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Abstract5

This paper studies trade-offs between efficiency (performance) and fairness (equity), when assigning ATFM delay pre-tactically6

(on-ground at origin airport) due to reduced airport capacity at destination. Delay is assigned as the result of the optimisation7

of a deterministic multi-objective problem considering flight and passenger perspectives when defining objectives of performance8

and fairness. Two optimisation cases are presented: one where objectives are based on flight metrics, and another one where9

they are based on passenger metrics. The paper defines and analyses efficiency-fairness trade-offs: the concepts of price of10

fairness for flights and passengers are defined as the percentage of efficiency loss due to the consideration in the optimisation of11

fairness; whereas the price of efficiency is considered as the fairness loss relative to the maximum value of the fairness metric,12

when considering flight or passenger delay in the optimisation. The optimisation model is based on the ground holding problem13

and uses various objective functions. For performance, total delay for flights (considering reactionary delay), and total delay for14

passengers (considering outbound connections) are defined. For fairness, the deviation of flight arrivals from a Ration By Schedule15

solution, and the deviation of delay experienced by passengers with respect to the one obtained in an RBS situation are used. An16

illustrative application on traffic at Paris Charles de Gaulle airport, a busy European hub airport, and including realistic values of17

traffic is modelled. A comprehensive trade-off analysis is presented. Results show, how in some cases, gains on one stakeholder18

can be achieved without implying any detriment on the other one. Passengers are more sensitive to the optimisation and hence,19

their consideration when assigning delay is recommended. Further research should explore how to combine flight and passenger20

indicators in the optimisation and consider how the lack of data availability could be mitigated.21
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I. INTRODUCTION3

Airports are limited in capacity by operational constraints (Bazargan et al., 2002; Gilbo, 1993), generating in some cases, a4

significant imbalance between capacity and demand. Air Traffic Flow and Capacity Management (ATFCM) initiatives are then5

implemented to smooth traffic arrivals, transferring costly airborne delay, carried out with holdings and/or path stretching, to6

pre-departure on-ground delay (Carlier et al., 2007).7

When a capacity-demand imbalance is detected, a Ration by Schedule (RBS) prioritisation of flights is the current practice8

for slot assignment (EUROCONTROL, 2015a). RBS policy is considered by the different stakeholders to be the fairest delay9

assignment, since it respects the original slot planning, but economical optimum cannot be guaranteed and only arrival delay10

is considered. Nevertheless, while airline reported delay was 14.7 minutes per flight in Europe in 2018, reactionary delay was11

responsible for 45% of it, heavily influenced by the impact of first-rotation delays (EUROCONTROL, 2019), and should thus12

not be neglected.13

In the current operational environment, the system is optimised considering a flight-centred perspective, however, different14

stakeholders might experience ATM system performances differently. In particular, passenger-centric metrics might differ from15

their equivalent flight-centric ones (Cook et al., 2012). In (Montlaur and Delgado, 2017), performances for flight and passenger16

delays of an extended arrival manager (E-AMAN) were analysed in conjunction with a pre-tactical optimisation of flights.17

In that work, the assignment of slots was optimised considering either arrival delay for flights, arrival delay for passengers,18

total delay for flights (considering reactionary delay) or total delay for passengers (considering outbound connections). Results19

showed that in the scope of an E-AMAN, the distances and possible delays that can be assigned do not justify the application20

of a more sophisticated strategy than RBS. Nevertheless, when the scope of optimisation was enlarged to include the pre-21

tactical phase, benefits (and trade-offs) were obtained by optimising the assignment of delay instead of only considering flight22

schedules. While minimising the total delay for passengers is, as expected, the best strategy from the passengers perspective,23

it leads to higher reactionary delay for flights with respect to a flight-centric optimisation. Though optimisation carried out24

in (Montlaur and Delgado, 2017) focused on only one stakeholder at a time and did not include an explicit consideration of25

equity, it was shown that if focus is given to flight total delay, the benefit per passenger remains similar to the passenger26

centred optimisation and the variability with respect to the RBS delay assignment was reduced, improving the fairness of the27

solution.28

Equity from a flight perspective was explicitly included in (Montlaur and Delgado, 2018), where flight and passenger delays29

and equity were conjointly considered in the optimisation scheme. Preliminary conclusions showed how focusing on one30

objective would affect the two others. The work presented in (Montlaur and Delgado, 2018) focused on the optimisation of31

three metrics (flight and passenger delays and flight-fairness) at the same time, allowing a better understanding of the trade-32

offs between performance from a flight delay, passenger delay and flight fairness perspective. The work focused on allowing33

decision makers to consider informed a posteriori articulation of preferences when optimising the delay assignment. To that34

end, the concept of price of performance (understood as price of trade-off ) and price of efficiency as the ones defined in35

(Bertsimas et al., 2012) were used.36

Previous research, focusing on three variables at the same time, lacked some applicability and a definition of fairness for37

passengers was missing. This paper has three main goals: 1) It considers a classical efficiency-equity trade-off at flight level,38

which would use easily available data. 2) It then studies the impact on passengers metrics. 3) It finally aims at covering the39

gap of equity for passengers by suggesting a definition of passenger delay fairness and finally analyses the trade-offs existing40

between flight and passenger performance and fairness metrics. Note that, during real life operations, the impact of uncertainty41

would be very relevant as the planned optimisation performed pre-tactically is subject to degradation when tactically realised.42

This might impact the trade-off between indicators and affect the optimal assignment of slots focusing on the expected outcome,43

as done for example in (Glover and Ball, 2013). In this paper, however, the assignment of slots is optimised in a deterministic44

manner since the main objective consists in defining and presenting different metrics. Future work should research the impact45

of the system’s stochasticity on the stability of the solutions.46

Section II details the background on fairness on delay assignment with an analysis of literature when allocating resources47

from a fairness point of view. Section III first explains the optimisation model and objectives used in this work. It then considers48

how individual objectives are combined in a multi-objective problem and presents the optimisation cases analysed in the paper.49

Finally, the consideration of efficiency and fairness trade-off with the concepts of price of fairness and price of efficiency are50

described. Section IV recalls the main hypothesis of the simulation of traffic that has been used as an example in this paper.51

The main results (for the multi-objective optimisation and for the performance-fairness trade-offs) and their discussion are52

reported in Section V. The paper finalises with the conclusions and further work found in Section VI.53



TABLE I: Summary of fairness metrics encountered in the literature

Flight-centered Airline-Centered Passenger-centered
(Glover and Ball, 2013; Kuhn, 2013) deviation from RBS
(Vossen et al., 2003) squared deviation from RBS
(Barnhart et al., 2012) time-order deviation
(Manley and Sherry, 2010) airline’s total delay based
(Bertsimas and Gupta, 2016; Hamdan et al., 2018) reversal number
(Jacquillat and Vaze, 2016) airline disutility
(Manley and Sherry, 2010) passenger delay based
(Pilon et al., 2016) airline total deviation from RBS

II. BACKGROUND: FAIRNESS ON DELAY ASSIGNMENT1

When assigning delay to flights due to capacity-demand imbalances, even though commonly used, RBS is not the only2

possibility. Extensive research has been conducted to assign the required delay in a most cost-effective manner (Ball et al.,3

2007; Gilbo, 1993; Dell’Olmo and Lulli, 2003; Vranas et al., 1994; Montlaur and Delgado, 2017). As described in (Bertsimas4

et al., 2012), this type of resource allocation problems may be viewed as a utility allocation among different parties, which will5

lead to fairness issue. Note that even the definition of the stakeholders for which the fairness is estimated can be problematic:6

individual flights, airlines, passengers.7

Due to the subjective nature of fairness and different possible interpretations of equity, there is no common definition of8

fairness allocation. Different proposals have been done such as maximisation of the minimum utility (max-min) (i.e., min-max9

for minimisation problems) or the α-fairness scheme as the one used in (Bertsimas et al., 2012). See (Young, 1995; Bertsimas10

et al., 2011) for a more detailed description of different fair metric definitions.11

Though no standard of airline equity has been acknowledged in the industry, it is widely accepted by the ATM community12

that RBS presents a fair allocation of resources, as flights are not prioritised in any specific manner rather than their intended13

schedule. This has also benefits in terms of data availability and minimisation of gaming opportunity by reporting inaccurate14

information, for example. Fairness can be considered, with this definition, as being flight-centred and, for example, in (Glover15

and Ball, 2013) and (Kuhn, 2013), equity is maximised by minimising the deviation from the RBS solution in a stochastic16

uncertain assignment of slots. Similarly, in the context of a Ground Delay Program (GDP), Vossen et al. (2003) propose a17

method for mitigating inequities that arise due to exemptions, by minimising the squared deviation between the actual and18

ideal allocations (obtained from a RBS with no exemptions). Barnhart et al. (2012) also developed a fairness metric to measure19

deviation from original first-scheduled, first-served planning. They first determine a fair delay threshold for each flight, referred20

to as the maximum expected delay, and next calculate the time-order deviation for each flight as the amount by which the21

flight’s delay in the controlled schedule exceeds this threshold. They then use an integer programming formulation attempting to22

directly minimise this metric. They showed promising results, in particular that trade-off between delay and fairness compares23

favourably. In (Bertsimas and Gupta, 2016), a two-stage approach for network ATFM incorporating fairness followed by airline24

collaboration was developed. For two flights f and f ′, a reversal was defined when flight f ′ arrives before f , when f was25

originally scheduled to arrive before f ′. When a reversal occurs, the number of time periods between the respective arrival26

times constitutes an overtaking. A discrete optimisation model attempting to incorporate equitable distribution of delays among27

airlines by minimising the total number of reversals and the total amount of overtaking was proposed, which was seen as a28

generalisation of the RBS principle to a network setting. Flight fairness was also considered in distributing the delay among29

flights and in controlling reversals between flights in (Hamdan et al., 2018).30

Recent studies have incorporated inter-airline equity considerations into the objective of ATFM models. In (Manley and31

Sherry, 2010), an airline equity metric due to flight delay is defined as the negative logarithm of the ratio of an airline’s32

total flight delay over the total GDP flight delay, divided by the ratio of that airline’s scheduled flights in the GDP over33

all GDP flights. Pilon et al. (2016) include equity in a user driven prioritisation process (UDPP) algorithm. They define the34

baseline delay as the amount of delay a flight would be assigned if no UDPP prioritisation were applied. The UDPP is then35

constrained such that the total baseline delay of each airspace user should remain the same as, or less than, the level before36

UDPP. Jacquillat and Vaze (2016) aim to balance the average per-flight displacement of flights from their requested times37

fairly among the airlines. Their formulation is based on defining each airline’s disutility as the weighted average of per-flight38

displacements, which, ideally, would be the same for all airlines, that is, the weighted sum of displacements experienced by39

any airline would be proportional to its number of flights scheduled at airport. To maximise inter-airline equity, they first40

minimise the largest airline disutility, then the second largest, etc.41

Finally, Manley and Sherry (2010) defined a passenger equity metric as the negative logarithm of the ratio of passenger42

delays for a given airport category over the total GDP passenger delay, divided by the ratio of the number of passengers from43

that airport category over all passengers in the GDP. This implies that the more passengers an airport category has, the more44

passenger delay it should be assigned. In both cases, perfect equity is represented as 0.45

Table I summarises the main approaches and metrics used in literature for fairness models. It can be seen that the most46

classical choice is flight-centred, though inter-airline equity has been more considered in the past years. Passenger-based fairness47

metric is more complex to define and to use due to the lack of available data at operational level. In this paper, two definitions48
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of fairness are considered: a flight-centred approach based on the RBS solution, and a passenger-centred metric based on1

the total delay experienced by passengers with respect to an RBS solution. The flight-centred one will be used to study the2

classical trade-off between efficiency and equity at flight level. The passenger-centred one helps to fill the gap identified for3

passenger-based fairness metrics, and it will be used to study the trade-off between efficiency and equity, at passenger level.4

III. DELAY AND FAIRNESS OPTIMISATION MODELS5

This section introduces the mathematical model used in this paper for the optimisation and for the analysis of the trade-off6

between efficiency (delay generated in the system) and fairness (based on the delay experienced by stakeholders). A description7

of price of fairness and price of efficiency is provided as a tool to understand these trade-offs. The different objective functions8

considered are explored in detail with particular focus on the definition of metrics (and objectives functions) for fairness.9

A. Optimisation model10

As presented in Section I, the assignment of delay to flights in order to deal with capacity-demand imbalances can be seen11

as an optimisation problem. Different optimisation techniques can hence be considered. In this paper, delay assignment is12

optimised using a deterministic ground holding problem model (GHP) based on (Ball et al., 2007). In this model, constraints13

only apply at the destination to ensure that airport capacities are maintained.14

For a given set of time intervals (t = 1, 2, . . . , T ) corresponding to the times of arrival, and a set of aircraft (f = 1, 2, . . . , F )15

corresponding to flights that will arrive and then depart from the studied airport, the following inputs are defined:16

• bt is the constrained airport arrival capacity at time interval t and17

• STA(f) (scheduled time of arrival) is the earliest time interval at which aircraft f is scheduled to arrive at the constrained18

destination airport.19

To prevent a flight from getting assigned a slot earlier than the earliest time it could arrive, for each flight f , its feasible time20

intervals start at STA(f). The decision variables are defined as:21

xft = 1 if aircraft f is assigned to arrive at time interval t
0 otherwise

the deterministic ground holding problem can then be formulated as22

min
∑
f

∑
t

cftxft (1)

subject to
∑
f

xft ≤ bt, for all t (2)∑
t

xft = 1, for all f (3)

where cft is the cost of assigning aircraft f to arrive at time t. Note that Equation (2) corresponds to the capacity constraint23

applied at each time interval t, whereas Equation (3) imposes the fact that a flight must arrive exactly once. More details on24

this general GHP model can be found for example in (Ball et al., 2007).25

With the above defined model, it is possible to consider different objective functions by modifying the associated cost of26

assigning a given flight (f ) to a given arrival slot (t).27

B. Objective functions28

Optimisation of system performance (total experienced delay) and fairness are modelled. That is, objective functions for29

these categories are defined for both flights and passengers.30

1) System performance objective functions (ObjPerf ): As shown in (Cook et al., 2012) and (Montlaur and Delgado, 2017),31

the delay and cost experienced by passengers differ from the ones obtained with flight-centred metrics. These differences are32

partially due to passenger missed connections. For this reason, optimisation functions considering passenger and flight delays33

are considered in this paper. Given the previously mentioned importance of reactionary delay, total delay (as opposed to just34

arrival delay) is considered here in both cases. Two objective functions measuring the performance of the system through the35

total delay are thus modelled as follows:36

• Total flight delay (ObjPerfFlight
): it includes the reactionary delay, which is defined as the difference between the Actual37

Time of Departure (ATD) and the subsequent Scheduled Time of Departure (STD). As seen on Figure 1b, it is equivalent38

to calculate it as the difference between the Actual Arrival Time (ATA), which corresponds to the variable t, and the39

latest time of arrival (LTA) that would not generate delay in the subsequent departure flight of the same aircraft. As40

shown on Figure 1a, LTA is calculated as follows: LTA(f) = STD(f) −MTT (f), where MTT (f) is the minimum41

turnaround time needed for aircraft f ; details of how these data were obtained from statistics are found in (Montlaur and42
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Fig. 1: Turnaround and delay diagram

Delgado, 2017). Note that in this case, delay is only propagated if the time between STD(f) and LTA(f) is lower than1

MTT (f), which is a conservative approach since in reality, the turnaround might take longer than MTT (f).2

Finally, this objective function is defined as the sum of the arrival delay plus the reactionary delay multiplied by a factor3

1.8, corresponding to the extra delay that this reactionary delay will further generate. As reported by (EUROCONTROL,4

2015b), in 2014, the ratio of reactionary to primary delay was 0.80, which means that, on average, every minute of5

primary delay resulted in some additional 0.80 minutes of reactionary delay. Thus, in this model, the total delay per flight6

is minimised:7

ObjPerfFlight
=

∑
f

∑
t

[(t− STA(f)) + 1.8(t− LTA(f))]xft, (4)

• Total Pax delay (ObjPerfPax
): in this objective function, the total delay per passenger to minimise is expressed as follows:8

ObjPerfPax
=

∑
f

∑
t

[Paxarr(f)(t− STA(f)) + PaxconnecPropagDelay(f, t) + Paxdep(f)(t− LTA(f))]xft, (5)

where Paxdep(f) is the number of departure passengers assigned to flight f , and PaxconnecPropagDelay(f, t) the9

propagation delay for each flight, taking into account the number of passengers connecting on the inbound flights and the10

waiting time at the hub, if the connections are missed, until another flight to their final destination is available. This is a11

probabilistic model that does not represent individual passenger itineraries. See Section IV and (Montlaur and Delgado,12

2017) for more details on this parameter.13

2) Fairness objective functions (ObjFair): Two fairness objective functions are considered: one focuses on the deviation of14

flight arrival time with respect to RBS, whereas the second one focuses on the deviation of the total Pax delay for each flight15

with respect to the one obtained with an RBS solution.16

• Total flight arrival delay deviation from RBS (ObjRBSFlight
): similarly to (Glover and Ball, 2013) and (Kuhn, 2013),

equity is defined here as the total deviation of arrival delay experienced by flights with respect to the RBS solution.
Therefore, the deviation with RBS is minimised when minimising:

ObjFairFlight
=

∑
f

∑
t

|t−RBS(f)|xft (6)

being RBS(f) the arrival time of flight f in a RBS environment.17

• Total Pax delay deviation from RBS (ObjFairPax
): the metric of fairness for passengers defined here considers the total18

delay deviation that passengers experience due to an assignment of slots different from the RBS solution. Note that, in19

this case, the deviation is considered based on the delay that would be assigned in the current operations, where RBS is20
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considered a fair assignment, even if this fairness is based on a flight-centric approach. The passenger fairness defined1

in this paper hence captures the variation with respect to current operations and not necessarily with respect to an even2

distribution of delay for passengers. The total deviation experienced by Pax is defined as follows:3

ObjFairPax
=

∑
f

∑
t

|[Paxarr(f)(t− STA(f)) + PaxconnecPropagDelay(f, t) + Paxdep(f)(t− LTA(f))] (7)

−[Paxarr(f)(RBS(f)− STA(f)) + PaxconnecPropagDelay(f,RBS(f)) + Paxdep(f)(RBS(f)− LTA(f))]|xft,

C. Multi-objective optimisation4

The model described in this paper considers trade-offs between system performance and fairness. Therefore, the optimisation
problem can be defined as a multi-objective optimisation. This optimisation objective (cost to be minimised) can be described
as a single optimisation function defined as the weighted sum of the individual objectives (Fi(x)):

∑k
i=1 wiFi(x), see for

example (Marler and Arora, 2010). Therefore, here, the single optimisation function considered is defined as:

Obj(α) = αObjFair + (1− α)ObjPerf (8)

where ObjFair captures the fairness (as the deviation with respect to RBS for flight and as the deviation on the amount of5

delay experienced by passenger with respect to RBS solution) and ObjPerf captures the performance (as the total delay).6

When considering well-understood preferences, paired comparison methods can be used to define the value of the different7

weights and unrestricted positive weights should be used (Marler and Arora, 2010). However, when presenting Pareto solutions8

for an a posteriori articulation of preferences, a convex combination of functions can be used, implying that
∑k

n=1 wn = 1.9

In this model: 0 ≤ α ≤ 1. This approach can be considered as a statement of fairness preference as:10

• α indicates the preference of fairness, i.e., reduction of difference from the RBS solution,11

• 1− α indicates the relevance of flight or passenger delay in the optimisation.12

When computing different Pareto solutions to provide an a posteriori articulation of preferences, a systematic variation of13

weights does not necessarily ensure an even distribution of Pareto optimal points and hence an accurate complete representation14

of the Pareto optimal set (Marler and Arora, 2004). One way to improve this consists in using an objective function trans-15

formation method, being the upper-lower-bound approach the most robust one (Marler and Arora, 2005). With this method,16

instead of using Fi(x), single objectives are transformed as:17

F trans
i =

Fi(x)− F 0
i

Fmax
i − F 0

i

(9)

This approach, referred to as normalisation, generally leads to F trans
i ranging between zero and one, depending on the accuracy18

and method with which Fmax
i and F 0

i are determined. As described in (Marler and Arora, 2005), the best approach, and the19

one used here, is to select F 0
i =min{Fi(x)|x ∈ X} (being X the feasible design space of the problem), and Fmax

i as the20

Pareto maximum by defining it such that Fmax
i = max1≤j≤kFi(x

∗
j ), where x∗j is the point that minimises the jth objective21

function.22

In the present case, the transformation will be:

Obj(α) = α
ObjFair −Obj0Fair

Objmax
Fair −Obj0Fair

+ (1− α)
ObjPerf −Obj0Perf

Objmax
Perf −Obj0Perf

(10)

In this paper, there are four objective functions defined (two for performance and two for fairness): flight performance (total23

flight delay), passengers performance (total passenger delay), flight fairness (flight delay deviation with respect to RBS) and24

passengers fairness (passenger total delay deviation with respect to RBS). We are interested in analysing the system trade-offs25

between performance and fairness, but instead of considering all four objectives at the same time, we define two case studies:26

1) Case 1: Flight-centric optimisation: In this case, the optimisation considers a flight-centric view where performance and27

fairness are defined according to flight metrics. This case is selected as it is closer to what the ATM system is classically28

considering. It also has the advantage that the data required to perform this optimisation is available and already used by the29

community.30

ObjFlight(α) = α
ObjFairFlight

−Obj0FairFlight

Objmax
FairFlight

−Obj0FairFlight

+ (1− α)
ObjPerfFlight

−Obj0PerfFlight

Objmax
PerfFlight

−Obj0PerfFlight

(11)
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2) Case 2: Passenger-centric optimisation: As mentioned trough the paper, passenger experience might differ from flight-1

centric metrics. For this reason, it is important to capture passenger performance and fairness with their own dedicated metrics.2

In this second case study, we consider the trade-off between passenger performance and fairness in order to analyse the benefits3

(or losses) for passengers if they are explicitly considered in a passenger-centric system. Note that in this case, the data required4

is not fully available to the network manager and hence, the research shows what can be achieved if modelled this way.5

ObjPax(α) = α
ObjFairPax

−Obj0FairPax

Objmax
FairPax

−Obj0FairPax

+ (1− α)
ObjPerfPax

−Obj0PerfPax

Objmax
PerfPax

−Obj0PerfPax

(12)

Finally, note that results on passenger metrics will be described when optimising the system in a flight-centric approach6

(Case 1) and vice versa. This will be done in order to understand the impact of the optimisation on both stakeholders and with7

all four metrics.8

D. Price of fairness and efficiency9

The model presented in the previous subsection (Section III-C) allows us to compute the Pareto between efficiency and10

fairness in absolute value. However, specific metrics can be considered to capture those relationships. Trade-off between11

fairness (or equity) and efficiency has been studied by several researchers in the past years. For example, Bertsimas et al.12

(2012) aim to balance efficiency and fairness in the context of resource allocation. They identify the notion of α-fairness,13

which allows the decision maker to trade off efficiency for fairness by means of a single parameter. In (Bertsimas et al., 2011),14

they introduce the concept of price of fairness as the efficiency loss due to the increment of fairness and price of efficiency15

as the fairness loss due to the increment in efficiency in the system. We define similar concepts for our specific problem16

(considering the use of α as an indicator of preference of fairness).17

1) Price of fairness: Bertsimas et al. (2011) introduce the concept of price of fairness (POF ) as the efficiency loss relative
to the maximum system efficiency:

POF (U,α) =
SY STEM(U)− FAIR(U,α)

SY STEM(U)
(13)

where SY STEM(U) is the maximum system efficiency, and FAIR(U,α) the efficiency under the fair scheme. POF is thus a18

number between zero and one, corresponding to the percentage of efficiency loss, compared to the maximum system efficiency,19

due to the introduction of fairness. In (Montlaur and Delgado, 2018), a similar definition of price of fairness was introduced20

and expanded into price of trade-off as the loss in system performance due to applying trade-off in a multi-optimisation21

environment.22

In the present study, we define the price of fairness (POF ) as the percentage of performance loss due to the consideration
in the optimisation of fairness, that is:

POF (α) =
OptPerf − Perf(α)

OptPerf
(14)

In particular, we distinguish the price of fairness for flights (POFFlight) as the percentage of efficiency loss for flights
due to the consideration in the optimisation of fairness (by increasing the values of α), and similarly the price of fairness
for passengers (POFPax) as the percentage of efficiency loss for passengers due to the consideration in the optimisation of
fairness:

POFFlight(α) =
OptPerfFlight

− PerfFlight(α)

OptPerfFlight

(15)

POFPax(α) =
OptPerfPax − PerfPax(α)

OptPerfPax
(16)

where:23

• PerfFlight(α) is the value of the total delay of flights for any given value of α, which corresponds to the ObjPerfFlight
24

term of Equation (4). Its optimum value is noted OptPerfFlight
, and corresponds in our case to the value of Obj0PerfFlight

25

(see Equation (11)).26

• PerfPax(α) is the value of the total delay of passengers for any given value of α, which corresponds to the ObjPerfPax
27

term of Equation (5). Its optimum value is noted OptPerfPax
, and corresponds in our case to the value of Obj0PerfPax

28

(see Equation (12)).29

In our case, the maximum system efficiency corresponds to a minimum value of the objective function, thus POFFlight and30

POFPax are negative numbers. They, however, also correspond to the percentage of efficiency loss compared to the maximum31

system efficiency. The best outcome possible for performance (α = 0) corresponds to a respective zero price of fairness.32
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2) Price of efficiency: We now define Fair(α) as the value of the deviation from RBS (for flights or Pax) for any given1

value of α; its optimum value OptFair = 0 is obtained for α = 1. This corresponds to the ObjFair term of Equation (8).2

The fairness metric adopted in this work is the deviation from OptFair. It is minimum for the α-fair allocation corresponding3

to α = 1, and maximum for α = 0. As more emphasis is put on fairness (e.g., by selecting a higher value of α), the maximum4

deviation from RBS is likely to decrease. The fairness gain is now the difference between the fairness metric evaluated at5

α = 1 and the general fairness metric. Bertsimas et al. (2012) call price of efficiency the fairness loss (difference between the6

fairness metric evaluated at the max-min fair allocation and the α-fair allocation) relative to the maximum value of the fairness7

metric. Here, the fairness loss is also defined as the difference between minimum value of the fairness metric (OptFair) and8

the equivalent of the α-fair allocation Fair(α), but because here OptFair = 0 the price of efficiency is obtained normalising9

the fairness loss with respect to its maximum value, that is:10

POE(α) =
|OptFair| − |Fair(α)|
|Max(Fair)|

=
−|Fair(α)|
|Max(Fair)|

(17)

Again, prices of efficiency are defined both for flights and passengers:

POEFlight(α) =
|OptFairF light| − |FairFlight(α)|

|Max(FairFlight)|
=
−|FairFlight(α)|
|Max(FairFlight)|

(18)

POEPax(α) =
|OptFairPax| − |FairPax(α)|

|Max(FairPax)|
=
−|FairPax(α)|
|Max(FairPax)|

(19)

where:11

• FairFlight(α) is the value of the sum of the absolute deviation of delay with respect to RBS for flights, which corresponds12

to ObjFairFlight
in Equation (6). Its optimum value is noted OptFairFlight

, and corresponds in our case to the value of13

Obj0FairFlight
, which is equal to 0, whereas |Max(FairFlight)| corresponds to Objmax

FairFlight
(see Equation (11)),14

• FairPax(α) is the value of the deviation of total delay of passengers with respect to RBS, which corresponds to ObjFairPax
15

in Equation (7). Its optimum value is noted OptFairPax
, and corresponds in our case to the value of Obj0FairPax

, which16

is equal to 0, whereas |Max(FairPax)| corresponds to Objmax
FairPax

(see Equation (12)).17

Once again, because the maximum fairness corresponds to a zero value of |OptFair|, POE is negative and corresponds to18

the percentage of fairness loss compared to the maximum fairness loss of the system. The most fair solution corresponds to a19

zero price of efficiency.20

IV. PROBLEM DESCRIPTION21

In order to test the previously defined metrics and to provide a testing environment for trade-offs between performance and22

fairness for flights and passengers, a specific traffic scenario is modelled. The arrival demand at Paris Charles de Gaulle (CDG)23

airport on September 12th, 2014 has been considered for all simulations. It was a busy Friday without any major disruption.24

Morning traffic, between 5.00 GMT and 11.00 GMT, is analysed. For the traffic scheduled, data from EUROCONTROL25

Demand Data Repository 2 (DDR2) (EUROCONTROL, 2018) have been used. All details of the problem simulated here can26

be found in (Montlaur and Delgado, 2017). Next comes a summary of the main hypothesis. This traffic scenario is representative27

of operations at a hub disrupted by an ATFM regulation.28

During the 6 hours of study, the total number of aircraft scheduled to arrive at CDG is 285. The hypothesis that every arriving29

aircraft will eventually depart is made. Considering the demand data and historic regulations at CDG, an ATFM regulation30

between 6.00 GMT and 8.00 GMT is modelled. A nominal capacity of 80 arrivals per hour is considered when no regulation31

is applied, and the regulated capacity is decreased to 40, which is a possible value of capacity during regulated periods at32

CDG as shown in the DDR2 dataset (EUROCONTROL, 2018). For this pre-tactical optimisation, slot windows of 15 minutes33

are considered, i.e., 20 (nominal) or 10 (regulated) aircraft every 15 minutes.34

For each flight, the type of aircraft has been considered and the number of passengers in each flight has been estimated as35

a function of the maximum capacity of the aircraft. A triangular distribution has been used to allocate passengers between 6036

and 95% of the maximum capacity, with the peak of the distribution at 85%, which is considered as the target average load37

factor.38

As mentioned in Section III-B, the propagation of passenger delay, due to missed connections at the hub, has been modelled39

by simulating the number of connecting passengers on inbound flights and the waiting time at the hub, if the connections are40

missed, until another flight to their final destination is available. These data are based on the statistical analysis of a day of41

itineraries at the hub from individual passengers’ itineraries developed in SESAR WP-E ComplexityCost project (Cook et al.,42

2016; Delgado et al., 2016). The obtained data correspond to the parameter PaxconnecPropagDelay(f, t) in Equation (5).43

This passenger allocation process leads to a total of 39 820 arrival passengers, from which 8 620 are connecting to following44

flights (21.6% of arrival passengers) and a total of 39 671 departure passengers, during the 6-hour study. Note thus that here,45

even though it would not be the case in operational systems, all passenger information needed for the optimisation process is46

considered to be available to the ATC/ATFM at execution level.47
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TABLE II: Minimum and maximum values of each parameter in [min] for each case of optimisation
Pareto maximum values Pareto optimal values

ObjFairFlight
ObjPerfFlight

ObjFairPax
ObjPerfPax

Case 1 Flight-centric: min 0 2553.4 0 429 630

max 2027 3774.8 422 787 589 102

Case 2 Pax-centric: min 0 3405.8 0 239 594

max 2601 3900.8 560 868 589 102

To model the reactionary delay, scheduled turnaround times (STT) and minimum times required to do the turnaround process1

(MTT) have been computed for each flight based on statistic data at CDG for different types of aircraft.2

V. RESULTS3

We calculate the Pareto optimal points needed for computation of the Pareto extreme points required in Equations (11)4

and (12). These optimal points (lightly shaded boxes in Table II) are defined as the points minimising each objective, that is,5

α = 1 for ObjFair, α = 0 for ObjPerf . The darker boxes indicate the maximum of each function. Note that, as shown in6

Table II, optimal and maximum values are calculated for the chosen optimisation case (Case 1 for flight-based, Case 2 for7

passenger-based). That is, smaller or larger values of the objective function could be obtained in another optimisation scheme.8

For example, it can be seen that the maximum value considered for ObjPerFlight
to define Objmax

PerfFlight
and Max(FairFlight)9

will be 3774.9min, since this is the maximum value obtained in the flight-based optimisation case, but it could reach 3900.8min10

in the passenger-based optimisation, i.e., if the system is optimised considering passenger delay and fairness (Case 2). Flight11

delay could then be larger than the maximum delay observed when the system is optimised considering flight delay and fairness12

(Case 1). This will be further commented, when studying the obtained results, in the next sections.13

A. Optimisation model trade-offs14

In this section, we first study the trade-off between fairness and efficiency for the flight-based case, and the effect of15

flight-based optimisation on passenger metrics. In the second case, we study the contrary.16

1) Case 1: Optimising for flight metrics: We first study the trade-off between flight fairness and flight delays. Figure 2a17

shows that the minimum flight total delay is located at 2553min for α = 0. If some fairness is introduced, by increasing the18

value of α, deviation from the RBS solution can decrease from 2027min to 1384min (32% decrease) at a cost of increasing19

the flight delay by less than 4%. Once this point is reached, further reducing flight delay deviation comes at higher cost for20

flight delay.21

We then see how optimising for flight objectives affects passenger metrics. In Figure 2b, the point corresponding to fairness22

only (α = 1) can be identified (3774.8min of flight delay and 589 102min of passenger delay). When decreasing the value23

of α and thus increasing the performance importance, it can be seen that flight and passenger delays behave similarly. When24

improving performance, i.e., decreasing the flight delay, the passenger total delay decreases as well. This highlights the25

importance of non-connecting passengers on the total delay experienced. Figure 2c shows that, apart from the extreme point26

corresponding to α = 1, increasing the passenger fairness with respect to the RBS solution comes at a relatively low cost27

for flight delay. Deviation of Pax delay from RBS solution can be reduced by 30% (from 422 787min to 297 600min) at a28

cost of a 3% increase of flight delay (from 2553min to 2636min). This can be explained by the fact that though this fairness29

parameter is taken into account from the passengers point of view, it is related to the RBS solution that is flight-centric. It can30

be confirmed by Figure 2f that shows how fairness parameters for flights and for passengers vary in the same direction when31

optimising for flights.32

Finally, Figures 2d and 2e, respectively show trade-off between Pax delay and Pax delay deviation, and Pax delay and flight33

delay deviation when optimising for flight metrics. Figure 2d shows that decreasing Pax delay results in worsening Pax fairness,34

as it will also be observed when optimising for Pax metrics in Section V-A2. Nevertheless, higher gain can be obtained in35

Pax fairness (decreasing Pax deviation by 49%, from 422 787min to 214 500min) at a low increment of Pax delay (from36

459 200min to 491 700min, that is, a 7% increase). Similar results are obtained from Figure 2e, higher gain can be obtained37

in flight fairness, at a relatively low increment of Pax delay.38

The analyses presented in this section indicates that when optimising for flight metrics, it is worth introducing some measure39

of fairness, because it only slightly increases flight delay, and the penalisation of Pax metrics is also relatively low. However,40

a solution focused merely on fairness, i.e., RBS, leads to significant sub-optimal assignment of total delay (when reactionary41

delay and passenger connections are considered) for both flights and passengers.42

2) Case 2: Optimising for passengers metrics: We first look at the trade-off between Pax fairness and delay. It can be seen43

in Figure 3d, that increasing fairness costs more at passenger level than at flight level. Indeed, once the minimum Pax total44

delay has been identified (239 594min for α = 0), introducing some fairness by increasing α comes at a higher cost than what45

was previously observed for the flight-based case: a decrease of Pax deviation from the RBS solution of 32% now comes at46
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(b) Flight delay vs. Total Pax delay
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(c) Flight delay vs. deviation of Total Pax delay from RBS
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(d) Total Pax delay vs. deviation of Total Pax delay from RBS
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(e) Total Pax delay vs. deviation of flights from RBS
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(f) Deviation of Total Pax delay from RBS vs. deviation of flights from RBS

Fig. 2: Trade-offs between performance and fairness when minimising flight delay vs. minimising deviation of flights from RBS (case 1)
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(c) Flight delay vs. deviation of Total Pax delay from RBS
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(d) Total Pax delay vs. deviation of Total Pax delay from RBS
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(e) Total Pax delay vs. deviation of flights from RBS
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(f) Deviation of Total Pax delay from RBS vs. deviation of flights from RBS

Fig. 3: Trade-offs between performance and fairness when minimising Total Pax delay vs. minimising deviation of Total Pax delay from RBS (case 2)
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Fig. 4: Price of fairness as a function of α

a cost of 20% increase for the Pax total delay. Further reducing the fairness metric after this point comes at an even higher1

cost as shown in Figure 3d.2

Next, we want to study how optimising for Pax-related objectives affects flight metrics. Figures 3a, 3b and 3c respectively3

show how, when optimising with respect to Pax metrics, changes in deviation of flight delay, total Pax delay and deviation of4

Pax delay hardly affect values of total flight delay. This result indicates that more focus can be put on Pax metrics without5

penalising too much total flight delay. A trade-off between total Pax delay and deviation of flight from RBS is nevertheless6

observed in Figure 3e, similar to the one observed between total Pax delay and deviation of Pax delay from RBS: the reduction7

of total Pax delay comes at a cost of reduction of fairness for flights. This similarity of results is confirmed by Figure 3f,8

which shows that deviations to RBS of flight delay and of Pax delay behave similarly when taking into account fairness.9

Case 2 shows that when optimising for Pax metrics, introducing some measure of fairness, penalises more Pax delay and10

flight metrics than what was observed in Case 1.11

B. Price of fairness and efficiency12

As previously discussed, the introduction of price of fairness and price of efficiency concepts help decision makers to13

understand the relative changes between efficiency and fairness for the different parameters that can be considered in the14

optimisation. In our case, we present these indicators for flights and passengers, and the impact of optimising considering only15

one stakeholder (Case 1 and Case 2) on the performance and fairness of the other.16

1) Price of fairness: Figure 4 presents the evolution of price of fairness (POF ) as a function of α. This representation17

allows decision makers to quantify the impact of including fairness on delay performance.18

Figure 4a shows the price of fairness for flight (POFFlight), when optimising for flight (Case 1) and when optimising for19

Pax (Case 2). When optimising for flight, for α = 0, a maximum POFFlight is achieved and equal to 0, i.e., there is no20

loss on flight delay efficiency, which corresponds to a total flight delay of 2553.4 minutes. As α, and thus fairness, increases,21

POFFlight decreases. However, the graph allows us to see that the evolution is at first very flat, pointing to the fact that we22

can gain in fairness (using higher α) with relatively small loss in efficiency (total flight delays). When α reaches a value close23

to 0.5, POFFlight ≈ −0.1, i.e., there is an increment in 10% of the total flight delay. The cost of increasing fairness from that24

point on is very high, rapidly reducing the performance of total flight delay. To see how much fairness is gained by increasing25

α, we will then have to check the price of efficiency in Section V-B2.26

If the optimisation considers passenger delay and fairness (Case 2), it is observed in Figure 4a, that when focus is given27

to passenger delay (i.e., α = 0), the flight performance suffers nearly a 50% increment on flight delay with respect to the28

minimum delay possible for flights obtained in Case 1. This decrease in total delay performance is expected as the optimisation29

focuses on passenger delay. Note however, that this decrease is even larger than the worst performance obtained in Case 1 with30

α = 1, i.e., for maximum fairness. Another interesting fact is that as fairness for passenger is increased, the performance for31

flights does not get further reduced but instead improves. This indicates that focusing on increasing passenger fairness (e.g.,32

with α = 0.5) achieves a reduction in flight performance that is lower than if focus is given to passenger performance. From33

that point on, increasing the passenger fairness impacts negatively the total flight delay.34

Page 11 of 16



0 0.2 0.4 0.6 0.8 1

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

P
O

E
F

lig
h
t

RBS

Case 1: Flight Opt

Case 2: Pax Opt

(a) Price of efficiency for flights as a function of α

0 0.2 0.4 0.6 0.8 1

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

P
O

E
P

a
x

RBS

Case 1: Flight Opt

Case 2: Pax Opt

(b) Price of efficiency for Pax as a function of α

Fig. 5: Price of efficiency as a function of α

Figure 4b shows the price of fairness from a passenger total delay perspective (POFPax), for both cases of optimisation.1

When optimising for Pax, for α = 0, a maximum POFPax corresponding to zero loss on passenger delay efficiency is achieved.2

This corresponds to a total passenger delay of 239 594 min. But contrary to the study of price of fairness for flights, as soon3

as α increases, passenger performances are significantly affected. This points out the sensitivity of the optimisation on the4

performance experienced by passengers. The total delay that passengers experience is affected by the relative importance given5

to fairness. Finally, the performance from a passenger perspective can deteriorate up to nearly 150%, while for flights, the6

total delay would only increase up to around an extra 50% with respect to the best optimisation for flight. This means that7

greater savings can be done for passengers, but also, that they are more susceptible to experience worse performances. We8

could expect this, since fairness maintains flights close to their RBS, which is centred on minimising flight arrival delay.9

Note also how, if the optimisation is performed focusing on flights, the performance for passengers is at a maximum around10

80% worse than if the optimisation is done considering passengers. Hence, by not considering passengers in the optimisation,11

there is a worsening on the total delay of at least 80% with respect to the best values achieved with passengers. However,12

the optimisation also shows that the delay experienced by passengers is more stable when the optimisation focuses on flights.13

The performance of passengers remains flat up to around α = 0.5 when it decreases. Therefore, if the optimisation is done14

considering only flight performance and fairness, one can increase the fairness up to around α = 0.5 with a relatively small15

loss on flight performance and without significantly affecting passenger performance.16

Another approach to the price of performance results is to consider, instead of the loss of performance with respect to the17

lowest amount of total delay (i.e., α = 0), the gain in performance by increasing the relative importance of performance with18

respect to fairness. This is particularly interesting when considering Case 1. Note that in current operations, where RBS is the19

used practice, the maximum fairness would be equivalent to an optimisation of Case 1 with α = 1, i.e., minimum deviation20

with respect to the delay assigned in RBS. We can then observe that flight performance (i.e., total delay experience by flights) is21

nearly 50% higher in delay than the best that can be achieved (see Figure 4a), and this is also producing the worst performance22

for passenger total delay (see Figure 4b). Hence, introducing the consideration of total flight delay (i.e., reducing α), one can23

increase the performance significantly. Fairness between α = 0.5 and α = 1 has a high impact on performance. This will have,24

however, an effect on fairness, which will be explored in the next section.25

2) Price of efficiency: In the previous section, we have discussed how changes in fairness in the objective function impact26

the performance, i.e., the amount of delay that is generated. The price of efficiency helps the decision maker to understand27

the impact of α in the changes of fairness of the solution. Remember that, as seen in Equation (17), POE has been defined28

as the ratio of the deviation of the fairness obtained by the optimisation, with respect to the optimum value of fairness, and29

the maximum deviation from fairness that can be expected (i.e., with α = 0). With this definition, POE = 0 means that the30

solution provides a deviation of zero with respect to RBS. Note that a POE = −1 indicates the maximum possible deviation31

with respect to RBS for each of the cases independently. However, as presented in Table II, when optimising in one case, it32

is possible to obtain higher deviations to RBS than in the other one (e.g., the maximum delay deviation with respect to RBS33

in Case 1 for flight fairness is 2027min, however, when optimising in Case 2 (passenger-centric), the deviation for flights34

increases to 2601min). This means that the price of efficiency could lead to a degradation larger than 100% in those cross35

evaluations.36

Figure 5 shows that this worst performance, i.e., the largest deviation with respect to RBS and hence the least fair solution,37

Page 12 of 16



-1.5-1-0.50

POF
Pax

-0.6

-0.4

-0.2

0

P
O

F
F

lig
h

t

Case 1: Flight Opt

Case 2: Pax Opt

 = 1 (RBS)

 = 1 (RBS)

 = 0.6

 = 0.6

 = 0.59

 = 0.49

Fig. 6: Price of fairness for Flights vs Price of fairness for Pax

is obtained, as expected, when α = 0 as the optimisation is only focusing on delay. As α increases, the deviation from RBS1

decreases and POE increases. The deviation with respect to RBS is initially relatively large, but is quickly reduced once α2

gets close to 0.6. This is consistent with the decrease in performance observed in the results presented in the previous section3

(Section V-B1).4

As shown in Figure 5a, when optimising considering passenger delay and fairness (Case 2), the deviation of fairness for5

flight can be up to over 120%. Then flight fairness shows the same degradation when optimising for flights or for Pax when6

α ≥ 0.5. This degradation is removed once α = 0.6. Therefore, it does not seem to be a benefit, from a fairness degradation7

point of view, to use values of α greater than 0.6. In Figure 5b, the maximum degradation for Pax fairness when optimising8

for flight (Case 1) is only around 70%, and as previously observed for POEFlight, once α gets close to 0.6, Pax fairness9

deviations are similar for flight and for passenger optimisation, and no improvement is observed for α > 0.6.10

C. Discussion of results11

In the previous sections, POF and POE for flights and passengers have been presented. In this section, the relationships12

between POFFlight, POFPax and POE are jointly further explored.13

Figure 6 shows the trade-off between POFFlight and POFPax for each possible value of α, i.e., it presents the degradation14

on performance (total delay) for flights and passengers when fairness is considered. See how, most of the time (always in Case15

1 and for α > 0.49 in Case 2), better POFFlight than POFPax is obtained. This shows once again how sensitive passenger16

delay is to the selection of parameters in the optimisation. The fact that fairness has been defined with respect to a flight-centric17

metric might improve the robustness of flight performances as α changes, whereas performance for passengers is worse when18

a solution closer to RBS is selected. Optimising considering only passenger delays (Case 2) provides similar reduction in19

performance for flights (fluctuating between −0.35 and −0.5) but can improve significantly passenger performances. That is,20

we can achieve almost the same total delay for flights while reducing significantly the total delay experienced by passengers.21

Whereas if only total delay for flights is optimised, passenger delay also improves, since reactionary delay is minimised, which22

affects passenger delay too. However, note that, if flights are optimised (Case 1) without considering passengers, then the23

maximum improvement possible for passengers is limited to a worsening of around 90% with respect to the best possible24

passenger delay achievable and that by default, if one does not want to compromise fairness, i.e., using α ≥ 0.5, then the25

passenger performance will be between −100% and −150% of the best achievable value. This highlights the importance of26

considering passenger delay when optimising the system.27

It is worth noticing that current operations (RBS) provide a sub-optimal performance (the worst) for both flights and28

passengers. This points out the importance of considering an optimisation that might compromise some of the fairness allocation29

of resources but that can improve significantly the performance of the system. This is further explored next.30

Figure 6 describes the impact of the optimisation parameters on the performance, but in order to quantify the impact on31

fairness, we need to refer to Figure 7. This figure shows trade-offs between gain in fairness (POE) and gain in efficiency32

(POF ) for flights and passengers. Figure 7a shows that for most values of α (α ≤ 0.59 in Case 1, and α ≤ 0.53 in Case 2),33

POEFlight ≤ POFFlight, that is, fairness performance is usually worse than performance of flight delay. Once again, if the34
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optimisation focuses on passengers (Case 2), a significant improvement on POEFligh can be achieved with a small impact1

on the total delay experienced by flights (POFFlight).2

If focus is given to the trade-offs between POFPax and POEPax, one can see in Figure 7b that total passenger delay is3

more sensitive to the parameters of the optimisation. Note how in Case 2, there is a significant continuous trade-off between4

the two. It is possible to improve the efficiency (POFPax) but always at the expense of decreasing the fairness (POEPax).5

This is also the case in the optimisation when flights are considered (Case 1). Improving passenger total delay comes at a cost6

on the fairness of the solution (as flights with more passengers or more connecting passengers will tend to be prioritised).7

In current operations, flights are prioritised considering the RBS principle. As presented in Figure 6, the results on perfor-8

mance are compromised for both flight and passenger delay. If the optimisation is done considering passenger delay and fairness9

(Case 2), it is possible to use a lower value of α (e.g., α = 0.6), which provides improvements for passenger performance10

without any negative impact on the flight total delay. RBS optimisation ensures the most fair assignment of delay, but as11

presented in Figure 7a, in Case 1, when the weighted optimisation has an impact on the outcome (i.e., α < 0.6), it produces12

a significant change of flight fairness (α = 0.59 already produces a reduction over 40% on the fairness), but also a significant13

impact on delay (α = 0.59 improves the total flight delay performance from 48% of degradation of flight performance to 15%14

only). In Case 2, when passengers are optimised, the changes are smoother.15

Finally, it is worth noticing how there is a significant difference in the performance experienced by flights and passengers16

when only one of the stakeholders is considered (see for example the trade-offs between Case 1 and Case 2 on performance17

in Figure 4 or the different impacts on fairness in Figure 5). This indicates that intermediate solutions might be achieved by18

considering the four parameters (performance and fairness for flights and passengers simultaneously) leading to operationally19

more acceptable trade-offs.20

VI. CONCLUSIONS AND FURTHER WORK21

In this paper, arrival delay due to ATFM regulations has been assigned as the optimisation of a multi-objective problem22

considering system performance (total delay) and fairness (deviation with respect to RBS solution). This has been done23

considering the perspective of flights and passengers. Two optimisation cases have been discussed: one where flights metrics24

are considered and another one focused on passengers indicators. A new definition for passenger fair assignment of delay has25

been suggested as the deviation with respect to the delay experienced in an RBS situation.26

The concept of price of fairness, as the relative loss of performance due to the consideration of fairness in the optimisation27

process, and price of efficiency, as the loss of fairness due to the weight of efficiency on the optimisation, have been defined28

for both cases.29

A specific traffic scenario has been modelled in order to test these concepts, consisting in considering operations at a hub30

including reactionary delay and passenger connections. The optimisation trade-off analysis between performance and fairness31

shows that unless fairness is not reduced significantly in the optimisation preference, the solution obtained is close to an32

RBS one. Then trade-offs arise. The optimisation presented indicates how passenger efficiency, i.e., the delay experienced by33

passengers, can be significantly improved if they are considered in the optimisation with relatively small impact on flight delay.34

However, if total flight delay wants to be reduced with respect to RBS, then the reduction of passenger delay is limited.35
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Passenger metrics have a larger range in terms of fairness than flight metrics, i.e., changes to improve passenger performance1

lead to quick changes in fairness. But, it is also possible to improve some of the passenger metrics (e.g., delay) without having2

a negative impact on flight ones with respect to current operations. Therefore it might be worth considering an optimisation3

where both stakeholders are simultaneously taken into account. When only considering flight metrics, it might be difficult to4

assess all the underlying trade-offs. Data availability for passenger metrics and optimisation is however an issue.5

In this work, fairness has been defined as the total deviation from RBS, but information on how this deviation is distributed6

among flights, airlines or type of passengers, could also be considered and studied in the future. Additional airports and regula-7

tions should also be modelled to analyse trade-offs between flight and passenger delay and fairness in a more general manner.8

Collaborative mechanisms to obtain the required information for the optimisation process (passengers number, connection9

times, etc.) should be considered in order to facilitate the model operational implementation. Finally, the impact of uncertainty10

on the different identified trade-offs should be analysed.11
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Delgado, L., Cook, A., Tanner, G., and Cristóbal, S. (2016). Quantifying resilience in ATM, contrasting the impacts of four32

mechanism during disturbance. In 6th SESAR Innovation Days.33

Dell’Olmo, P. and Lulli, G. (2003). A dynamic programming approach for the airport capacity allocation problem. IMA Journal34

of Management Mathematics, 14(3):235–249.35

EUROCONTROL (2015a). ATFCM operations manual – Network manager. Technical report, EUROCONTROL.36

EUROCONTROL (2015b). Performance Review Report - An Assessment of Air Traffic Management in Europe during the37

Calendar Year 2014. Technical report, EUROCONTROL.38

EUROCONTROL (2018). DDR2 Reference manual for generic users. Technical report, EUROCONTROL.39

EUROCONTROL (2019). Network operations report 2018. Technical report, EUROCONTROL.40

Gilbo, E. P. (1993). Airport capacity: representation, estimation, optimization. IEEE Transactions on Control Systems41

Technology, 1(3):144–154.42

Glover, C. N. and Ball, M. O. (2013). Stochastic optimization models for ground delay program planning with equityefficiency43

tradeoffs. Transportation Research Part C: Emerging Technologies, 33:196 – 202.44

Hamdan, S., Cheaitou, A., Jouini, O., Jemai, Z., Alsyouf, I., and Bettayeb, M. (2018). On fairness in the network air traffic45

flow management with rerouting. In 9th International Conference on Mechanical and Aerospace Engineering.46

Jacquillat, A. and Vaze, V. (2016). Interairline equity in airport scheduling interventions. Transportation Science, 52(4):941964.47

Kuhn, K. D. (2013). Ground delay program planning: Delay, equity, and computational complexity. Transportation Research48

Part C: Emerging Technologies, 35:193 – 203.49

Manley, B. and Sherry, L. (2010). Analysis of performance and equity in ground delay programs. Transportation Research50

Part C: Emerging Technologies, 18(6):910 – 920. Special issue on Transportation Simulation Advances in Air Transportation51

Research.52

Marler, R. and Arora, J. (2004). Survey of multi-objective optimization methods for engineering. Structural and53

Multidisciplinary Optimization, 26(6):369–395.54

Page 15 of 16



Marler, R. T. and Arora, J. S. (2005). Function-transformation methods for multi-objective optimization. Engineering1

Optimization, 37(6):551–570.2

Marler, R. T. and Arora, J. S. (2010). The weighted sum method for multi-objective optimization: new insights. Structural3

and Multidisciplinary Optimization, 41(6):853–862.4

Montlaur, A. and Delgado, L. (2017). Flight and passenger delay assignment optimization strategies. Transportation Research5

Part C: Emerging Technologies, 81:99 – 117.6

Montlaur, A. and Delgado, L. (2018). Arrival trade-offs considering total flight and passenger delays and fairness. In 8th
7

SESAR Innovation Days.8

Pilon, N., Cook, A., Ruiz, S., Bujor, A., and Castelli, L. (2016). Improved flexibility and equity for airspace users during9

demand-capacity imbalance - an introduction to the user-driven prioritisation process. In 6th SESAR Innovation Days.10

Vossen, T., Ball, M., Hoffman, R., and Wambsganss, M. (2003). A general approach to equity in traffic flow management and11

its application to mitigating exemption bias in ground delay programs. Air Traffic Control Quarterly, 11(4):1–11.12

Vranas, P. B., Bertsimas, D. J., and Odoni, A. R. (1994). Dynamic ground-holding policies for a network of airports.13

Transportation Science, 28(4):275–291.14

Young, H. P. (1995). Equity In Theory and Practice. Princeton University Press.15

Page 16 of 16


