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Beyond-Luttinger-liquid thermodynamics of a one-dimensional Bose gas
with repulsive contact interactions
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We present a thorough study of the thermodynamics of a one-dimensional repulsive Bose gas, focusing in
particular on corrections beyond the Luttinger-liquid description. We compute the chemical potential, pressure,
and contact as a function of temperature and gas parameter with an exact thermal Bethe ansatz. In addition, we
provide interpretations of the main features in the analytically tractable regimes, based on a variety of approaches
(Bogoliubov, hard core, Sommerfeld, and virial). The beyond-Luttinger-liquid thermodynamic effects are found
to be nonmonotonic as a function of gas parameter. Such behavior is explained in terms of nonlinear dispersion
and “negative excluded volume” effects, for weak and strong repulsion, respectively, responsible for the opposite
sign corrections in the thermal next-to-leading term of the thermodynamic quantities at low temperatures. Our
predictions can be applied to other systems including super Tonks-Girardeau gases, dipolar and Rydberg atoms,
helium, quantum liquid droplets in bosonic mixtures, and impurities in a quantum bath.
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I. INTRODUCTION

Gapless systems in one spatial dimension often feature a
linear phononic spectrum at low momenta and this strongly
constrains the low-temperature thermodynamics. A unified
description of the various quantum degeneracy regimes is then
obtained within Luttinger-liquid (LL) theory, which relates
the low-temperature properties of the system to the Luttinger
parameter, i.e., the ratio of the Fermi velocity and the zero-
temperature sound velocity, itself a function of the interaction
strength [1-4]. In the weakly repulsive or Gross-Pitaevskii
(GP) regime, a gas of bosons with short-range interactions
admits a mean-field description [5]. In the opposite limit of
very strong repulsion, the gas approaches the Tonks-Girardeau
(TG) limit, where bosons become impenetrable and the sys-
tem wave function can be mapped onto that of an ideal Fermi
gas (IFG), resulting in indistinguishable thermodynamics [6].
Seminal experiments have explored this continuous interac-
tion crossover in the past few years [7-13].

The landscape of physical regimes in a one-dimensional
(1D) Bose gas is even richer at higher temperature [14—16].
The correlation functions behave differently in the various
regimes [17-20], but those are hard to access experimentally.
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Thermodynamic quantities can be measured more easily, but
these generally exhibit a monotonic behavior to lowest or-
der in temperature. For example, the phononic excitations
are responsible for the linear increase with temperature of
the specific heat [5S] and for the quadratic growth of the
chemical potential [21,22], for every interaction strength. As
the temperature is increased, however, higher momenta get
explored and the deviation of the spectrum from the simple
linear behavior becomes important [23,24], resulting in a
continuous structure bounded by two branches of elementary
excitations [25]. In the GP regime, the upper particlelike
branch corresponds to the Bogoliubov spectrum [26], while
the lower holelike one is instead associated with the dark
soliton dispersion predicted by Gross-Pitaevskii theory [27].
In the opposite TG regime, the upper and the lower branches
coincide with the particle and hole excitations of the ideal
Fermi gas, respectively [5]. Such complex structure has not
permitted, so far, an easy physical interpretation of its effects
on the corresponding thermodynamic behavior. This impor-
tant gap is filled by the present work. As we will demonstrate,
the resulting thermal corrections are no longer monotonic and
permit one to classify the regimes of interaction.

In this paper, we provide a detailed study of the beyond-
Luttinger-liquid thermodynamics [24,28] in a 1D Bose gas
with short-range (contact) repulsion. First, we solve numer-
ically the thermal Bethe ansatz (TBA) equations within the
Yang-Yang theory, which provide an exact answer to the prob-
lem at all temperatures 7" and interaction strengths [29,30],
and we compute key thermodynamic quantities, such as the
chemical potential u, pressure P, and Tan’s contact C. Then,
we gain further insight into the problem by investigating
analytically different tractable regions, including low and
high temperatures, and weak and strong interactions. We
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demonstrate that the Bogoliubov (BG) theory correctly de-
scribes thermodynamic properties at low temperatures and
weak interactions. For strong repulsion, we show that the
leading interaction effects at both low and high temperatures
stem from a “negative excluded volume” correction derived
from the hard-core (HC) model. Moreover, we demonstrate
that the contact is proportional to the chemical potential in the
GP limit at low temperatures and to the pressure in the TG
regime for any T'. Finally, we show that the leading beyond-
LL correction vs temperature in the investigated quantities
(i.e., 1, P, and C) is negative in the GP regime and is positive
in the TG limit. The same trend is also visible in the first
correction to the leading classical gas contribution at high T'.

II. MODEL

The Hamiltonian of a 1D gas of N bosons with contact
repulsive interactions is given by

h2
H=— 2m +g§8(x,—xj (1)
where m is the atom mass, g = —2/%/(ma) is the coupling

constant, and a < 0 is the 1D s-wave scattering length. The
interaction strength is determined by the dimensionless quan-
tity y = —2/(na) which depends on the gas parameter na,
with n = N/L the linear density and L the length of the
system. There is a crossover between the weak (y < 1)
and strong (y > 1) interaction limits. A peculiar feature of
one dimension is that the high-density n|a| > 1 regime is
described by the Bogoliubov theory contrarily to the usual
three-dimensional case. Instead, the low-density n|a| < 1
limit corresponds to a unitary Bose gas where the system (1)
possesses the same thermodynamic properties of an IFG.

At zero temperature, the system reduces to the Lieb-
Liniger model, whose ground-state energy Ep, chemi-
cal potential g = (dEp/9dN),, and sound velocity v =
/n/m(dpy/on), can be found from Bethe ansatz as a func-
tion of the interaction strength y [5,25,31]. The speed of
sound smoothly changes from the mean-field value vgp =
J/gn/m to the Fermi velocity vp = hmwn/m in the TG regime.

Within the canonical ensemble, the complete thermody-
namics of the system is obtained starting from the Helmholtz
free energy A = E — T'S, with E the energy and S the entropy.
This allows for the calculation of the chemical potential

w = (0A/0N)r 4,1, ()
pressure
P = —(0A/dL)r.un = npu — A/L, 3)
and Tan’s contact parameter [32,33]
C = (4m/I*)(3A/da)r . y- “)

Simple scaling considerations [34,35] lead to a series of exact

thermodynamic relations holding for any value of temperature

and interaction strength (see Appendix A),
Cha A TS
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The chemical potential, pressure, and contact across the

whole spectrum of temperature and interaction strength, as

given by the solution of the thermal Bethe ansatz equations,
are shown as symbols in Figs. 1-3. The results are reported
as ratios of the observables to their values given by the LL
theory. With this choice, at low T, they all converge to unity
for any value of the interaction strength y, while, at higher T,
any deviation from Luttinger-liquid line quantifies beyond-LL
behavior which, instead, is strongly affected by y. In these
figures, we rescale the temperature by the chemical potential
at zero temperature mv?, defining T = kT /(mv?). Since mv>
is also the typical energy associated with phonons, depending
on y through the sound velocity v, such temperature unit is
the proper one for the LL description holding in the whole
interaction crossover. In the rest of the paper, we provide the
understanding of dominant effects in the regimes which may
be treated analytically.

III. CHEMICAL POTENTIAL

Let us start by considering weak interactions (y < 1).
At low temperatures kT < mv?, the gas behaves like a
quasicondensate, exhibiting features of superfluids [36] with
phononic excitations [22]. In this regime, the thermodynamics
can be understood via Bogoliubov theory in terms of a gas
of noninteracting bosonic quasiparticles [5]. The thermal free
energy is

+00
AABG =A-— E() = kBTL/ efﬁe(p)]’ (6)

—00

d
_p ln[l —
2 h

where €(p) = V p*0? + [p*/@m)I* is the T = 0 BG spec-
trum [25,31], which depends on y through v. From Eq. (6),
the temperature shift of the chemical potential is found to be

A _ (v /+°° dp de(p) 1
Moo =K==\ 50 ), | 2nh ov e —1°

(7
Within the LL theory, one retains only the phononic part
of the BG dlspersmn €(p) =~ v|p|, and obtains the universal
result Aupp = aT?, with @ =nm v2(8v/8n)L/(6Fz) [22].
Expanding the BG spectrum to higher momenta, €(p) =~
v|p|[1 + p?/(8m?v?)], allows one to compute the first correc-
tion beyond LL, which is O(T*) (see Appendix B 1):

Apps = AppL[1 — nT? /4] + O(T®). ®)

At mv? < kgT < mvz, where mv} provides the degeneracy
temperature, the gas is in the thermal degenerate state.

At even higher temperatures kgT >> mv2, the gas behaves
classically with negative chemical potential. In the GP regime,
the dominant contribution to thermodynamics is determined
by single-particle excitations. A reliable description in this
case is provided by Hartree-Fock theory, which yields the
chemical potential pugp = g + 2gn [5], with ppg the
chemical potential of the ideal Bose gas (IBG). Hence, we
perform the virial expansion of the equation of state in terms
of a small effective fugacity, 7 = ef(#»=28") « 1. At leading
order in temperature, one obtains Au & pgp, with

top = kT [In(nA) — ni/~/2] + O(T°), ©)
where A =/ Znhz/(kaT) is the thermal wavelength.

Equation (9) is an expansion for small gas parameter ni < 1
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FIG. 1. Thermal shift of the chemical potential, Au = p — o,
vs temperature. The symbols denote numerical TBA results for
several interaction strengths y, and the lines correspond to various
theories described in the text. The temperature is normalized to the
typical energy associated with phonons, T = kzT /(mv?), and we
measure shifts in terms of the LL result Auyy, so that deviations
from unity directly quantify beyond-LL effects. In these units, the
BG result, given by Eq. (7), is independent of y.

and it holds if A is much larger than the interaction range.
Equation (9) depends on the coupling constant g only through
the O(T?) term (see Appendix B 2). For smaller y (i.e., larger
densities), higher values of T are needed for the agreement of
Eq. (9) with TBA, as may be seen in Fig. 1.

J

12

R 2 72t? T
HHC = EF|:<] + —aﬁ> + (1 + 2an) +

3

where # = kzT /Ep, with an effective Fermi energy Er =
R?727?/(2m) depending on the rescaled density i = n/(1 —
an) which takes into account the negative excluded vol-
ume and is applicable for n|a] < 1. An alternative deriva-
tion of Eq. (11) up to O(T*) order was already presented
in Ref. [42]. We further note that our result of the IFG
Sommerfeld expansion in Appendix C1 corrects a minor
misprint in the O(T*) term of Ref. [21]. From the T =0
contribution of Eq. (11), we calculate the HC sound velocity
vuc = vp /(1 — an)?. By comparing Eqs. (8) and (11), one
notices that the O(T?)-phononic contribution is always pos-
itive, while quantum statistical effects are responsible for an
opposite sign in BG and HC theories in the beyond-LL O(T*)
term.

At high T, we apply the virial expansion to the equation
of state of an IFG, and we get the corresponding expansion of
the free energy (see Appendix C2). Using Eqgs. (10) and (2),
we derive the virial expansion of the chemical potential of a
hard-core gas,

k T[l (A0) + an + <1 + aﬁ) . } +0(T%. (12)
MHC = n(n an —|—= .

HC = K3 2 ) A

Equations (9) and (12) share the classical gas logarith-
mic term, while the second perturbative contribution O(ni)
exhibits an opposite sign emerging from quantum statistics,

For strong interactions (y >> 1), the thermodynamics at
any temperature may be addressed by making an analogy with
the hard-core model [37]. Its free energy is obtained from that
of an ideal Fermi gas, subtracting from the system size an
“excluded volume” Na, where a is the diameter of the HC,

Anc(L) = Apg(L — L =L — Na). (10)

The scattering length a is positive for hard-core potentials,
and the available phase space is diminished by Na. For
the repulsive § potential in Eq. (1), instead, the scattering
length is negative and the phase space is increased by N|a|
effectively inducing “negative excluded volume.” Although
the HC equation of state applies for a > 0, its continuation to
a < 0atT = 0 differs from the Lieb-Liniger equation of state
only by terms O(na)*, with such deviation attributed to the
different phase shift dependence on the scattering momentum
for §-function and hard-core potentials [38]. We find that the
negative excluded volume correction turns out to be dominant
for y > 1 and permits one to describe the thermodynamics of
d-interacting gas even at high 7', as shown in Fig. 1. Similarly,
we expect that the “positive excluded volume” correction will
be important for the thermodynamics of short-range gases
with a > 0 in a strongly correlated metastable state (super
Tonks-Girardeau gas [39,40]).

Following the Sommerfeld expansion of the IFG free en-
ergy [41] (see Appendix C1) and taking into account the
excluded volume correction for a HC gas through Eq. (10),
we arrive at

144 9

2 6 w026 10 8
1+§an + 1+ —an)+0@°)|, (11

(

whose effects become important at lower 7. The TG regime
(y = 400) is recovered from the HC model when a = 0 and
it possesses the same thermodynamic properties of an IFG.

IV. PRESSURE

Let us now consider the thermal shift of the pressure, AP =
P — Py, with Py = nug — Ey/L the pressure at T = (. Within
BG theory, we start from Egs. (6) and (7) and approximate
e(p) ~ v|p|[1 + p*/(8m*v?)] to obtain (see Appendix B 1)

727?14+ 5y,
20 1+ y,

APy = APLL[l - ] +O(T"). (13)

The leading-order (Luttinger-liquid) result is APy = PT?,
where P = wm?v3(1 + Xy)/(6h) and x, = [dv/dn] n/v de-
pends on y through v. The LL result in Eq. (13) corrects a
misprint in Ref. [43]. The virial expansion is used to obtain
the pressure in the GP regime at high 7', resulting in

Pop = nkpT[1 —ni/QVDI+ 0T, (14)
whose detailed derivation is reported in Appendix B 2.

Within the HC approach, the Sommerfeld expansion of the
free energy, given by Eq. (10), and Eqgs. (11) and (3) provide
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FIG. 2. Thermal shift of the pressure. Symbols denote numerical
TBA results, and lines correspond to various theories, as in Fig. 1.
Deviations from unity of AP/AP; indicate beyond-LL effects.

the following low-T" behavior of the pressure:

2 . n? b 3576
Puc = —AEp| 1+ —22 4+ —2* + ——2 4 0(3%) |,
HC 3np|:+4f+2of+4321'+(f)

s)

which is consistent with Ref. [42] and includes the O(T®)
term. The high-T pressure is instead derived from the virial
expansion of Eq. (10), and Eqgs. (12) and (3):

Puc = AksT[1 + Ar/(2v/2)] + O(T). (16)

Equation (16) provides the first quantum correction to the
Tonks equation P = fikgT, which describes a classical HC
gas [42,44,45], and a higher-order interaction correction to the
virial result of the Yang-Yang theory [30], whose calculation
is reported in Appendix D.

V. TAN’S CONTACT

In a system with zero-range interaction, the Tan’s contact
defined in Eq. (4) provides a relation between the equation of
state and short-distance (large-momentum) properties, such as
the interaction energy, the pair correlation function, and the
relation between pressure and energy density [35,46-49], as
shown, for example, in Eq. (5).

Let us compute here the thermal contribution to the contact,
AC =C — Cy, where Cy = 4m/h2(8E0/8a)L,N is the contact
at 7 = 0. Within the BG theory, from Eq. (6) one obtains

ACgg = (C/) Az, a7

with C = 7m3v?Ny?(dv/dy),/(3°) entering in the LL re-
sult, ACyy = CT?. It can be shown that Eq. (17) is consistent
with Eq. (5). At high 7 and in the GP regime, C does not
depend on T since, within the Hartree-Fock approximation,
the free energy depends on a only through the 7 = 0 term
(see Appendix B 2).

With the HC approach, we find, from Egs. (10) and (4),

Cuc = 4mNPyc /1>, (18)

where the temperature dependence is encoded in Pyc, which
is given in Egs. (15) and (16) for low and high T, respectively.
The relation between contact and pressure emerges from the
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FIG. 3. Thermal shift of the Tan’s contact. Symbols denote nu-
merical TBA results and lines correspond to various theories, as
in Fig. 1. Deviations from unity of AC/AC._ indicate beyond-
Luttinger-liquid corrections.

HC excluded volume f. = L — Na, which transforms the a
dependence, given by Eq. (4), in a L one: Cyc o Pyc =
—(8AHC/81A,)T,L,N, holding at any 7. Equation (18) can be
derived directly from Eq. (5) by using Exc = LPyc/2.

VI. EXPERIMENTAL CONSIDERATIONS

The pressure, chemical potential, free energy, energy, and
entropy as a function of 7 have been measured by using in
situ absorption imaging in three-dimensional ultracold gases
[50-52]. A similar experimental technique has been applied
to a 1D Bose gas to extract the chemical potential as a
function of temperature 7 and interaction strength y [16],
resulting in an excellent agreement with TBA. Finally, Tan’s
contact parameter can be extracted from radio-frequency
spectroscopy [53-55], Bragg spectroscopy [56], and from
the large-momentum tail of the momentum distribution n(k)
[57,58].

VII. CONCLUSIONS

We provided a complete study of the chemical potential,
pressure, and contact as a function of temperature and in-
teraction strength for a 1D Bose gas with repulsive contact
interactions. Exact results were obtained within thermal Bethe
ansatz theory and the main features were described analyti-
cally. Beyond-Luttinger-liquid effects were explained in terms
of a nonlinear Bogoliubov dispersion relation for weak inter-
actions and negative excluded volume for strong repulsion.
The beyond-LL effects are responsible for an opposite sign in
the thermal next-to-leading term of the low-7 thermodynamic
behavior, being negative in the GP limit and positive in the TG
regime. The same trend is also visible in the first correction to
the leading classical gas contribution at high 7. Finally, we
found that the Tan’s contact parameter is proportional to the
chemical potential and to the pressure for weak and strong
interactions, respectively.

Looking forward, our work may stimulate further theoret-
ical and experimental investigations aimed at the characteri-
zation of quantum degeneracy regimes, the beyond-Luttinger-
liquid physics, and the microscopic nature of 1D Bose gases.
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Our predictions are relevant for the investigation of the prop-
erties of impurities immersed in helium [59], in a 1D Bose gas
[60], and in other 1D quantum liquids [61,62] as a function of
T and the interaction strength of the bath. Also, the knowledge
of thermodynamics is crucial for the description of harmoni-
cally trapped gases [14,33,63,64], especially for the investiga-
tion of breathing modes [40,65-70] whose frequency values
are affected by the thermodynamic properties [71,72]. Other
interesting extensions of our work include multicomponent
systems [73—75] and configurations with a well-defined num-
ber of atoms [76]. The nonlinear Bogoliubov dispersion ef-
fects are expected to be seen not only for contact interactions,
but also in other short-range interacting systems provided that
the density is high enough to be in the mean-field regime, but
not yet so large that the finite-range effects are visible. On the
other hand, the “excluded volume” correction is expected to
be applicable essentially to any short-range interacting system
(integrable or not) at low density. For example, the excluded
volume effects should be as well visible in the a > 0 regime
in (i) metastable states of gas with short-range interactions,
i.e., for the super Tonks-Girardeau gas [39,40], (ii) gases
with finite-range interactions such as dipolar atoms [77-79],
Rydberg atoms [80], bosonic “He (liquid) in a certain density
range [81], and fermionic SHe (gas) at low densities [82].
Our results can be extended to 1D quantum liquid droplets in
bosonic mixtures [83] in order to explore thermal effects. In
particular, 1D enhances quantum fluctuations [84,85], which
are responsible for droplet stability, and is achieved in current
experiments [86].
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APPENDIX A: THERMODYNAMIC RELATIONS

In this Appendix, we provide details about the derivation
of the thermodynamic relations.

Let us consider the following general expression of the free
energy per particle required by dimensional analysis [34,35]:

A(T T
AT, a,n) ocnzf(na, —2)
n

N (AD)

From Eq. (A1), one can deduce the scaling law

AT, ¢ 'a tn) _ ,A(T.a.n)

N N (A2)

where £ is an arbitrary, dimensionless parameter. Taking the
derivative of Eq. (A2) with respect to £ at £ = 1 yields

9 0 0 A(T, a,n)
2T — —al|l — +nl — _—
T ) o 1w da /N n)rar N

2A(T, a,n) .

N (A3)

From Eq. (A3) and by using Egs. (2)—(4), and A=FE — TS
where § = —(0A/0T )4...n, We find Eq. (5).

APPENDIX B: WEAKLY-INTERACTING BOSE GAS

In this Appendix, we report the full calculation regarding
the low- and high-temperature expansions of a weakly inter-
acting Bose gas.

1. Low-temperature expansion from nonlinear
Bogoliubov dispersion relation
The low-momentum expansion of the Bogoliubov spec-
trum x = e(p) = v|p|[1 + p>/(8m>*v?)] > 0 may be inverted
to find the only real and positive solution p. Hence, for the
free energy, given by Eq. (6), we get the integral,

+00 M
/ dx%ln (1 —6_1‘17)
0 v[1+229]

8(mv)?
2 (kgT 4 (kgT)?
%_77_(3) 77_(3)’ ®B1)
6 v 120 m?vs

where the analytic solution may be found expanding the inte-
grand for |p| < m|v|, which is justified at low temperatures.
We find the low-T expansion of the free energy, within the
Bogoliubov theory:

AApg =A —Ey

7 (kgT)’L .
6 hv

7% (kgT)*
20 m2v?

+ 0(T4):|, (B2)

where Ey is the ground-state energy calculated within the
Lieb-Liniger model at zero temperature [31].

With a similar procedure for the chemical potential, given
by Eq. (7), we get the integral,

+Ood p2(x) 1
X 3 Z(X) X
0 vx[l + 8(I:nv)2] et — 1

72 (kgT)> 7% (kgT)*
6 3 24 m2v7 "’

~
~

(B3)

which provides the low-T expansion given by Eq. (8).
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2. High-temperature virial expansion
within the Hartree-Fock theory

The equation of state for a 1D weakly interacting Bose gas
with density n and pressure P can be derived from
ni = g1,2(2)
P = gn’h + ksTg30(2), (B4)
where 7 =eP#=28) is the effective fugacity within

the Hartree—Fopk theory [5], the Bose functions are
() =Y.757/i*, and the thermal wavelength is

A =21 ) (mkgT).

By inverting the expression for n in Eq. (B4) in terms
of Z <« 1, and by expanding it for small values of the gas
parameter nA < 1, we obtain

(n)* n V3 -
V2 V3
By using the definition of Z in Eq. (B5) and a further expan-

sion for nA <« 1, we finally find the virial expansion of the
chemical potential:

1
(n1)* + O[(nr)*]. (BS)

Z=nA

A 3/3—4
UGp = kBT{ln (n\) — % + {T(n)»f
_2V3-5

e (n,\)3+0[(n,\)4]}+2gn. (B6)

By considering Eq. (B5) in the equation of state of P, given
by Eq. (B4), we derive the expansion of the pressure:

ni y 3¢§—4) )
Pop = nkgT {1 — =+ = |
GP B{ 2\/5 (27_[ 6\/§ ( )

+ 0[(nx)3]}. B7)

From Egs. (B6), (B7), and (3), we calculate the high-T
behavior of the free energy,

ni
Agp = kgTN{iln(nd) -1 — ——
GP B { WG
33 — 4 (nr)? 3
+——F—=——F— +O0lmA)’ ] +gnN. (BS)
43 3 8

We notice that at this level of approximation, the interactions

appear in Eqgs. (B6) and (B8) only through their contribution
at zero temperature.

APPENDIX C: IDEAL FERMI GAS

In this Appendix, we provide the details of the Sommerfeld
and virial expansions of an ideal Fermi gas.

The equation of state of a 1D IFG with density n and
pressure P can be derived from

ni = f1,2(z)
Pl = kBTf3/2(Z), (CI)

where we have defined the fugacity z = //*»™) and the Fermi
functions f,(z) = Y5 (—1)"17/i".

1. Low-temperature Sommerfeld expansion

Let us briefly review the Sommerfeld expansion [41],
which enables one to calculate integrals of the form

+0o0
/ deH(e)f(€)
0
w oo . 2i—1

= /(; dEH(E) + ;ai(kBT) ldezi_l H(6)|€=/.L7 (C2)

where
1
fle)=—— (C3)
eqT + 1

is the Fermi-Dirac distribution. Let us, for example, consider
the 1D density of states of the IFG,

H(e) = (C4)

1
2/Epe’
where Ep = kpTy = h*m*n?/(2m) is the Fermi energy. In
Eq. (C2), we have introduced the dimensionless number

1
a; = <2 - m)mn, (C3)

where ¢ (i) is the Riemann zeta function.

At very low T, the chemical potential of the IFG ap-
proaches the Fermi energy, and hence we set u — Ep(1 +§)
with 0 < § <« 1. Then, we consider the Sommerfeld expan-
sion, given by Eq. (C2), up to the O(8*) order, corresponding
to the integer i = 3, and we require f0+°° deH(e)f(e) =1,
ensuring the correct normalization. We solve the resulting
equation for the real solution § and we expand again in series,
getting the chemical potential

Ef1 e T Tt T o], (oo
= —T+ =1+ —1 ™)1,
MG =20 TR T 36" T 144
with T = kBT/EF

The Sommerfeld expansion, given by Eq. (C2), allows one
to obtain the low-temperature behavior k3T < w of the Fermi
functions £, (e%7) & ok ()1 + v — (ALY,
where I'(v) is the Euler Gamma function. By using the latter
expression in Eq. (C1), one recovers the result, given by
Eq. (C6), and obtains the low-temperature expansion of the
pressure,

P 20E 1+”22+”44+35n66+0( )
= — —T —T T T .
IFG = 3hEF 4 20 432

(€7

From Egs. (C6), (C7), and (3), we calculate the low-T expan-
sion of the free energy:

ErN n* , nt, In® N
Arrc = 1——7* = —*— —1° 4 0(%)|.
IF6 =73 [ 77 60" “amt TO)

(&)
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2. High-temperature virial expansion

By inverting the equation for the density n for 7 < 1, given
by Eq. (C1), and by expanding for nA < 1, we find

na)? \/5
A+ (4) +
V2 V3
from which, using the definition of z and a further expansion
for nA < 1, we find the virial expansion of the chemical
potential,

2(nh) = ( A+ 0[], (C9)

=)’ + Ol(n}) ]}
w_
If we consider Eq. (C9) in the equation of P, given by

Eq. (Cl), we derive the high-temperature behavior of the
pressure,

——(nr)?

(C10)

A 3/3-4
Lo 334
22 6+/3
235
L2235

82

and of the free energy,

Prg = nkBT{l (nr)?

(nr)® + 0[(nk)4]}, (C11)

nh o 343 —4 (nh)?
2V2 43 3

+ 0[(m\)4]}. (C12)

AIFG = kBTN{IIl (I/l)n) -1+

23 =5 1)}
6v/2 4

APPENDIX D: YANG-YANG VIRIAL EXPANSION
OF THE PRESSURE

In this Appendix, we report the calculation of the Yang-
Yang virial expansion of the pressure in the weak and strong
repulsion limits.

Let us consider the virial expansion of the pressure in the
Yang-Yang model [30],

g

(D1

where x = y(nk)/(Z\/ﬂ). Since, in Eq. (D1), only O(n})
terms are taken into account, we stop expansions at order
O(x).

In the weakly interacting regime (x < 1), we get

PGP _ ni

which for y =0 reproduces only the first correction of the
virial expansion of an ideal Bose gas. We notice here that
the expression we derived in Eq. (B7) is more accurate than
the one in Eq. (D2), as the former contains an extra O[(n)?]
term independent of y, which only emerges from the next-
to-leading order of the Yang-Yang virial expansion, given by
Eq. (D1).
In the strong repulsive regime (x > 1), we obtain

S5t —(nm + O[(nr)*], (D2)

nkBT = (1 +na)+ m + O[(nr)?],

which provides the first terms of the virial expansion of the
hard-core model, given by Eq. (16).
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