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ABSTRACT		1	

Background:	 Experimental	 and	 modeling	 errors	 can	 lead	 to	 dynamically	 inconsistent	 results	 when	2	

performing	 inverse	dynamic	analyses	of	human	movement.	Adding	 low-value	residual	pelvis	actuators	3	

could	deal	with	such	a	problem.	However,	in	certain	tasks,	these	residuals	may	remain	quite	large,	and	4	

strategies	based	on	motion	or	force	variation	must	be	applied.		5	

Research	 question:	 Can	 the	 dynamic	 inconsistency	 be	 handled	 by	 an	 optimal	 control	 algorithm	 that	6	

changes	the	measured	kinematics	in	the	preparatory	phase	of	the	single	leg	triple	hop	test,	a	relatively	7	

high-speed	and	torque-demanding	task,	so	that	residuals	are	kept	within	a	low	range?	8	

Methods:	The	proposed	optimal	control	algorithm	was	developed	as	a	 tracking	problem,	 in	which	the	9	

implicit	form	of	dynamics	was	used.	Equations	of	motion	were	introduced	as	path	constraints,	as	well	as	10	

residual	forces	and	moments	acting	on	the	pelvis.	To	do	so,	GPOPS-II	and	IPOPT	were	employed	to	solve	11	

the	optimization	problem.	Furthermore,	OpenSim	API	was	called	at	each	iteration	to	solve	the	equations	12	

of	motion	through	an	inverse	dynamic	analysis.		13	

Results:	Results	presented	a	high	reduction	in	all	six	components	of	residual	actuators	during	the	entire	14	

task.	 Moreover,	 resulting	 motion	 after	 the	 optimization	 showed	 a	 very	 similar	 evolution	 than	 the	15	

reference	 motion	 before	 the	 ascending	 phase	 of	 the	 task.	 Once	 the	 ascending	 phase	 started,	 some	16	

coordinates	presented	a	more	significant	discrepancy	compared	to	the	reference,	such	as	the	pelvis	tilt	17	

and	lumbar	extension.		18	

Significance:	The	findings	suggest	that	the	proposed	algorithm	can	deal	with	dynamic	 inconsistency	 in	19	

high-speed	tasks,	obtaining	low	residual	forces	and	moments	while	keeping	similar	kinematics.	Hence,	it	20	

could	complement	other	optimal	control	algorithms	that	simulate	new	motions,	relying	on	dynamically	21	

consistent	data.		22	



2	
	

KEYWORDS	23	

Biomechanics;	Residual	reduction;	Optimal	control;	Triple	hop	test;	Inverse	dynamics.	24	

INTRODUCTION	25	

Optimal	 control	 simulation	 of	 human	movement	 allows	 analyzing	 and	 assessing	 the	 biomechanics	 of	26	

specific	tasks.	Based	on	measurements	of	kinematics	and	contact	forces,	the	balance	between	external	27	

and	 inertial	 forces	 and	 moments	 becomes	 inconsistent	 due	 to	 several	 sources	 of	 experimental	 and	28	

modeling	errors	[1].	Strategies	to	cope	with	such	dynamic	inconsistency	are	based	on	adding	low-value	29	

residual	force	and	torque	actuators	to	the	pelvis	segment	[2].	However,	in	high-speed	tasks	these	residual	30	

actuators	values	usually	remain	large	[3],	which	might	invalidate	the	conclusions	of	the	dynamic	analysis.		31	

In	such	those	cases,	procedures	based	on	modifying	force	and	motion	data	are	employed.	One	way	is	to	32	

maintain	 kinematics	 and	 modify	 experimental	 external	 forces,	 for	 instance	 using	 a	 sharing	 force	33	

assumption	during	the	double	support	phase	of	gait	[4].	Another	approach	consists	in	keeping	external	34	

forces	and	varying	kinematics	and	the	 torso’s	center	of	mass	position,	 such	as	 the	Residual	Reduction	35	

Algorithm	(RRA)	in	OpenSim	[5].	Finally,	other	strategies	consider	changing	both	kinematics	and	external	36	

forces	with	a	least	square	estimation	[6].	37	

This	 paper	 presents	 an	 optimal	 control	 algorithm	 for	 solving	 the	 dynamic	 inconsistency	 problem,	 i.e.,	38	

minimizing	the	residual	actuators,	at	the	price	of	introducing	variations	to	the	measured	kinematics.	The	39	

proposed	algorithm	is	tested	against	a	previous	published	solution	by	Alvim	et	al.	[3],	which	uses	RRA.	40	

METHODS	41	

Reference	motion,	joint	torques	and	ground	reaction	forces	(GRF)	from	6	healthy	subjects	performing	the	42	

single	leg	triple	hop	(SLTH)	test,	as	well	as	their	respective	scaled	OpenSim	skeletal	models,	were	taken	43	
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from	[3]	before	applying	the	RRA.	The	preparatory	phase	of	the	SLTH	test,	a	relatively	high-speed	and	44	

torque-demanding	task,	was	used	to	compare	the	presented	algorithm	with	that	applied	in	[3].		45	

The	proposed	residual	reduction	procedure	was	formulated	as	an	optimal	control	problem	that	tracked	46	

reference	 data.	 Joint	 coordinates	 and	 velocities	 were	 states	 of	 the	 problem	 (𝐱" = 𝐪, 𝐪 ),	 and	 joint	47	

accelerations	and	torques	were	introduced	as	controls	(𝐮" = 𝐪, 𝛕 ).	The	cost	functional	consisted	of	the	48	

minimization	of	squared	differences	between	design	variables	(𝐱,	𝐮)	and	their	respective	reference	data	49	

(𝐱𝒓𝒆𝒇
" = 𝐪𝒓𝒆𝒇, 𝐪𝒓𝒆𝒇 , 𝐮𝒓𝒆𝒇

" = 𝐪𝒓𝒆𝒇, 𝛕𝒓𝒆𝒇 ).	Moreover,	 to	 ensure	 that	 the	 stance	 foot	did	not	 slip	 in	 the	50	

optimal	solution	found,	an	additional	term	tracking	three	points	along	that	segment	was	added.	Those	51	

three	points	(𝐩𝒓𝒆𝒇)	were	introduced	as	virtual	markers	equidistantly	positioned	between	the	heel	and	the	52	

big	toe,	and	its	corresponding	position	(𝐩)	computed	from	the	state	variables	was	added	to	track	them.		53	

𝑀𝐼𝑁 		𝐽 = 	 𝐱 − 𝐱𝒓𝒆𝒇
"
𝑾𝐱 𝐱 − 𝐱𝒓𝒆𝒇 + 𝐮 − 𝐮𝒓𝒆𝒇

"
𝑾𝐮 𝐮 − 𝐮𝒓𝒆𝒇

45

46

+ 𝐩 − 𝐩𝒓𝒆𝒇
"
𝑾𝐩 𝐩 − 𝐩𝒓𝒆𝒇 	d𝑡	

(1)	

being	𝑾𝐱,	𝑾𝐮	 and	𝑾𝐩	diagonal	 weight	 matrices.	Moreover,	 a	 set	 of	 constraints	 were	 considered,	54	

employing	 the	 implicit	 form	 of	 dynamics	 [7].	 First,	 dynamic	 constraints	 were	 applied	 to	 ensure	 time	55	

derivative	relationships	among	kinematic	variables:		56	

𝐪
𝐪 =

d
d𝑡

𝐪
𝐪 	 (2)	

An	inverse	dynamic	analysis	(IDA)	was	solved	to	obtain	the	joint	torques	(𝛕𝑰𝑫𝑨)	and	residuals	(𝐑𝑰𝑫𝑨),	using	57	

design	 variables	 related	 to	 motion	 (𝐪, 𝐪, 𝐪)	 and	 imposing	 experimental	 GRF	 (𝐆𝐑𝐅𝒆𝒙𝒑).	 Two	 path	58	

constraints	were	 introduced.	The	first,	equaling	control	torques	(𝛕)	 to	the	resulting	torques	of	the	 IDA	59	

(𝛕𝑰𝑫𝑨).	The	second,	limiting	the	residuals	(𝐑𝑰𝑫𝑨)	within	an	interval	of	tolerances	(𝛆𝑹)	set	to	±2	N	and	±2	60	

Nm,	respectively:	61	



4	
	

𝛕 − 𝛕𝑰𝑫𝑨 𝐪, 𝐪, 𝐪, 𝐆𝐑𝐅𝒆𝒙𝒑 = 𝟎	 (3)	

−𝛆𝑹 ≤ 𝐑𝑰𝑫𝑨 𝐪, 𝐪, 𝐪, 𝐆𝐑𝐅𝒆𝒙𝒑 ≤ 𝛆𝑹	 (4)	

The	optimal	solution	reported	in	this	study	was	obtained	using	GPOPS-II	[8]	and	IPOPT	[9].	Also,	OpenSim	62	

API	was	called	during	the	optimization	to	solve	the	IDA.	63	

In	order	 to	assess	 results	 and	 compare	both	algorithms,	 the	 reduced	 residuals	 and	 the	obtained	 joint	64	

coordinates	were	contrasted	with	the	corresponding	results	presented	in	[3].	Furthermore,	the	mean	and	65	

standard	deviation	of	the	root-mean-square	(RMS)	of	the	residuals	for	each	subject	were	calculated.		66	

RESULTS	67	

Before	applying	the	reduction	algorithms,	residual	forces	and	moments	presented	the	highest	average	68	

RMS	values	over	90	N	and	90	Nm,	and	the	lowest	values	of	almost	17	Nm	(Table	1,	left	column).	After	69	

applying	the	optimal	control	algorithm,	residuals	were	reduced	within	the	limits	set	on	the	problem,	being	70	

the	 maximum	 RMS	 of	 1.91	 N	 in	 the	 vertical	 residual	 force.	 Moreover,	 standard	 deviations	 in	 all	71	

components	 presented	 results	 under	 0.4	 N	 or	 Nm,	 indicating	 small	 variability	 between	 the	 different	72	

subjects	(Table	1,	middle	column).		73	

Furthermore,	 differences	 were	 appreciated	 depending	 on	 the	 residual	 reduction	 procedure	 used.	74	

Reductions	 obtained	 performing	 the	 RRA	 changed	 depending	 on	 the	 residual	 component,	 having	 a	75	

reduction	of	95%	in	the	vertical	force	but	a	reduction	of	12%	in	the	mediolateral	moment	(Table	1,	right	76	

column).	 In	 the	 case	of	 the	proposed	 algorithm,	 reductions	were	 above	90%	 in	 all	 components.	Also,	77	

applying	the	RRA	maintained	bounded	residual	values	before	starting	the	ascending	phase	of	the	test,	but	78	

higher	values	once	the	subject	was	ascending.	Contrarily,	residuals	were	kept	within	the	range	of	±2	N	79	

and	±2	Nm	during	the	entire	task,	when	the	presented	residual	reduction	approach	was	used	(Figure	1).	80	

[TABLE	1]	81	
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[FIGURE	1]	82	

Joint	coordinates	after	applying	the	optimal	control	algorithm	manifested	a	very	similar	evolution	than	83	

the	reference	motion	until	50%	of	the	task,	moments	prior	starting	the	ascending	phase	of	the	test.	As	84	

soon	as	the	ascending	phase	started,	some	coordinates	showed	a	different	behavior	from	the	captured	85	

motion,	being	the	pelvis	tilt	and	lumbar	extension	coordinates	the	ones	that	differed	the	most.	At	50%	of	86	

the	task,	pelvis	tilted	anteriorly	slower	than	the	captured	motion	and	then,	at	75%,	faster.	On	the	other	87	

hand,	torso	started	to	extend	at	50%	of	the	task,	contrarily	to	the	reference	coordinate,	which	started	at	88	

80%	of	the	task	(Figure	2).	Compared	to	the	motion	obtained	from	the	RRA,	changes	in	kinematics	were	89	

in	general	higher.	Nevertheless,		coordinates	such	as	pelvis	list	or	left	ankle	flexion	presented	lower	RMS	90	

error.	Overall,	considering	the	six	subjects,	the	mean	RMS	error	of	angular	coordinates	was	1.33o	for	the	91	

RRA	solution	and	1.97o	for	the	optimal	control	solution.	92	

[FIGURE	2]	93	

DISCUSSION	&	CONCLUSIONS		94	

This	 study	 presented	 an	 approach	 to	 reduce	 residual	 forces	 and	moments	 based	 on	 optimal	 control	95	

theory.	Tracking	reference	data	while	introducing	experimental	GRF	allowed	the	algorithm	to	successfully	96	

reduce	the	residual	actuators	during	the	preparation	phase	of	the	SLTH	test,	a	high-speed	and	torque-97	

demanding	task.	Compared	to	the	residual	reduction	performed	in	[3]	applying	RRA,	it	can	be	concluded	98	

that	 lower	values	of	 residual	 components	were	 reached	using	 the	presented	method.	 Introducing	 the	99	

residuals	 as	 a	 constraint,	 instead	 of	 adding	 them	 to	 the	 cost	 function,	 allowed	 always	 to	 fulfill	 the	100	

tolerances	set	on	the	problem,	even	 in	 tasks	 involving	high	torque	efforts.	Additionally,	 low	variability	101	

among	the	results	for	each	subject	was	obtained.		102	

The	reduction	was	achieved	by	varying	the	reference	kinematics	obtained	from	the	measurements.	It	was	103	

observed	 that	 coordinates	 that	 changed	 the	most	were	 the	 ones	 that	may	 have	 had	more	 effect	 on	104	
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changing	the	pose	of	the	body	segments	with	higher	inertia.	Hence,	the	dynamic	consistency	was	achieved	105	

by	the	modified	kinematics,	which	allowed	to	compensate	both	modelling	and	experimental	errors.	Note	106	

that	unlike	RRA	in	OpenSim,	the	proposed	optimal	control	method	does	not	change	the	torso	center	of	107	

mass	position	to	reduce	residuals,	which	yields	larger	changes	in	kinematics	with	respect	to	the	reference	108	

motion	than	in	RRA.	Nevertheless,	the	solution	presented	in	this	study	shows	that	the	discrepancy	in	terms	109	

of	RMS	error,	which	has	an	overall	mean	of	1.93o,	is	similar	to	the	maximum	values	tolerated	in	previous	110	

published	motion	tracking	studies	[10,	11].	111	

The	higher	changes	in	kinematics	and	the	need	of	imposing	experimental	GRF	could	be	denoted	as	two	112	

limitations	of	the	algorithm.		Depending	on	the	initial	residuals	and	the	kinematics	of	the	task,	the	final	113	

motion	could	change	in	a	manner	that	would	produce	unrealistic	movements,	such	as	slipping	or	losing	114	

ground	contact	with	the	stance	foot.	Consequently,	 if	 the	algorithm	relies	on	the	experimental	GRF,	 it	115	

must	include	constraints	or	a	term	in	the	cost	function	(such	as	in	this	study,	the	additional	foot	tracking	116	

term)	 to	 avoid	 these	 issues.	 Conversely,	 incorporating	 a	 foot-ground	 contact	 model	 would	 directly	117	

produce	realistic	movements	and	GRF	that	would	be	dynamically	consistent.		118	

In	conclusion,	this	study	contributed	to	introduce	a	suitable	approach	to	reduce	residuals	that	presented	119	

satisfactory	 results	 in	 a	 high-speed	 and	 torque-demanding	 task.	 Hence,	 it	 could	 be	 used	 as	 a	120	

complementary	 tool	 for	 other	 optimal	 control	 algorithms	 that	 simulate	 new	 motions,	 relying	 on	121	

dynamically	consistent	data.	Furthermore,	future	work	is	contemplating	the	adaptation	of	the	presented	122	

algorithm	to	develop	a	foot-ground	contact	model,	which	at	the	same	time,	will	be	introduced	to	improve	123	

the	performance	of	the	proposed	method.	124	
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LIST	OF	FIGURES	

Figure	1.	Comparison	of	residual	force	and	moment	components	of	one	subject	after	performing	the	reduction	through	
the	 optimal	 control	 problem	 (black	 line)	 and	 the	 RRA	 in	 [3]	 (grey	 line).	 Residual	 forces	 (F)	 and	moments	 (M)	 are	
expressed	in	anatomical	directions:	Anteroposterior	(AP),	Vertical	(V)	and	Mediolateral	(ML).	

Figure	2.	Evolution	of	 joint	coordinates	after	applying	the	optimal	control	algorithm	(black	lines)	and	the	RRA	in	[3]	
(grey	lines)	compared	to	the	reference	motion	(dashed	black	lines)	for	one	subject.	Each	plot	presents	the	RMS	error	
(RMSE)	between	the	obtained	joint	coordinates	and	the	reference	motion	performing	the	optimal	control	algorithm	
(black)	and	the	RRA	(grey).	
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