
ARCS AND TENSORS

SIMEON BALL AND MICHEL LAVRAUW

Abstract. To an arc A of PG(k − 1, q) of size q + k − 1 − t we associate a tensor in
〈νk,t(A)〉⊗k−1, where νk,t denotes the Veronese map of degree t defined on PG(k− 1, q).
As a corollary we prove that for each arc A in PG(k− 1, q) of size q+ k− 1− t, which is
not contained in a hypersurface of degree t, there exists a polynomial F (Y1, . . . , Yk−1) (in
k(k− 1) variables) where Yj = (Xj1, . . . , Xjk), which is homogeneous of degree t in each
of the k-tuples of variables Yj , which upon evaluation at any (k− 2)-subset S of the arc
A gives a form of degree t on PG(k − 1, q) whose zero locus is the tangent hypersurface
of A at S, i.e. the union of the tangent hyperplanes of A at S. This generalises the
equivalent result for planar arcs (k = 3), proven in [2], to arcs in projective spaces of
arbitrary dimension. A slightly weaker result is obtained for arcs in PG(k − 1, q) of size
q + k − 1 − t which are contained in a hypersurface of degree t. We also include a new
proof of the Segre-Blokhuis-Bruen-Thas hypersurface associated to an arc of hyperplanes
in PG(k − 1, q).

1. Introduction and motivation

An arc of PG(k−1, q) is a set of points no k of which are contained in a hyperplane. Arcs
are the subject of Segre’s fundamental problems proposed in 1955 [10] and they play an
important role in Galois geometry [11]. Segre’s celebrated result from [9] which says that
an arc of size q + 1 in PG(2, q), q odd, is a conic, has inspired many mathematicians to
work on problems related to arcs in projective spaces over finite fields. Normal rational
curves are well known examples of arcs of size q+1. There are arcs of size q+2 in PG(2, q)
when q is even called hyperovals. For a list of the collineation groups of these arcs, see [8].

Another driving force for the study of arcs is the fact that they are equivalent to linear
Maximum Distance Separable codes (MDS codes), which according to [7] form “one of
the most fascinating chapters in all of coding theory”. These codes have been extensively
studied and a well-known conjecture (called the MDS conjecture) claims that if 4 ≤ k ≤
q − 2, then a k-dimensional linear MDS code over the finite field with q elements has
length at most q + 1. The MDS conjecture was proven for q prime in [1].

The most recent result from [2] verifies the MDS conjecture for k ≤ √q−√q/p+2, in the
case that q = p2h and p is an odd prime. Contrary to most previous results in this direction
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(for example, the bounds from [5], [6], [12], [13], [14] and [15]) the result from [2] does not
rely on Segre’s algebraic envelope associated to an arc, and deep results on the number of
points on algebraic curves over finite fields, in particular the Hasse-Weil theorem and the
Stöhr-Voloch theorem. Instead, the results in [2] are based on the existence of a certain
bi-homogeneous polynomial which upon evaluation at a point of the arc splits into linear
factors corresponding to the tangents of the arc through that point. In this paper, this is
generalised to arcs in projective spaces of arbitrary dimension, resulting in Theorem 1.

In Section 7 we compare this result to the hypersurface associated to an arc of hyperplanes
as obtained in the sequence of papers [11] for k = 3, in [3] for k = 4, 5, and [4] for arbitrary
dimension k ≥ 3.

2. The tangent hypersurfaces and the main theorem

Throughout, A will be an arc of PG(k− 1, q) of size q+k− 1− t, arbitrarily ordered, and
we identify each point of A with a fixed vector representative. Let Vr[X] denote the vector
space of forms (homogeneous polynomials) of degree r in Fq[X1, . . . , Xk], and Φr[X] the
subspace of Vr[X] consisting of forms vanishing on A. As in the previous sentence we will
often write X instead of X1, . . . , Xk.

Each subset S of size k − 2 of A is contained in precisely t hyperplanes of PG(k − 1, q)
meeting A exactly in S (called tangent S-hyperplanes). Their union forms the tangent
hypersurface of A at S. Each such hypersurface has degree t and is the zero locus of

fS(X) =
t∏
i=1

αi(X),(1)

where αi(X), i = 1, . . . , t, are linear forms whose kernels are the t tangent S-hyperplanes.
This defines fS(X) up to a nonzero scalar factor, which we will now determine based on
the evaluation of fS at carefully chosen points of A.

Let E be the set of the first k − 2 elements of A. For each (k − 2)-subset S ⊂ A, scale
the polynomial fS(X) so that

fS(e) = (−1)s(t+1)fS∪{e}\{a}(a),(2)

where e is the first element of E\S, a is the last element of S\E, and s is the parity of the
permutation which orders S ∪{e} as in the ordering of A (to determine the value of s we
assume the ordering of A for the subset S). With this notation it should be understood
that the order is respected when taking the union of ordered sets, i.e. with “union” we
mean the concatenation of the ordered sets.

We are now in a position to state the main result of this article.

Theorem 1. Let A be an arc in PG(k − 1, q) of size q + k − 1− t and let Φt[X] denote
the space of homogeneous polynomials of degree t in X = (X1, . . . , Xk) which are zero on
A. There exists a homogeneous polynomial F (Y1, . . . , Yk−1) (in k(k − 1) variables) where
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Yj = (Xj1, . . . , Xjk), and F is homogeneous of degree t in each of the k-tuples of variables
Yj, with the following properties.

(i) For every (k − 2)-subset S = [a1, . . . , ak−2] of the arc A we have

F (a1, . . . , ak−2, X) = (−1)s(t+1)fS(X) modulo Φt[X],

where s is the parity of the permutation which orders S as in the ordering of A.
(ii) For every sequence a1, . . . , ak−1 of elements of A in which points are repeated,

F (a1, . . . , ak−1) = 0.

(iii) For every permutation σ ∈ Sym(k − 1),

F (Yσ(1), . . . , Yσ(k−1)) = (−1)s(t+1)F (Y1, . . . , Yk−1),

modulo Φt[Y1], . . . ,Φt[Yk−1], where s is the parity of σ.
(iv) Any form F (Y1, . . . , Yk−1) satisfying (i), (ii) and (iii) is unique modulo Φt[Y1], . . . ,

Φt[Yk−1].

The following three sections are mainly dedicated to proving Theorem 1.

3. The scaled coordinate-free lemma of tangents

In this section we prove what we call the scaled coordinate-free lemma of tangents for an
arc in a projective space of arbitrary dimension. The original lemma of tangents is due to
Segre [11]. A coordinate-free version was given in [1], and a scaled coordinate-free version
for the planar case was introduced in [2].

As before, A is an arc in PG(k−1, q), with tangent hypersurfaces given as the zero loci of
the forms fS(X) as defined in (1) and scaled as in (2). Define the function g on ordered
subsets of A of size k − 1 by

g(S ∪ {a}) = (−1)s(t+1)fS(a),(3)

where S is an ordered subset of A of size k − 2 and s is the parity of the permutation
which orders S as in the ordering of A. Note that S is considered as an unordered set in
the notation fS(a). Extend the definition of g by setting it equal to zero when evaluated
at (k−1)-tuples with repeated elements. Recall that E consists of the first k−2 elements
of A.

Lemma 2. If σ is a permutation in Sym(k − 1) and T is an ordered (k − 1)-subset of A
containing E, then

g(T σ) = (−1)s(t+1)g(T ),

where s is the parity of the permutation σ.

Proof : If σ is a permutation in Sym(k − 1) fixing k − 1 then, by definition,

g(T σ) = (−1)s(t+1)g(T ),(4)
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where s is the parity of the permutation σ.

So in order to prove the assertion is suffices to show that

g(a1, . . . , ak−3, ak−1, ak−2) = (−1)t+1g(a1, . . . , ak−1),

for any distinct a1, . . . , ak−1 ∈ A.

Pick any ordered subset B = [a1, . . . , ak] ⊂ A of size k. Since A is an arc, it follows that
B is a basis. Denote by Bl,i,j the ordered set obtained from B by removing the l-th, the
i-th and the j-th point from B and by Bl,i,j(x, y) the ordered set of points obtained from
B by removing the l-th point from B and replacing the i-th point by x and the j-th point
by y.

Let 1 ≤ l < j < k be fixed. For x, y ∈ A \Bl,j,k define

h(x, y) = g(Bl,j,k(x, y)).

Then for any point u, with coordinates (u1, . . . , uk) w.r.t. B, we have

h(al, u) =
t∏
i=1

(bijuj + bikuk), h(aj, u) =
t∏
i=1

(cilul + cikuk), h(ak, u) =
t∏
i=1

(dilul + dijuj),

for some bij, cij, dij ∈ Fq.
Let Bl,j denote the ordered set of points obtained from B by removing the l-th and
the j-th point. With respect to the basis B, the hyperplane containing 〈Bl,j〉 and s =
(s1, s2, . . . , sk) ∈ A \ B is the kernel of the linear form Xl − (sl/sj)Xj. Since these
hyperplanes are distinct from the tangent (Bl,j)-hyperplanes, together they constitute all
hyperplanes containing Bl,j, except the kernels of the linear forms Xl and Xj. Hence,

t∏
i=1

dij
dil

∏
s∈A\B

−sl
sj

=
∏

d∈Fq\{0}

d = −1.

Observing that h(ak, aj) =
∏t

i=1 dij and h(ak, al) =
∏t

i=1 dil, this gives

h(ak, aj)
∏

s∈A\B

sl = (−1)|A\B|+1h(ak, al)
∏

s∈A\B

sj.

Similarly, by considering hyperplanes through Bl,k,

h(aj, al)
∏

s∈A\B

sk = (−1)|A\B|+1h(aj, ak)
∏

s∈A\B

sl.

and by considering hyperplanes through Bj,k,

h(al, ak)
∏

s∈A\B

sj = (−1)|A\B|+1h(al, aj)
∏

s∈A\B

sk.
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Combining these three equations, and observing that (−1)|A\B|+1 = (−1)t+1, we obtain

h(aj, al) = (−1)t+1 h(al, aj)
h(aj, ak)h(ak, al)

h(ak, aj)h(al, ak)
.

We can rewrite this as

g(B
(jl)
k ) = (−1)t+1g(Bk)

g(Bl)g(B
(lk)
j )

g(B
(jk)
l )g(Bj)

(5)

where Bl is obtained from B by removing the l-th vector, and with the understanding that
Bσ
l denotes the result of removing the l-th vector from B after applying the permutation

σ ∈ Sym(k) to the k positions.

Consider any k − 1 distinct points a1, . . . , ak−1, and put T = [a1, . . . , ak−1]. If E =
[e1, . . . , ek−2] = [a1, . . . , ak−2] then by the definition of g and the scaling (2) of the tangent
forms fS(X) we have

g(a1, . . . , ak−1) = g(e1, . . . , ek−2, ak−1) = fE(ak−1) = (−1)(k−2)(t+1)fT1(e1).

This is equal to

(−1)(k−2)(t+1)g(e2, . . . , ek−2, ak−1, e1) = (−1)(t+1)g(ak−1, e2, . . . , ek−2, e1)

where the last equality was obtained by applying (4).

Likewise, for any j ∈ {2, . . . , k − 1} we obtain

fE(ak−1) = (−1)(k−1−j)(t+1)fTj(ej)

which is equal to

(−1)(k−1−j)(t+1)g(e1, . . . , ej−1, ej+1, . . . , ek−2, ak−1, ej),

and by applying (4) we obtain

g(e1, . . . , ek−2, ak−1) = (−1)(t+1)g(e1, . . . , ej−1, ak−1, ej+1, . . . , ek−2, ej).

We have shown that for any T = [e1, . . . , ek−2, ak−1],

g(T σ) = (−1)t+1g(T )

for any transposition σ = (j, k − 1). In combination with (4) this proves the lemma. �

Next we formulate and prove the main result of this section.

Lemma 3. [Scaled coordinate-free lemma of tangents] Let A be an arc in PG(k − 1, q),
with tangent hypersurfaces given as the zero loci of the forms fS(X) as defined in (1) and
scaled as in (2), and let g be the function as defined in (3). If σ is a permutation in
Sym(k − 1) and T is a (k − 1)-subset of A then

g(T σ) = (−1)s(t+1)g(T ),

where s is the parity of the permutation σ.
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Proof : We will prove this by induction on the size of T \E (as sets), where E consists
of the first k − 2 elements of A.

If |T \ E| = 1 then the lemma follows from Lemma 2.

Suppose that for each ordered (k− 1)-tuple T for which T \E has size at most r ≥ 1, we
have

g(T σ) = (−1)(t+1)g(T )

for any transposition σ ∈ Sym(k − 1).

Consider an ordered (k−1)-tuple T = [a1, . . . , ak−1] with T \E of size r+1. Let eη denote
the first point in E \ T in the ordering of A, and put B = [a1, . . . , ak−1, eη].

Suppose that ak−2, ak−1 6∈ E. Then the left hand side of (5), with j = k−2 and l = k−1,
becomes

g(B
(jl)
k ) = g(a1, . . . , ak−3, ak−1, ak−2)

while the right hand side equals

(−1)t+1g(Bk)
g(a1, . . . , ak−3, ak−2, eη)g(a1, . . . , ak−3, eη, ak−1)

g(a1, . . . , ak−3, eη, ak−2)g(a1, . . . , ak−3, ak−1, eη)
,

which by the induction hypothesis equals

(−1)t+1g(Bk) = (−1)t+1g(a1, . . . , ak−3, ak−2, ak−1),

since Bl \E and Bj \E are of size r. This proves that if the points of T in position k− 2
and k − 1 do not belong to E then

g(T σ) = (−1)t+1g(T )(6)

for the transposition σ = (k − 2, k − 1).

Next, suppose ak−2 ∈ E and ak−1 /∈ E is the last point of T in the ordering of A. Let eη
denote the first point in E \ (T \ {ak−2}), in the ordering of A.

Let S = {a1, . . . , ak−3, ak−1}. By the scaling (2) of the tangent forms fS(X) we have

fS(eη) = (−1)s(t+1)fS\{ak−1}∪{eη}(ak−1),(7)

where s is the number of transpositions needed to reorder S ∪ {eη} as in the ordering of
A. Moreover, by the definition of g, we have

fS(eη) = (−1)s1(t+1)g(a1, . . . , ak−3, ak−1, eη),

where s1 is the number of transpositions needed to reorder [a1, . . . , ak−3, ak−1] as in the
ordering of A, and

fS\{ak−1}∪{eη}(ak−1) = (−1)s2(t+1)g(a1, . . . , ak−3, eη, ak−1)

where s2 is the number of transpositions needed to reorder [a1, . . . , ak−3, eη] as in the
ordering of A. Since ak−1 is the last point of T in the ordering of A we have

s2 ≡ s1 + s− 1 mod 2
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and therefore
(−1)s1(t+1)(−1)s(t+1)(−1)s2(t+1) = (−1)(t+1).

Combining this with (7) we obtain

g(a1, . . . , ak−3, ak−1, eη) = (−1)(t+1)g(a1, . . . , ak−3, eη, ak−1).(8)

Let B denote the ordered k-tuple obtained from T by adding the point eη. With j = k−2
and l = k − 1, the induction hypothesis implies

g(Bl) = (−1)(t+1)g(B
(jk)
l )

since Bl \ E has size r, and by (8)

g(Bj) = (−1)(t+1)g(B
(lk)
j ).

Therefore by (5), with j = k − 2 and l = k − 1 we obtain g(B
(jl)
k ) = (−1)(t+1)g(Bk), i.e.

g(T ) = (−1)(t+1)g(T σ),

for the transposition σ = (k − 2, k − 1).

Next suppose ak−2 ∈ E, ak−1 6∈ E and ak−1 is not the last point of T , in the ordering
of A. If aj is the last point of T in the ordering of A, then consider the transpositions
τ = (j, k − 2) and σ = (k − 2, k − 1). Applying the permutation τστστ to T we get

T τστστ = [a1, . . . , aj, . . . , ak−1, ak−2]

which is T σ. Moreover, the first time that σ is applied, the pair of points in the last two
positions is (aj, ak−1), consisting of two points of T \ E, and therefore by (6) this gives a
factor (−1)(t+1) to the evaluation of g. The second time σ is applied, the pair of points
in the last two positions is (ak−2, aj) where ak−2 ∈ E and aj is the last point of T in the
ordering of A, and so, this time by (7), this gives a factor (−1)(t+1) to the evaluation of
g.

Finally, by (5), each of the three applications of τ also gives a factor (−1)(t+1). This
amounts to a total of five factors (−1)(t+1), and we may conclude that also in this case

g(T ) = (−1)(t+1)g(T σ),

for the transposition σ = (k − 2, k − 1).

Thus, we have proved that if ak−2 ∈ E and ak−1 6∈ E or if ak−2 6∈ E and ak−1 ∈ E then

g(T σ) = (−1)t+1g(T )(9)

for the transposition σ = (k − 2, k − 1).

Finally suppose that both elements ak−2, ak−1 ∈ E. Let aj (j ∈ {1, . . . , k− 3}) be a point
of T \ E and consider the transpositions τ = (j, k − 2), and σ = (k − 2, k − 1). Then,
similarly as above we have T τστστ = T σ, which this time also making use of (9) implies

g(T σ) = (−1)t+1g(T ).(10)
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This concludes the proof. �

4. A tensor associated with an arc

In this section we show how the coordinate-free lemma of tangents can be used to construct
a particular tensor which will eventually lead to our main result Theorem 1. Let νk,t denote
the Veronese map of degree t

νk,t : PG(k − 1, q)→ PG(N − 1, q) : x = (x1, . . . , xk) 7→ (. . . , xI , . . .),

where N =
(
k+t−1
t

)
. Under this map, the image of a point x is the point whose coordinate

vector consists of all possible monomials xI of degree t in x1, . . . , xk. Thus, a coordinate
of the image of x is of the form xI = xd11 · · ·x

dk
k , where d1 + · · · + dk = t. The image of

the Veronese map is an algebraic variety, called the Veronese variety, and is denoted by
Vk,t(Fq).
For each ordered (k − 2)-subset S ⊂ A we consider the associated linear form hS ∈
Fq[Z1, . . . , ZN ] defined by

hS ◦ νk,t = fS.(11)

We define a function h from

νk,t(A)× νk,t(A)× . . .× νk,t(A) (k − 1 factors)

to Fq by

h(νk,t(a1), νk,t(a2), . . . , νk,t(ak−1)) := g(a1, a2, . . . , ak−1).(12)

A t-socle for A is a set of points of A whose image under the Veronese map of degree t
spans the subspace spanned by A under the Veronese map. So a t-socle is a set of points
e1, . . . , em ∈ A for which

〈νk,t(e1), . . . , νk,t(em)〉 = 〈νk,t(A)〉.

We define the function h̄ from 〈νk,t(A)〉⊗k−1 to Fq by

h̄

∑
i1

c1i1νk,t(ei1)⊗
∑
i2

c2i2νk,t(ei2)⊗ . . .⊗
∑
ik−1

c1ik−1
νk,t(eik−1

)


:=
∑
i1

c1i1
∑
i2

c2i2 . . .
∑
ik−1

c1ik−1
g(ei1 , . . . , eik−1

),

where each sum is from ij = 1, . . . ,m.

We will show that for each a1, . . . , ak−1 ∈ A,

h̄(νk,t(a1)⊗ νk,t(a2)⊗ . . .⊗ νk,t(ak−1)) = g(a1, a2, . . . , ak−1).
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Lemma 4. The function h̄ defines a multilinear form on 〈νk,t(A)〉⊗k−1 whose restriction
to

νk,t(A)× νk,t(A)× . . .× νk,t(A) (k − 1 factors)

equals h.

Proof : By definition, the function h̄ is multilinear, and coincides with h when evaluated
at arguments of the form

v =
(
νk,t(ei1), νk,t(ei2), . . . , νk,t(eik−1

)
)
.

For each x ∈ A with νk,t(x) =
∑

i λiνk,t(ei), and for each j ∈ {1, . . . , k − 2}, we have

h
(
νk,t(ei1), . . . , νk,t(eij−1

), νk,t(x), νk,t(eij+1
), . . . , νk,t(eik−1

)
)

= g(ei1 , . . . , eij−1
, x, eij+1

, . . . , eik−2
, eik−1

)

= (−1)t+1g(ei1 , . . . , eij−1
, eik−1

, eij+1
, . . . , eik−2

, x)

= (−1)t+1hE(νk,t(x))

= (−1)t+1
∑
i

λihE(νk,t(ei))

where E = [ei1 , . . . , eij−1
, eik−1

, eij+1
, . . . , eik−2

]. This in turn equals∑
i

λi(−1)t+1g(ei1 , . . . , eij−1
, eik−1

, eij+1
, . . . , eik−2

, ei)

=
∑
i

λig(ei1 , . . . , eij−1
, ei, eij+1

, . . . , eik−2
, eik−1

)

=
∑
i

λih̄
(
νk,t(ei1)⊗ . . .⊗ νk,t(eij−1

)⊗ νk,t(ei)⊗ νk,t(eij+1
)⊗ . . .⊗ νk,t(eik−1

)
)

= h̄
(
νk,t(ei1)⊗ . . .⊗ νk,t(eij−1

)⊗ νk,t(x)⊗ νk,t(eij+1
)⊗ . . .⊗ νk,t(eik−1

)
)
.

This shows that h̄ and h are equal when evaluated at arguments obtained from

v =
(
νk,t(ei1), νk,t(ei2), . . . , νk,t(eik−1

)
)
,

by replacing the j-th argument in v by νk,t(x) (x ∈ A).

The proof can now be finished by induction. As induction hypothesis we assume that the
values of h̄ and h are equal when evaluated at (k−1)-tuples obtained from v by replacing
s ≥ 1 of the arguments of v by νk,t(x1), . . . , νk,t(xs) for any s points x1, . . . , xs ∈ A.

Let w be obtained from v, by replacing s+ 1 of the arguments of v by expressions of the
form νk,t(x1), . . . , νk,t(xs+1) where x1, . . . , xs+1 ∈ A.

If νk,t(xs+1) is not in the last position of w, then define w′ as the (k − 1)-tuple obtained
from w by interchanging the argument where xs+1 appears with the argument in the last
position. Then, by Lemma 3,

h(w) = (−1)t+1h(w′).
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If νk,t(xs+1) is in the last position of w then put w′ = w.

Then h(w′) = hE(νk,t(xs+1)) for a suitable E, and since hE is a linear form, we can
rewrite h(w′) as a linear combination of evaluations of h at (k − 1)-tuples obtained from
v by replacing s arguments of v by expressions of the form νk,t(x1), . . . , νk,t(xs) with
x1, . . . , xs ∈ A. By induction the values of h̄ and h are equal when evaluated at such
(k − 1)-tuples. �

5. Proof of Theorem 1

The previous sections contain the necessary lemma’s to prove the main theorem. We
restate the theorem for the convenience of the reader.

Theorem 1 Let A be an arc in PG(k − 1, q) of size q + k − 1 − t and let Φt[X] denote
the space of homogeneous polynomials of degree t in X = (X1, . . . , Xk) which are zero on
A. There exists a homogeneous polynomial F (Y1, . . . , Yk−1) (in k(k − 1) variables) where
Yj = (Yj1, . . . , Yjk), and F is homogeneous of degree t in each of the k-tuples of variables
Yj, with the following properties.

(i) For every (k − 2)-subset S = [a1, . . . , ak−2] of the arc A we have

F (a1, . . . , ak−2, X) = (−1)s(t+1)fS(X) modulo Φt[X],

where s is the parity of the permutation which orders S as in the ordering of A.
(ii) For every sequence a1, . . . , ak−1 of elements of A in which points are repeated,

F (a1, . . . , ak−1) = 0.

(iii) For every permutation σ ∈ Sym(k − 1),

F (Yσ(1), . . . , Yσ(k−1)) = (−1)s(t+1)F (Y1, . . . , Yk−1),

modulo Φt[Y1], . . . ,Φt[Yk−1], where s is the parity of σ.
(iv) Any form F (Y1, . . . , Yk−1) satisfying (i), (ii) and (iii) is unique modulo Φt[Y1], . . . ,

Φt[Yk−1].

Proof :

Let A be an arc of size q+k−1−t in PG(k−1, q). By Lemma 4, there exists a multilinear
form h̄ on 〈νk,t(A)〉⊗k−1, such that for all a1, . . . , ak−1 ∈ νk,t(A)

h̄(νk,t(a1), . . . , νk,t(ak−1)) = g(a1, . . . , ak−1) = (−1)s(t+1)fS(ak−1),

where S = [a1, . . . , ak−2] is an ordered subset of A and s is the parity of the permutation
which orders S as in the ordering of A.

The multi-linear form h̄ corresponds to a hyperplane H̄ in 〈νk,t(A)〉⊗k−1. Let H be a
hyperplane of 〈Vk,t(Fq)〉⊗k−1 intersecting 〈νk,t(A)〉⊗k−1 in H̄.
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The hyperplane H is the zero locus of a linear form α on 〈Vk,t(Fq)〉⊗k−1. This defines α
up to a nonzero scalar factor. Now scale α such that the restriction of α to 〈νk,t(A)〉⊗k−1
coincides with h (which is possible since H ∩ 〈νk,t(A)〉⊗k−1 = H̄).

Denote by ϕ the polynomial map from

PG(k − 1, q)× . . .× PG(k − 1, q) −→ PG(Nk−1 − 1, q),

where N =
(
k+t−1
t

)
, obtained as the composition of first applying the Veronese map

νk,t : PG(k − 1, q) −→ PG(N − 1, q),

in each of the k − 1 factors, and then applying the Segre embedding

σ : PG(N − 1, q)× . . .× PG(N − 1, q) −→ PG(Nk−1 − 1, q).

Define F as the polynomial map α ◦ ϕ. It follows that F is a homogeneous polynomial
F (Y1, . . . , Yk−1) where Yj = (Yj1, . . . , Yjk), which is homogeneous (of degree t) in each of
the Yj’s. Moreover,

F (a1, . . . , ak−1) = (α ◦ ϕ)(a1, . . . , ak−1) = g(a1, . . . , ak−1)

For an ordered subset S = [a1, . . . , ak−2] of A, consider

H(X) := F (a1, . . . , ak−2, X)− (−1)s(t+1)fS(X),

a homogeneous polynomial of degree t.

The polynomial H(X) vanishes at the points of A and therefore belongs to Φt[X], which
proves (i).

For S = [a1, . . . , ak−2], where ai ∈ A and for which one of the ai’s is repeated,

F (a1, . . . , ak−2, ak−1) = g(a1, . . . , ak−2, ak−1) = 0,

which proves (ii).

To prove (iii) it suffices to prove that

F (X2, X1, X3, . . . , Xk−1) = (−1)t+1F (X1, X2, X3, . . . , Xk−1) (mod Φt[X1], . . . ,Φt[Xk−1]),

the other transpositions following by the same argument.

By induction on r we will prove that

F (a1, a2, a3, . . . , ar, Xr+1, . . . , Xk−1) = (−1)t+1F (a2, a1, a3, . . . , ar, Xr+1, . . . , Xk−1)

modulo (Φt[Xr+1], . . . ,Φt[Xk−1]).

This holds for r = k − 1 (in which case there are no Xi’s) by Lemma 3.

By induction, whenever we evaluate at Xr = ar ∈ A, the polynomial

F (a1, a2, a3, . . . , ar−1, Xr, Xr+1, . . . , Xk−1)−(−1)t+1F (a2, a1, a3, . . . , ar−1, Xr, Xr+1, . . . , Xk−1)

is zero modulo (Φt[Xr+1], . . . ,Φt[Xk−1]). Hence, it is zero modulo (Φt[Xr], . . . ,Φt[Xk−1]),
which proves (iii).
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To prove (iv), suppose that both F and G are polynomials satisfying (i), (ii) and (iii).
Then

F (a1, . . . , ak−2, Yk−1) = G(a1, . . . , ak−2, Yk−1) (mod Φt[Yk−1]).

for any [a1, . . . , ak−2], where aj ∈ A are possibly repeated.

We proceed by induction. Suppose that for all [a1, . . . , ar], where aj ∈ A are possibly
repeated,

F (a1, . . . , ar, Yr+1, . . . , Yk−1) = G(a1, . . . , ar, Yr+1, . . . , Yk−1) (mod Φt[Yr+1], . . . ,Φt[Yk−1]).

Then, evaluating Yr at any point of A, the polynomial

F (a1, . . . , ar−1, Yr, . . . , Yk−1)−G(a1, . . . , ar−1, Yr, . . . , Yk−1),

is zero (mod Φt[Yr+1], . . . ,Φt[Yk−1]), which implies that

F (a1, . . . , ar−1, Yr, . . . , Yk−1) = G(a1, . . . , ar−1, Yr, . . . , Yk−1) (mod Φt[Yr], . . . ,Φt[Yk−1]).

This complete the proof. �

Definition 1. The multi-homogeneous polynomial F (Y1, . . . , Yk−1) where Yj = (Yj1, . . . , Yjk),
which is homogeneous (of degree t) in each of the Yj’s, is called a tensor form of A. Note
that a tensor form of an arc is unique modulo the ideals of forms of degree t vanishing on
A in each of the k-tuples of variables Y1, . . . , Yk−1.

6. Hypersurfaces containing an arc

Suppose q = ph, where p is an odd prime. Let A be an arc in PG(k − 1, q) of size
q + k − 1− t and let S be a subset of A of size k − 3. Projecting A from S one obtains
a planar arc and the results from [2] apply. These results imply that A is contained in a
hypersurface of degree t+ pblogp tc, which is the cone of a planar curve of degree t+ pblogp tc

and the subspace 〈S〉.
The following theorem implies that there may be more hypersurfaces containing A. In-
deed, we will consider a specific example in which Theorem 5 tells us more than what we
obtain from simply projecting.

In the following, X(i1,...,ik) = X i1
1 · · ·X

ik
k .

Theorem 5. Let A be an arc in PG(k− 1, q) of size q+ k− 1− t and let F (Y1, . . . , Yk−1)
be the (t, t, . . . , t)-form whose existence is given by Theorem 1. If A is not contained in a

hypersurface of degree t then the coefficient of Y i1
1 · · ·Y

ik−2

k−2 , where im = (im1, . . . , imk), in

F (Y1 +X, . . . , Yk−2 +X,X)− F (Y1, . . . , Yk−2, X)

is a homogeneous polynomial in X of degree at most

(k − 1)t−
k−2∑
m=1

k∑
j=1

imj,

which is zero on A.
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Proof. Let x ∈ A and define Fx(Y1, . . . , Yk−2) as the F we obtain by applying Theorem 1
to the arc A obtained by projecting A from x. Explicitly, this can be done in the following
way.

Choose a coordinate j such that xj 6= 0. For each a = (a1, . . . , ak) ∈ A, define a point a of
PG(k− 2, q), whose i-th coordinate is aixj − ajxi, for i 6= j. So a has no j-th coordinate.

Let
A = {a | a ∈ A \ {x}}.

Theorem 1 implies the existence of a form G(Z1, . . . , Zk−2) for A. Note that each Zmi has
not j-th coordinate. Then define Fx as the polynomial obtained from G by substituting
Zmi = xjYmi − xiYmj for i 6= j.

Since Zmi is unaffected by the substitution Ymi 7→ Ymi + xi

Fx(Y1 + x, . . . , Yk−2 + x) = Fx(Y1, . . . , Yk−2).

Both Fx(Y1, . . . , Yk−2) and F (Y1, . . . , Yk−2, x) satisfy all the properties of the F -form ob-
tained by applying Theorem 1 to the arc A, apart from the fact that each Yj is a k-tuple
and not a (k− 1)-tuple. However, the same uniqueness argument used in part (iv) of the
proof of Theorem 1 applies, so they are the same.

Therefore, for all x ∈ A,

F (Y1 + x, . . . , Yk−2 + x, x) = F (Y1, . . . , Yk−2, x),

from which the theorem follows. �

We now consider an example which illustrates that Theorem 5 can prove the existence of
hypersurfaces containing A which are not obtained simply by projection.

Theorem 6. If q is odd then an arc of size q + 1 in PG(3, q) is contained in a quadric.

Proof. Suppose that A is an arc of PG(3, q) of size q+1 not contained in a quadric. Then
k = 4, t = 2 and Φt = {0}.
By Theorem 1, there is a (2, 2, 2)-form

F (Y1, Y2, Y3) =
∑
j1,j2,j3

bj1,j2,j3Y
j1
1 Y j2

2 Y j3
3 ,

where the sum goes over all jm = (jm1, jm2, jm3, jm4) such that jm1 + jm2 + jm3 + jm4 = 2,
with the properties therein stated.

Since t+ 1 is odd, and Φt = {0}, Theorem 1 (iii) implies

bj1,j2,j3 = −bj1,j3,j2 .
Since Fe1(Y1, Y2) has no Y11 or Y21 terms

b(2,0,0,0),j2,j3 = 0,

if j11 6= 0 or j21 6= 0.
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Applying Theorem 5 to the coefficient Y
(2,0,0,0)
1 Y

(0,1,0,0)
2 , we have that the polynomial

(13) 2X2fe1e2(X3, X4) + (b(2,0,0,0),(0,1,1,0),(0,0,1,1) + b(2,0,0,0),(0,1,0,1),(0,0,2,0))X
2
3X4

+(b(2,0,0,0),(0,1,0,1),(0,0,1,1) + b(2,0,0,0),(0,1,1,0),(0,0,0,2))X3X
2
4

defines a hypersurface containing A.

Note that it is not zero, since q is odd and fe1e2(X3, X4) 6= 0.

Applying Theorem 5 to the coefficient Y
(0,2,0,0)
1 Y

(1,0,0,0)
2 , we have that the polynomial

(14) 2X1fe1e2(X3, X4) + (b(0,2,0,0),(1,0,1,0),(0,0,1,1) + b(0,2,0,0),(1,0,0,1),(0,0,2,0))X
2
3X4

+(b(0,2,0,0),(1,0,0,1),(0,0,1,1) + b(0,2,0,0),(1,0,1,0),(0,0,0,2))X3X
2
4

defines a hypersurface containing A.

Then dividing X1(13)−X2(14) by X3X4 we have that there is a polynomial

c13X1X3 + c14X1X4 + c23X2X3 + c24X2X4,

which is zero on A. Again, this polynomial is not zero since this would imply that
2X2fe1e2(X3, X4) is zero on A, which it is not.

Hence, A is contained in a quadric. �

7. The Segre-Blokhuis-Bruen-Thas hypersurface

In this section we elaborate on the hypersurface associated to an arc of hyperplanes in
PG(k− 1, q) obtained in [11] for k = 3, in [3] for k = 4, 5, and [4] for arbitrary dimension
k ≥ 3. We will give a new proof for its existence and compare this result with Theorem
1.

For j = 1, . . . , k − 1 consider Xj = (Xj1, . . . , Xjk) as a k-tuple of indeterminates. We
denote by

det
i

(X1, . . . , Xk−1)

the determinant of the matrix which is obtained from the matrix with the Xj’s as rows
and the i-th column deleted.

The main theorem of [4] implies that there is a homogeneous polynomial φ(Z1, . . . , Zk)
of degree t for q even and of degree 2t for q odd, which vanishes at the points of the dual
space which are dual to the hyperplanes containing exactly k− 2 points of an arc A. We
paraphrase the main result of [4] as follows.

Theorem 7. Let m ∈ {1, 2} be such that m−1 ≡ q modulo 2. If A is an arc in PG(k−1, q)
of size q + k − 1 − t, where |A| ≥ mt + k − 1, then there is a homogeneous polynomial
in k variables φ(Z1, . . . , Zk), of degree mt, which gives a polynomial G(X1, . . . , Xk−1) in
k(k−1) indeterminates under the substitution Zj = detj(X1, . . . , Xk−1), with the property
that for each (k − 2)-subset S = {y1, . . . , yk−2} of A

G(y1, . . . , yk−2, X) = (fS(X))m.
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Proof. Order the arc A arbitrarily and let E be a subset of A of size mt+ k − 1. Define

G(X1, . . . , Xk−1) =
∑
T

(
fT\{ak−1}(ak−1)

)m ∏
u∈E\T

det(X1, . . . , Xk−1, u)

det(a1, . . . , ak−1, u)
.(15)

where the sum runs over subsets T = {a1, . . . , ak−1} of E.

Observe thatG can be obtained from a homogeneous polynomial of degreemt in Z1, . . . , Zk
under the change of variables Zj = detj(X1, . . . , Xk−1).

For S = {y1, . . . , yk−2} define

hS(X) := G(y1, . . . , yk−2, X).

Note that hS(X) is well-defined since any reordering of S can only ever multiply hS(X)
by (−1)mt = 1.

For S ⊂ E, the only nonzero terms in hS(X) are obtained for subsets T of E containing
S. Therefore

hS(X) =
∑
a∈E\S

(fS(a))m
∏

u∈E\(S∪{a})

det(y1 . . . , yk−2, X, u)

det(y1, . . . , yk−2, a, u)
.

The evaluation of hS(X) at x ∈ E is equal to zero if x ∈ S and equal to (fS(x))m 6= 0
otherwise. Since, with respect to a basis containing S both fmS and hS are homogeneous
polynomials in two variables of degree mt, we conclude that hS = fmS .

If S is not contained in E then we proceed by induction on the size of S \E. As induction
hypothesis we assume that for each subset S with S \E of size r the polynomials hS and
fmS are equal. Let S = {y1, . . . , yk−2} be such that S \E is of size r+ 1. W.l.o.g. assume
yk−1 /∈ E. Then for x ∈ E we have

hS(x) = (−1)mthS′(yk−1) = hS′(yk−1),

where S ′ is the set obtained from S by replacing the (k − 1)-th element yk−1 of S by x.
On the other hand, by the definition (3) of g and the scaled coordinate-free lemma of
tangents, we have

(fS(x))m = (g(y1, . . . , yk−1, x))m = (g(y1, . . . , yk−2, x, yk−1))
m = (fS′(yk−1))

m.

By induction hS′(yk−1) = (fS′(yk−1))
m, and therefore the polynomials hS and fmS have

the same evaluation at points in E. Applying the same argument as in the case where
S ⊂ E we obtain hS = fmS . �

We now compare Theorem 7 to Theorem 1. First, observe that the polynomial G as
defined in (15) is homogeneous of degree mt in each of its k-tuples of variables, and
G takes the value zero when evaluated at an argument which contains repeated points.
Next, by Theorem 7, for any subset S = {a1, . . . , ak−2} of A we have G(a1, . . . , ak−1, X) =
(fS(X))m. Also, as we already explained in the proof of Theorem 7, it follows from the
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scaled coordinate-free lemma of tangents that the polynomial G it is not affected by
reordering of the points in its arguments. We obtain the following theorem.

Theorem 8. Let m ∈ {1, 2} be such that m − 1 ≡ q modulo 2. If A is an arc in
PG(k− 1, q) of size q + k− 1− t, where |A| ≥ mt+ k− 1, then there exists a polynomial
G(Y1, . . . , Yk−1) (in k(k − 1) variables) which is homogeneous of degree mt in each of the
k-tuples of variables Yj, with the following properties.

(i) G(a1, . . . , ak−2, X) = (fS(X))m for every (k − 2)-subset S = {a1, . . . , ak−2} of A;
(ii) G(a1, . . . , ak−1) = 0 if ai = aj for some i 6= j;

(iii) G is symmetric in its k − 1 arguments Y1, . . . , Yk−1;

Note that for q even, Theorem 8 is an improvement of Theorem 1. It proves that the
modulo Φt[X] is not necessary in Theorem 1 for q even, although the uniqueness would
not be valid without the modulo Φt[X]. For q odd, Theorem 8 has the advantage that
its properties hold true without the modulo Φt[X]; the disadvantage is that the degree of
G in each of its k-tuples of arguments is 2t whereas for the form F from Theorem 1 it
is only t. We do not believe that the modulo Φt[X] is necessary in Theorem 1 for q odd
although, as in the q even case, the uniqueness would not be valid without the modulo
Φt[X].
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[5] J. W. P. Hirschfeld and G. Korchmáros, On the embedding of an arc into a conic in a finite plane,
Finite Fields Appl., 2 (1996) 274–292.
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