
Computational modeling of epithelial wound healing:
Short and long term chemo-mechanical mechanisms

L. Roldána,b, J.J. Muñoza,c,d, P. Sáeza,b,d,∗

aLaboratori de Càlcul Numèric (LaCàN),
bE.T.S. de Ingenieros de Caminos,

cDepartment of Mathematics,
Universitat Politècnica de Catalunya (UPC), Barcelona, Spain

dBarcelona Graduate School of Mathematics (BGSMath), Barcelona, Spain

Abstract

During the lifetime of all living multicellular organisms, wounds in their tissues are frequently observed. The
capability of closing those gaps is fundamental for a healthy development. If done deficiently, many diseases
may occur from simple inflammation to tumor formation. The wound healing process in epithelial tissue
occurs in three different stages. The first one is the assembly of a supra-cellular actomyosin cable and its
migration towards the wound edge, triggered by biochemical processes in which calcium plays a distinctive
role. How this process is orchestrated following damage remains unclear. Later, after its positioning, the
cable contracts driving the tissue towards the gap and reducing the wound area. Finally, cell migration
towards the interior of the wound ends up sealing the tissue. In this work, we make use of a mechanical
continuum model for the first two stages in order to developed and 2D finite element simulations within a
monolithically fully implicit implementation. The model for the actomyosin cable formation involves the
coupling of transient calcium ions transport, with actin fibers and myosin motors recruitment and non-linear
mechanical response of the tissue. The contraction stage, the active deformation of the previously formed
actomyosin cable is taken into account. The relative motion of the myosin motors over the actin filaments is
modeled so there exists an active tissue contraction in the direction of those fibers. Upon implementation,
the model is capable of performing a wide range of biophysical situations reported experimentally, as we
demonstrate in our numerical results. We have been able to rationalize through computational mechanics
the firing of calcium in the wound right after damage infliction as well as the consequent formation of actin
ring, reproducing nicely what has been reported in biological literature. Thereafter, the numerical model
of acto-myosin contraction, fully integrated with the non-linear mechanics of the problem, correlates with
the mechanics of wound closure at the actin-ring contraction stage. More importantly, the approach is the
first of its kind in the modeling of epithelial and embryonic cell layers, where a wide number of complex
mechanics has been integrated and solved though computational methods in engineering. We believe that
the simulations will help to unravel new insights in open questions of developmental biology.
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1. Introduction

Gaps in multicellular tissues and cells occur during the lifetime of an organism as consequence of physio-
logical or pathological processes [1, 2]. Closure of these gaps is key for the development and functionality of
biological organisms. The malfunctioning of the wound closure may lead to diseases such as tumorigenesis
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[3]. Clear understanding of this phenomena and the mechanisms involved is of great importance. It is crucial
to restore epithelial physiology to protect organisms from infection or to allow a normal development [4].
The complex and orchestrated mechano-biological regulation is coordinated from right after injury through
all the healing process and, most important, is observed among different types of tissues.

The process of wound healing develops in three well differentiated time scales, with clear separated
mechanisms and goals: 1) actomyosin cable formation (15 minutes approximately), 2) actin ring (or purse
ring) contraction, predominant in non adherent substrates, and 3) individual and collective cell migration
that ends up closing the gap. The cooperative mechanisms 2 and 3 can last for almost 4 hours. Although
some wound area reduction is observed during the early minutes, its magnitude is small compared with the
effects of main contraction mechanism in stage 2 [5]. In this paper we will focus on the modelling of stages
1 and 2, as described in Figure 1. For further reference, an excellent review of the different mechanisms in
wound healing can be found in [6].

Figure 1: Wound closure evolution in time.
Two different steps can be distinguished, a
first one where the actomyosin ring is formed
and a second one where the contraction of that
ring occurs, closing the gap. Adapted from [5].
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During mechanism 1, calcium plays a fundamental role in wound healing [7] and it has been directly
implicated in the formation of the actin ring [8, 9, 10], mainly through the downstream activation of the Rho
family of proteins, which is directly implicated in actin formation. The deformation of the membrane and
the diffusion of the calcium concentration promotes a wave of Ca2+ [8, 5]. Although the exact mechanism
of these calcium pike is not clear, it is believed to be dependent on the ion-channels present in the epithelial
cells [8, 11]. Some membrane proteins form pores, or Ion-Channels, that regulate the transport of ions
through passive diffusion [12]. The mechanism for the opening or closing of these channels can be controlled
by different means, one of them being stress or stretch, in what are called mechanosensitive ion channels
[13, 14]. At the same time, the recruitment of actin fibers and myosin motors, which will be responsible of
the active contractibility of the cable seems to be triggered by ion signals. Some studies suggest a correlation
between upper and lower bounds for concentration of Ca2+ with the migration of the actomyosin from where
is formed towards the wound edge [5].

Mechanism 2 takes place at the cells surrounding the wound. A cable formed by actin filaments, the so
called purse string, is formed at the basal epidermis and at the leading edge of the wound, which contracts
upon formation [15, 16]. The purse ring provides the force necessary to draw the wound edges together to
achieve re-epithelialisation [17, 16] where the key component of this contractile apparatus are the Myosin
II motors, assembled in a coordinated manner in the leading edge of the wound margin [18, 16, 19]. Addi-
tionally to the actomyosin ring contraction, it has been observed a migration of marginal and submarginal
cells (mechanism 3), led by actin based lamellipodial and filopodial protrusions, allowing contact between
opposing leading edge cells. Both types of protrusions are key to the binding of epithelial layers, as they
allow the tugging of cells among each other [20, 16] and closure of large gaps [22]. The cellular protrusion
is an individual cell move mechanism while a collective movement mechanism called Kenotaxis (propulsion
towards empty spaces) has also been observed in tissues that try to fill empty gaps [23].

1.1. Actomyosin ring formation
This mechanism can be summarized as follows and it is illustrated in Fig. 2). The wound produces a
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deformation on the tissue. The deformation is possible because the epithelial tissue is in a so-called pre-stress
configuration, which arises mainly due to the action of myosin motors in the micro-scale [22].

Figure 2: Stages in actomyosin ring forma-
tion. (a) Intact tissue. (b) Wounding. (c)
Expansion. (d) Calcium burst due to me-
chanical deformation. (e) Formation of an
actin ring and motion in the direction of the
wound. (e) An actomyosin cable is formed
as the waves of filaments/motors reach the
wound edge. Adapted from [5].

The cell deformation triggers an increase in the calcium concentration. The increase in calcium concen-
tration arises from the release from both internal and external storage spaces [20, 21, 5]. Once the initial
burst of calcium arises, a quick wave of calcium through the tissue is observed [5]. After this initial process,
around 40 seconds after ablation, a particular concentration distribution can be observed, with a minimum
in the wound edge and a maximum away from it. In Figure 3 it can be noted how a calcium peak migrates
towards the wound as time advances. This phenomena can be explained by the opening and closing of the
ion channels, ahead and behind of the curve’s peak respectably, reacting to the cells deformation. It is also
important to remark that, in concordance with Figure 3, the intensity of the calcium profile tends to decrease
with time. Note, that no information regarding the calcium distribution during the first 40s is available. It
is commonly assumed that that calcium generation is larger at locations with larger deformation gradient.
In the wounded tissue and at time t = 40s, this gradient is larger at the wound edge. However, calcium
concentration is maximum some 20-25 µm away from the wound front, and no mechanism has been found
so far for this distribution.

Figure 3: Evolution of calcium relative
intensity in time and space. Left: An
abrupt jump in calcium intensity is ob-
served when the injury occurs, slowly
decaying with the time. Right: spacial
calcium relative intensity profiles at dif-
ferent times. A wave of decaying inten-
sity can be observed moving towards the
wound margin. Adapted from [5].

One of the most accepted mechanisms for the transport of intracellular calcium ions is the strain-
activation of gap junctions at the cell membrane [28,29]. At the macro scale, the process can be under-
stood as a diffusion mechanism, as several studies have tried to replicate the transport over different types
of tissues. Long et. al. [24] performed a theoretical and experimental study to study the propagation of
calcium waves, using a transient diffusion-reaction equation in 1D propagation with a constant diffusion
coefficient. Hofer et. al. [25] proposed a similar equation, but with a variable diffusion, which depends on
the concentration of calcium. Goldberg et. al. [26] proposed a more complex model for calcium dynamics
by coupling the calcium concentration with the cell’s average IP3 concentration (a secondary messenger
molecule used for signal transduction) and the number of open IP3R channels on the membrane, aiming to
reproduce a linear and non-linear behavior of the gap junction opening and closure.

Calcium and actin/myosin concentrations correlates, both in space and time, with the calcium peak
traveling slightly behind the actomyosin wave [5]. This correspondence can be observed by comparing
Figure 3 and Figure 4. Note that the profile for the actin concentration is similar in all the stages, except
for the peak that travels towards the wound edge. It seems that high concentrations of calcium prevent the
formation of new actin filaments, whereas at intermediate levels the maximum amount of actin is observed
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[5]. This property suggest that there is a zone, with calcium concentration in between a lower and an upper
limit, which is beneficial to the recruitment of actin filaments. As the calcium profile evolves, this zone
moves, which would explain the migration of the actomyosin peak seen in Figure 4. Calcium concentration
regulates the recruitment of actin and myosin, which produces a relative contraction in the cells, affecting
calcium distribution, and producing an actomyosin flow that culminates in the actomyosin ring around the
wound edge [5]. It was observed that the peak of the intensity profile follows the actin wave, and correlates
with the maximum relative individual area reduction of the cells [5]. Although it is clear that calcium waves
and acto-myosin concentration correlates in space and time, the results did not provide a reason for the
formation of the actin ring at the wound edge (see Figure 4).

Figure 4: Evolution of actin relative intensity profile in
time. It can be observed a wave of actin concentration
moving towards the wound edge, reaching the vicinity
of the gap in the first 20 minutes of the wound healing
process. Adapted from [5].

1.2. Actomyosin ring contraction
After the actin ring has been formed, the coupling of actin and myosin motors promotes the active

contraction of the actin ring. As discussed, the long term closure can be due to the actin ring or a continuous
protrusion of the lamillopodia of the cells close to the wound and the crawling of the cells towards the wound
center. In this regard, Brugués at. al [22] were able to measure the displacements and stresses in the substrate
of an experimental wound closure scenario. In their study they propose a model where the cell crawling
at initial stages is the most important mechanism of the wound healing, while in the posterior stages the
actomyosin ring contraction gains relevance. In this last stage two aspects dictates the closing efficiency:
firstly, the already mentioned ring-contraction mechanism, and secondly, the focal adhesions, which allow
the movement of the cells by transmitting part of the force to the substrate [22]. Vedula et. al. [17]
found that for diameters above 150um the purse-string mechanism is ineffective. They also reached to the
conclusion, that the actomyosin ring contraction appears to be more relevant in cases where there is poor
or non-existent extracellular matrix.

To this end, cell in wound regions use mainly two mechanisms to achieve the closure and healing of
gaps: 2a) cells close to the wound edge crawl toward the center of the gap using adhesive mechanisms
with the substrate [22] and thereafter, 2b) an actin ring formed at the edge of the gap contracts and
actively closes the gap (purse-string mechanism) [27, 28]. In situations with a well formed extracellular
matrix (ECM), where a stable lamillopodia protrusion are favored, cell crawling seems to be the preferred
mechanism to close the wound gap [29, 30]. In small gaps, as those appearing during apoptotic cells [31]
and in non-adherent substrates either in-vitro [23] or in embrionic epithelial layers with a non mature ECM
[17], the preferred mechanism seems to be the collective formation of the actin-ring and the subsequent
contraction [32, 17, 19]. Nevertheless, and after a long debate in the experimental biology field, it seems
that both mechanisms work co-operatively at a smaller or higher degree to achieve an efficient and complete
wound healing.

This paper focuses on a system with non-adherent substrates and therefore, as described above, in
mechanisms dominated by purse-ring-like closure. The exact process through which the cable is contracted
is still unknown although it has been proposed a two steps mechanism in which the myosin motors have
a crucial role in the ring contraction while a parallel process of depolymerization of the actin filaments
contribute to the the ring shrinking as well [33].
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1.3. Mathematical models in wound healing
Apart from key results in experimental biology, many efforts have been made to propose theoretical

and numerical models to describe the mechanical response of tissues to injuries and perform numerical
simulations of the process. At the tissue level, considering wound in the epidermis, several computational
and mechanistic approaches to the angiogenesis of the process and the healing mechanism have been proposed
in the literature [34, 35, 36, 37]. At the epithelium scale and for a non-adhesive circular gap, Vedula et.
al. [17] developed a mechanical model to analyze the effect of contractile forces of the actin cable against
a resistive viscoelastic behavior of the cells. They used a solid viscoelastic Kelvin-Voigt model and a linear
adhesive force for the interaction of the epithelium and the substrate. Similarly, Ravasio et. al. [2] did finite
element simulations to study the effect of different curvatures in the initial gap over the forces and speeds on
the tissue. In their work, interaction between cells were considered viscous as well as the friction with the
substrate. The forces acting on the moving boundary were introduced as Neumann boundary conditions,
dependent on experimental data and local curvature. Additionally, also applying the ring contraction as
a boundary force, Almeida et. al. [38, 39] proposed models that take into account the epidermal tension
and the zipping forces in homogeneous wound closure and in non-homogeneous dorsal wound closure using
level-set methods to track the tissue edge. They also resorted to genetic algorithms to find the material
properties and model constants by qualitative comparison with experimental cases.

The wound closure and performance of surrounding cells, without mitotic processes, was also analyzed
computationally in the case of small wounds by Nagai et. al. [40]. Their models represented each cell
discretely using vertex dynamics cell model in order to perform wound closure. Brugués et. al. [22],
performed wound healing simulations on elastic substrates also using forward vertex analysis. To do so, cell
boundaries were discretized using a series of bar elements with viscous properties combined with constant
tractions. An area conservation constrain and internal dash-pots for the cytoplasm were imposed to find
equilibrium. Wound closure was simulated by imposing a cell contractility at the wound edge (purse string)
and lamellipodia protrusions (cell crawling) using also vertex models [22, 41, 42].

The mentioned works in epithelia were able to reproduce experimental results from the laboratory,
showing the cell-to-cell mechanics, the cell crawling or the reaction to the actomyosin cable. They were
also able to provide valuable information about the closing velocity or forces at different scales of the
problem. Unfortunately, none of them takes into account the coupling between the tissue deformation, the
effect of chemical signals during the early and late stages of the process or how these chemical signals affect
the actin/myosin concentrations and the afterward effect in the active contraction. All these phenomena
span a fundamental mechano-chemical sensing at the early stages of wound healing that can be described
by means of coupled interaction of elliptical partial derivative equations. Therefore, the interaction of
biochemical concentration with the mechanical response of the epithelial layer has never been considered
in the modeling of wound healing. In particular, two processes are of profound relevance during wound
healing: 1) the early short time contraction of individual epithelial cells as a function of the intracellular
actomyosin in the layer [5] and 2) the later contraction of the actin ring which again appears as a function
of the actomyosin concentration, now at the wound edge.

In this paper we create a mathematical model of the entire wound healing process to be solved along
with finite element schemes. The modeling of both time scale of the problem is intended: one associated
with the formation of the actin cable and another associated with later contraction of the purse-string. The
tissue is considered as a continuum. For the mechanical description of the problem a non-linear large strain
hyperelastic model is used. The transport problem of Ca2+ is defined by a non-linear unsteady diffusion-
reaction equation. The actomyosin turnover is defined by means of a non-linear source term of the Ca2+

concentration. The mentioned system is analyzed with a coupled system of equations solved implicitly in a
monolithic fashion within a finite element method. Once the actomyosin ring is formed, the cable contraction
is modeled as an active element, following the classical Hill’s description, added to the previous mechanical
description. Both processes are solved numerically using an in-house finite element code.

The work is organized as follows. First, the basic continuum problem is described in Section 2, explaining
the general kinematic framework, the balance equations governing the system and those constitutive laws
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that govern the problem along the different time and space scales. Second, in Section 3, the numerical
approach is presented by defining the strong and weak forms of the coupled system, along with the time
and spatial discretization and a consistent linearisation of the resulting system of equations. Later the main
mechanical properties of the epithelium are defined as well as any mechanical-related variable need for the
finite element simulations, taking into account the particularities in the constitutive relations for the ring
formation and purse-ring respectively. Sections 4 and 5 describe two separate mechanisms:

• Actin Ring contraction (Section 4):

– Wound formation (Section 4.1)
– Calcium (φ) transport and actin (ρ) concentration (Sections 4.2 and 4.3)
– Mechanical contraction (Section 4.4)

• Purse String contraction (Section 5)

– Contraction velocity (Sections 5.1-5.2)
– Consitutive equations and mechanical equilibrium (Section 5.3)

Relevant results of the model are presented in Section 6 along with a final discussion and some
conclusions, respectively in sections 7 and 8.

2. General framework

We will present here the general form of the coupled chemo-mechanical problem, which is built from
transport equations (Section 2.2) and balance of linear momentum (Section 2.3), which will be described
after some preliminary definitions.

2.1. Kinematic definitions and decomposition of the deformation gradient
Following [43], the spatial parametrization {•} (x, t) and the material parametrization {•} (X, t) are

formulated in terms of the spatial coordinate x and the material coordinate X respectively. A distinction is
made for a spatial and material reference of a given quantity (scalar or tensor), denoted as {•}t when related
to the spatial domain Ω or {•}0 related to the material domain Ω0. Any quantity described in the spatial
configuration is an element tangent or cotangent to Ω, while if described in the material configuration is
tangent or cotangent to Ω0. The problem is restricted to its spatial motion, which consist on following the
particles of the body from a fixed material position X. The spatial motion problem is characterized through
the map,

x = ϕ ( X, t ) : Ω0 → Ω, (1)

from the material placement X of a particle in Ω0, to the spatial placement x of the same particle in the
spatial configuration Ω. The deformation gradient F is defined as the spatial derivative of the deformation
map ϕ with respect to the reference configuration X at time t0 as

F = ∇Xϕ,

with determinant J = det(F). The Cauchy-Green deformation tensor C is introduced to define the relevant
strain measures as C = Ft · F. Finally the first strain invariant evaluated for the total deformation tensors
as I1 = tr(C).

We will resort to the multiplicative decomposition of the deformation gradient F into an elastic part Fe
and an active part F(·) [44],

F = Fe · F(·). (2)

The underlying concept is adopted from the multiplicative decomposition in finite elastoplasticity [45].
The elastic part represents the original mechanical response of the material, such as the volume changing
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and volume preserving deformations that would result from the loading of the system. The active part is the
material response to any other external excitation. In this work we consider two different active responses:
volume change that depends on the actin concentration (Section 4), and actomyiosin ring contraction (Sec-
tion 5).

The determinants of the elastic and growth tensors are denoted by Je = det(Fe) and J(·) = det(F(·)),
respectively, such that J = Je J(·). The elastic right Cauchy Green tensor Ce can be introduced as

Ce = Ft
e · Fe = F-t

(·) ·C · F
-1
(·). (3)

2.2. Biochemical Transport Problem
The transport of a given substance due to diffusion mechanism and a volumetric source term Fu will be

here described through the parabolic transport equation

u̇ = ∇ ·Q + Fu(u, t) in Ω, (4)

where u is the transported quantity, and the transient term is the time derivative u̇ = du/dt [46]. The
volumetric reaction/source-term Fu(u, t) represents the creation or destruction of the the given quantity.
The first terms on the rhs is a diffusive term, which depends on the divergence of a given flux Q that
is generally a non-linear function of u. The equation has the following Dirichlet and Neumann boundary
conditions

u = ū in ΓuD (5)
Q ·N = T̄u in ΓuN , (6)

being ū a prescribed quantity in the essential boundary ΓuD, and T̄u a prescribed flux on the normal direction
N of the natural boundary ΓuN . The differential equation is also accompanied by suitable initial conditions.

The process through which intracellular calcium ions are transported through neighboring cells is believed
to be through channels located in the cell membrane, known as gap junctions. Gap junctions are assemblies
of cell-cell channels, which are formed through the docking of proteins located in the cell membrane [47].
The result of the assembly of this channels is a porous membrane [48] that allows the passing of molecules up
to a given size, which is bigger than the calcium ion molecules [47]. In Figure 5 a scheme for the mentioned
mechanism can be observed.

Gap junction

Cytosol

Cytosol

Ca2+

Figure 5: Left: Strain activated calcium ion channel mechanics. The cell membrane, which separates the interior of the cell
with the exterior space, regulates its permeability to ion fluxes through proteins that serve as gates. When the membrane is
subject to dilatation stretches, the channels open up and allow the flow of calcium ions through the cell membrane. Right:
Gap junction channels in cell membranes. The assembly of two hemichannel formed by connexins create a channel through
which several substances, calcium ion included, can pass from cell to cell.

The concentration flux Q describes the natural phenomenon of diffusion, which we will assume pro-
portional to the concentration gradient ∇u, that is, Q = D∇u, with D the diffusion tensor. We adopt a
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constant isotropic behavior, so that the tensor is expressed as a function of only one parameter, D = νI,
with ν the diffusion coefficient,

Q = ν∇u. (7)

2.3. Balance of Linear Momentum
The principle of virtual work in continuum mechanics [49] states that the internal power production

P̂i(η) and external power production P̂e(η) should be equal,

P̂i(η)− P̂e(η) = 0, (8)

being η the set of admissible velocities [50, 51], and the internal and external power are defined as:

P̂i(η) =

ˆ
Ω

P : ∇η dΩ, in Ω

P̂e(η) =

ˆ
Γ

Tϕ · ηdΓ, in ΓϕN ,

where P is the first Piola-Kirchoff stress tensor, Tϕ is the material traction vector and external body forces
have been neglected. Applying the divergence theorem to (8), it yields the well known balance of linear
momentum. Due to the low mass and velocities, inertial and transient terms are also neglected in the
balance, which adopts the following quasi-static form:

0 = ∇ ·P, in Ω. (9)

This equation has the following Dirichlet and Neumann boundary conditions:

ϕ = ϕ̄, in ΓϕD, (10)

Pt ·N = T̄ϕ, in ΓϕN , (11)

where ϕ̄ and T̄ϕ are the prescribed displacements and external forces respectively. Henceforth, only Dirichlet
mechanical boundary conditions are strongly imposed in the exterior of the domain, setting the displacement
to zero: ϕ = 0 in ΓϕD, and no Neumann boundary condition is imposed.

2.4. Hyperelastic constitutive equations
In order to describe the hyperelastic behaviour of the material, the constitutive equation is obtained

directly from the Clausius-Planck form of the second law of thermodynamics [52], reading

Dint =
1

2
S : Ċ− Ψ̇− S0 θ = [S− 2∂CΨ] : Ċ− S0 θ ≥ 0, (12)

where Dint is the dissipation of internal energy, S is the second Pila-Kirchoff stress tensor, Ċ is the time
derivative of the right Cauchy-Green strain tensor, Ψ̇ is the time derivative of the strain energy density
function (SEDF) and S0 θ is the material form of the entropy. Note, that in this paper, a purely mechanical
theory is used, so that thermal effects are ignored (S0 and θ are omitted), and a perfectly elastic material is
considered [50]. In this case the inequality reads

(S− 2∂CΨ) : Ċ = 0.

Due to the arbitrariness of C and hence Ċ, the expression in parenthesis should be null, and the well
known expression for the second Piola-Kirchoff is retrieved

S = 2
∂Ψ

∂C
.
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For the finite element implementation, the first Piola-Kirchoff is used, which is obtained by pulling back
tensor S to the reference configuration as P = F · S. Alterantively, P can be also derived as a function of
the SEDF, considering the dissipation equation as a function of P and F instead of S and C [50], resulting
in P = ∂FΨ.

If the problem is defined in terms of the multiplicative decomposition of the deformation gradient, then
Ψ = Ψ(Ce,F(·)) and the Piola-Kirchoff expression can be further defined, resorting to equation (3), as

S = 2
∂Ψ

∂C
= 2

∂Ψ

∂Ce
:
∂Ce

∂C
= F−1

(·) Se F−t(·) with Se = 2
∂Ψ

∂Ce
. (13)

2.5. Baseline elasticity
We adopt a classical Neo-Hookean SEDF with a constitutive law that reads

Ψ(C) =
1

2
λln2(J)− µln(J) +

1

2
µ(I1 − 3), (14)

where λ and µ are the Lamé parameters which describe de mechanical properties of the material, and
J = det(F) and I1 = trace(C). The first Piola-Kirchoff stress tensor is derived from (13) and (14) as,

P = µF + (λln(J)− µ) F−t. (15)

3. Finite element formulation of the coupled mechanical-transport equations

The partial differential equations described in the previous section are here discretized in time and in
space using the finite element method in order to solve the boundary value problem numerically. As the
problem of interest is coupled and non-linear, the resulting weak forms are linearized with respect to the
involved variables with the objective of using a Newton-Raphson method.

3.1. Weak form
First, the strong form of the continuous equations valid for the domain Ω, in their residual form are

identified

Ru := u̇−∇ ·Q− Fu = 0 in Ω, (16)
Rϕ := −∇ ·P− Fϕ = 0 in Ω, (17)

with Dirichlet and Neumann boundary conditions.
Recalling the usual Hilbert spaces [46] we define:

Su = {u ∈ H1(Ω) | u = ū on ΓuD}, Vu = {δu ∈ H1(Ω) | δu = 0 on ΓuD},
Sϕ = {ϕ ∈ [H1(Ω)]d | ϕ = ϕ̄ on ΓϕD}, Vϕ = {δϕ ∈ [H1(Ω)]d | δϕ = 0 on ΓϕD},

with d the space dimensions. In order to obtain the weak form of (16) and (17), integration by parts and
multiplication with two test functions δu and δϕ is carried out, resulting in the following weak form of the
reaction-diffusion and balance of momentum respectively:

Find u ∈ Su and ϕ ∈ Sϕ such that,

Gu =

ˆ
Ω

δu · u̇dΩ +

ˆ
Ω

∇δu ·QdΩ−
ˆ

ΓQ

δuT̄udΓ−
ˆ

Ω

δuFudΩ = 0, ∀δu ∈ Vu, (18)

Gϕ =

ˆ
Ω

∇Xδϕ : PdΩ−
ˆ

ΓP

δϕ · T̄ϕdΓ = 0, ∀δϕ ∈ Vϕ. (19)
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3.2. Time discretization
To carry out the temporal discretization, a first order Backward-Euler implicit scheme is used to solve

the time integration problem. The temporal discretization is given by a time interval T and N subintervals,
T =

⋃N
0 [tn, tn+1] with a constant time increment ∆t = tn+1 − tn ≥ 0. The discretization of u̇ from (18)

takes the form

u̇ =
u− un

∆t
, (20)

where u refers to the displacement at the current time step tn+1, and un at the previous one, tn. Note
that the mechanical part also follows an implicit scheme, but due to the quasi-static considerations of (9),
variable ϕ refers always to the current time step.

3.3. Spatial discretization
For the discretization of the spatial domain Ω, a C0 Lagrangian basis is taken in order to interpolate all the

variables, introducing them as global degrees of freedom at the nodal level. Using the isoparametric concept,
same shape functions Nu and Nϕ are used both for the geometry representation and the approximation
functions uh and ϕh. Galerkin method is used in order to approximate the test functions δuh and δϕh.
Then, the approximations read

δuh|Ωe =

neu∑
i=1

Nu
i δui, δϕh|Ωe =

neϕ∑
j=1

Nϕ
j δϕj (21)

uh|Ωe =

neu∑
k=1

Nu
k uk, ϕh|Ωe =

neu∑
l=1

Nϕ
l ϕl, (22)

where Ωe defines the element volume such that Ω = ∪nel
e=1Ωe and neu and neϕ are the number of nodes

per element for each approximation. Note that in this case, the same bilinear element is used for the
approximation of both variables, and therefore neu = neϕ and Nu

i = Nϕ
i .

We can rewrite (18) and (19) using the approximations (20)-(22) to obtain the time/space discretization
of the weak residual vector form as

Ru
i :=

nel

AAAAAAAAA
e=1

ˆ
Ωe
Nu
i

1

∆t
(u− un)dΩ +

ˆ
Ωe
∇Nu

i ·QdΩ−
ˆ

Ωe
Nu
i FudΩ−

ˆ
ΓeQ

Nu
i T̄udΓ = 0 (23)

Rϕ
j :=

nel

AAAAAAAAA
e=1

ˆ
Ωe
∇Nϕ

j ·PdΩ−
ˆ

ΓeP

Nϕ
j T̄ϕdΓ = 0, (24)

where the operator A symbolizes the assembly of the local contributions to the global residual equation. The
non-linear equations in (23)-(24) are solved resorting to a Newton-Raphson iterative process. This process,
and the required linearized forms of the residuals are given in Section 3.4.

3.4. Newton-Raphson solution process and linearization of residuals
We solve the problem stated in (23)-(24) with a monolithic incremental iterative Newton-Raphson strat-

egy. A consistent linearization of the residual equations is required. At time tn+1 the latter read,

R
u(k+1)
i(n+1) = R

u(k)
i(n+1) + dRu

i = 0,

R
ϕ(k+1)
j(n+1) = R

ϕ(k)
j(n+1) + dRϕ

j = 0,
(25)
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where k is the iteration number and the residual variations are given by

dRu
i =

∑
k

kuuik duk +
∑
l

Kuϕ
il dϕl,

dRϕ
j =

∑
K

Kϕu
jk duk +

∑
l

Kϕϕ
jl dϕl.

Here, the unknowns duK and dϕl are the updates of the transport and mechanical variables and matrices
K are the result of deriving the residual equations (23) and (24) with respect to both unknowns u and ϕ.
The solution of the system of equations (25) renders the iterative update for the increments of the global
unknowns ui ← dui and ϕj ← dϕj [53].

After assuming that the boundary conditions are independent of the solution of the problem at each
time-step, the following Jacobian of the residuals are obtained,

Kuu
ik =

dRu
i

duk
=

nel

AAAAAAAAA
e=1

ˆ
Ωe

(Nu
i

1

∆t
Nu
k −Nu

i duFuNu
k +∇Nu

i d∇uQ · ∇Nu
k )dΩ, (26)

Kuϕ
il =

dRu
i

dϕl
=

nel

AAAAAAAAA
e=1

ˆ
Ωe

(Nu
i · dFFu∇Nϕ

l +∇Nu
i · dFQ · ∇Nϕ

l )dΩ, (27)

Kϕu
jk =

dRϕ
j

dϕk
=

nel

AAAAAAAAA
e=1

ˆ
Ωe

(∇Nϕ
j · duPN

u
k )dΩ (28)

Kϕϕ
jl =

dRϕ
j

dϕl
=

nel

AAAAAAAAA
e=1

ˆ
Ωe

(∇Nϕ
j · dFP∇Nϕ

l )dΩ. (29)

The specific forms of the linearized terms are provided in following sections. In equation (26), the mass
matrix, the reaction matrix and the diffusive matrix can be identified, while in equation (29) the component
dFP is the classical elastic tangent operator A, which under the assumed hyperelastic constitutive relation,
is given by

A = λF−t ⊗ F−t − (λ ln(J)− µ)F−t⊗ F−1 + µ I⊗̄I, (30)

with the special tensor products [•⊗̄◦]ijkl = (•)ik(◦)jl and [•⊗◦]ijkl = (•)il(◦)jk.
The other two terms Kuϕ

il and Kϕu
jk are the result of deriving the transport and mechanical residual

with respect to the mechanical and transport variables respectively. In equation (27), terms dFFu and dFQ
describes the variation of the source term and flux with respect to the deformation gradient, and in equation
(28), duP describes the variation of the material stress response to the transported quantity concentration.
Note that in case that the systems were uncoupled, this terms would be null, and two separate systems
would be obtained.

4. Modeling of actin ring formation

In this section, the model adopted for the first stage of the wound healing is presented, which takes part
on the first 15 minutes of the overall process. The initial expansion of injury and the formation of the actin
ring are described.

4.1. Wound formation
Before the wound is induced, there exists a pre-strain which is here modeled with an initial deformation

gradient F0. When the ablation is produced with a laser, tissue retracts, and the wound gap expands,
creating an area of high tension and strain in the border of the injury.

In order to impose the pre-strain, an initial isotropic deformation gradient is incorporated multiplicatively
into the global deformation gradient F, at every point of the domain as

Fe = FF−1
0 with F0 = fpreI, (31)
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where the initial scalar stretch factor fpre ≤ 1. Note, that the tissue in the reference configuration is not
loaded. It is also important to mention, that the governing equations used for this stage are the same as in
the rest of the ring formation process, which are described in sections 4.2, 4.3 and 4.4, but the time-scale
varies, being fractions of seconds for the wound expansion and minutes for the processes that generate the
actomyosin ring.

4.2. Calcium burst and transport
Due to the tissue deformation, the ion channels, which are activated through cell’s strain, open and

let ions of extracellular calcium enter the cytosol. Once the calcium diffuses inside the cell, it propagates
to the neighbor cells through a pure diffusion mechanism [24]. In order to account for such phenomena,
the diffusion-reaction equation presented in Section 2.2 will be used to characterize the calcium transport
mechanism. This is here represented with the scalar variable φ as the calcium concentration and primary
unknown of the problem, which replaces unknown u in the transport equation (4). For the purpose of this
model, a constant uniform diffusion coefficient ν is introduced into the calcium transport equation in order
to reduce the complexities of the non-linear term by including still partially unknown biological responses.
Its value is set to the order of the values obtained in Long et. al. [24] .

Studies over mechanosensitive gating, propose different formulas to obtain the probability of the channel
opening depending on the applied tension on the tissue, among other parameters [54]. The simpler one, the
Sackin’s formula, relies on the linear elasticity of the tissue elements, resulting on a opening trigger energy
with a quadratic dependence of the tension [55, 56, 54]:

p0(T) =
pmax

1 + ke−τT2 , (32)

where p0 is the single channel open probability, pmax is the maximum possible value, k is a pressure indepen-
dent constant, τ is the stretch sensitivity of the membrane and T is the applied tension [54]. The resulting
function is of sigmoidal type, setting a maximum and minimum for the probability, with a controlled slope
in between, for different suction tensions.

Formula in (32) depends on a suction tension applied in very particular conditions. Here, we propose an
analogous sigmoidal function to directly determine the source term as a function of the first strain invariant
I1 = tr(C). Additionally, this function is multiplied by a reactive term, that limits the introduction of
calcium to the cell when a given concentration is already reached. This is done in order to restrain the
maximum possible creation of calcium as there cannot be an unlimited amount of calcium in the cells and
to keep the concentration in the order of what was observed experimentally [5]. Consequently, we will use
the following form of the source term

Fφ = F1(I1) F2(φ), (33)

where function F1(I1), analogously to (32), has the particularity of being upper and lower bounded and does
not generate calcium when compression strains are applied to the material. It takes the form

F1(I1) = Fmin +
α

1 + e−β(I1−γ)
, (34)

with α = Fmax − Fmin and Fmax and Fmin stand for the maximum and minimum calcium creation rates,
β accounts for the tissue sensibility and γ is a parameter to adjust the strain that triggers the calcium
generation.

Regarding the reactive function F2(φ), its shape is determined to be maximum when the concentration
of calcium, relative to the initial one φ0, is φ/φ0 = 1 and minimum when a limit concentration is reached
φ/φ0 = φ∗lim, ensuring that the relative concentration is always 1 ≤ φ/φ0 ≤ φ∗lim. A quadratic function is
chosen, for practical implementation reasons, although other shapes would have a similar effect such as a
sigmoid or a heaviside function. The proposed function is

F2(φ) = 1− φ∗2/φ∗2lim with φ∗ = φ/φ0. (35)
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The result of multiplying F1(I1) by F2(φ) is a scaling of the source term maximum depending on the
current concentration, and therefore controlling both the exterior/interior calcium interchange rate and the
maximum allowed calcium. In Figure 6 the changing shape of Fφ for different values of φ∗lim can be observed,
along with the effect over the source term for different combinations of strains and concentrations.

Figure 6: Resulting source term for differ-
ent hypothetical values of I1 and φ∗. Func-
tion F2 can be identified in planes for con-
stant I1, while the sigmoidal shape of F1

can be seen in planes for constant φ∗. The
maximum source term is achieved when the
calcium concentration equals the original
one and the strain is high.

In short:

• A large diffusion coefficient ν produces a smoother distribution of calcium and a wider actin ring.

• A large Fφmax results in a faster achievement of the maximum calcium distribution.

• A small value of β produces calcium creation in a wider area, which can prevent the formation of the
actomyosin ring.

• A large γ concentrates the creation of calcium around the wound.

The derivatives in (26) to (27) depend on the adopted model for the diffusive source-term Fu (which in
the calcium transport corresponds to Fφ) and flux Q. After using the source term Fφ in (33)-(35), it can
be deduced that,

dφFφ = −2
φ

(φ∗limφ0)2

(
Fmin +

α

1 + e−β(I1−γ)

)
,

dFFφ =
αβ e−β(I1−γ)

(e−β(I1−γ) + 1)2
2

(
1− φ∗2

φ∗2lim

)
F.

Since the flux is isotropic, that is Q = ν∇φ, it is evident that

d∇φQ = νI, (36)
dFQ = 0. (37)

4.3. Actin filaments and myosin motors recruitment
According to Antunes et. al [5], the proliferation of actin filaments starts around 20µm away from the

wound border and there exist a given concentration of calcium at which this phenomenon occurs. Note,
that actin filament creation and transport is different from calcium transport, since the former is unable to
diffuse across the cell walls. That is why, its behavior is modeled by setting ν = 0, and using a simple source
term driving the change of the actin concentration ρ, i.e.

ρ̇ = Fρ.

As there is no need to account for the diffusive term, the update is done at the integration point level
following an explicit Euler method. Since actin concentration is not considered for the calculation of the
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residuals in the finite element implementation, its derivative with respect to the unknown variables are not
required.

The source term Fρ was designed to be different from zero only when the relative calcium concentration
is enough and not excesive to allow the actin recruitment:

Fρ = Fρmax e
−(φ∗−ε)2

2δ2 with φ∗ = φ/φ0. (38)

The maximum source is set by parameter Fρmax, and the position of the source curve Fρ/Fρmax is controled
by the maximum and minimum calcium concentrations at which the actin recruitment is possible, which is
set by parameter ε = 1

2 (φhi + φlo). The slope of the curve is adjusted by parameter δ. Figure 7 shows some
examples of curves for different values of the parameters δ and ε. In short:

• Parameter φ∗lim controls the maximum calcium concentration, affecting the velocity of ring formation.

• Small values of Fρmax means a slower formation of the actin ring.

• A large value of δ means a wider actin recruitment area. If it is excessive, it can lead to actin formation
in all the domain.

• Parameter ε controls the position of the actin recruitment region. By choosing its value the actin
generation region can be set to be steady in the wound border.

Figure 7: Actin source term (variation of δ and ε).
Actin diffusion source term, scaled up with the max-
imum possible value, for different combinations of δ
and ε. Left: different resulting source term functions
with varying slope parameter δ. Lower δ result in
steeper slopes, reducing the region of relative calcium
at which the actin recruitment is possible. Right: Dif-
ferent values for ε result in different possitions for the
curve. As ε increases, the calcium bounds for the actin
recruitment also increases.

Remark 1 (Myosin motor concentration). Although Antunes et. al. [5] observed a constant space time
correlation between the waves of actin and myosin concentration in their experiments, for this model only the
actin concentration will be taken into account, as the delay between the two quantities is small compared to
the global time scales of the problem. Even if the contraction mechanism has been adjudged to the interaction
of myosin motors with actin filaments, the result of overlapping both concentrations would give a similar
curve to the one we obtain by evaluating the actin concentration alone but with a slight delay. Therefore,
from now on, the actin curve is considered as the actomyosin curve for practical reasons.

4.4. Active mechanical contraction
It was observed experimentally that actomyosin ring formation is accompanied by an area reduction in

the inflicted wound [5]. In order to reproduce this phenomenon, an active contraction in the tissue was
introduced locally, as a function of the actin concentration. To do so, a multiplicative decomposition of the
deformation gradient is performed, as stated in equation (2) and similarly to Section 4.1, where the arbitrary
component F(·) takes the form of a shrinking tensor Fg, reading

F = FeFg with Fg = ϑI. (39)

In fact, Fg introduces an isotropic shrinking deformation on each element, determined by a scalar valued
variable ϑ. Note that the resulting tensor Fg and the deformation it imposes is transient and it is only
relevant as long as the actin concentration in the given point is high enough to produce a shrinking ϑ < 1.
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A dependence of the shrinking variable on the relative actin concentration ρ∗ = ρ/ρ0 is proposed, as
stated in the following law

ϑ(ρ) = 1− 1− ϑmin
1 + e−τ(ρ∗−ω)

. (40)

The sigmoid function is used to characterize the mechanical response towards the actin concentration,
with ϑmin the minimum expected contraction, which is set to match the contractions observed in the exper-
iments [5], τ is the sensitivity of the tissue and ω is a parameter which accounts for the actin concentration
at which there exists contraction. In Figure 8, the shape of function ϑ(ρ) depending on the variation of
parameters ϑmin, τ and ω, can be observed. In short:

• Small values of the shrinking variable ϑmin lead to more mechanical contraction, which can affect the
calcium distribution.

• Large values of ω mean that more actin concentration is needed to achieve the responsive tissue
contraction.

• Small values of τ yield a smoother interface between contracted and non-contracted regions.

Figure 8: Shrinking variable as a function of
ϑmin, τ and ω. Left: with ϑmax = 1.0 smaller
minimums are obtained when ϑmin is smaller.
Center: the tissue sensitivity τ determines the
slope of the curve. As the parameter becomes
larger a sharper differentiation between con-
traction and no contraction regions is observed.
Right: the parameter ω determines the trigger
value at which contraction occurs, being this
one smaller when the value is small.

Once the modified tensor is calculated at integration point level as Fe = FF−1
g , the first Piola-Kirchoff

stress P needed for the evaluation of residual (24) can be calculated by deriving the SEFD equation for
hyperelasticity (14) or by evaluating the second Piola-Kirchoff stress S and performing a pull back with F.
Next, we deduce the derivative of P with respect to the concentration of calcium φ. Note that due to the
explicit computation of the actin concentration, there is no direct coupling between the shrinking tensor and
the calcium concentration and therefore dφP is null. The derivative of P with respect to the deformation
gradient F, dFP, may be obtained from the overall tangent operator C = 2dCS, that is, the derivative of
the second Piola-Kirchoff stress tensor with respect to the Cauchy-Green deformation tensor C,

C = 2dCS = Ce + Cg = 2∂CS
∣∣
Fg

+ 2∂CS
∣∣
F

= 2∂CS
∣∣
Fg

+ 2
[
∂FgS : ∂ϑFg

]
⊗ ∂Cϑ

∣∣
F
. (41)

The first term of equation (41) represents the classical elastic tangent moduli, 2dCeSe, pulled back to
the undeformed reference configuration,

Ce = 2dCS
∣∣
Fg

= [F−1
g ⊗F−1

g ] : 2dCeSe : [F−tg ⊗F−tg ] . (42)

The second term of equation (41) is zero since the shrinking tensor is not dependent on the deformation
gradient.

5. Modeling of the purse-string contraction

In this section, the model adopted for the second stage of the wound healing process is presented. It
takes part after the ring formation process and can last several hours depending on the size of the injury.
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5.1. 1D motivation of actin-myosin contraction
The general thermodynamic framework and the resulting constitutive equations for the actomyosin ring

contraction are particularized for a 1D case in order to study the behavior towards different parameters
and properties. At this stage, no coupling with the chemical part of the problem is considered, and a fully
mechanical problem is solved. Considering a one dimensional pair of actin and myosin motors (see Figure
5.1), the thermodynamic framework is now adapted for the phenomenon of actomyosin contraction.

Figure 9: Actin-myosin pair. In order to produce the
contraction of the cable, myosin motors pull together
two different actin filaments towards itself. The re-
sult of this movement, when considering the macro
scale and the interconnection of many of this mecha-
nisms, is the shortening of the actomyosin cable and
the contraction of the ring.

Together with the multiplicative decomposition of the deformation gradient, we here decompose in an
additive manner the SEDF into a passive component Ψe and an active one Ψa [51],

Ψ = Ψe(J, I1) + Ψa(λa, λe). (43)

where λa, λe and λ = λeλa are the projection of the active, elastic and total strain tensor into the direction
of the fibers. In this 1D particularization, they correspond to the active, elastic and total stretches.

The second term, Ψa, is the strain energy associated with the tissue’s active response towards the
actomyosin cable activity and can be expressed as a multiplication of two different functions

Ψa(λa, λe) = f1(λa)Ψ′a(λe). (44)

The first term f1(λa) is a scaling factor that accounts for the influence of the actin filament overlap, being
0 < f1 < 1. When there is insufficient or excessive filament overlap, the function becomes zero, resulting in
null contraction of the actin cable. In the other hand, when the active stretch is near an optimum overlap,
the function reaches its maximum. In order to reproduce this behavior the following Gaussian function is
used

f1(λa) = exp

[
− (λa − λopt)

2ξ2

]
, (45)

being λopt the optimal stretch at which the function reaches its maximum and ξ a parameter that controls
the slope of the function. Figure 10 depicts the different shapes when varying both parameters.

Figure 10: Actin filaments overlap f1 for different combi-
nations of ξ and λopt. Lower values for ξ result on higher
slopes, meaning that the overlap range where the contrac-
tion is possible is smaller.

The second term in (44) is the free strain energy stored in the tissue due to the elastic deformation,

Ψ′a =
1

2
P0(λ2

e − 1)2. (46)
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This function is dependent on the elastic strain and by a proportionality factor P0, a factor related to
the maximum stress caused by the contraction mechanism. The elastic stretch can be obtained from the
multiplicative decomposition of the deformation gradient and therefore λe = λ/λa.

In order to evaluate (44), the active stretch λa is needed [51], which is calculated explicitly via
λn+1

a = λn
a + λ̇n

a∆t with

λ̇a = v0

[
−v − 1

f1

∂f1
∂λa

Ψ̄a +
λe

λa

∂Ψ̄a

∂λe

]
, (47)

and where v0 is associated with the initial contraction velocity and v accounts for the friction due to the
relative sliding speed between actin and myosin. Equation (47) is the 1D particularization of the general 3D
contraction velocity. Its general deduction from the Clausius-Plank inequality can be found in Section 5.3.

5.1.1. Numerical implementation
In order to solve the 1D case with an uniform load P, the minimization of the strain energy should be

done for the total stretch, resulting on the equality,

σp + σa + P = 0. (48)

For this case only, instead of a Neo-Hookean model, the mechanical model proposed by Calvo et. al.
[57] is implemented. Note that the volumetric component is ignored due to the fact that we have an
unidimensional problem. The stresses obtained take the form

σp = µ

(
λ2 − 1

λ

)
and σa = 2f1λ

2
eP0(λe − 1), (49)

where (48) is solved iteratively through the Newton-Rapson method. In Table 1 the basic idea of the
algorithm is listed.

Algorithm

1. Inital definitions:
External load. P
Material parameters and time-step size. λopt, ξ, v, v0, P0, µ, ∆t
Initial stretches. λ, λa

2. FOR (t0 : ∆t : tf)

Calculate λ̇a
n
using λn and λn

a using equation (47).

Calculate λn+1
a = λn

a + λ̇a
n
∆t (explicit)

Calculate new fn+1
1

Solve equilibrium σa + σp = P to find λn+1 (N-R iterations)

Calculate λn+1
e = λn+1/λn+1

a

END

Table 1: Algorithm for an implicit scheme of the active contraction of the actin ring.

5.1.2. Parametric analysis
The problem was solved for different combinations of material parameters with the aim of studying the

influence of this constants on the behavior of the system while trying to achieve equilibrium. In all the cases,
except when mentioned, an external load P was imposed gradually in the first stage of the simulation and
kept constant for the rest of the time.
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The parameter ξ which governs the sensitivity of the actomyosin ring towards filament overlap in equation
(45) was set to different values. As a result the region in which f1 is different from zero changed, resulting
on different evolution of the overlap factor over time. In Figure 11 this evolution can be observed, along
the active and total stretch. Larger values of ξ result in faster retrieving of the initial stretch and lower
stable active contractions. For small enough values of ξ the original stretch is not retrieved, which can be
explained by the fact that the overlap window is too small and the resultant active contraction is unable to
pull the tissue back to the original stretch.

Now, the proportionality factor P0 that affects the scale of equation (46) was set to different values. In
Figure 11b the different outcomes can be observed. The larger the value for P0, the faster the initial stretch
is retrieved and the slower the stable state for f1 is achieved. Note that, for a null proportionality factor,
although λa evolves due to the active part of the minimization problem, the active stress is always zero and
the total stretch does not move from its value once the loading stage has ended.

The initial contraction velocity v0 that scales equation (47) was set to different values. Note that different
signs were used to generate an active contraction or expansion as shown in Figure 11c. For positive values
of v0, there is a positive active stretch or expansion, increasing with it the total stretch. For negative values,
a negative active stretch or contraction occurs, resulting on the retrieving of the initial stretch. Note that
for a null value, no further evolution happens once the loading stage has ended.

Finally, the friction parameter v, which introduces an evolution of the active stretch in (47) independently
of the external load, was set to different values. Note that for this case, and for a better observation of the
mentioned characteristic, the external load is set to zero, i.e. P = 0. The results for the different tested
cases can be appreciated in Figure 11d. For v = 0 no evolution of any function occurs, but when v > 0 there
is a natural evolution of the active stretch independently of the external load. We note that the behavior
of the stretches during the loading stage is practically identical for all choices of the parameters. Also, for
large enough values of v, the resulting stretch can be highly influential on the evolution of all of the curves.

5.2. Contraction velocity
Assuming that the active contraction occurs in a given direction m0, a local active deformation tensor

can be defined, in this case for a 2D framework

F′a = λaM + λ−1/2
a N with M = m0 ⊗m0 and N = n0 ⊗ n0, (50)

where λa is the active stretch. The two structural tensors M and N, defined in the reference configuration,
depend on the anisotropic directionality of the actin fibers distribution, given by the unit vector m0 and its
perpendicular direction such that m0 · n0 = 0.

To obtain the contraction velocity λ̇a explicitly, the time derivative of the active deformation tensor is
obtained, using the chain rule

Ḟa =
∂Fa

∂λa
λ̇a where

∂Fa

∂λa
= RTMR− 1

2
λ−3/2

a RTNR. (51)

with R the matrix that rotates m0 onto its spatial orientation, and Fa = RtF′aR. Note that we have assumed
that directions m0 and n0, and rotation matrix R are all constant. Considering that the contraction will
only occur along acto-myosin element we can write the Clausius-Plank inequality as[

Pa −
∂Ψ

∂λa
+

(
2Ce

∂Ψ

∂Ce
F−T

a

)
:
∂Fa

∂λa

]
λ̇a ≥ 0, (52)

which leads to

Pa −
∂Ψ

∂λa
+

(
2Ce

∂Ψ

∂Ce
F−T

a

)
:
∂Fa

∂λa
= cλ̇a (53)
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(a) (b)

(c) (d)

Figure 11: Evolution of total stretch λ , active stretch λa and overlap influence parameter f1 for different values of (a) ξ, (b)
P0, (c) v0 and (d) v (see equations (45) and (47)).

with c = c(λa) ≥ 0. In order to obtain the contraction velocity of the actomyosin cable, two components are
defined such that (53) is satisfied

c =
1

v0(ρ∗)
P0f1(λa) and Pa = −vP0f1(λa). (54)

Replacing both equations in (54) and the definition of the active SEDF (44) into (53), and considering
the definition of the fourth elastic invariant Ie

4 = m0 ·Cem0, the general expression for the velocity of the
active contraction is obtained

λ̇a = v0(ρ∗)

[
−v − 1

f1

∂f1
∂λa

Ψ′a + 2
λ2

e

λa

∂Ψ′a
∂Ie

4

]
. (55)

The coupling with the actin concentration distribution, takes place through the active contraction ve-
locity, where the velocity v0, which scales (55), is defined as a function instead of a constant

v0(ρ∗) =
vmax

0

1 + e−κ(ρ∗−ζ) with ρ∗ = ρ/ρ0, (56)

where vmax
0 is the maximum possible value for the velocity, ζ is a parameter that determines a trigger value

of relative actin concentration at which there exists active contraction and κ controls smoothness of the
actin cable region. The different velocity responses towards different actin concentrations as this parameters
change can be observed in Figure 12.
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Figure 12: Initial contraction velocity v0
for different parameters of κ and ζ as a
function of the relative actin concentration
ρ/ρ0. The higher the value for κ, the bigger
the slope of the curve and more defined is
the area at which the active contraction oc-
curs. Parameter ζ sets the position of the
curve, defining the trigger value of ρ∗ at
which there exist an update in the active
stretch.

Remark 2 (FEM implementation). The equations presented here are solved in the finite element frame-
work given in Section 3, and its linearized form in 3.4. Note that as the diffusion problem is already in steady-
state situation from the previous actin ring formation, only the mechanical part is solved, and therefore the
problem reduces to,

R
ϕ(k+1)
i(n+1) = R

ϕ(k)
i(n+1) + dRϕ

i = 0, (57)

The active stretch update is done explicitly at each time-step, using the the expression for λ̇a given in
(55).

5.3. Constitutive equation of the contraction mechanics
In the previous section, the mechanics through which the actin cable contracts were explained. Now, the gen-
eral constitutive equations and their derivation from the kinematic framework are developed. Additionally,
the coupling with the actin concentration obtained in the previous section is explained.

The process of contraction of the actomyosin ring starts around 15 minutes after the wound is inflicted,
when the actin concentration stabilizes around the wound margin and the myosin motors start to work in
a coordinated manner. In order to model the phenomenon in our finite element framework, we perform the
kinematic decomposition of the deformation gradient, as shown in equation (2), where now the arbitrary
deformation gradient F(·) takes the form of the active tensor Fa specified in the previous section.

Along with this kinematic description of the problem, we can reformulate the SEDF, again following the
same reasoning as in Section 4, by adding both elastic energy Ψe and the active energy Ψa as

Ψ = Ψe(Ce) + Ψa(Ce,Fa). (58)

The equations for the non-linear elastic part can be obtained through the definition of a strain energy
density function Ψe(Ce) as in (14). The first term of the Clausius-Plank inequality is now decoupled, and
the elastic and active contributions can be identified

Dint =
1

2
S : Ċ +

1

2
Sa : Ċa − Ψ̇ ≥ 0. (59)

Replacing equation (58) into equation (59) in its material form, the following expression is obtained[
1

2
S− ∂Ψ

∂C

]
: Ċ− ∂Ψ

∂Ce
: Ċe +

[
1

2
Sa −

∂Ψ

∂Ca

]
: Ċa ≥ 0, (60)

and making use of equation (13) the inequality can be rewritten as[
1

2
S− ∂Ψ

∂C
− F−1

a

∂Ψ

∂Ce
F−Ta

]
: Ċ +

[
FaSa − 2Fa

∂Ψ

∂Ca
+ 2Ce

∂Ψ

∂Ce
: ĊeF

−t
a

]
: Ḟa ≥ 0, (61)
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from which two constitutive equations can be obtained:

S = 2
∂Ψ

∂C
+ F−1

a

∂Ψ

∂Ce
F−ta[

FaPa − 2Fa
∂Ψ

∂Ca
+ 2Ce

∂Ψ

∂Ce
F−ta

]
: Ḟa ≥ 0.

Finally, considering the additive decomposition of the SEDF in (58), the second Piola-Kirchoff stress can
also be considered as an additive expression

S = 2
∂Ψ

∂C
= 2

∂Ψe

∂C
+ 2

∂Ψa

∂C
= Se + Sa. (62)

Here, the elastic contribution is the same as the one defined in equation (14). Regarding the active
part of the SEDF, the generalized Hill model, used by [58] to simulate muscle contraction is used,
as the micro-scale mechanism of the actin-myosin interaction is basically the same. The SEDF reads
Ψ = Ψe(J, I1) + Ψa(λa, λe) where the active component of the energy is Ψa(Ie

4) = 0.5P0(Ie
4 − 1)2, where the

elastic invariant used accounts for the active part of the deformation is Ie
4 = m0 ·Cem0 = λ2

e .

In order to solve the problem, analogously to Section 4, we need to compute the derivatives of Se and Sa
with respect to the Cauchy-Green deformation tensor C. Their deduction is given in constitutive operator
expression are needed. To do so, each part of the SEDF is derived with respect to the Cauchy-Green
deformation tensor, knowing that S = Se + Sa. As for the elastic part

Se = 2∂CΨiso
e + 2∂CΨani

e = (λln(J)− µ)C−1 + µI. (63)

We define the structural tensor that accounts for the anisotropy of the line elements, constructed with by
the direction of the actin fibers, is M = m0 ⊗m0. The active contribution to the stress tensor is obtained
by pulling back the derivative of the SEDF with respect to the elastic Cauchy-Green deformation tensor

Sa = 2 F−1
a [Ŝa]F−ta with Ŝa = ∂Ce

Ψ = 2P0(Ie4 − 1)M. (64)

Analogously to Section 4, and in order to use the Newton-Raphson iterative process, we need to compute
the derivatives of Se and Sa with respect to the Cauchy-Green deformation tensor C. Tensor Ce = 2dCSe,
similar to the one described in 4.4, and Ca = 2dCSa, sum up to form the total elastic modulus C = Ce+Ca.
The active part is simply defined as the pull back of the term Ca with the active deformation gradient as

Ca = [F−1
a ⊗̄F−1

a ] : Ĉa : [F−ta ⊗̄F−ta ] with Ĉa = 4∂2
C̄e

Ψa = 4 P0 M⊗M. (65)

The material elastic moduli A = dFPe, necessary for computing Ce, is obtained using relationship (30).

6. Results

In this section, some numerical examples of the previously described models are presented and their
comparison with experimental results are discussed. In Section 6.1 the wound geometry and finite element
meshes are described along with their biological counterpart. In Section 6.2 the initial wound expansion for
the different geometries is performed, showing the mechanical consequences of the wound infliction over a
pre-strained epithelium sheet. In Section 6.3, using the results from previous section, the ring formation
stage is presented. In Section 6.2 and 6.3, the model described in Section 4 is used. The different constants
were fitted through different test cases. In Section 6.4 the wound closure through the actomyosin ring
contraction is studied, using the model described in Section 5 along with the results obtained in Section 6.3
as initial conditions. We present in Table 2 a summary of the mechanisms analyzed as a function of the
timing, the balance and the constitutive equation involved and coupling procedure between them.
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Strong Form Constitutive Eq.

Ring formation 1. Calcium firing and transport φ̇−∇ ·Q = Fφ(I1, φ) Eq. 33, 34, 35, 36
2. Actin formation ρ̇ = F ρ(φ) Eq. 38, 14
3. Mechanical response −∇ · P (Fe,Fg) = 0 Eq. 39, 40

Ring contraction 4. Active contraction of actin ring −∇ · P (Fe,Fa) = 0 Eq. 54, 55, 56

Table 2: Description of the main mechanisms during the actin ring formation (short time) and the active contraction of the
actin ring at the long time. Table summarises the strong form of the equations that governs each mechanisms as well as the
constitutive equation involved. The calcium firing and transport is fully coupled with the mechanics of the tissue (mechanisms
1 and 3) and it is solved implicitly. The actin ring formation and the consequent acto-myosin contraction (mechanism 2) is
solve explicitly as a function of the calcium wave (mechanism 1). The constitutive relation that govern the active contraction
of the actin ring (mechanism 4), once the ring is formed, is solved implicitly in a N-R iteration.

6.1. Wound geometry and FEM meshes
With the objective of comparing the numerical and experimental results, the shape of the wound used

for the numerical cases is inspired by those ones found in the biography [5]. The shape of the injure was
set to be a circular domain with an external diameter equal to 400µm. This corresponds to the diameter of
the laser ablation. Regarding the finite element discretization, 5760 linear quadrilateral elements were used,
with increase density towards the wound, to account for the high gradients obtained when deforming the
mesh. Note that the mesh is structured, with 40 elements in the radial direction and 144 elements in the
tangential direction. A numerical integration with two Gauss points along each direction is used.

6.2. Wound expansion
In this section, the stresses obtained through the imposition of a pre-strain field to the initial mesh are

presented. The idea behind it is to simulate the wound expansion produced when a laser ablates the tissue.
Firstly, different combinations of pre-strains were tested for different Young modulus in order to evaluate
the stresses for different imposed deformations. We aimed to investigate the effect of these two material
parameters that have been presented in the literature with some variability. Stress profiles were clearly
scaled between each other with the elastic modulus and pre-strains, although the increase of the wound
diameter behaved slightly nonlinearly with respect to the pre-strains variations. In Figure 13, the resulting
tension map for an elastic modulus of E = 0.5kPa and different combinations of pre-strains can be observed.
The experiment was repeated for different values of the Young modulus E = 1.0kPa and E = 10kPa, and
the same Poisson coefficient ν = 0.45. These two values resulted in the same distribution pattern, but
scaled by a 2- and a 20-fold increase due to the relatively low non-linearity of the model adopted here. Note
that for the three prescribed deformation tensors, different wound diameter increase can be observed, being
34%,69% and 115% bigger than the original opening for fpre = 0.97, fpre = 0.95 and fpre = 0.93 respectively
(see equation (31)).

Figure 13: Wound expansion. Stresses and deformation due
to imposition of a prescribed deformation tensor F0 for cir-
cular wound for a epithelium described with a Young mod-
ulus E = 0.5kPa. For three different scalar stretch factors
fpre, see equation (31), the resulting stresses in the prin-
cipal directions, σ11 (circumferential) and σ22 (radial), are
plotted.
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6.3. Actomyosin ring formation
In this section, the results for the actin ring formation are presented. To calculate them, the wound

expansion results for E = 1kPa and f0 = 0.95 were used [22]. The results for 60 seconds of the fully coupled
problem are shown in figures 13 and 14 at 3 time-steps. The obtained results are for the combination of
coupling parameters from Table 3. The formation of an actin ring can be clearly noticed. Calcium is created
in the wound boundaries, diffusing away from the gap junction. When the calcium reaches the necessary
concentration, in a specific concentration interval, actin is created. The actin does not diffuse but the
mentioned calcium wave moves away from the wound, moving the actin recruitment region away from the
injury edge.

Although these in silico results did not reproduce exactly the ones observed in [5] at long times, they did
reproduce the calcium evolution at shorter time scale [8, 9]. When the acto-myosin concentration reaches a
given value, cells react and contract, which can be observed in the simulated contraction parameter, ϑ, stress
and deformation maps in Figure 14. As it can be observed in Figure 14(A), relative calcium concentration
increases due to calcium source term. As time passes, the increase of calcium in the wound border slows
down, while the limit concentration is being reached (see Figure 14(B)). The profile of the relative actin
concentration can be noted to grow, due to the moving actin source term. The material suffers deformations,
as slightly noticeable in Figure 14(E) and highly in (F) along with the corresponding distribution of actin
and growth multiplier in (I). Concurrent increase of stresses in both principal directions can be also observed
in Figure 14(F)-(G).

Figure 14: Left: Evolution of relative concentration of calcium (φ/φ0), actin (ρ/ρ0), growth multiplier (ϑ), maximum principal
stress (σ11) and Cauchy-Green deformation gradient in the first principal direction (C11) for three different time steps. First
principal direction is circumferential. Right: Plot over a line that gets away from the wound in a radial direction, through
different time steps. (A) Relative calcium concentration. (B) Relative calcium source term. (C) Relative actin concentration.
(D) Relative action source term. (E)-(H) Principal components of Cauchy-Green strain tensor and Cauchy stress tensor in
circumferential and radial directions. (I) Distribution of growth multiplier ϑ.
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Coupling parameters
ν = 100µm2/s γ = 2.5 δ = 0.2 ϑmin = 0.8 ω = 2

β = 25 φ∗lim = 10 ε = 2 τ = 25 ρ∗lim = 3.25
Table 3: Parameters used for the calculations in Figure 14.

In order to study the behavior of the model with different values, several circular wound cases were run
with different combinations. These results are included in the Appendix. To generate an actin ring around
the wound, parameter ε in equation (38) was chosen to be equal to the maximum calcium concentration,
and therefore create actin around the wound. In Figure 15 the results for simulations of 7.5 minutes long
are shown, using the parameters in Table 3 and ω = 5 (see equation (40)). The actin wave was not achieved
as described by [5] but similar to what have been reported in other epithelial systems [59, 8, 9]. It can be
noted that with the advance of time, calcium is created in the wound boundaries, diffusing away from the
gap, evolving towards an uniform concentration. When the calcium reaches the necessary concentration, the
final actin region around the wound edge needed for the ring contraction state was successfully obtained.
Although not shown explicitly in the pictures, when the actin concentration reaches a given value, the tissue
reacts and contracts, as it can be observed in the stress and deformation maps of Figure 15.

Figure 15: Actomyosin ring formation
of a stable table ring. Initial and final
distribution of relative concentration of
calcium (φ/φ0), relative actin (ρ/ρ0),
maximum principal Cauchy stress, σ11,
and Cauchy-Green deformation gradi-
ent, C11, in the first principal direction
(circumferential) in the ring formation
stage.

6.4. Ring contraction stage
In this section, the results for the active actomyosin ring contraction, based on the model from Section

5 are presented. To calculate them, the results from Section 6.3 were used as initial conditions, particularly
those which presented a stable distribution of actin, forming a ring around the wound edge, such as in Figure
15. To perform the simulation, parameters κ and ζ from equation (56) were chosen to create a region of
active contraction (actomyosin ring) from the continuous distribution of actin along all the domain.

First, the results obtained during the contraction stage of the wound are shown in Figure 16, for the
parameters shown in Table 4. Along with a diameter reduction of a 55%, all the mechanical parameters,
principal strains C11 and C22 and principal stresses σ11 and σ22, tend to become more uniform as the active
deformation compensates the previous ones.

Contraction parameters
v0max = −1 v = 0 P0 = 1kPa λopt = 0.4 ξ = 0.12 κ = 0.25 ζ = 2.25

Table 4: Parameters used for the calculations of Figure 16.

For the same simulation as in Figure 16, a point in the wound edge is tracked over time to study the
velocity of the area reduction, which can be observed in Figure 17. The computational results are compared
with experimental ones facilitated by Yanlan Mao’s research group. The results predict a fast closing in
the first 5 minutes after wound recoiling, very similarly to the closing rates observed in the experimental
results. After 10 minutes, the numerical results diverge from the experiments, describing a plateau in which
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Figure 16: Actomyosin
ring contraction. Left:
strains before and after
active contraction. Right:
stresses before and after
contraction.

the closure stops while in reality wound progress up to an almost complete closure. This could be due to
the effect of cell crawling which is responsible for the total closure of the wound. These effects have not
been included in the model. However, it is believed that cell crawling would have little affect on the apical
dynamics in this particular biological system. Other cell behaviours could not be captured in the model.

Figure 17: Actomyosin ring contraction. Evolution of
wound area. The contraction velocity decreases from
0.84µm2/min at the beginning of the contraction stage to
practically zero as the wound edge advances. As a result,
the original wound area is never retrieved and the wound
does not fully close. Solid lines represent the results of the
computational model. Solid circles are experimental results
facilitated by Yanlan Mao’s research group.

7. Discussion

The transcendence of wound healing to biology has long been highlighted and its role in medicine demon-
strated. In consequence, wound healing has been the focus of research for years. The closure of gaps is key
for epithelium integrity during developmental and wound healing. Physical forces arise through the assem-
bly of actomyposin-based contractile purse strings and/or cell crawling. Experimental results have been
extensive during the last decades (see [60, 6]).

The process of the formation of the actomyosin ring consists on simultaneous action of different
phenomena. The mechano-sensitive pathway, e.g the opening of strain activated ion channels [61], as a
response to residual strains from the wound expansion stage, induce a firing of calcium either extra- or
intra-cellularly that propagates through the epithelium [21, 61, 11]. An adequate amount of intracellular
calcium triggers the recruitment of actin filaments and myosin motors through the action of Rho GTPases
[62], which promotes a short time contraction of the cells. Through the coupled interaction of this three
mechanisms, the actomyosin recruitment grows and migrates towards the wound edge. Once in position,
the myosin motors act upon the actin fibers, producing an active contraction of the ring which drives the
gap edges together. Next, cell crawling may acts simultaneously to end up knitting the wound. Apart from
remarkable advance from experimental biology, the theoretical analysis of the physical forces that acts in
the wounded region has been much less explored. In this work, we make use of a coupled computational
continuum model in order to address the complex interplay of chemical transport and mechanics in the still
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widely unknown problem of wound healing in epithelia.

First, we model the coupling of the calcium firing and transport that eventually promotes the actin
recruitment and actomyosin ring formation. We managed to reproduce the deformation state in the wound
periphery, reported by [5]. The tissue stretches in the direction of the wound edge while it compresses in the
perpendicular direction. Further experimental measurements could confirm further deformation and stress
measures.

Our simulations reproduce closely the calcium profiles as well as the actin patterns within the wounded
region founded at short time in experimental observations [8, 9]. In the numerical solution (Figure 14(A)),
and also in the experimental results, we found that a ring-kind profile in the calcium concentration, which is
maximum at the wound edge and decreases outwards and along time. However, at long times, the numerical
cases performed with the developed model could not reproduce the experiments from Antunes et. al. [5].
In the experimental case, Figure 3, the profile has a minimum around the wound edge and a maximum
that starts distant from it and advances forwards, loosing intensity. We were not able to rationalize the
complex dynamics of the calcium profiles, which it is still an open question in experimental biology. Further
experimental and theoretical work could improve our understanding on how mechanics and calcium dynamics
are orchestrated in wound healing.

In terms of the acto-myosin profile, we have been able to reproduce very distinctive aspects of its spatial
and time evolution. At the transient state, Figure 4, the actin distribution has a stable concentration around
the wound edge. Far away from it advances toward the wound edge until an stable actin purse-string is
form at the wound contour. By defining the parameter ε in the numerical case, which controls the calcium
concentration at which the actin source term reaches its maximum, the actin ring is created away from the
wound edge, but the evolution of the calcium profile provokes its migration in the opposite direction than the
experimental case, as seen in Figure 14. In this aspect, the numerical simulation was not able to reproduce
the experimental results reported by Antunes et. al. [5]. This is directly related with the discrepancies in
the calcium wave describe above. Further experimental and theoretical work will be required to answer this
question. However, we were able to resolve the transient wave contraction that propagates in the epithelium.
In fact, the inherent orchestration of the acto-myosin network reduces back the deformation of the peripheral
cells and consequently of the calcium source. Finally, by the manipulation of the model parameters, the ring
is formed and stays around the wound as described in Figure 15 and reported in a number of experimental
observations described along this manuscript.

To asses the actomyosin ring contraction stage, a multiplicative decomposition of the deformation model
accounting for the active contraction of the areas of high actomyosin profile was developed. The numerical
results shows a 55% closure of the wound, with a decreasing velocity until a stable diameter is reached, as
seen in Figure 17.

In order to explain this divergences, several hypothesis are presented. The first one, and the simplest,
is related with the modeling of the wound healing. Both the model itself or the tuning of the parameters
involved in the coupled equations could not be the right choice or it could only be for a certain combination of
parameters. We did an extensive analysis of the material parameters so we believe that the model could not
reproduce all the biological phenomena in wound healing. For example, in the calcium diffusion equation, the
matrix of diffusion may be nor isotropic nor constant, and its coefficients may vary with time, concentration
or even strain rate.

In addition, the viscous effects during the wound expansion stage could be relevant in the initial me-
chanical contractions as well as the effect of the adhesion between the epithelial tissue and the extracellular
matrix. Also, the hyperelastic model considered does not account for damage, which would modify the stress
distribution, specially along the wound margin cells. Regarding the calcium wave during the transient state,
no explanation of how the initial profile at 40 − 1500s observed in Figure 3 is achieved was provided by
literature or by our theoretical description. There exists a wave of calcium that goes outwards and comes
back to the wound edge, resulting in the final purse-string at the wound edge. The actomyosin wave that
advances, Figure 4, suggests that a given calcium concentration promotes the recruitment of actin filaments
but also high or low concentrations promote the destruction of them as the original profile is retrieved
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once the actin wave passes by. This destruction or sharp decrease is not included in our model. We note
though that experimental biological insights in the problem have not been able to solve these orchestrated
mechanisms and, therefore, further experimental and theoretical studies will be required in the future.

In terms of the purse-ring contraction, two factors could explain the fact that closing velocity decreases
as the wound diameter is smaller. In one hand, the kinetic model accounts for the overlap of actin filaments
and it has been adopted in the proposed model as the main mechanical process toward wound closure.
However, it has been proposed that additionally to the myosin motor action, there also exists a process of
depolimerization of the filaments [33], that would result in a lower overlap and, as a consequence, an evolution
of the active contraction independent to this parameter. In the other hand, the model implemented takes
into account the elastic deformation in order to calculate the active stretch velocity, which as it gets nearer
to the original equilibrium state reduces the active contraction update speed. Finally, no cell crawling
contribution was taken into account in the numerical model, as well as other cell behaviours, which would
explain the discrepancy at the final closing stage.

8. Conclusion

A mathematical and numerical model was developed, to account for the short and long term mechanism
guiding the healing of epithelial wounds. To the best of the authors knowledge, this is the first model
of its kind applied in this particular field in which the chemical and mechanical aspects of the problem
were coupled. Hopefully it will encourage new developments in the subject of mechano-chemical sensing
in wound healing. Firstly, the complex interplay of biochemical factors as result of the wound formation
was considered. The biochemical processes that modify the intracellular actomyosin distribution and, in
consequence, the contractility at cell level that was modeled. To do so a coupled system of non-linear
Partial Differential Equations was considered and solved monolithically within a finite element framework.
Later, the long term effects in the system were considered, i.e the purse-string mechanism. Within the
finite element approach, the contractibility effect was included by adopting a classical Hill’s assumption
from the context of muscle contraction. In order to do this, a multiplicative and additive decomposition of
the deformation gradient and strain energy density function were taken into account. The model considered
the power done by the actomyosin element driving the wound closure. Although some authors have tried
to model and simulate this problem, this is the first time that this mechanism is defined within a coupled
non-linear finite element framework.

Although the actomyosin ring formation model was implemented successfully, the numerical results
obtained do not fit perfectly the experimental data at intermediated transient stages in a satisfactory way.
Although the intermediate stages of calcium concentration and actin recruitment are not exactly reproduced,
the long term formation of the actin purse-string was successfully achieved. Regarding the active contraction
of the actomyosin cable, contractions were achieved consequent partial closure of the wound gap. This
behavior suggests that farther biological phenomena and signalling needs to be included in the model.
Considerations like variable diffusivity parameters, with different coefficients in circumferential and radial
directions, or adhesion between the tissue and the substrate, among other aspects, could be the key to solve
the mentioned problems.

To conclude, it is believed that new light has been shed for a better understanding of wound healing
by taking into account the interaction between active mechanical contraction and transport of actin and
calcium.
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