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Catalunya (UPC), Spain

bDepartment of Engineering, Cambridge University, United Kingdom
cSerra Húnter Fellow, Universitat Politècnica de Catalunya (UPC), Spain

Abstract

The aim of this study is to investigate the efficiency of Dynamic Vibration

Absorbers (DVAs) as a vibration abatement solution for railway-induced vibra-

tions in the framework of a double-deck circular railway tunnel infrastructure.

A previously developed semi-analytical model of the track-tunnel-ground sys-

tem is employed to calculate the energy flow resulting from a train pass-by.

A methodology for the coupling of a set of longitudinal distributions of DVAs

over a railway system is presented as a general approach, as well as its specific

application for the case of the double-deck tunnel model. In the basis of this

model, a Genetic Algorithm (GA) is used to obtain the optimal parameters of

the DVAs to minimize the vibration energy flow radiated upwards by the tunnel.

The parameters of the DVAs set to be optimized are the natural frequency, the

viscous damping and their positions. The results show that the DVAs would be

an effective countermeasure to address railway induced ground-borne vibration

as the total energy flow radiated upwards from the tunnel can be reduced by

an amount between 5.3 dB and 6.6 dB with optimized DVAs depending on the

type of the soil and the train speed.
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Double-deck tunnel, Vibration energy flow

1. Introduction

The passage of trains in underground tunnels is one of the major sources

of ground-borne vibrations. These vibrations propagate through the soil and

structures of nearby buildings, resulting in undesired vibration and re-radiated

noise inside the buildings. They may cause discomfort to the building residents,

affect the operation of sensitive equipment and damage historical edifices with

structural weakness. In recent years, innovative tunnel structure designs, like

double-deck tunnels, have been constructed in several cities worldwide while few

studies have been reported on appropriate measures to mitigate ground-borne

vibration for these new designs.

Several countermeasures have been proposed to address the problem of

ground-borne vibration induced by railways. These solutions can be categorized

according to the location where they are applied: i) the source [1, 2]; ii) the re-

ceiver [3, 4] and iii) the propagation path [5, 6]. Accurate prediction models

should be used to assess the efficiency of these mitigation measures. Numerical,

hybrid models and semi-analytical models can provide the desired level of accu-

racy. In the framework of numerical models, two-and-a-half-dimensional (2.5D)

approaches based on Finite Element-Boundary Element Methods (FEM-BEM)

[7–9], and the Method of Fundamental Solutions (MFS) coupled with FEM

[10] are the common approaches. For specific sites, hybrid models [11, 12] can

provide an increment on the accuracy with respect to conventional numerical ap-

proaches. Regarding semi-analytical models, probably the most well-established

models for underground railway traffic is the Pipe-in-Pipe (PiP) model [13, 14].

An extension of the PiP model was also presented by Hussein et al. [15] to

calculate the vibrations from a tunnel embedded in a layered half-space, in

which 2.5D Green’s functions of a half-space can be evaluated using 3D stiffness

matrices cast in cylindrical coordinates [16] or Cartesian coordinates [17].

A well-established system that has been widely used to control the vibration

2
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of mechanical, civil and aerospace structures is the Dynamic Vibration Ab-

sorber (DVA), also known as Tuned Mass Damper (TMD). In the last century,

the application of DVAs as passive, active and semi-active countermeasures to

attenuate undesirable vibration has been studied extensively [18, 19]. Some of

the prominent applications of DVAs around the globe are the ones in Taipei

World Financial Center (also known as Taipei 101) [20], Millennium Bridge [21]

and Doha Sport City Tower [22]. DVA is usually modeled as a single-degree-

of-freedom (SDOF) and it works as a secondary oscillatory system applied on

a primary system where the vibration needs to be controlled. The concept of

a DVA was outlined by Watts in 1883 [23]. However, the practical design of

a DVA, as a spring-supported mass, was proposed by Frahm in 1911 [24]. A

damping element was later introduced to DVAs to widen the controlled fre-

quency range [25]. DVAs can be used to attenuate the vibration at a specific

frequency or over a particular range of frequencies. In the former case, the

natural frequency of the DVA should be tuned to the specific frequency, and

the damping should be chosen as low as possible [26]. In the latter case, an

optimization criterion is required as the effectiveness of a DVA depends on its

parameters.

Several types of optimization procedures with analytical or numerical ap-

proaches can be considered to determine the optimal value of DVA parameters

[18, 27–29]. In most of the analytical optimization procedures that are em-

ployed to find the optimal value of DVA parameters, the structure on which

the DVAs are applied (the host structure) is modeled as a SDOF system [28].

In these methodologies, the parameters of this SDOF model are obtained from

the dominant mode of the host structure response. However, there are other

optimization procedures that dont require a prior determination of which mode

must be controlled. Among those, Genetic Algorithms (GAs) have been widely

used for tuning DVA parameters in order to optimally reduce the vibration in

specific locations of the system or in a global point of view. Some of the studies

that apply GA for this purpose are [28, 30–33].

Recently, DVAs have been used to address some issues in the railway-induced

3
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vibration field. A study on the effectiveness of DVAs in suppressing the low-

frequency vibrations of floating slab track with discontinuous slabs was con-

ducted by Zhu et al. [34] using a FEM model. They used two DVAs to mini-

mize first- and second-mode vibrations of a slab which was treated as a SDOF

system with the parameters of the selected mode, and the optimal parameters

of DVAs were found using fixed-point theory [35]. Reducing the vibration of

car-bodies of a low-floor train at a certain frequency by means of a DVA was

investigated by Wang et al. [36], in which the DVA was found to be an effective

countermeasure for excessive vertical vibration of car-bodies. DVAs have been

also found to be effective in reducing the noise radiated by a rail. Thompson

et al. [37] designed DVAs of steel masses and elastomeric material with a high

damping loss factor, placed at both sides of the rail. The system of absorbers

results in a reduction of radiated noise by about 5–6 dB. These DVAs were re-

ported to be effective in slowing the growth of rail corrugation if they can fully

suppress the pinnedpinned resonance [38]. Ho et al. developed multiple DVAs

each consisting of a mass sandwiched between resilient materials [39]. This mul-

tiple mass–spring system has been put into practice and the system is found to

be effective not only in attenuating rail vibration and the tunnel noise level [39]

but also in slowing the growth of rail corrugation [40].

Double-deck circular tunnels are an innovative design underground transport

infrastructures in which the tunnel is divided into two sections by an interior

floor. The definition and design methodology of specific mitigation measures

for ground-borne vibrations have not been studied adequately yet for this type

of tunnel. The modification of the stiffness/damping values of the rail pads [41]

and implementation of an elastomeric mat between the interior floor and the

tunnel structure [41, 42] are two mitigation measures studied by Clot et al.,

using a 2.5D semi-analytical model of a double-deck tunnel [43]. It was found

that implementing a soft elastomeric mat reduces the soil vibration considerably.

The potential of DVA as a vibration countermeasure for underground railway-

induced ground-borne vibration problems can be investigated for the full- and

half-space cases as a model of the soil. The full-space model is used to generally

4



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

evaluate the effect of DVAs by controlling the vibration energy radiated up-

wards by the tunnel structure. This model would be useful to address vibration

problems of long railway sections, where different buildings and tunnel depths

are involved, without of requiring a complicated model in which the particular

foundation/geometry of nearby buildings need to be taken into account. On the

other hand, the half-space model would be more convenient to study the vibra-

tion mitigation for specific buildings using a model in which the soil-building

interaction is also considered.

In this paper, the application of DVAs on the upper section of a double-deck

tunnel to minimize the energy flow radiated upwards resulting from the train

pass-by over this section is studied through the full-space approach. The vehicle-

track-tunnel-soil model is employed, in which the track-tunnel-soil model is the

one developed by Clot et al. [43] and the train-track model is an extension

of the model presented in [44] by considering two 2D vehicle models over the

two rails. The rest of the paper is organized as follows: In Section 2, the

vehicle-track-tunnel-soil model is described; Section 3 is dedicated to details

regarding the coupling of DVAs to an underground railway infrastructure model.

The optimization method to determine the optimal parameters of the DVAs to

minimize energy flow radiated upwards for the case of an underground double-

deck tunnel railway infrastructure is presented in Section 4. The efficiency of a

set of DVAs as a vibration countermeasure applied to the specific case studies

to minimize the radiated energy flow is discussed in Section 5. Finally, results

obtained from this study are summed up in Section 6.

2. Modeling of the vehicle-track-tunnel-soil system

This section starts by recapitulating the considered 2.5D semi-analytical

model of a double-deck tunnel embedded in a full-space [43]. This model pro-

vides the 2.5D Green’s functions of the system due to loads applied on the rails

and on the interior floor, which are required to couple the train and the DVAs

to the system and to compute the train pass-by response. Then, the considered

5
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train-track interaction model is described, followed by an explanation of how

this model is employed to determine the response of the system due to a train

pass-by.

2.1. Track-tunnel-soil model

A scheme of the model considered for the track-tunnel-soil system is shown

in Fig. 1. The track consists of two rails connected to the interior floor of

the double-deck tunnel structure by means of direct fixation fasteners, and the

tunnel is assumed to be embedded in a homogeneous full-space. The system

is considered to be invariant in the longitudinal direction, i.e., the direction in

which the train circulates.

Rails

Interior Floor

Tunnel

Tunnel

kf ,cf f ,cf

Interior Floor

rt

k

Soil

kf ,cf

Fig. 1: A scheme of a double-deck tunnel and its subsystems embedded in a full-space.

The rails are modeled as Euler-Bernoulli beams of infinite length separated

by a specific distance. The direct fixation fastener is represented by a contin-

uous mass-less distribution of springs, with a stiffness per unit length kf , and

dashpots, with a viscous damping per meter cf . The interior floor is modeled

as a homogeneous isotropic thin strip plate with a rectangular cross-section.

The tunnel and soil subsystems are described using the PiP model, developed

by Forrest and Hunt [13], which assumes that they can be represented as an

infinite thin cylindrical shell and as an infinite homogeneous elastic medium,

6
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respectively.

2.2. Vehicle-track coupling

There are two excitation mechanisms that mostly contribute to the vibra-

tion induced by railway traffic: i) the quasi-static excitation ii) the dynamic

excitation. The former is induced by the static component of the moving loads

applied by the train to the track and is of great importance for high-speed trains.

The latter can be attributed to various mechanisms [45], mainly the wheel/rail

unevenness and the longitudinal variability of the track’s mechanical parame-

ters. Since the present investigation is done in the context of urban railway

infrastructure, the vertical dynamic excitation caused by the rail unevenness is

considered as the only excitation source. It is assumed that the unevenness of

the rails is uncorrelated between them [46].

Consider a moving frame of reference associated to a train motion. Due to

the Doppler effect, the frequency components of the time signals seen from the

perspective of this moving frame of reference (ω̃) are different from the ones

related to a fixed frame of reference (ω) [44]. All the derivation presented in

this section is based on the moving coordinate system, thus, all the variables

represented in the frequency domain are associated to the frequency ω̃, except

when it is specifically mentioned otherwise. Capital letters notation is used to

denote variable in the frequency domain.

The vertical displacements of the two rails in the frequency domain due to

the wheel/rail contact forces can be represented byZ
w/r
r1

Z
w/r
r2

 =

H
w/r
r1r1 H

w/r
r1r2

H
w/r
r2r1 H

w/r
r2r2


F

w/r
r1

F
w/r
r2

 , (1)

where Z
w/r
r1 and Z

w/r
r2 are the vertical displacements of the left and right rails,

respectively, at all the vehicle axle positions, H
w/r
r1r1 and H

w/r
r2r2 are the direct

receptance matrices of the left and right rails, respectively, at all the axles

positions, H
w/r
r2r1 = H

w/r
r1r2 is the cross receptance matrix between the left and

7
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right rails at all axle positions, F
w/r
r1 and F

w/r
r2 are the vectors of wheel/rail

interaction forces associated to the left and right rails, respectively; and the

response of the two half vehicles can be written byZ
w/r
v1

Z
w/r
v2

 = −

H
w/r
v1 0

0 H
w/r
v2


F

w/r
r1

F
w/r
r2

 , (2)

where Z
w/r
v1 and Z

w/r
v2 are the vertical displacements of vehicle wheels in contact

with the left and right rails, respectively, and H
w/r
v1 and H

w/r
v2 are the receptances

of each half vehicle at all the vehicle axle positions. Eqs. (1) and (2) can easily

be compacted to

Zw/rr = Hw/r
r Fw/r, Zw/rv = −Hw/r

v Fw/r. (3)

Consider now that the 2.5D Green’s functions associated to the studied

railway infrastructure system are obtained on the basis of a double Fourier

transform (FT) defined by

Ḡ(kx, ω) =

∫ +∞

−∞

∫ +∞

−∞
g(x, t)ei(kxx−ωt)dxdt. (4)

where x, t, kx and ω represent the longitudinal coordinate, the time, the

wavenumber associated to the longitudinal coordinate and the frequency seen

from a fixed frame of reference, respectively. Combined bar and capital letters

notation is used to denote variables in the wavenumber-frequency domain on a

fixed frame of reference. Taking this into account, the elements of the receptance

matrices required to construct H
w/r
r can be computed by

Hw/r
rirj ,nm =

1

2π

∫ +∞

−∞
H̃rirje−ikx(x̃n−x̃m)dkx, (5)

where H
w/r
rirj ,nm is the (n,m) element of the matrix H

w/r
rirj , x̃n and x̃m are the

longitudinal coordinates of the n-th and m-th axles, respectively, seen from the

point of view of the moving frame of reference, and H̃rirj is the 2.5D Green’s

8
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function of the system defined in the (kx, ω̃) domain that relates the verti-

cal motions of the rails ri and rj . A 2.5D Green’s function defined in the

(kx, ω̃) domain can be obtained from the one defined in the (kx, ω) domain by

H̃(kx, ω̃) = H̄(kx, ω̃+kxvt), being vt the speed of the train. Note that combined

∼ and capital letters notation is used to denote variables in the wavenumber-

frequency domain on a moving frame of reference. The vehicle receptance matrix

is obtained by means of the dynamic model of the vehicle, which in this inves-

tigation is considered to be the two-dimensional (2D) multi-degree-of-freedom

rigid body model presented by Lei and Noda [47]. A 3D model of each car

consists of two uncoupled 2D models separately applied on each rail. A global

train is modeled as a set of Nc identical cars.

Assuming a linearized Hertz contact, the wheel/rail interaction forces can

be obtained in the frequency domain by using

Fw/r = kH

(
Zw/rv − Zw/rr + Er

)
, (6)

where kH is the stiffness of the linearized Hertzian spring, considered to be the

same in all the wheel/rail contacts, and Er is the vector of complex amplitudes

of rails unevenness at all the wheel/rail contacts. Combining Eq. (6) with Eq.

(3) one can obtain a transfer function in the frequency domain between the

unevenness of the rails and the dynamic wheel/rail interaction forces, which

may be written as

Fw/r =
(
Hw/r
v + Hw/r

r + k−1H I
)−1

Er, (7)

where I is the identity matrix.

Once the wheel/rail interaction forces are computed, the response at an

arbitrary position l of the railway infrastructure system due to the passage of

the train can be found using the expression

ul(x̃, t) =

2∑
i=1

1

2π

∫ +∞

−∞

Na∑
n=1

[
1

2π

∫ +∞

−∞
H̃lriF

w/r
ri,n e−ikx(x̃−x̃n)dkx

]
eiω̃tdω̃, (8)

9
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where ul(x̃, t) is the displacement response at l position of the railway infras-

tructure system, H̃lri is the 2.5D Green’s function in the wavenumber-frequency

domain that relates the displacement response at that arbitrary position l with

a force applied in the i-th rail, x̃ is the longitudinal coordinate associated to the

moving frame of reference, Na is the number of axles of the train and F
w/r
ri,n is

the wheel/rail interaction force associated to the i-th rail and the n-th axle. An

equivalent expression for the soil tractions can be obtained by simply replacing

the displacement Green’s functions with those for the tractions in Eq. (8). The

expression of the soil vibration velocity can be written similarly to Eq. (8) as

vl(x̃, t) =

2∑
i=1

1

2π

∫ +∞

−∞

Na∑
n=1

[
1

2π

∫ +∞

−∞
i(ω̃ + kxvt)H̃lriF

w/r
ri,n e−ikx(x̃−x̃n)dkx

]
eiω̃tdω̃,

(9)

3. Application of DVAs on an underground railway system

This section starts with the explanation of a methodology which can be used

to couple a set of DVAs to any subsystem of a railway infrastructure. Then,

the application of this methodology for the case of the double-deck tunnel is

explained.

DVAs can be applied on different subsystems of a railway infrastructure, such

as the tunnel or the track. For example, Fig. 2 shows a cross-section of a track

with one longitudinal distribution of DVAs. Consider M longitudinal distribu-

tions of DVAs, where each distribution has Nm DVAs, being m = 1, 2, . . . ,M .

The total amount of DVAs, then, is
∑M
m=1Nm. In the following the n-th DVA

of the m-th distribution is represented by dmn.

DVADVA

kf ,cf kf ,cf

m

k

dm

dm dm
c kf ,cf

DVA DVA DVA DVA

Fig. 2: A track system with one longitudinal distribution of DVAs.

Considering each DVA as a SDOF system, as shown in Fig. 3, the equation

10



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

of motion of the n-th DVA of the m-th distribution can be written as

− cdmn

(
żcdmn

− żdmn

)
− kdmn

(
zcdmn

− zdmn

)
= mdmn

z̈dmn
, (10)

where zcdmn
and zdmn

are the displacement of the DVA and the displacement of

the system at the position of the DVA, respectively, in a direction perpendicular

to the surface on which DVAs are applied. mdmn , kdmn and cdmn are the mass,

stiffness and viscous damping coefficient of dmn.

dmn

c

dmn dmn

dmn

dmn

Fig. 3: DVAs modeled as a SDOF.

Using a FT over time domain, based on the definition presented in Eq. (4),

the equation of motion can be transformed to the frequency domain

− ω2mdmn
Zdmn

+ iωcdmn

(
Zcdmn

− Zdmn

)
+ kdmn

(
Zcdmn

− Zdmn

)
= 0. (11)

Then, assuming that all DVAs of the m-th distribution have the same mass mdm ,

stiffness kdm and damping coefficient cdm , the relation between the displacement

of the DVA Zcdmn
and the displacement of the system at the position of the DVA

Zdmn
can be found as

Zcdmn
=

kdm + iωcdm
−mdmω

2 + kdm + iωcdm
Zdmn . (12)

The forces applied to the system due to the DVAs of the m-th distribution

can be written as

fdm(x, t) =

Nm∑
n=1

(
kdm + cdm

∂

∂t

)
δ(x− xdmn

)
(
zcdmn

− zdmn

)
, (13)

where xdmn
is the position of dmn in the longitudinal direction. These forces can

11
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be transformed to the wavenumber-frequency domain using Eq. (4), resulting

in

F̄dm(kx, ω) =

Nm∑
n=1

(kdm + iωcdm) eikxxdmn
(
Zcdmn

− Zdmn

)
. (14)

Finally, by introducing Eq. (12) into Eq. (14), the forces applied to the interior

floor by the DVAs can be rewritten as

F̄dm(kx, ω) =

Nm∑
n=1

k∗dmeikxxdmnZdmn
, (15)

where

k∗dm =
ω2mdm(kdm + iωcdm)

−ω2mdm + iωcdm + kdm
. (16)

Therefore, the forces applied to the system by all M distributions of DVAs

can be written in matrix form as

F̄d = ΓdK
∗
dZd, (17)

where

F̄d =



F̄d1

F̄d2
...

F̄dm
...

F̄dM


, Zd =



Zd1

Zd2
...

Zdm
...

ZdM


, (18)

where Zdm is a vector which contains the displacements of the system at the

positions of all the DVAs of the m-th distribution. The other matrices are

12
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defined as

K∗d =



K∗d1

K∗d2
. . .

K∗dm
. . .

K∗dM


, (19)

where K∗dm is a Nm ×Nm matrix defined by k∗dmI; and

Γd =



Γd1

Γd2
. . .

Γdm
. . .

ΓdM


, (20)

where

Γdm =
{

eikxxdm1 eikxxdm2 · · · eikxxdmNm

}
. (21)

In the following, it is assumed that the force is applied only on one of the

rails. For the case of the two forces applied on the two rails, linear superposition

can be held. Moreover, the following derivation is based on the moving frame

of reference, as explained in Section 2. All the variables represented in the

frequency domain in this section are thus associated to the frequency ω̃. The

system’s response at the position of the DVAs can be obtained from

Z̃d = H̃drF̃r + H̃ddF̃d, (22)

where H̃dr refers to the 2.5D Green’s function for the displacement of the system

at the DVAs positions due to a force on the rail seen in the moving frame of

reference in the absence of the DVAs; F̃r is a force applied on the rails in the

13



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

moving frame of reference; and H̃dd refers to the 2.5D Green’s function for

displacements of the system at the DVAs positions due to a force applied on the

DVAs positions. Replacing F̃d with its equivalent from Eq. (17), Eq. (22) can

be rewritten in the form of 2.5D Green’s functions as

H̃d
dr = H̃dr + H̃ddΓdK̃

∗
dH

d
dr, (23)

where H̃d
dr is the 2.5D Green’s function that relates the displacement in the

DVAs positions with a force in the rails seen in the moving frame of reference in

the presence of the DVAs and Hd
dr is its inverse FT over the defined wavenumber

by using the same structure as Zd in Eq. (18). Transforming Eq. (23) to the

space-frequency domain by applying an inverse FT over the wavenumber and

evaluating the transformed equation at the positions of the DVAs one can obtain

the expression

Hd
dr = Hdr + HddK

∗
dH

d
dr, (24)

where

Hdr =



Hd1r

Hd2r

...

Hdmr

...

HdMr


, (25)

being Hdmr the receptances of the system at the DVAs positions of m-th dis-

tribution due to the force applied on one of the rails, defined as

Hdmr =
1

vt
H̄dmrΓ

T
dm , (26)

14
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and where

Hdd =



Hd1d1 Hd1d2 · · · Hd1dp · · · Hd1dM

Hd2d1 Hd2d2 · · · Hd2dp · · · Hd2dM

...
...

. . .
...

. . .
...

Hdmd1 Hdmd2 · · · Hdmdp · · · HdmdM

...
...

. . .
...

. . .
...

HdMd1 HdMd2 · · · HdMdp · · · HdMdM


, (27)

being Hdmdp a Nm×Np matrix which contains receptance matrices of the system

at the DVAs positions of the m-th distribution due to the forces applied on the

system at the DVAs positions of the p-th distribution. Each element of these

matrices can be determined by

Hdmdp,jq =
1

2π

∫ +∞

−∞
H̃dmdp,jqe

ikx(x
j
dm
−xq

dp
)
dkx, (28)

j = 1, 2, . . . , Nm, q = 1, 2, . . . , Np, kxκx

where xjdm is the position of j-th DVA in the m-th distribution in the longitu-

dinal direction, and xqdp is the position of q-th DVA in the p-th distribution in

the longitudinal direction.

Finally, operating Eq. (24), the receptance of the system at the DVAs posi-

tions in the presence of the DVAs can be obtained as

Hd
dr = (I − HddKd)

−1
Hdr. (29)

Having these receptances, one can obtain the 2.5D Green’s functions of the

system at any arbitrary position l due to the force applied at the rail in the

presence of the DVAs as

H̃d
lr = H̃lr + H̃ldΓdK̃

∗
dH

d
dr. (30)

where the H̃lr refers to the 2.5D Green’s function of the system in the absence

15
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of the DVAs. It is noteworthy that this methodology considers a strong coupling

approach, in which the DVAs affect the response of the rails.

In this paper, the application of the DVAs is studied in the context of a

double-deck tunnel. Using the process explained previously, M longitudinal

distribution of DVAs can be coupled to the interior floor of this type of tunnels.

Fig. 4 shows a cross-section of the double-deck tunnel model with one longitu-

dinal distribution of DVAs, which is the model that will be used in the following

sections.

DVADVA

kf ,cf kf ,cf

m

k

dm

dm dm
c kf ,cf

DVA DVA DVA DVA

Fig. 4: The track-tunnel-soil model in full-space with one distribution of DVAs.

4. DVAs optimization approach

A global optimization approach based on GA is used in this paper to obtain

the optimum parameters of DVAs as countermeasures for underground railway-

induced ground-borne vibration. Design variables that affect the performance

of DVAs are: number of DVAs distributions, position of DVAs distributions,

number of DVAs in each distribution, distance between two consecutive DVAs in

each distribution, DVAs masses, DVAs natural frequencies and DVAs damping

16
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coefficients. In the optimization process, the effectiveness of DVAs is assessed

by their performance in minimizing energy flow radiated upwards.

The mean power flow radiated upwards from a tunnel towards nearby build-

ings was proposed by Hussein and Hunt [48] as a criterion to evaluate the per-

formance of vibration countermeasures. Studies of power flow and energy flow

that radiate upwards from a double-deck tunnel are presented by Clot et al. [49]

and [50], respectively. The radiated energy flow is the one used in this study

to assess the efficiency of DVAs and, in the following, it is explained how to

compute it.

For a double-deck tunnel, the vibration energy radiating upwards through

a cylindrical strip (shown in Fig. 5) at any arbitrary cross section xe due to

the passage of the train can be determined by integrating the power flow that

crosses through the cylindrical strip as

E = rm ∆x

∫ θ2

θ1

∫ +∞

−∞
v(xe, θ, t) · τ (xe, θ, t)dtdθ, (31)

where v and τ are the soil vibration velocity and tractions, respectively, at the

strip due to the train pass-by. Tractions here refer to the stresses projected to

the cylindrical strip surface.

xD

q
1

q
2

r
m

Fig. 5: A finite cylindrical strip through which the radiated energy flow is calculated.

To assess the performance of the DVAs by using the energy flow criterion, it

is necessary to compute the vibration energy radiating upwards for the cases in

which the DVAs are applied to the system and in which they are not. For the

17
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case without DVAs, the displacement and traction Green’s functions that relates

the response on the soil at the cylindrical strip due to a force applied on the i-th

rail can be obtained using the model explained in Subsection 2.1. These Green’s

functions can be used to obtain the response on the soil at the cylindrical strip

due a train pass-by by applying the formulation presented in Subsection 2.2

and, finally, to obtain the energy flow radiated upwards by the tunnel using Eq.

(31). For the case in which the DVAs are coupled to the tunnel’s interior floor,

the same procedure can be followed using the Green’s functions that accounts

for the DVAs application, which can be found by following Section 3.

5. Application and results

In this section, the efficiency of the application of the optimized DVAs on the

interior floor of the double-deck tunnel in minimizing the energy flow radiated

upwards by the tunnel is investigated. The considered mechanical properties

for the different subsystems are described first in Subsection 5.1. Then, in

Subsection 5.2, it is explained how the required Green’s function have been

computed, concerning the position of the receivers, possible position of DVAs

and the wavenumber-frequency sampling. The train pass-by response is com-

puted in Subsection 5.3. In Subsection 5.4, optimized parameters of DVAs to

minimize energy flow radiated upwards are computed by using the previously

explained optimization procedure, and the effects of the optimized DVAs are

discussed.

5.1. Parameters used to model subsystems

Two types of soil are considered, soft soil and hard soil. Their mechanical

parameters are summarized in Table 1. The purpose of using a low Youngs

modulus for the soft soil case is to assess the performance of the DVAs in an

extreme scenario. The mechanical and geometric parameters of the tunnel and

the interior floor can be found in Tables 2 and 3, respectively. Typical values of

reinforced concrete are used to model the tunnel and the interior floor.
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Table 1: Mechanical parameters used to model the soil.

Soil parameters Values for soft soil Values for hard soil

Young modulus (MPa) 15 550

Density (kg m-3) 1600 2000

Poisson ratio (-) 0.49 0.3

P-wave damping ratio (-) 0.05 0.03

S-wave damping ratio (-) 0.05 0.03

Table 2: Mechanical parameters used to model the tunnel.

Tunnel parameters Values

Young modulus (GPa) 50

Density (kg m-3) 3000

Poisson ratio (-) 0.175

Thickness (m) 0.4

Interior radius (m) 5.65

Table 3: Mechanical parameters used to model the interior floor.

Interior floor parameters Values

Young modulus (GPa) 30

Density (kg m-3) 3000

Poisson ratio (-) 0.175

Thickness (m) 0.5

Width (m) 10.9

The track consists of two identical rails separated at a constant distance of

1.5 m and a continuous mass-less distribution of springs-dashpots as a model of

the fasteners. Their parameters are given in Tables 4 and 5.
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Table 4: Mechanical parameters used to model the rail.

Rail parameters Values

Young modulus (GPa) 207

Density (kg m-3) 7850

Cross-section area (m2) 6.93·10-3

Second moment of area (m4) 23.5·10-6

Table 5: Mechanical parameters used to model the fastener.

Fasteners parameters Values

Uniformly distributed stiffness (N m-2) 20·106

Uniformly distributed viscous damping (N s m-2) 10·103

The considered train consists of two identical 3D models of the vehicle,

shown in Fig. 6. The distance between the wheels of a bogie, bogies of a same

car and bogies of two consecutive cars are 2.2 m, 15 m and 7 m, respectively.

The parameters of the 2D vehicle models referred to in Subsection 2.2 are: mw

represents the mass of the combined wheel and 1/2-axle system; mbog and Jbog

represent the mass and mass of inertia of a 1/2-bogie, respectively; kps and cps

represent the stiffness and viscous damping, respectively, of the primary vehicle

suspension system; mc and Jc represent the mass and mass of inertia of a 1/2-car

body; and kss and css represent the stiffness and viscous damping, respectively,

of the secondary vehicle suspension system. The values for these parameters

can be found in Table 6.

Fig. 6: Train configuration.
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Table 6: Mechanical parameters used to model the train.

Vehicle parameters Values Vehicle parameters Values

mw (kg) 950 kH (N m-1) 109

mbog (kg) 4700 kps (N m-1) 14·105

Jbog (kg m2) 1300 cps (N s m-1) 9·103

mc (kg) 22500 kss (N m-1) 6·105

Jc (kg m2) 55·104 css (N s m-1) 21·103

5.2. Computation of the Green’s functions

The track-tunnel-soil model presented in Subsection 2.1, along with the pa-

rameters of the subsystems given in the previous section, is used to compute

the Green’s functions required for coupling the vehicle and DVAs to the track

and the interior floor, respectively, and for computing the energy flow radiated

upwards due to the passage of the train. The computation of the energy flow

radiated upwards takes into account a set of receivers on the soil at a semicircle

concentric with the tunnel and with the radius rs = 12 m. A total amount

of 21 receivers with an angular resolution of 9π/20 rad are spread out across

the semicircle. For the coupling between the DVAs and the interior floor, 20

receivers along the y coordinate over the interior floor are considered. They are

the possible DVAs positions that are considered in the optimization process.

These receivers are equidistantly spread out across the interior floor considering

a space resolution of 0.5 m, and a distance of 0.5 m from each edge of the in-

terior floor. The receivers in the soil and the interior floor, denoted by dm and

sl, respectively, are shown in Fig. 7.
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Fig. 7: Geometrical scheme of the receivers located at the soil and at the interior floor.

The Green’s functions have been computed for the moving loads with the

speeds of vt = 20 and 25 m s−1, which represent typical and maximum train

speeds for underground urban railways, respectively. The wavenumber-frequency

sampling is developed assuming a maximum frequency of interest, seen from a

fixed frame of reference, of ωmax = 2π80 rad/s. To compute the corresponding

maximum frequency of interest seen from the perspective of the moving frame

of reference ω̃max, the expression

ω̃max = ωmax

(
1 +

vt
β

)
, (32)

from [44] is used here, where β is the speed of S-waves in the soil.

It is proposed to computationally solve Eqs. (8) or (9) by using an inverse

fast Fourier Transform (ifft) routine. Consider that the train response is

computed at x = 0. Taking into account that the moving frame of reference is

defined as x̃ = x − vtt, one can define the sampling vectors for x̃ and t in the

basis of the fft as

x̃n = −∆x̃
[
−N/2 . . . n− 1 −N/2 . . . N/2 − 1

]
(33)
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and

tn = ∆t
[
−N/2 . . . n− 1 −N/2 . . . N/2 − 1

]
, (34)

respectively, where ∆x̃ = vt∆t. Thus, the corresponding sampling for kx

and ω̃ should be

kxn = −∆kx

[
−N/2 . . . n− 1 −N/2 . . . N/2 − 1

]
, (35)

and

ω̃n = ∆ω̃
[
−N/2 . . . n− 1 −N/2 . . . N/2 − 1

]
, (36)

respectively, where ∆ω̃ = vt∆kx. Applying a 2D ifft over this sampling strat-

egy, the diagonal of the resulting 2D matrix for the specific receiver contains

the time response at x = 0.

The assumption for which the train response is computed at x = 0 comes

from the fact that, in pure 2.5D models, the time response at any arbitrary x is

always the same as the one computed at x = 0 but delayed in time. However,

when the DVAs are coupled to the system, the resulting model is no longer

longitudinally invariant since it includes a periodical system, which induces a

periodical behavior on the time response. Therefore, x = 0 represents only

one of the possible time responses existing within a periodicity. However, the

soil response is not significantly affected by this periodical behaviour due to the

distance between the track and the receivers in comparison with the longitudinal

distance between DVAs. Thus, x = 0 is taken as the representative time signal

for the train response.

5.3. Train pass-by response

In this study, the unevenness profiles of the two rails are held to be uncor-

related. As shown by Ntotsios et al. [46], unevenness spectral content of wave-

lengths shorter than 3 m should be considered uncorrelated. The train speeds

studied in this paper imply that for frequencies larger than ≈ 8 Hz (most of

the frequency range of interest for railway-induced vibrations), the unevenness
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profiles of the two rails are deemed to be uncorrelated. They are modeled using

a stochastic random process that is characterized by its power spectral density

(PSD) [51] which depends on the rail quality. According to the Federal Rail-

road Administration (FRA), the unevenness of the rails can be grouped into six

classes depending on the rail quality. Class 3 track is used in here.

Fig. 8 shows the time histories of the vertical rail velocity at x = 0 of the

left rail, in the absence of DVAs, due to the train passage at speeds of 20 and

25 m s−1. The passage of the train, which has a total of eight axles, can be

seen through the eight peaks appearing in the figure. It is apparent that the

vertical rail velocity of the rail grows by increasing the train speed. Furthermore,

considering the velocity and the length of the train, the time it takes for the

train to pass corresponds to the distance between the peaks in time.
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Fig. 8: Time history of the vertical velocity of the left rail due to the train passing at speeds
of (a) vt = 20 m s−1 and (b) vt = 25 m s−1.

Fig. 9 shows the time history of the radial velocity of the hard soil at the

receiver s10, i.e. located at θ = π/2 and rs = 12 m, due to train passing

at speeds of 20 and 25 m s−1. In this case, due to the distance between the

receiver and the track, the passage of the train axles cannot be clearly identified

as compared with the rail response.
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Fig. 9: Time history of the radial velocity of the soil at θ = π/2 and rs = 12 m due to the
train passing at speeds of (a) vt = 20 m s−1 and (b) vt = 25 m s−1.

Fig. 10 shows the frequency spectrum of the radial velocity for the hard and

soft soil at the receiver s10, located at θ = π/2 rad and rs = 12 m, due to the

passage of the train at the speeds of 20 and 25 m s−1. It can be observed that

the dominant spectral content is in a narrow frequency band for the four cases.

Observing the same behavior at the other receivers implies that DVAs would be

suitable vibration isolation measures. However, they would be less efficient for

the soft soil cases as the dominant frequency band is wider.

5.4. Optimum parameters of DVAs

Only one distribution of DVAs is considered in this study. Moreover, the

distance between any two consecutive DVAs in a distribution is assumed to be

the same. The DVAs in a distribution are considered to have the same mass. Its

value, together with the minimum distance between the DVAs and the number

of them, are defined in the pre-design stage (common practice in designing DVAs

[52]) by ensuring that the static tensions to which the interior floor is subjected

would stay approximately unchanged after adding DVAs. This bound is applied

in order to avoid structural integrity problems. Thus, the transverse position

of DVAs distribution at the interior floor, the distance between two consecutive
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Fig. 10: Frequency spectrum of the radial velocity for the hard soil (top) and soft soil (bottom)
at θ = π/2 rad and rs = 12 m due to the train passing at speeds of (a,c) vt = 20 m s−1 and
(b,d) vt = 25 m s−1.

DVAs, the natural frequency of the DVAs and viscous damping of the DVAs are

defined as design variables in the optimization process.

In this study, the Matlab Global Optimization Toolbox [53] is employed.

This toolbox provides functions for finding parameters which minimize an ob-

jective while satisfying a set of constraints. The optimization problem set up in-

cludes choosing a solver, defining the objective functions and constraints, defin-
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ing optimization options and including parallel processing. In this study, ga

(genetic algorithm of MATLAB) has been used as the solver, and the energy

flow radiated upwards in the presence of the DVAs has been defined as the ob-

jective function. Among bound constraints and linear/non-linear constraints,

only the former has been considered. These constraints limit the range from

which the design variables can be chosen in the optimization problem. In the

ga solver, a set of options can be specified to obtain data from the algorithm

while it is running, to drive a random selection of the possible candidates for

the solution and to define conditions to terminate the optimization process. In

this study, the approach which makes the selection of the candidates being more

random than driven has been employed. The maximum number of iterations for

the algorithm to perform is used as a condition to terminate the optimization

process and it has been defined as triple that of the default value proposed by

the algorithm, which is 50. In short, as a general work flow of this algorithm,

ga searches for the optimal values of DVAs parameters that can minimize the

energy flow radiated upwards from the cylindrical strip due to the passage of

the train by considering the bounds constraints. The upper and lower bounds

of the design variables and the value of the parameters defined in the pre-design

stage are given in the following:

1. Number of DVAs distributions M : Only one longitudinal distribution of

DVAs is considered.

2. Transverse position of DVAs distribution yd. It can be chosen from 20

possible positions defined previously in Subsection 5.2.

3. Distance between two consecutive DVAs ld: It is defined as a discrete

variable, which can be chosen from 1 m to 8 m as the lower and upper

bounds of this design variable, respectively, with a space step of 0.5 m.

The space step has been restricted to 0.5 m because of the size of the

DVAs to be used.

4. The mass of the DVAs md: It is defined in the pre-design stage. All DVAs
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in a distribution are assumed to have the same mass of 800 kg.

5. Number of DVAs in a distribution N : It is also defined in the pre-design

stage, taking a value of 15 DVAs.

6. The natural frequency of the DVAs fd: It is defined as a discrete variable

that can be chosen from the values of the fixed frame frequency (i.e. seen

from the fixed frame of reference) given by the wavenumber-frequency

sampling defined in Subsection 5.2.

7. The viscous damping of the DVAs cd: It is defined as a discrete variable

with lower and upper bounds of 5 kN s m−1 and 500 kN s m−1, respec-

tively. It is considered to be a total amount of 316 possible values linearly

distributed between the defined bounds.

An optimization process based on GA has been carried out to minimize the

energy flow radiated upwards due to the application of a distribution of DVAs.

The following four cases have been studied: Case H25: hard soil and train speed

of vt = 25 m s−1; Case H20: hard soil and train speed of vt = 20 m s−1; Case

S20: soft soil and train speed of vt = 20 m s−1 and Case S25: soft soil and train

speed of vt = 25 m s−1. The resulting optimum values of the DVAs parameters

and the associated insertion loss (IL) on the radiated energy flow are presented

in Table 7. The IL was computed as

IL = 10 log10

(
E

E′

)
, (37)

where E and E′ represent the radiated energy without and with the application

of the DVAs.
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Table 7: The optimum values of DVAs parameters and resulting IL.

Case yd (m) ld (m) fd (Hz) cd (kN s m−1) IL (dB)

H20 3.55 7.5 31.52 14.09 6.2

H25 -2.45 4.5 28.83 27.07 6.6

S20 1.05 7 31.17 20.65 5.3

S25 -3.45 6 31.6 27.76 5.8

Fig. 11 shows the mean power flow radiated upwards from the cylindrical

strip with and without DVAs in the time domain for the four studied cases. The

total radiated energy with and without DVAs is also given for each case. This

mean power flow has been computed using the velocities and tractions over the

cylindrical strip at xe = 0, which is defined in accordance with the space-time

sampling previously defined in Subsection 5.2. The expression to compute the

mean power flow can be derived from Eq. (31) and it is

P (t) = rm ∆x

∫ θ2

θ1

v(xe, θ, t) · τ (xe, θ, t)dθ. (38)

As generally expected, the radiated energy increases for both soft and hard

soil when the speed of the train increases. The comparison of the radiated

power flow or the total radiated energy with and without the application of

DVAs indicates that using DVAs results in a notable decrease in radiated power

flow or total radiated energy for all studied cases. For all the studied cases,

Fig. 11 shows that the mean power flow becomes negative-valued at specific

instants of time. This behavior of the mean power flow radiated upwards by

a double-deck tunnel was previously observed by Clot [54] for the case of a

quasi-static point load. A meaningful explanation of this phenomenon is that

the elastic surface waves that travel along the tunnel cavity exhibit a particle

motion very similar to the one presented by Rayleigh surface waves [55]. This

close resemblance indicates the existence of elliptical particle motion of the soil

close to the tunnel structure. This means that at some time intervals there are

particle motions of the soil toward the tunnel rather than away from it. This
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Fig. 11: Mean power flow radiated upwards over the cylindrical strip in the time domain for
the cases (a) H20, (b) H25, (c) S20 and (d) S25. The grey and black lines represent the results
with and without DVAs, respectively. The total radiated energy is presented for each case.

results in negative radiated vibration power flow if the positive power flow is

defined as the power radiated away from the tunnel.

Fig. 12 shows the energy spectral density (ESD) of the previously computed

mean power flow, with and without DVAs, for the four studied cases. As ex-

pected, the results of computing the total radiated energy using ESD is the

same value previously achieved from the mean power flow in the time domain.
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Fig. 12: ESD for cases (a) H20, (b) H25, (c) S20 and (d) S25. The grey and black lines
represent the results with and without DVAs, respectively. The total radiated energy is also
presented for each case.

It can be observed in Fig. 12 that the most significant energy content is

concentrated in a frequency range between 25 to 35 Hz. It is noteworthy that

the optimized natural frequencies of DVAs have been obtained in this range of

frequency, which makes them effective in minimizing the radiated energy. The

range of frequency in which most of the energy content is found and at which

the DVAs are effective can be seen more clearly in Fig. 13, which represents
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energy spectrum in one-third octave band for the considered cases with and

without application of DVAs. The presented octave bands are normalized with

the length of the time signal, which is 8.54 seconds.
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Fig. 13: One-third octave bands spectrum of energy in dB (dB reference 1 J) for cases (a)
H20, (b) H25, (c) S20 and (d) S25. The grey and black lines represent the results with and
without DVAs, respectively.

In order to study the radiation pattern of the energy flow, the energy radiated

through the cylindrical strip has been computed as a function of θ, for all studied
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cases and with and without the application of DVAs, using

E(θ) = rm ∆x

∫ +∞

−∞
v(0, θ, t) · τ (0, θ, t)dt. (39)

The results are shown in Fig. 14. One thing to note is that depending on

the type of the soil, the energy flow radiation pattern would differ. For hard

soil cases, the energy mostly radiates over the center of the strip, however,

for the soft soil cases, it radiates mostly over the sides of the strip. For both

cases, DVAs are significantly affecting the θ distribution of the radiation pattern.

This is because the mode shapes of the interior floor, which are modified by

the application of the DVAs, are strongly related with the radiation pattern

distribution, as discussed previously by Clot et al. [49] in a 2D power flow

analysis of the double-deck tunnel subjected to a harmonic line load.
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Fig. 14: Energy radiated over cylindrical strip in J as a function of θ for cases (a) H20, (b)
H25, (c) S20 and (d) S25. The grey and black lines represent the results with and without
DVAs, respectively.

In order to investigate the relation between the natural frequency of the

optimal DVAs and the dynamical behavior of the original system, two figures
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are presented. On the one hand, Fig. 15 shows the radial velocity Green’s

functions of the hard soil case at three receivers located at θ = 0, θ = π/2

and θ = π rad, and at a radius of 12 m due to the force applied on the right

rail. The red areas show local maximums of the velocity Green’s functions

and they represent an approximation to the dispersion curves of the system.

From this approximation, three propagation modes of the interior floor coupled

to the tunnel-soil system can be observed: the first and the third are anti-

symmetric (not observed at θ = π/2) and the second is symmetric (the only

one appearing at θ = π/2). The inclined dashed black lines plotted in Fig.

15 represent combinations of kx and ω of constant ω̃ for the specific speed of

25 m s−1. On the other hand, Fig. 16 shows dynamic wheel-rail interaction

forces for the same case study but considering 20 m s−1 and 25 m s−1. For

both figures, the computations have been done without considering coupled

DVAs. Comparing these two figures with the results shown in Table 7, where

the natural frequency of the optimal DVAs for the hard soil case is 31.52 Hz for

vt = 20 m s−1 and 28.83 Hz for vt = 25 m s−1, one can observe that the DVAs

are targeting the second propagation mode of the track-interior floor-tunnel-soil

system. This can be deduced because of two reasons: firstly, the inclined black

lines of constant ω̃ have a slope far from the tangents to the dispersion curves

except for wavenumbers close to zero, resulting in that the frequency associated

to these propagation modes is mostly the one of the 2D problem; secondly, the

contact forces have a significant amount of spectral energy close to the resonance

frequency associated to the second propagation mode for the 2D case.
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Fig. 15: The radial velocity Green’s functions of the hard soil in dB (dB reference 1 m N−1s−1)
at the receivers located at rs = 12 m and (a) θ = 0, (b) θ = π/2 rad and (c) θ = π rad for
vt = 25 m s−1. Inclined dashed black lines denote points of constant ω̃ for the specific speed
of 25 m s−1.
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Fig. 16: Contact forces caused by wheel-rail interaction associated to vt = 20 m s−1 (grey)
and vt = 25 m s−1 (black).

The effect of the DVAs on the dynamic response of the rails is also studied.

Fig. 17 shows the one-third octave band spectrum of the vertical velocity of
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the left rail with and without DVAs, for two different train speeds. It can

be seen from the figures that the application of DVAs on the interior floor of

the tunnel has little effect on the dynamic response of the track. Because of

that, the train-track dynamic forces can be computed before the optimization

process, only once. If the track is already constructed, these forces can be

obtained using a hybrid approach [12] that enhance the accuracy of the DVAs

efficiency prediction. However, it is important to highlight that this result is only

associated to the present problem parameters. In cases where the DVAs natural

frequency is similar to the rail/fasteners natural frequency, this conclusion is no

longer valid.
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Fig. 17: One-third octave band spectrum of the vertical velocity of the left rail in dB (dB
reference 10−8 m s−1) for the train speeds of (a) vt = 20 m s−1 and (b) vt = 25 m s−1. The
grey and black lines represent the results with and without DVAs, respectively.

6. Conclusions

The main objective of this paper is to evaluate the efficiency of the appli-

cation of DVAs in a double-deck tunnel to mitigate the underground railway-

induced ground-borne vibration. The total energy flow radiated upwards by a

double-deck tunnel due to train pass-by has been considered to be the criterion
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to assess the performance of DVAs. A semi-analytical model of a double-deck

tunnel embedded in a full-space has been used to compute the energy flow ra-

diated upwards by the double-deck tunnel due to the train pass-by over a track

system located at its interior floor. A methodology to couple DVAs to any sub-

system of a railway infrastructure has been explained and was then employed to

couple DVAs to the interior floor of a double-deck tunnel. Taking into account

the crucial role of the DVAs parameter in their performance, a global optimiza-

tion approach based on GA has been used to obtain the optimal parameters of

DVAs to minimize the total radiated energy.

The performance of one longitudinal distribution of DVAs has been evalu-

ated for two different types of soil and two different train speeds. In all of the

four cases, they have been found to be efficient in reducing the total radiated

energy flow by the tunnel. The obtained insertion loss of the total radiated

energy flow due to the application of DVAs for the four cases shows that the

harder the soil is and the faster the train, the more effective are the optimized

DVAs. In the case of the hard soil and the train speed of 25 m/s, a reduction

of 6.6 dB in the total radiated energy flow has been achieved. The results show

that DVAs provide significant vibration attenuation benefits by tuning their

optimum natural frequencies to be set down in the range of frequency where

most of the energy spectral content is concentrated. Another finding is that

the energy flow radiation pattern from the tunnel is strongly modified after

the application of the DVAs, as they modify the mode shapes of the interior

floor. However, the application of DVAs does not considerably affect the dy-

namic response of the rails. It is expected that using more than one longitudinal

distribution of DVAs would result in a greater reduction in the total radiated

energy flow. It can be noted that DVAs would be a more cost-effective solution

for existing underground railway networks than, for example, vibration isola-

tion screens or building base isolation, as their implementation would be cheaper

than other vibration countermeasures. Noteworthy, it is expected that DVAs

as countermeasures for railway-induced ground-borne vibrations would be gen-

erally more effective for the cases with a sharper vibration frequency spectra of
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the tunnel response (like the ones in double-deck tunnels) rather than the ones

with smooth vibration frequency spectra (like the ones in conventional tunnels).

Nevertheless, their effectiveness for conventional tunnels and at-grade railway

infrastructures is not studied in detail yet.
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