weather conditions. The extracted dataset is 
preprocessed in order to remove gaps caused by acquisition 
interruptions, outlier removal and erroneous readings. Then, an 
unsupervised feature learning stage is implemented using a 
deep autoencoder structure built by iteratively stacking single 
layer autoencoders. This structure is trained to reconstruct the 
input space by means of the following layer-wise pre-training 
strategy: making each layer reconstruct the output of the 
previous layer while constraining the flow of information using 
a sparse unit-activation constraint. After the pre-training of 
each layer, the reconstruction performance variation is 
evaluated by comparing it to the previous layer in order to 
assess whether additional layers should be created. When the 
stacked layers have been obtained, a fine-tuning process further 
improves the reconstruction error by fitting the reconstruction 
problem on the full autoencoder.  

The feature learning stage is completed with the fine-tuning 
step, leading to the supervised training to solve the 
performance mapping problem. In order to map the learned 
features with the desired outputs, the decoder half of the deep 
autoencoder is detached and a different structure which will 
perform the mapping is connected in its place. 

 

Fig. 1. Performance model architecture, composed of the 
encoder stage of an unsupervised deep autoencoder coupled to 
a supervised multiple-layer perceptron. 

First, neural network layers are attached to the feature layer 
of the autoencoder in order to perform the mapping from the 
latent space to the target variables. Then, these additional 
layers are trained in a supervised manner, taking as in- puts the 

autoencoder features in order to learn the relationship be- 
tween the power consumption, production and coefficient of 
performance and the latent space. Finally, the performance map 
is obtained in the form of a deep neural network that is able to 
calculate the expected power consumption, production and 
coefficient of performance for a given set of operating 
conditions. The architecture of the performance map model is 
shown in Fig. 1, where an initial unsupervised feature learning 
is implemented as a deep autoencoder with layer-wise pre-
training, and the supervised mapping is achieved using a 
multiple-layer perceptron with multiple outputs. The variables 
that compose the inputs of the model are the number of active 
compressors, chiller inlet temperature and chiller outlet 
temperature for each chiller, and the outdoor temperature and 
relative humidity. The outputs of the model are the 
instantaneous aggregate electrical power consumption, 
aggregate thermal power production and calculated COP, 
which can be estimated for a given set of state and control 
variables after the model has been trained. 

2.2 Load Forecasting in Buildings 

Load forecasting takes an important role in the prevention 
of energy waste in buildings [35]. Thus, modeling and 
forecasting methodologies able to estimate the future 
consumption have be- come a meaningful concern of 
installation managers because of the useful knowledge that is 
obtainable from them [36] . Significant scientific effort is 
devoted to this topic, as evidenced by the different kinds of 
load forecasting methodologies employed in the literature [37]. 
Data-driven methods in particular are the most widespread 
solution for short-term forecasting applications due to its 
potentially complex dynamics, as indicated by the findings of a 
recent review [38]. However, although abundant 
methodologies exist, mainstream general-purpose load 
forecasting solutions face limitations when applied to HVAC 
systems. These limitations are mainly tied to difficulties 
adapting the forecasts to the load demand variations caused by 
fluctuations in influencing variables like weather conditions or 
the behavior of the building’s occupants throughout the day 
[39] . Indeed, accounting for occupant behavior is suggested to 
be a critical issue for achieving an increase in the degree of 
accuracy when performing load predictions in buildings [40] . 
Some authors indicate that the behavior of users should be a 
key concern in the research pertaining to the use of energy in 
buildings, due to the related potential for improvement 
regarding their energy efficiency [41]. This is supported by 
recent studies, which showcase the impact of occupant 
behavior, confirming there is a meaningful interrelationship 
between the regime changes of the operation of HVAC systems 
and the occupancy of the spaces in a building [42] . 
Nonetheless, there is a lack of user behavior awareness in most 
of the modern load management tools, especially in simulation 
and forecasting methodologies. Additionally, those studies that 
deal with the consideration of occupancy data present crucial 
limitations and inadequate prediction accuracy [43]. To tackle 
this is- sue, proposals have surfaced for considering the 
occupancy data by means of occupant behavior attributes, 
stating that occupancy- based inputs should be considered due 
to their impact to energy consumption [44]. Another issue 
faced by optimization tools and controller implementers is that 
in general current methodologies are mainly aimed at solving 
the problem of energy consumption forecasting when used in 
HVAC systems [45]. Instead, the forecasting of the thermal 
power demand is better suited for supporting automation and 
control systems, which have the potential to benefit greatly 
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from this information, especially at the production stage for 
tackling supply planning concerns [46]. To summarize, the 
implementation of load demand models in the scope of 
buildings having reliable performance but requiring lower 
engineering effort is a complex concern being currently faced 
in installations [47]. 2.2.1. Cooling demand forecasting 
implementation In this study, a suitable thermal power load 
forecasting methodology is required for supporting the model-
predictive control, improving the controller response by 
anticipating power demand changes. The chosen approach is 
based on a data-driven methodology that is particularly well 
suited for this application due to the following key concepts: i) 
it allows the consideration of the thermal power demand of the 
building instead of the electrical power consumption of the 
chillers, allowing the decoupling of the machine performances 
and controller actions from the forecasted demand, and ii) it 
follows a hybrid approach that permits the incorporation of 
variables affecting the thermal power demand and their 
dynamics, specifically the occupant behavior of the building 
[48] . The main steps of the forecasting methodology are 
displayed in Fig. 2. As shown, the required signals are 
extracted from the building’s historical database a), which are 
the signals corresponding to occupancy sensors b) and the 
power monitoring c). After loading the necessary signals, the 
modeling of the occupancy d) takes place, alongside the 
estimation of the thermal demand e) from the load profile of 
the distribution bus 

 

Fig. 2. Cooling power demand modeling methodology for 
short-term forecasting applications in buildings. 

Finally, the modelling of the power demand f) is 
performed, combining the occupancy model and the estimated 
thermal demand. In order to improve the accuracy of the power 
demand forecasting, the methodology incorporates the level of 
activity in the building by implementing an artificial activity 
indicator. This indicator is built by aggregating presence 
detectors installed in each of the individual spaces and 
common areas in the building. Then, an activity model is 
implemented using recurrent neural networks to enhance the 
consideration of dynamic temporal patterns, while the power 
demand characterization is carried out by means of an adaptive 
neuro-fuzzy inference system structure. The activity indicator 
model provides a measure of the future occupancy level, which 
drives the HVAC power. The expected power demand is 

calculated to obtain the final prediction, corresponding to this 
activity and the other influencing variables. In summary, the 
obtained partial models are combined to obtain the load 
forecasting model by the serialized composition of both 
inference systems, with the activity indicator forecast being fed 
to the power demand model to calculate the final prediction. 
Be- sides the activity indicator estimation procedure, the hybrid 
solution adopted in this study offers several advantages over 
traditional approaches. Namely, instead of fitting a single 
model using a general-purpose tool, a collaborative and 
modular structure is employed based on specialized models 
built for the activity and for the power demand. Such solution 
allows to fit and tune each method independently, adapting it to 
the dynamics of each signal and allowing to separately train the 
models with the use of different datasets. 

3. OPTIMIZATION AND CONTROL 

This section describes optimization and control framework. 
First, the mathematical problem formulation is introduced, and 
then the implemented solution is described in detail  

3.1. Optimization problem formulation 

The mathematical formulation of the optimization problem 
can be considered as a multi-period nonlinear problem and it 
can be described as the determination of the optimal operating 
set-points ( v i ) of the HVAC equipment, for each time instant 
t of the optimization horizon, where { t ∈ N | 1 ≤t ≤K } , with 
objective to satisfy the thermal energy demand of the building 
(L), while minimizing a multi-criteria function ( f trans ) and 
satisfying the established bus temperature operating zone in 
order to provide the required comfort level. 

 

Minimize: ∑ ∑ 𝑓𝑗
𝑡𝑟𝑎𝑛𝑠,𝑡(𝑣𝑖

𝑡)𝐶
𝑗=1

𝐾
𝑡=1   (1) 

Subject to: 𝐿𝑡 −∑ (𝑃𝑖
𝑡 ∗ 𝜂𝑖)

𝑛
𝑖=1 = 0  (2) 

 𝑇𝑚𝑖𝑛 ≤ 𝑇𝑡 ≤ 𝑇𝑚𝑎𝑥 (3) 

 ∑ 𝑃𝑖
𝑡𝑛

𝑖=1 ≤ 𝑃𝑚𝑎𝑥
𝑔𝑟𝑖𝑑

  (4) 

 𝑃𝑖 ≤ 𝑃𝑖
𝑡 ∗ 𝜂𝑖 ≤ 𝑃𝑖  (5) 

In the above formulation, C describes the index of the 
optimization criteria, n is an index that describes the number of 
HVAC equipment, T min and T max indicate the lower and 
upper temperature bounds for the distribution bus, while P grid 
max describes the maximum electric power that the installation 
may supply to the cooling equipment, and P i , P i , P i and ηi 
describe the energy consumption, minimum power generation, 
maximum power generation and COP of the equipment i , 
respectively. For the formulation of the multi-objective 
function, the weighted global criterion method has been used, 
in which all the objective criteria are combined to form a single 
criterion. In order to sum the results of each criterion, a unit 
normalization function is made, as described in (6). 

 𝑓𝑗
𝑡𝑟𝑎𝑛𝑠 =

𝑓𝑗(𝑣𝑖) − 𝑓𝑗
𝑜

𝑓𝑗
𝑚𝑎𝑥 − 𝑓𝑗

𝑜  (6) 

Whereas 𝑓𝑗
𝑡𝑟𝑎𝑛𝑠 is described the transformed objective 

function value of criterion 𝑗, and as 𝑓𝑗
𝑜 and 𝑓𝑗

𝑚𝑎𝑥 are the utopia 

point of and maximum objective function values of criterion 𝑗, 
respectively. In this case, the optimization criteria are the 
combination of the maximization of the COP and the 
minimization of the switching cost. The COP metric is defined 
as the quotient between the output and input power, while the 
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switching cost is defined as the sum of differences in 
magnitude of the setpoints considered for each of the machines. 

3.2. Controller implementation  

A step-by-step diagram of the proposed optimization and 
control framework is shown in Fig. 3, which is composed of 
three stacked control loops: 1) operating mode selection, 2) 
predictive control strategy and 3) production profile 
configuration. 

1) Operating mode selection 

This is the inner-most control loop, which relies on the 
performance map obtained by means of the deep learning 
methodology to estimate the cooling capacity, consumption 
and performance of viable setpoints, in order to select the 
optimal control state for the current instant. This stage is 
executed as follows. First, the current operating state is 
evaluated e) by acquiring the signals affecting the control: 
impulsion and return temperatures, external temperature, 
humidity, current cooling demand and previous operating state 
of the group of machines. 

 

Afterwards, the setpoint candidates are determined by 
establishing the possible control actions. This is achieved by 
exhaustive combinatorial of control states of the individual 
machines. For ma- chines having discrete operating modes, the 
full range of modes will be employed, but for machines having 
a continuous operating range this is not possible, so the 
operating range is discretized up to the desired granularity. In 
practice, coarse granularity shall be sufficient, given that 
HVAC equipment cannot be regulated with infinite precision. 
Each combination is then evaluated in conjunction with the 
current operating state in order to determine the equipment’s 
performance f) by feeding it through the performance model. 
The exhaustive evaluation of the full solution space is made 
possible by the modeling approach, which implements the 
evaluation of the model as a series of matrix products and thus 
becomes very efficient. The process of training the 
performance model can be lengthy and take around 20 min, but 
the resulting model can be evaluated with an average runtime 
of 4.2 milliseconds per iteration. This exhaustive evaluation of 
the solution space would re- main feasible even in very large 
installations through partitioning and evaluation in concurrent 
batches. Finally, having obtained the cooling capacity, 
electrical consumption and COP of each control setting, these 
are scored and sorted in order to select the locally optimal 
setpoint g) according to the defined objective function, which 
considers performance and switching cost to apply the new 
setpoint. 

3.2.2. Predictive control strategy  

This loop is proposed to operate on top of the previous one, 
iterating over N steps in the prediction horizon to determine the 
optimal future sequence of control actions that will satisfy the 
fore- casted load demand. Instead of selecting the best 
performing control action as determined in f), the top setpoint 
subset is selected and used as starting setpoint candidates c) 
which are then evaluated using a depth-first algorithm. Each of 
these setpoints is used as the starting point of a control 
sequence evaluated N steps into the future, which shall allow to 
determine which of the starting points leads to the most 
beneficial outcome. This is motivated by the fact that control 
setpoints that are locally optimal for the current control 
iteration may not be globally optimal due to switching to a state 
that is suboptimal, because it might be preventing that more 
efficient states are reached later on. This is likely to happen due 
to the switching being considered in the objective function, 
which penalizes control actions that make drastic changes to 
the setpoints, thus selecting the absolute best control action for 
the next step might lead to suboptimal situations. Therefore, the 
performance of a subset of the top performing candidate 
setpoints is applied over the optimization horizon to evaluate 
the full implications of taking that control action. How- ever, 
this presents one main difficulty: the evaluation of future 
control actions is not possible due to the operating state being 
un- known. The data necessary for evaluating a control setpoint 
using the performance map can be classified into three types:  

- Known future state: part of the future operating state is 
known, i.e. the future cooling demand is obtained from the load 
forecasting model evaluation, and the external temperature and 
humidity can be queried from local weather services. 

 - Unknown future state: state that relates to the operating 
state of the machines, in this case each machine’s inlet and 
outlet temperatures.  

- Control action: the setting of each of the machines in the 
equipment group, which is the optimization variable and is al- 
ways known for the previous control iteration.  

Thus, knowing the future state of bus temperatures is 
required to be able to apply the operating mode control loop 
during future iterations in order to determine the future control 
sequence. To solve this problem, a simulation model of the 
distribution bus is employed, implemented in this case as a first 
order energy storage model with a single capacity coefficient, 
estimated using the historical data available. Using the bus 
model, a control sequence is determined by the described 
depth-first algorithm that iterates from each of the set- point 
candidates, simulating the application of the control action on 
the distribution bus d) while keeping track of the COP achieved 
by each sequence over the optimization horizon. Each of the 
obtained control sequences took locally optimal decisions at 
each iteration according to the objective function, thus finally 
the entire control sequences are evaluated using the objective 
function, which allows the final selection of the predicted 
setpoints h), i.e. the optimal control sequence over the 
optimization horizon for matching the predicted cooling load 
profile.  

3.2.3. Production profile configuration  

The previous loop focused on the determination of the 
optimal control sequence to force the matching between the 
cooling demand and production, however this constraint can be 
relaxed on account of the thermal dynamics of the system. In 
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Equipment 
performance

Setpoint 
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Setpoint 
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simulation

Predicted 
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Base demand 
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b
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Fig. 3. Step diagram of the implementation of the 

proposed three-stage optimization and control framework. 
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order to ensure that the equipment on the consumption stage of 
the HVAC system are able to effectively draw power from the 
distribution bus, production stage controllers focus on 
maintaining the temperature of the bus within a certain range, 
i.e. the goal of the production controller is to keep the 
temperature of the bus between a minimum and maximum 
threshold. Thus, the bus acts as the buffer between the 
production and the consumption stages, but due to the thermal 
dynamics of the building and associated thermal capacity, it 
allows the temporal decoupling of the production and 
consumption equipment, in a similar manner as dedicated 
energy storage equipment would al- low. Therefore, the 
production setpoints can be altered as long as the temperature 
of the bus is kept within the required thresholds, which is a 
property of the system that is proposed to be exploited in order 
to increase the performance. By shifting the load of the 
production equipment in time it is possible to take advantage of 
periods of time where conditions are more favorable, for 
example conditions such as better COP due to affecting 
operating state or varying cost of energy. 

This control stage handles the determination of a 
production profile that shall take advantage of favorable 
production conditions while satisfying the temperature 
constraints. To solve this problem, a common approach is to 
employ global optimization tools like particle swarm 
optimization or genetic algorithm, mainly due to their capacity 
to overcome the non-derivable nature of the problem. 
However, these tools may present robustness issues and could 
be impractical for cases that involve running simulations, 
which makes them inadequate for solving this type of control 
problem [49] . Instead, a heuristics technique is employed 
which searches the possible production profile configuration 
space according to the following approach: i) an initial load 
profile is determined by considering the production uniform 
throughout the control horizon, with a value equal to the 
average load demand in the same period, ii) the maximum and 
minimum production rate that would lead the system to exceed 
the temperature thresholds are computed and used as upper and 
lower bounds, respectively, and iii) the space is binary-
searched up to a predefined amount of iterations. The 
application of the binary search algorithm is especially useful 
because it allows to cover the full solution space while 
choosing a desired precision specified by the number of 
iterations, thus allowing to adjust it depending on the scale and 
requirements of the problem while ensuring that a solution is 
found in deterministic time. This is desirable property in 
control applications and very important in this case due to the 
fact that evaluation of each configuration depends on the 
evaluation of the previous stages which include simulation. 

4. TEST ENVIRONMENT 

For the experimental validation of the proposed 
methodology, data from a real tertiary-sector building has been 
used as a test- bench. The selected building consists of a 3-
floor university cam- pus building that contains offices and 
laboratories, with a total surface of 2.400m 2. The selected 
building is considered a research ecosystem of the Universitat 
Politècnica de Catalunya –BarcelonaTech (Spain), which 
includes an installation of renewable energy sources 
(photovoltaics), several energy production equipment, as well 
as a SCADA system instrumented in detail, permitting to be 
used as a pilot-plant for researches in the field of energy 
efficiency, smart-grids and industrial electronics among others. 
Fig. 4 depicts a 3D representation model of the building’s 

structure, consisting of 2 building blocks of 3 and 1 floors, 
respectively. The HVAC ma- chines that were used for the 
validation of the proposed method- ology are located on the 
upper part the building, on its deck. In terms of heating and 
cooling production equipment, the installation consists of two 
electric chillers, two heat pumps, one gas boiler and two air 
handling units, which manage the energy production, energy 
distribution, pre-conditioning and air-renewal for the building’s 
spaces. The power characteristics of the HVAC are listed in 
Table 1 . The existing controller implemented in the building 
prior to the development of the proposed strategy is a standard 
real-time controller with round-robin production equipment 
allocation. The supervision and control of all of the installation 
is made through a main SCADA system, which monitors the 
operation of the equipment, the condition of the heating and 
cooling distribution bus, as well as the environment conditions, 
such as the weather, the occupancy of the spaces and the 
temperature setpoints configured by occupants. For the 
development and validation of the proposed control strategy, a 
dataset of the equipment’s operation has been acquired by 
recording the operation of the building’s cooling equipment at 
2-minute sampling frequency. The dataset comprises 120 days, 
from May 16th to October 27th of 2017, not including 
weekends. A summary of the acquired signals comprising the 
dataset is presented in Table 2. 

 

TABLE 1 
POWER CHARACTERISTICS OF THE HVAC MACHINES OF THE VALIDATION 

PLANT 

Id Type Pelec [kW] Pthermal [kW] 

CH1 Electric chiller 56.6 150 

CH2 Electric chiller 56.6 150 

HP1 Heat pump 56.7 130 

HP2 Heat pump 66.2 150 

B1 Gas boiler 2 430 

AHU1 Air handling unit 5.5 n/a 

AHU2 Air handling unit 7.5 n/a 

TABLE 2 
SUMMARY OF ACQUIRED SIGNALS FROM THE SCADA SYSTEM 

Name Description 

Text Outdoor temperature 

Hrel Outdoor relative humidity 

Peleci Electrical power consumption of equipment i 

Ptheri Thermal power production of equipment i 

COPi Coefficient of performance of equipment i 

Timpi Bus impulsion temperature of equipment i 

Treti Bus return temperature of equipment i 

Tinc Temperature differential of equipment i 

Ncomp Number of active compressors of equipment i 

 
Fig. 4 3D representation of the pilot plant, highlighting 

the location of the HVAC equipment on the building’s deck 
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5. EXPERIMENTAL RESULTS 

This section shows the implementation of the proposed 
methodology and discusses the obtained experimental results in 
the described test environment. The objective is to demonstrate 
the performance gained by taking advantage of the integration 
of data-driven models with the controller and the effectiveness 
of the developed control strategy in increasing the overall 
energy efficiency. For this purpose, the stages the control 
strategy are applied in steps, showing the effect of each stage 
relative to the base control strategy. Regarding the software 
implementation, all algorithms were developed using Matlab 
R2018b, except for the equipment performance modeling 
which was implemented using the TensorFlow library in 
Python 3.6. The implementation was carried out in a Win- 
dows 10 desktop workstation with an i5-3470 processor and 16 
GB of memory. 

5.1. Operating mode selection 

This stage operates in current time, selecting the best 
operating mode for the next control iteration considering how 
the performance of the equipment is affected by the operating 
conditions. However, since at each control iteration a new 
mode can be selected, this control results in excessive 
commutation, as slight change in the state can lead to another 
mode surpassing its instantaneous performance. To overcome 
this issue, two mitigating actions are considered; first, the 
setpoint candidates are truncated post-evaluation to those 
causing up to a maximum switching cost; second, the control 
frequency is decreased in order to limit the switching.  

The result of operating the group of chillers with this 
strategy is shown in Fig. 5, which shows how the selected 
control modes perform, compared to the base controller. A 
comparison between the results obtained by the application of 
the new controller and the historic behavior of the base 
controller are shown in Fig. 5, where labels marked with an 
asterisk ∗refer to the value of variables with the application of 
the new controller, while others refer to the base controller. As 
it can be observed in the 2-hour time window represented in 
the figure, the result of the application of the new controller is 
similar to the result obtained by the base controller in terms of 
energy production and bus temperature. The accumulated 
production value was reduced by 1.16% in this period, causing 
the bus temperature to become warmer at the end of the period. 
However, the new controller selects operating modes that 
overall are more efficient than the base controller, which is 
unaware of the performance of the equipment. This behavior 
can be consistently observed throughout the day, except for 
periods of time where the base controller selects the optimal 
setpoint by chance, or the switching cost from the current state 
is too great.  

5.2. Predictive control strategy 

This stage considers the determination of control sequence 
that matches the forecasted cooling demand for the prediction 
horizon, in this case of 1 h because it allows to plan control 
actions with sufficient foresight given the dynamics observed 
in the building’s dataset, which are in the range from two to 
three hours. The set- ting of the control action, i.e. operation 
mode of the equipment, is restricted to allow a change every 15 
min to limit the amount of switching, so 4 control points are 
calculated within each control horizon. The improvement that 
this stage offers is based on consider- ing how the selection of 
an operating mode affects the outcome of the complete 
prediction horizon, instead of only the current control step. 

 

Fig. 5. Result of the application of the selected operating 
modes, compared to the operation of the base controller 

The result of the application of this strategy is shows in Fig. 
6, which shows the cumulative average performance of a set of 
initial control setpoint candidates as each one is evaluated over 
the next hour, which is the length of the prediction horizon in 
this case. As it can be observed, setpoints that initially lead to 
the largest instantaneous performance are not necessarily the 
best option once the prediction range is evaluated. For 
example, the operating mode that offers the best COP at the 
start of the prediction horizon leads to lower average 
performance when considering the behavior of the full time 
window than the setpoint that is initially ranked fifth best. This 
behavior is due to the imposed switching constraint which 
discourages drastic changes between operating modes. 
Therefore, this control stages achieves the desired effect, the 
anticipation of favorable and adverse conditions and the 
selection of a predictive control sequence that leads to the best 
average performance. 

5.3. Load profile configuration 

This stage comprises the determination of a better control 
se- quence by reconfiguring the load profile, considering the 
forecasted cooling demand and the operational constraints of 
the distribution bus. Thus, this strategy allows more freedom in 
the determination of the control sequence, since each of the 
selected control points do not need to match the instantaneous 
load, i.e. load shifting is allowed as long as the temperature 
thresholds are not exceeded. 
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Fig. 6. Cumulative average performance of a set of setpoint 
candidates, evaluated over the prediction horizon 

As described, the load profile reconfiguration process 
begins with the determination of the initial control sequence 
profile, and the maximum and minimum production sequences 
that would keep the system operating within thresholds. Then 
these profiles are evaluated and binary search is employed for 
determining the best profile configuration, allowing up to a 
maximum number of iterations. In this case 4 iterations are 
employed, as it is a good compromise between precision and 
computation time. The result of the implementation of this 
profile selection strategy is shown in Fig. 7 where it can be 
observed that different control sequences are evaluated within 
the temperature thresholds. The forecasted cooling demand and 
the base control sequence, which matches in magnitude the 
average demand on each control period, are shown highlighted 
in Fig. 7 a) for the next hour according to the prediction 
horizon, while the other bus load profiles correspond to some 
of the attempted control sequences, having varying magnitudes 
within the ranges from the minimum viable production to the 
base sequence and from the maximum viable production to the 
base sequence. The actual production value is curtailed to 
ensure the bus temperature does not exceed the limits, 
considering that a control action can only be carried out every 
15 min. The simulated bus temperature response when each of 
the control sequences in Fig. 7 a) is applied is shown in Fig. 7 
b). As it can be observed, each simulation begins at the current 
temperature reading, and gets cooler or warmer depending on 
whether the magnitude of the sequence is above or below the 
base control sequence, respectively. The base sequence is 
stabilized at the initial temperature value, with slight 
fluctuations corresponding to the changes in the load, because 
it’s values are calculated to match the average cooling demand 
per control period, while other sequences follow different 
trajectories with varying steepness depending on the magnitude 
of the production. 

5.4. Energy efficiency improvements 

A comparative summary of the results achieved by all three 
control stages is presented in Fig. 8 , which shows a histogram 
of the performance obtained when applying the relevant stage 
over single day periods, for each of the 120 days available in 
the dataset. The experimental results of the application of the 
three-stage control strategy consistently show a performance 
increase through- out the dataset. The application of the first 
controller stage, consisting on the selection of the operating 
mode based on current load demand, achieves an improvement 

of between 3.92% and 17.05% of the COP respective to the 
base controller, with daily average increase of 10.88%, 
surpassing 10% performance increase in a significant part of 
the considered dates. However, there’s cases where this stage is 
unable to achieve such improvements, which is due to the base 
controller already operating on moderately efficient modes, and 
the inability of this stage to realize large improvements due to 
being penalized by the consideration of the switching in the 
cost function. The application of the second stage, supported 
by the usage of the load forecasting capabilities to anticipate 
demand changes, achieves an improvement in the range of 
9.84% to 24.11% respective to the base controller, with an 
average increase of 17.27%. This significant performance 
increase is due to the ability of this stage to consider the future 
control sequence, allowing the selection of control setpoints 
that lead to continued efficient operation while overcoming the 
switching minimization consideration. Finally, the proposed 
control strategy is realized with the incorporation of the third 
stage, the reonfiguration of the load profile to take advantage of 
favorable production conditions by taking ad- vantage of the 
thermal dynamics. The application of the full strategy achieves 
a performance improvement in the range of 12.39% to 24.30% 
respective to the base controller, and an average increase of 
19.54%. As described, the performance gain respective to the 
second stage is not as extensive as when comparing the second 
stage respective to the first one, in part due to the second stage 
already accomplishing a highly efficient control sequence, but 
also due to this installation not including dedicated thermal 
storage. 

 

6. CONCLUSIONS 

This paper introduces a framework for implementing a 
control strategy aimed at solving the optimal loading and 
scheduling problem in HVAC installations. 

The framework is based on the selection of the control se- 
quence that maximizes the performance of the production 
equip- ment in an HVAC installation by driving the machines 
to their most efficient setpoints, supported by the integration of 
data-driven models. A neural network-based model of the 
equipment’s COP be- havior respective to operating conditions 
and implemented using a deep learning approach is used for 
evaluating the response to po- tential setpoint candidates, while 

 

Fig. 7. Result of the application of the selected control 

sequences, compared to the operation of the base sequence 

that matches the averaged forecasting. 
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a model of the building’s thermal load demand considering the 
building occupant’s behavior is used for anticipating the energy 
production requirements. 

The control sequence determination problem is formulated 
as an optimization problem, but finding a solution is a complex 
task, as the problem is not derivable and the exhaustive search 
of the solution space is infeasible. Instead of using a global 
optimization tool, a heuristics-based control method composed 
of three stages is designed and implemented achieving a 
substantial performance increase while maintaining a low and 
most importantly constant computational time. The obtained 
results consistently show a performance increase by the 
implementation of the control strategy, with the complete 
solution achieving a 19.54% daily average COP increase with 
2.68% standard deviation. These results are coherent with the 
efficiency improvement potential inferred by related studies in 
the state- of-the-art literature over current control solutions in 
established HVAC systems. As future work, additional 
optimization criteria could be considered to further fine-tune 
the control sequence, for example the uniform utilization of the 
equipment could be enforced so that all of the machine’s aging 
follows a similar rate, or the variable cost of energy which 
could be paired with the load profile determination to achieve 
greater economic savings. 
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