

TroMotion: Skeletal animation library

Bachelor's Thesis

Design and Development of Videogames

Surname: Mas Ortega Name: Iban

Pla: 2014

Director: Díaz García, Jesús

Iban Mas Ortega
TroMotion: Skeletal Animation Library

Index
Summary 4

Key Words 5

Links 5

Index of tables 6

Index of figures 7

Glossary 9

1. Introduction 11

1.1 Motivation 12

1.2 Problem 12

1.3 General goals 12

1.4 Specific goals 14

1.5 Project scope 15

2. State of the art 16

2.1 Skeletal animation 17

2.1.1 Related Technologies 18

2.2 Existing solutions 18

2.2.1 Libraries 19

2.2.2 Specific Solutions 20

2.3 TroMotion in the market 21

3. Project management 22

3.1 Procedure and tools for monitoring the project 22

3.1.1 GANTT 23

3.1.2 Trello 23

3.1.3 GitHub repository and version control tools. 23

3.2 Validation tools 24

3.3. SWOT 25

3.4. Risks and contingencies 25

T3.3 Risks and contingencies 25

3.5. Cost analysis 26

4. Methodology 28

4.1 Feature-Driven Development integration 28

2

Iban Mas Ortega
TroMotion: Skeletal Animation Library

4.1.1 Tracking Process 29

4.1.2 Project schedule 30

5. Project Development 31

5.1 Testing Game Engine 31

5.1.1 Game Engine Structure 31

5.1.2 Implementation of the Game Engine 32

5.1.3 Resource handling 34

5.2 Animation library 35

5.2.1 Integration concerns 36

5.2.2 Mathematics library abstraction 37

5.2.3 Skeleton and joints 38

5.2.3 Poses 41

5.2.4 Animation Clips 43

5.2.5 Skinning 44

5.2.6 Animation Montage 45

5.2.7 Animation State Machine 46

5.2.8 Animation State 48

5.2.8.1 Skeleton transformation calculation. 49

5.2.9 Animation State Machine Variables 50

5.2.10 Animation Transitions 51

5.2.10.1 Animation Transition Conditions 52

5.2.10.2 Animation Blender 53

5.2.11 Animation Manager 53

5.3 Implementing the library into the example engine 54

5.3.1 Loading the data for the library 55

5.3.1.1 Loading the skeleton data 55

5.3.1.2 Loading the vertex skinning data 56

5.3.1.3 Loading Animation clips 56

5.3.2 Using the library features - Animation component 58

5.3.3 Displaying the character using the animation 59

5.3.4 Engine Interface to work with the library 61

6. Conclusions 63

7. Bibliography 65

3

Iban Mas Ortega
TroMotion: Skeletal Animation Library

Summary

Software development is one of the most common things nowadays. Mostly all that
surrounds us have software integrated. To create that software, people work daily and
create tools to ease the creation of new software.

The entertainment industry is one that most software develops every year. From
special effects to videogames, software is key to create all films, adds and games we
consume daily.

That industry relies on lots of libraries and applications created by third parties to bring
alive their works and one of the most important tools they have for that is animations.

The animation system, against others, doesn’t have a variety of third-party solutions to
it since it usually relies on the core functionality of the base application.

TroMotion is an approach to bring a solution to the animation system focused on being
easy to integrate into any source code and use the already developed solutions of that
code to improve performance and resource usage. The library gives a solution to the
most basic and common applications of animation such as blending, transitions and
data management for skeletal animations.

Even though the specific approach will always give better performance issues, creating
a common base that can be easily extended with extra features, is a good starting point
for small companies and independent developers, as well as for students learning
about the animation subsystem.

4

Iban Mas Ortega
TroMotion: Skeletal Animation Library

Key Words
3D animation, skeletal animation, library, C++, animation blending

Links
GitHub: https://github.com/Trodek/TroMotion

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0

International License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative

Commons, PO Box 1866, Mountain View, CA 94042, USA.

5

https://github.com/Trodek/TroMotion

Iban Mas Ortega
TroMotion: Skeletal Animation Library

Index of tables

T1.1: Capabilities of the library..Pag. 13

T3.1 Grouped tasks...Pag. 22

T3.2 SWOT..Pag.
25

T3.3 Risks and contingencies...Pag. 25

T3.4 Development cost by task...Pag. 26

T3.5 Total cost of the project...Pag. 27

6

Iban Mas Ortega
TroMotion: Skeletal Animation Library

Index of figures
F1.1: Walk cycle in 2D animation..Pag. 11

F2.1: Phenakistoscope..Pag. 16

F2.2 CGI form Toy Story………………………..……………………………………...Pag.
16

F2.3 Model and Skeleton……………………………………………………...……….Pag. 17

F2.4 IK Example……………………………….………………………………………..Pag. 18

F2.5 Animadead Example...………………….………………………………………..Pag. 19

F2.6 Granny 3D Animation Studio.………….………………………………………..Pag. 20

F2.7 Unity Animation………………………….………………………………………..Pag. 20

F3.1 Gantt chart for the project………………….…………………………………....Pag. 23

F3.2 Git Workflow……………………………………………………………………....Pag. 24

F4.1 Feature-driven development………………………………….………………....Pag.28

F4.2 Trello task example…………………………………..…………………………..Pag. 29

F4.3 Trello board example…………………………………...………………………..Pag. 30

F5.1 Game Engine Structure....……………………………...………………………..Pag. 32

F5.2 Object Structure…….…………………………………...………………………..Pag. 34

F5.3 Core engine working.…………………………………...………………………..Pag. 35

F5.5: TroMotion Math Implementation Code (Fragment)......................................Pag. 38

F5.6: Joint and Skeleton Code………………………………………...……….……..Pag. 41

F5.7: Test Skeleton Structure…………………………...……………………....…….Pag. 41

F5.8: T-Pose Example……………………………………………………..……….….Pag. 42

F5.9: Test Animation Clip……………………………………………………………....Pag.
44

F5.10: Animation Montage Code Structure……………………………………….....Pag. 46

F5.11: Animation State Machine Code…………………………………………....….Pag.
47

F5.12: Animation State Machine Variable Code………………………………....….Pag. 51

F5.13: Animation Condition Code………………………………………………....….Pag. 52

F5.14: Animation Manager………………………………………………………....….Pag. 54

F5.15: Layer relation diagram……………………………………………………...….Pag. 55

F5.16: Model using skeleton……………………………………………………….….Pag. 57

7

Iban Mas Ortega
TroMotion: Skeletal Animation Library

F5.17: Model animated incorrectly…………………………………………………....Pag. 58

F5.18: Animation Component………………………………………………………....Pag. 59

F5.19: Sending data to shader………………………………………………………..Pag. 60

F5.20: Shader code…………………………………………………………………….Pag. 60

F5.21: Skeleton hierarchy…………………………………………………………..….Pag. 61

F5.22: Reproduction control panel………………………………………………...….Pag. 62

F5.23: Node Graph tool…………………………………………………………….….Pag. 62

8

Iban Mas Ortega
TroMotion: Skeletal Animation Library

Glossary

- 3D rendering: Set of processes needed to convert a CGI, represented by
mathematical points, into an image on a screen.

- Agile methodology: Approach to project management consisting of creating
the project into small tasks assigned to specific members of the team.

- Animation blending: Technique used to mix two or more animations into one.
- Animation layer: Method that allows playing different animations on different

parts of the same skeleton.
- Animation retargeting: Technique used to play an animation into a skeleton

different from the one used to create it.
- Animation system: The subsystem in charge of handling all tasks related to

moving a CGI.
- Animation transition: Procedure to change between two animations that allow

effects to control that change.
- Bind pose: The position a 3D model has when creating the skeleton for it
- Bones: Empty space between two joints. Usually represented to show the

relation between joints.
- CGI: Computer Graphics Imagery. Set of points and transformations

represented mathematically that can be used by a computer to create images.
- Feature-driven development: Type of agile methodology on which the tasks

are the features needed to develop.
- Game engine: Software with all the tools needed to create a video game.
- GPU: Graphics processor unit. The computer component in charge of

performing all computations related to graphics.
- Inverse kinematics: Technique used to adjust the transformation of a set of

joints to match a target.
- Joints: Each of the points used in skeletal animation to move a certain part of a

CGI.
- Key pose: Specific pose used to create animation clips.
- Metachannels: Set of information non-related to the original objective used to

identify and track specific aspects of the original one.
- Phenakistoscope: Circular object with images inside and holes in the sides

that plays an animation when rotated at a certain speed.
- Pose: Unmovable position represented into a skeleton.
- Rag doll: Technique that simulates physical reaction for elements not intended

to be physically realistic.
- Real-time software: Application that calculates and produces the image to

show in a screen fast enough to fool the human brain to think there is no delay
between them.

- Rigging: Name of the process of creating a skeleton for a 3D model.
- Serialization: Process to store data into files and allows load them for later use.
- Skeletal animation: Technology that allows creating motion for

computer-generated imagery (CGI) which consists of moving an internal set of
joints that conforms a skeleton.

- Skinning: Technique used in animation to associate skeleton joints to CGI
objects.

9

Iban Mas Ortega
TroMotion: Skeletal Animation Library

- Subsystem: A part of a software that takes care of a specific group of tasks
from the same area.

10

Iban Mas Ortega
TroMotion: Skeletal Animation Library

1. Introduction

In current audiovisual media, and thanks to the evolution of technology, the use of
special effects and fantasy creatures is very common. That allows creative directors
and artists to create settings and environments that some years ago only existed in
literature. To achieve that, lots of different technologies work together from rendering
pipelines, to 3D creation software.
One of the more important parts of creating scenes relies on the movement of the
elements that appear on them. Animation techniques are the ones responsible to do
that.
Through animation, the models created that, at first, are static, become dynamic
recreating the movements of a living entity, such as a human or animal.

The techniques used for 3D animation are the evolution of the previously existing ones
for 2D animation. In traditional 2D animation, the sensation of movement is created by
the change between images fast enough to fool the brain, which perceives the trick as
the movement. The image F1.1 is an example of how walking images are created. This
idea is translated similarly to the 3D animation but since the technology used to create
these 3D elements is different, the way to create the illusion of movement is also
different.

F1.1. Walk cycle in 2D animation - The animator's survival kit, Richard Williams

This thesis focus on one of these techniques, that is called skeleton animation. The
name represents how the technique works. Using a set of joints, also called bones, an
inner structure that represents how the model should move is created. This structure is
called a skeleton. Then, the model is associated with this skeleton and then the
skeleton is the one, as in 2D animation, changed to the different positions that create
the illusion of movement.

In order to do that, different data structures and mathematical operations are needed,
which, usually, are dependent on the other software that uses them.

11

Iban Mas Ortega
TroMotion: Skeletal Animation Library

This project consists of a possible solution to make those structures and operations the
most independent possible of the software and what are the pros and cons of this
approach against the existing ones.

1.1 Motivation

The idea of developing this project came to me while developing my own engine for a
university subject. During the subject, we were exploring all the different subsystems
and improvements that can be incorporated in a game engine and for most of them,
there was already a library that could be used to help with each subsystem. But once
we reached the animation subsystem, the teacher didn’t recommend the use of any of
the existing ones for this subsystem since it is very reliant on core features of the
engine.

Since then, the idea of creating a library able to handle animation for most game
engines and software has been something I was thinking of doing by myself and
therefore I decided to do it.

Creating a library is also a challenging feat that will allow me to grow not only as a
programmer but as a professional since it requires to check the stability of it and correct
functionality in different configurations.

1.2 Problem

When any programmer or company aims to create any software for 3D rendering, there
is a point in the development that have to make himself a question: how will I treat
animations?

The animation system is one of the core functionalities of any 3D engine or software,
and that is also what makes it one of the most challenging subsystems since it requires
to be integrated with most of the core elements of the software such as the
transformations, model data and rendering systems.

Current solutions to this, usually include own solutions to some elements that the base
software already has solved, which leads to code duplication and low performance. For
that, current libraries are not used and their own solutions are developed since they
create performance issues and integration with the base code is complex.

The main focus of this library is to solve these issues and bring a base solution for the
animation system, which can be expanded and modified depending on the purpose of
each user.

1.3 General goals

This thesis main objective is to provide a software-independent solution for skeletal
animation in 3D graphics. That includes the creation of data structures for all the
elements that take part in skeletal animation.

12

Iban Mas Ortega
TroMotion: Skeletal Animation Library

Objectives:

1. Design and develop a skeletal animation library
2. Allow the user to play and interact with animations
3. Create tools to personalize how the animations work
4. Release the library under GNU General Public Licence
5. Analyze the pros and cons of this solution against others
6. Develop an example engine to integrate the library

These objectives will create a library with the characteristics described in the table
below:

No base code dependent

Description The library will provide all the necessary information
and structures to allow it to be integrated into most of
the current software.

Consequences The developers will have access to a kit of tools that
will allow them to use already created solutions and
optimizations working inside the library

Personalized animations

Description The user can decide how to reproduce the animation,
how to mix them and when to be notified by the
animation system.

Consequences The animations can be reused in any way possible,
different interactions can be triggered when the
animation starts, ends or on a personalized time.

Real-time

Description The animation system will be able to work on real-time
software and engines

Consequences The developer will not see any performance issue
between before and after using the animation library

Able to be recreated

Description All structures will provide a serialization mechanism to
allow them to be reused in the future

Consequences The developer can save all the work done into files and
load them to continue working with them

T1.1 Capabilities of the library

13

https://www.gnu.org/licenses/gpl-3.0.en.html

Iban Mas Ortega
TroMotion: Skeletal Animation Library

1.4 Specific goals

From the previous general objectives, the following is a more detailed list of objectives
needed to achieve each of the goals:

Base code independence

To separate the base code from the library, but to use the optimizations already
existing:

1. Math abstraction: provide a file that allows the use of the base code math
solution in the animation library.

2. Data types: the creation of all different data types needed to store and use the
animation data.

Personalized animations

To allow the user to create different effects from a set of animations, the library
provides:

1. Transitions: allow to define how one animation changes to another one
2. Blending: Animations can be mixed to create a specific one (ex. change from

walk to run)
3. Layers: the layers system allow to divide how animations are applied and to use

different animations on specific parts of the model

Real-Time

In order to allow the library to perform the better possible, it will feature:

1. GPU computed animation: most of the computation will be done on the graphics
card, which allows better performances

2. Data selection: to reduce the amount of data needed to send to the graphics
card, the library will check what is needed at each point and only send the
required data

Able to be recreated

One of the most important points on the whole system is for it to be able to store and
load the configurations and all previous objectives.

1. Serialization: include native serialization for all the components on the
animation system and provide a guide for creating own save files.

Easy to use

One of the main objectives of a library is to simplify the implementation of software:

1. Documentation: information on each component and how to set up the library
guide will be provided to the users.

14

Iban Mas Ortega
TroMotion: Skeletal Animation Library

1.5 Project scope

Animation is one of the key systems in any 3D software. Nowadays, it is used from
video games to the advertisement industry. Creating a full animation subsystem inside
this project is not possible because there are a lot of improvements and additional
elements that animation systems include nowadays.

This library aims to ease the creation of any of the tools used with 3D rendering, more
specifically for educational purposes or small companies since big companies already
have their own solution to this system.

Companies and more specifically programmers are dealing with animations each time
they create any new tool or engine. The library aims to create a base from which other
improvements can be created and added. Also, it can be used as a base to develop
more complex animations systems on top of it.

15

Iban Mas Ortega
TroMotion: Skeletal Animation Library

2. State of the art

The animation is one of the core techniques used nowadays in cinema, games, and
advertising among other fields. The techniques used for animations are related to the
evolution of cinema and, more
specifically, cartoons.

The basics of animation consist of
fooling the brain to think that a series of
static images are creating motion. Since
prehistoric times, we can find references
to that art in some paintings but to really
start perceiving the motion we need to
look to closer to our days. The first we
can consider an animation was the
phenakistoscope(4) (see figure F2.1), a
disk with images inside, which create the
effect of motion when spinning.

After that, the invention of cinema
allowed the evolution of animation in
different fields that lead to the creation of
some techniques that are still used
nowadays.

But wasn’t till Walt Disneys’ Mickey Mouse that animations start seeing a huge change.
Till then, more and more techniques and technologies had been used in animation until
computers allow to create animations.

When talking about computer animations, the first thing that comes to anyone's mind is
Pixar and Toy Story and that is not
rare since it was the first movie
created with computers using what
is known as CGI
(Computer-generated imagery), as
shown in F2.2. But the process to
develop that kind of animations with
computers was still only available to
a few projects.

With the evolution of technology and
computer science, the creation of
animations like Toy Story starts
becoming more usual.

16

Iban Mas Ortega
TroMotion: Skeletal Animation Library

2.1 Skeletal animation

The evolution in technology allowed to introduce animation in other fields, not just
cinema. That also helps to develop more techniques to create animations. Till the point
that animations, nowadays, are processed in real time.

The technique this project focus is one of those techniques and the most used
nowadays, skeletal animation.

Skeletal animation tries to reproduce what a human or animal skeleton does. In
biology, all vertebrate animals have a skeleton, which holds all the parts of the body
and allows for other parts of the
body to create motion. Taking this
idea, skeletal animation relies on
creating a skeleton for the computed
generated model creating bones and
joints.

Joints are a set of key points on the
model, which allow creating the
motion.

Bones represent the empty spaces
between joints and how these bones
are connected.

The process of creating a full
skeleton for a specific model is
called rigging. An example of that is
the F2.3 where there are a model and the skeleton next to it.

Then, through a process called skinning, the model vertices are assigned to one of
these joints, which will be the ones moved and, therefore the vertices themselves.

As Jason Gregory stated in the book Game Engines Architecture(7), in skeletal
animation, the pose of the skeleton directly controls the vertices of the mesh, and
posing is the animator’s primary tool for breathing life into characters.

With that poses, the final animation is created. To create them, the animator creates a
clip, which consists of a series of consecutive poses that perform one motion.
Traditionally, to create the illusion of movement, between 30-60 poses per second are
needed.

Creating that amount of poses is not efficient nor for the animator or the software. In
order to solve that, forward kinematics are used. This technique consists of knowing
the positions for a pose and the positions for the next one, then using mathematical
interpolations, the software can reproduce the in-betweens. The poses used for that
technique are called key poses.

17

Iban Mas Ortega
TroMotion: Skeletal Animation Library

2.1.1 Related Technologies

Skeletal animation itself will not allow creating what we see in current films, video
games, and entertainment media. having skeletal animation as the base, several other
techniques were developed.

1. Blending: Blending allows to mix two or more animations, which is useful to
adjust animations to different situations.

2. Partial Blending or Layering: the layer system allows to play different animations
at the same time for different parts of the skeleton. A clear example of this will
be an animation to hold and a run animation. Using layers we can create a run
holding animation.

3. Inverse Kinematics (IK):
Inverse Kinematic (see
F2.4) allows to modify the
animation calculating the
correct position of
animation for a specific
moment. A grab animation
is usually modified with IK
to go always to the target
but the original animation
is always the same.

4. Animation Retargeting: Until now, skeletons and animations had been related
one to another, and usually that is the case. Animation retargeting allows
playing an animation made for a skeleton into another skeleton with a similar
structure. This technique allows saving time when creating new characters or
elements with animations.

5. Metachannels: Sometimes, other elements of the software need to be
synchronized with animations. Metachannels allow that notifying the software
when something happens on the animation, for example when a clip starts or
ends.

6. Rag dolls: when a character or element needs to behave following the rules of
physics instead of preset animations, rag dolls are used. Rag dolls simulate
how the character will move according to physics, it is used when a character
dies or goes limp among other cases.

2.2 Existing solutions

When talking about existing solutions for animation systems, we have to divide them
into two groups: libraries, and specific solutions. Libraries try to give a general solution
to animation while specific solutions only work for the software or engine implementing
them. In the paragraphs below I will list some of the existing solutions for each one of
these two categories.

18

Iban Mas Ortega
TroMotion: Skeletal Animation Library

2.2.1 Libraries

There aren’t many libraries that try to solve the animation system, the most important
ones are:

1. Ozz-animation: This is a skeletal animation library that focuses on character
animation functionalities. Ozz-animation provides tools to load skeletons and
models from most common files, reduce keyframes and compress the data.
Also includes a mathematics solution to handle the needed operations.
Ozz-animation introduces solutions for systems that other software usually have
solved previously, such as model loading and mathematics, which will reduce
the performance in the long term. The library hasn’t been updated for about a
year.

2. Animadead: Animadead (F2.5) is another library that gives a solution to skeletal
animation, but it only handles the joint structure, gives a solution to load models,
and some basic blending. Also, the library has its own mathematical solution.
Same as Ozz-animation, including features that base code usually handles
previously and introducing more than one solution to the same system
(mathematics and model loading) affects the performance of the application.
This library hasn’t been updated since March 2006.

F2.5 Animadead Example - http://animadead.sourceforge.net/demoss.shtml

3. Granny 3D: Professional animation library from RadGameTools. It provides a
full library with an external tool (F2.6) to import animations from the most used
third-party tools (Maya, Max, and XSI). Their developers describe their piece of
software as follows: “Granny is a powerful toolkit for building all kinds of
interactive 3D applications. We built Granny to be the most efficient and flexible
animation system in the industry, but she also features a powerful set of
exporters and data manipulation tools.” [13]

19

http://animadead.sourceforge.net/demoss.shtml

Iban Mas Ortega
TroMotion: Skeletal Animation Library

F2.6 Granny 3D Animation Studio. At the left the model, at the right a tool to interact with the

animations - http://www.radgametools.com/granny.html

2.2.2 Specific Solutions

Nowadays, all software that features 3D rendering has a solution for animations. Most
of this software creates its own solution for the animation system:

1. Game engines: one of the most important entertainment industries nowadays
are video games. All characters in the games use animations to represent what
is happening in the game. In order to create these games, game engines
appeared some years ago and each engine has its solution to the animation
system. Some of the most popular engines are Unity 3D, Unreal Engine, Godot,
Frostbite, and CryEngine. All of them provide an animation system that gives all
the functionalities talked previously to the users to create their games.

F2.7 Unity Animation. The image shows different animations and the transitions -

https://docs.unity3d.com/462/Documentation/Manual/MecanimAnimationSystem.html

2. 3D Modeling software: Another branch is the software used to create models
and animations. This software also features animation systems that allow the
creation of clips. The base for their animation system is the same as for game
engines but, usually, they provide more tools to edit the joints and associate the

20

http://www.radgametools.com/granny.html
https://docs.unity3d.com/462/Documentation/Manual/MecanimAnimationSystem.html

Iban Mas Ortega
TroMotion: Skeletal Animation Library

model to the skeleton. Among these applications, the most important ones are
Blender, Autodesk Maya, and Autodesk 3DS Max.

2.3 TroMotion in the market

In the previous pages, the state of the art in skeletal animation has been defined. After
analyzing the existing solutions we can set the bases for the work proposed for this
bachelor’s thesis.

Current solutions for this system providing the necessary tools for videogame
development exist in two different flavors from the point of view of code independency.
Some of them are designed to work as autonomous libraries that can be reused by
custom game engines not integrating this functionality a priori. On the other hand,
some others come integrated into existing game engines in a monolithic fashion. As we
aim at reusability and code independence, we focus on the first type of solutions.

TroMotion idea is similar in spirit to Granny 3D: a library providing the essentials to
solve the skeletal animation problem, that can be easily integrated into any game
engine. However, Granny 3D is a commercial piece of software and for certain
independent developers or students, that type of solution is out of reach.

Currently, it does not exist any free software that provides a base solution for
integrating skeletal animation into a game engine. Furthermore, it does not exist any
solution of this type, focusing on its easy integration into an existing game engine, and
not redefining (i.e. reusing) its core tools such as its mathematics library or model
loading system.

The aim of this thesis is the implementation of free software that provides a solution for
the aforementioned issues. TroMotion is a free and open-source skeletal animation
library, focused on its easy integration into an existing code base and easily extensible
and adapted to the specific needs of its users.

21

Iban Mas Ortega
TroMotion: Skeletal Animation Library

3. Project management

Developing a library is not an easy task. Not only for the challenge in programming but
also because it needs documentation to support it. During the development, this
document has also been produced to reflect the success and issues faced.

To succeed in the development, planning of the time is mandatory. For that, the library
development has been divided into three parts: documentation, the library, and the
example.

Each of these parts has been divided into smaller parts corresponding to different
stages of the development. The tasks for each part are in the following table:

Documentation Library Example

Introduction Skeleton Base Engine

Animation Research Animation Clip Library Integration

Development Diary Animation Montage

Library Documentation Animator

 Math Abstraction

 Extra Features
T3.1 Grouped tasks

All the tasks above are how the project has been divided. Each of the tasks can have
smaller subtasks that will be specified in the project development section.

3.1 Procedure and tools for monitoring the project

To monitor and follow the correct development of the project, two tools will be used: the
Gantt chart and Trello.

When working with software, the most common methodology to use is Agile. Agile
allows tracking more efficiently in which tasks are done, which are ready to be reviewed
and which are left in the backlog.

The Gantt chart is useful to have a global view of the entire project and check at any
point if the development goes well or needs to be adjusted to fill in the schedule.

For more detailed tracking on each of the parts, the Agile methodology works better
since it allows to track each task and the goals in a short period of time.

22

Iban Mas Ortega
TroMotion: Skeletal Animation Library

3.1.1 GANTT

In order to develop the project, first, a research period is needed. During this period,
the work is focused on documentation. At this stage, the state of animation and how the
project is approached is decided.

After the research, the development of the project starts where all the parts of the
library are created as well as the example and the development diary.

Finally, the lasts two weeks are reserved for closing the project and elaborate the
conclusions of it.

All this can be seen in the following Gantt table:

F3.1 Gantt chart for the project

3.1.2 Trello

Trello is a great tool for Agile methodology. A Trello board with all the tasks of the
project is used to track and manage the development of the project. The Trello board
can be found in the Links section.

3.1.3 GitHub repository and version control tools.

A library is a set of code files, which can be precompiled or not, ready to integrate into
any codebase. To develop code, version control tools help managing the versions and
handling the changes into it. For that reason, a GitHub repository is used to host the
code and documentation of the library in GitHub Wiki.

23

Iban Mas Ortega
TroMotion: Skeletal Animation Library

These tools provide workflows to ease the development of software and collaboration
between developers:

● Commit: a group of changes done in the project that are uploaded together into
the repository.

● Branches: A branch holds the state of the project from a specific point in time,
branches can be created at any point from a previous one. All repositories have
a default branch called master.

F3.2 Git Workflow. Different branches and their relations -

https://es.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow

The link to the GitHub repository can be found in the Links section.

3.2 Validation tools

The most important part of any development is to assure that the result works properly
and is free of issues, which can cause problems for any user of the product.

Checking each of the features that the library has is key to ensure its correct behavior.
For that, an example is developed along with the library. The example will use all the
features of the library to show how they work and help to implement them in users'
projects.

In order to test them, a model and animations are required. To ensure the quality and
prevent any issue due to the errors on models or animations, the ones used for testing
purposes came from Mixamo, a tool from Autodesk to create some basic animations to
models. With the tool, they provide example models that are tested and checked by
professional artists and animators.

During the development of the library, periodically checks had been done to ensure all
features working together correctly. These checks lead to the creation of an additional
tool with tests for the library that allow users to check for any possible error on their
implementation.

More in detail validation processes are included in the project development section for
the more critical parts of the project.

24

https://es.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow

Iban Mas Ortega
TroMotion: Skeletal Animation Library

3.3. SWOT

Analyzing what the project will bring to the market is one of the key points to know if the
development time and cost are worth it. SWOT is one of the most used tools for that
that allow comparing form an internal and external point of view the positive and
negative things the project will bring.

The table T3.2 analyzes the strengths, weaknesses, opportunities, and threads that the
library can face.

 Positive Negative

Internal

Strengths
Prepared for base code integration
Easy to include new features
Well documented with examples
Can be used for educational
purpose

Weaknesses
Requires more time to integrate
Knowledge of the system is
required
User Interface has to be developed
for each implementation

External

Opportunities
Other libraries don’t integrate with
base code
There aren’t many animation
libraries
Most solutions are product specific

Threats
Big companies have their own
solutions
No precedents on libraries being
used in many products
Can become outdated due to
technology improvements

T3.2 SWOT

3.4. Risks and contingencies

Developing a project requires time and during that period, some issues can make the
project development be slower or even stop it. In order to minimize the issues the
project can face, T3.3 some of the main problems the project can face.

Risk Solution
Computer issues.

A second personal computer is available
to create the project.

Code corruption or lost code

A version control repository is used to
have access to all changes and revert
possible issues

Documentation corruption

The documentation is also saved in the
version control and in cloud services

Time is not correctly estimated

A free week is counted into the schedule
for extra features that can be used for
delays reducing the number of features

T3.3 Risks and contingencies

25

Iban Mas Ortega
TroMotion: Skeletal Animation Library

3.5. Cost analysis

Even though the library is an open-source project and its goal is not making money, the
creation of it requires some resources and time. In table T3.4, there is an estimation of
time and the approximate cost of developing it.

 Estimated
hours

Potential
deviation

Planned hours
(with deviation) Cost

Documentation 93 135,25 2.028,75 €

Introduction 2 Low 2 30,00 €

State of the art 5 Average 6,25 93,75 €

Methodology 4 Average 5 75,00 €

Development 40 High 60 900,00 €

Conclusions 2 Low 2 30,00 €

Library
Documentation 40 High 60 900,00 €

Library 72 104 1.560,00 €

Skeleton 2 Average 2,5 37,50 €

Animation Clip 6 Average 7,5 112,50 €

Animation Montage 30 High 45 675,00 €

Animator 15 High 22,5 337,50 €

Math Abstraction 4 Low 4 60,00 €

Extra Features 15 High 22,5 337,50 €

Example 70 105 1.575,00 €

Base Engine 30 High 45 675,00 €

Library Integration 40 High 60 900,00 €

Total 235 344,25 5.163,75 €
T3.4 Development cost by tasks

Taking that table into account and adding the equipment and services needed for the
development of the library, the table T3.5 gives an approximation of the total costs of
the development of the project.

Most of the costs for the project, come from the time invested in the development of it.
The costs on software are zero since the tools used have a free service.

26

Iban Mas Ortega
TroMotion: Skeletal Animation Library

The equipment needed has a decent amortization time, which reduces significantly the
impact it has on the total price.

Type Subject Price Type Amortization Total price

Direct Costs

Personal Salary 5.163,75 € Total 5.163,75 €

Equipment Desk 150,00 € Amortization 5 12,50 €

 Chair 100,00 € Amortization 5 8,33 €

 Computer 1.250,00 € Amortization 4 130,21 €

 Screen 130,00 € Amortization 4 13,54 €

 Mouse 25,00 € Amortization 3 3,47 €

 Keyboard 45,00 € Amortization 3 6,25 €

Consumables Notebook 4,00 € Unique 4,00 €

 Pens 2,00 € Monthly 10,00 €

Software Visual Studio 0,00 € Monthly 0,00 €

 GitHub 0,00 € Monthly 0,00 €

 Trello 0,00 € Monthly 0,00 €

Indirect costs

Services Electricity 20,00 € Monthly 100,00 €

 Water 11,00 € Monthly 55,00 €

 Food 25,00 € Monthly 125,00 €

Total 5.632,06 €
T3.5 Total costs for the project

27

Iban Mas Ortega
TroMotion: Skeletal Animation Library

4. Methodology

To produce the library, as stated previously in the project management section, an
agile methodology has been used. More exactly, a “Feature-driven development”
methodology.

F4.1 Feature-driven development - newline.tech/blog/feature-driven-development-methodology/

This methodology focuses on developing a big image of the project itself and then
breaking it into features that can be individually designed and developed. That allows
creating smaller goals that are easily achieved and reduce the overwhelming of facing
a big project.

4.1 Feature-Driven Development integration

This methodology relies on creating features that relate to a big picture. For that
reason, the project has been divided into three parts.

● On the documentation part, all tasks will be related to creating documentation of
the library and the project report.

● The library part contains all the features of the animation system.
● The example part contains the ones related to providing an example and testing

the library.

For each of the parts, the different tasks assigned need to be designed and adjusted to
the schedule taking into account that some of them are related and some other
dependants between them. As an example, when creating the blending between
animations, the implementation of the example will be dependent and related to the
library task and once it is tested, the documentation added to the documentation. Also,
the explanation of the creation and decisions will be added to the project development
section.

28

Iban Mas Ortega
TroMotion: Skeletal Animation Library

4.1.1 Tracking Process

To track the development of the features, Trello will be used. Being the first thing the
creation of the task in Trello.

In Trello, the task will be classified into one of the three parts of the project. Each of the
parts will have a color tag to make easier to visualize to which one it belongs and a
checklist of the items to develop for that task. A created task is placed into the backlog.

 F4.2 Trello task example

The backlog holds all tasks pending to be developed. Usually, for a library task, the
corresponding task to implement it into the example and create the documentation
about it will also be created.

When a task is taken to be developed, it is moved to the “In Progress” column at the
Trello board. Each time one of the items of the checklist is finished, it will be checked
and once all are checked, the task is moved “Ready to Review”

The ready to review column holds all the task finished but that still need to be tested.
Being a solo developer, testing all the features in the library is not an easy task. So to
consider a task reviewed, the following procedure is followed:

- A completed task is moved to ready to review.
- The implementation of the feature into the example is the next task developed.
- Once the integration is developed, all the features in the task are check

individually.

29

Iban Mas Ortega
TroMotion: Skeletal Animation Library

- A fast check on all previous features is done to ensure the new one has not
created any bug.

- If any issue is found, the tasks affected are moved to the “Retrospective”
column with a comment about the issue.

- If there aren’t any issues, the tasks being reviewed are moved to “Done”

This flow leads us to two new columns of the Trello board. The retrospective column
holds all tasks already developed affected by issues. While there are tasks in the
retrospective column, no new features enter the development face because adding
more features could make the issue more difficult to fix.

The “Done” column holds all the tasks already tested. Usually, tasks in this column
shouldn’t move back again to other columns, but due to the continuous integration of
features, some of them can be affected by new issues. A task in the done column that
is affected by an issue is moved to the retrospective column with the comment about
the issue.

F4.3 Trello board example

4.1.2 Project schedule

The feature-driven development, focuses more on each feature that in the big picture of
the project and schedule. For that reason, a weekly check of the task completed
against the Gantt chart of the full project gives a realistic view about the time left and
time needed.

That will allow adjusting the schedule and tasks that will be implemented to fulfill the
project scope.

30

Iban Mas Ortega
TroMotion: Skeletal Animation Library

5. Project Development

The entertainment industry has evolved into different branches. These branches
include from cinema to lecture. Videogames are one of those branches and maybe one
of the newer ones.

Videogames provide users with interactive experiences where they can become the
hero of a fantasy story or test environments for professional training (flight simulators).
Those experiences have all common technology that can be used to create thousands
and thousands of different ones. The applications that contain these technologies are
game engines.

A game engine is a software application where users can create their own videogames.
These applications are complex and have lots of systems working together in order to
allow users to create the game they want.

The animation system developed in this project is one of the systems any game engine
includes. The system relies on some of the functionality the engine provides.

5.1 Testing Game Engine

During the development process, a continuous testing process is one of the main
things needed to ensure the correct functioning of any piece of software. When
developing any software application, the programmers have to ensure that the code of
that application will work on any situation the application encounters. To do that,
usually, the application goes through a Quality Assurance process. This process
consists of testing each of the functionalities the application has and users can
experience.

For the development of this library a way of testing it’s functionality to ensure the users
it fulfills its purpose is needed. This will require a game engine where to implement the
library, but commercial game engines usually don’t provide their base code to the user.
For this reason, a small testing game engine will be created to fulfill this purpose.

5.1.1 Game Engine Structure

The first thing when talking about the structure of a game engine we need to know is
the two different parts they contain.

The first of them is usually called the core of the engine. This part is the one
responsible for the most basic things the engine must allow and holds the solutions for
the management of the memory and elements the engine will use. The core of the
engine handles how the resources are loaded and saved from and to files. It defines

31

Iban Mas Ortega
TroMotion: Skeletal Animation Library

the rendering functionality for the game and the structure that each element of the
game will follow and how they are related.

The second part of the engine are the subsystems. Each subsystem is responsible to
add more functionality to the game engine and allow the user to create better
experiences. The animation system this project is about is one of these subsystems.
Some examples of subsystems are the GUI (Graphic user interface), the audio system
and the particle system. All of them use the core of the engine functionalities to improve
the capabilities the games created will have.

5.1.2 Implementation of the Game Engine

As stated before, the animation is a subsystem of the game engine. To create an
animation system, the core capabilities of a game engine are needed. These
capabilities are the ones that will be implemented in the testing game engine, which will
allow proving the correct functionality of the library and help in the development of it.

In order to speed up this part of the development, since it is not completely related to
the animation system itself, the resources from the webpage www.learnopengl.com will
be used. These resources allow us to speed up some of the more tedious parts of the
creation of the application.

The engine will have a simple but scalable design (F1.1) that allows implementing the
animation subsystem as each of the other subsystems a commercial engine have. In
the following sections, the integration of the library into this system is detailed.

F5.1 Engine Structure

As the image F1.1 shows, the structure of the testing engine has as its main
component the application itself. The application is the one responsible for managing
all the systems of the engine. Each of these systems is called “Module” and are the
ones that manage the logic for each of the necessary tasks the core engine does. In
the concrete case of this engine, there will be no system managing the resources
because for the purpose of this engine that concrete system is not required.

32

http://www.learnopengl.com/

Iban Mas Ortega
TroMotion: Skeletal Animation Library

● Application: The role of the application can be defined as a cluster. The main
purpose of this element of the engine is holding all the systems the engine has
and to manage when each of them performs its functionalities.
The application also records the time each frame of execution takes and to
store this value.

● Modules: A module in each of the systems the game engine has. These
modules can be active or inactive.
All modules have some basic functionality the application uses to manage them.
These are the five methods listed in the figure F1.1 in the module box: Start,
PreUpdate, Update, PostUpdate, CleanUp.
The Start method holds the logic for the initialization of the system.
PreUpdate, Update and PostUpdate methods hold the logic that each module
will execute each frame the game engine is running.
CleanUp has the different steps needed to ensure the module frees all memory
from the platform used.

○ ModuleWindow: This system is in charge of creating the window where
the engine will run and handling the input from the window. The window
consists of the space on the screen the application occupies and the
buttons on top of it, as well as the title and icon.

○ ModuleInput: When the user presses a key or moves the mouse inside
the space of the window, the module input registers these events and
allows the game engine to react to them. In commercial engines, this
system supports all kinds of input depending on the platform such as
touch for mobile and controllers for consoles.

○ ModuleRender: One of the more important parts of the game engine is
being able to represent the resources on the screen and that is the job
of the module render. This module contains the functionality to convert
the space represented mathematically in the computer into images on
the screen. In this testing game engine also contains the camera, that
allows changing the point of view of the user.

○ ModuleScene: This module is the one in charge of holding and
managing the elements of the game. The structure this module uses is
deeply explained later in this section.

○ ModuleGui: This module handles the different graphic elements the
engine uses to display information of the current state of the engine and
elements to the user.

When all the modules work together, the base of the game engine is capable of
creating an environment where we can add elements to it. That elements are the ones
that create the final game.

The elements have also been designed to be scalable and easy to use and follow the
structure of figure F5.2.

33

Iban Mas Ortega
TroMotion: Skeletal Animation Library

F5.2 Object Structure

Each of the elements that compose the game is called an object. These objects are
capable of holding different components, which add utility to them.

Similar to how the modules work, each component has basic functionality that the
object uses to interact with them: Start, Update and CleanUp.

As the functionality of the module Start initializes the component, Update is executed
each frame and CleanUp removes the memory used by the component.

The core engine has two components:

● ComponentTransform: The transform of the object represents the position, the
rotation and the scale of that element in the game. Modifying the values this
component holds, we can translate, rotate and scale any of the objects in the
game. This component is mandatory and all elements in the game must have it.

● ComponentModelRender: As we have seen before, the engine is capable of
representing the objects into images on a screen. In order to decide what
should be rendered, this component holds the data of the resources that need
to be drawn on the screen. The elements that are drawn on the screen are
known as models.

Combining the different two different components the testing game engine has, the
user is able to place a model into the application scene and see it on the screen.

5.1.3 Resource handling

For the purpose of this testing engine, there is no need for creating a whole system to
manage the resources of the engine since it is created just to test the animation library.

34

Iban Mas Ortega
TroMotion: Skeletal Animation Library

The handling of the resources is directly done by the modules of the game engine. The
scene is the one holding the resources for the game objects and the render handles the
shaders.

The core structure of the game engine handles three types of resources: models,
textures and shaders.

● Models: Models are the points in the space that represent an element of the
game. These points are used by the model render to create the representation
on the screen.

● Textures: the models only contain information regarding the shape of the
element. To allow the application to draw the correct color in the correct position
textures are used. they store information about color and other details of the
model which can not be stored on the model itself.

● Shaders: Shaders are small programs that the graphics card execute when the
module renders draw each model. They allow personalizing how the model is
drawn on the screen.

To handle these resources third-party libraries are used:

● Assimp (10): allows loading model information from different types of files.
● stb_image (11): this library loads images and textures in different formats both

compressed and not compressed ones.

F5.3 Core engine working

5.2 Animation library

The main purpose of this project is developing an animation library to handle the
animation system of any game engine. To do that, the animation library should be easy
to integrate and provide an easy to use solution.

35

Iban Mas Ortega
TroMotion: Skeletal Animation Library

This chapter details all the elements and concerns the library is designed in order to
fulfill the goals of the project.

5.2.1 Integration concerns

Integration is one of the most key topics the library has to handle. The integration of it
should try to use any solutions the core engine already provides and not introduce
custom solutions for them.

One of the most important points of any system a game engine has should be
optimization. When the developers use third-party libraries and systems, usually, the
performance these external tools will have is lower than a custom made solution due to
the fact that a custom made solution will use the already existing systems and
optimizations the game engine provides. On the other hand, external solutions for a
system will provide their own approaches for systems that the core game engine
already handles and generally, having more than one solution for a system working at
the same time will result in lower performances.

To ensure that the library will not affect the performance of the game engine, identifying
the systems the animations will use is key.

Shortly, the animation system is based on a structure made out of joints. Each join
represents how a set of vertices from the model is placed. Having different placements
for these joints allow us to create the animation. With this fast summary of what the
animation consists of, the key elements that need to be handled can be determined.

First of all, the concept of a structure. The elements the animation system relies on are
organized in a tree structure. To represent that, each branch of the tree stores the
element they are related to. The structure is named the skeleton.

Joints are the next important word that appears in the definition. Joints are each of the
elements the structure is made of. Following the definition, these joints represent the
placement of a group of vertices. In a 3D environment, to mathematically represent the
placement of an element, three properties are used: Position, rotation, and scale, and
for three-dimensional space, each of them will have at least three numerical
representations, one for each of the axis.

The concept of representing the placement of a group of vertices is what in animation is
called skinning. Vertebrate beings have a skeleton that sustains their bodies and allows
them to move. Using this concept from a digital point of view, the skeleton of a
vertebrate is the skeleton of the animation system and the skin for a vertebrate is the
vertices for a model. Then, skinning consists of assigning to the vertices one or more
joins that will change its position.

After analyzing that simple definition of the animation system, it is clear that the system
needs a way to mathematically represent the different properties stated above.

36

Iban Mas Ortega
TroMotion: Skeletal Animation Library

Mathematics is something that any game engine handles. As stated in the previous
section 5.1 Testing Game Engine, the engine already uses mathematics to represent
the position, rotation, and scale of an object.

In order to use mathematics in the library, there are two possible approaches: use a
library-specific system or use the one that the game engine is already using.

To improve performance, the library will use the one the game engine has, but that
creates a new problem: each engine will have its own mathematics library. Abstraction
is a technique that can be used to handle that.

5.2.2 Mathematics library abstraction

The mathematics library holds representations for types such as vectors and matrices
and how to operate with them.

Each library has its own nomenclature for the types and different ways to do the
operations with them since that depends on how the library is programmed.

Creating variants of the code to handle different libraries is not something feasible nor
optimal due to the fact that there are lots of different mathematics libraries and some of
them are not available since they are owned by companies.

To be able to use the engine mathematics library and implement the animation system,
a mathematics abstraction is needed.

An abstraction(12) allows handling complex code in a simpler way where the details
are hidden and only the functionality is available. Abstractions can be done with
classes and with headers.

● Class Abstraction: consists of using a structure of C++ called a class that allows
to package functionality under it.

● Header Abstraction: a header is a file that contains code. To use a header as an
abstraction, the header has functions that relate to the code we are creating an
abstraction of.

Since at first there’s no way of knowing how the mathematics library will work, a header
approach is more convenient in this scenario. The header allows packing each of the
functionality under a name and then editing that functionality depending on how the
mathematical library works.

For the different types that the library defines, in the header file of the mathematics
abstraction, a rename of the type can be set so the animation library will always use the
same name. This is done using the keyword typedef form the C++ programing
language, which allows calling an existing type by another keyword that the
programmer assigns to it.

Then different functions will handle the complexity of dealing with the functionality of
the mathematics library. This functionality ranges from creating a variable of a specific
type to operate with them.

37

Iban Mas Ortega
TroMotion: Skeletal Animation Library

Not all of the functionality of the mathematics library from the game engine is used for
the project. Only the needed parts are included in the header (F5.4). These types and
functionalities are:

● Types
○ Vectors
○ Quaternions
○ Matrices: specifically 4x4 matrices

● Functionalities:
○ Type creation
○ Operations for each type
○ Operation between types
○ Conversion between types

F5.4 TroMotion Math Implementation Code (Fragment) - The image shows the code used to implement the

library used in the example application.

5.2.3 Skeleton and joints

As has been stated in different parts of the project, the animation systems rely on two
different technologies that work together, the skeleton and the skinning.

Skeletons are a simplified representation of a model. The most important part of this
representation are the joints, which create the skeleton. These joints are organized in a

38

Iban Mas Ortega
TroMotion: Skeletal Animation Library

hierarchy that defines the relation between them. A joint contains the position, rotation,
and scale of that part of the structure.

A typical structure for a skeleton hierarchy is the following one:

- Pelvis
- Lower Spine

- Middle Spine
- Upper Spine

- Right Shoulder
- Right Elbow

- Right Hand
- Right Thumb
- Right Index Finger
- Right Middle Finger
- Right Ring Finger
- Right Pinky Finger

- Left Shoulder
- Left Elbow

- Left Hand
- Left Thumb
- Left Index Finger
- Left Middle Finger
- Left Ring Finger
- Left Pinky Finger

- Neck
- Head

- Left Eye
- Right Eye
- various face joints

- Right Thigh
- Right Knee

- Right Ankle
- Left Thigh

- Left Knee
- Left Ankle

This skeleton structure and the one in the figure F5.4 are meant for humanoid-like
models. Other type models such as animals can define a different structure for the
skeleton. The creation of the skeleton for a model is called rigging.

39

Iban Mas Ortega
TroMotion: Skeletal Animation Library

F5.5 Skeleton with joints - The image shows an skeleton with its joints names -
https://www.sealeftstudios.com/blog/blog20160708.php

To represent a skeleton and the joints in the library, the structure used contains the
following properties:

● Inverse Bind Pose: the inverse bind pose is a matrix that stores the position,
rotation, and scale of the joint at the moment it was attached to the model. This
matrix is stored inverted to ease the operations the system will perform with it.
The matrix transforms from the bone coordinates space to the model
coordinates space.

● Name: Represents the name of the joint. That allows identifying easily the joint
while working with it. F5.5 shows an example of joint names.

● Parent: corresponds to the index of the joint the current one is attached to. In
figure F5.5, the parent of the joint SimeShoulder is 1, and the parent of
HandTipRight is 11.

With the previous structure of a joint, we can define a skeleton as a group of joints,
which will be represented in the memory with the next structure:

● Joint count: number of joints the skeleton has.
● Joint array: the data for all the joints that form the skeleton.

The code in figure F5.6 is the one used in the library.

40

https://www.sealeftstudios.com/blog/blog20160708.php

Iban Mas Ortega
TroMotion: Skeletal Animation Library

F5.6 Joint and Skeleton Code - The image contains the code used in the library to represent joints and

skeletons.

To check that the structure works correctly, the following test skeleton is set-up
manually:

F5.7 Test Skeleton Structure - Joints with their corresponding transformations for test skeleton

Using the skeleton structure in figure F5.7, access to the different members of the
structure as well as the functionality to get the joint index is tested correctly without any
issues.

5.2.3 Poses

An animation consists of the illusion of movement by changing the position of each part
of a model in a small period of time, which makes the brain think the model is moving.

41

Iban Mas Ortega
TroMotion: Skeletal Animation Library

These movements can be created using different methodologies, from manually
moving each joint to capturing the movement of an actor. Independently of the
methodology used to create the animation, these movements can be divided into
poses.

Poses are the state of animation for a certain moment on time. In computer graphics,
each of the moments of time that is represented into the screen is called a frame. In
animation, each pose is related to a frame, for that reason, the number of poses per
second is usually called frames per second (FPS).

When talking about poses, there is a special one that needs to be taken into account
which is called Bind Pose.

The bind pose is a special pose since is the one used to bound the skeleton. This pose,
which is also called reference pose or rest pose, has special characteristics the other
ones don’t need to have, being the most important one that in this pose, all model
articulations are the most extent possible. In this pose the model, if it is a humanoid,
has the arms stretched and the feet slightly separated what remains to the letter T,
hence the name T-pose (F5.8).

F5.8: T-Pose Example - Model of a character posed in T-Pose -

https://polycount.com/discussion/202303/to-t-pose-or-not-to-t-pose

Before going to the actual implementation of the poses into the animation system,
there’s something to take into consideration. For most of the cases, the scale of the
joints in poses can be considered uniform. That will simplify the structure of the joint
pose in memory. For the library implementation, this will not be used since some
animators can use the scale component to create their animations.

42

https://polycount.com/discussion/202303/to-t-pose-or-not-to-t-pose

Iban Mas Ortega
TroMotion: Skeletal Animation Library

The only consideration about memory, since memory is packet in groups of 4, the scale
and translation will be stored with 4 variables each one instead of 3.

The pose implementation has two parts, the transformation of a joint and the pose
itself.

For the specific joints transformations in the pose:

● Rotation: a quaternion will store the local rotation of each joint.
● Translation: local position stored in a vector of 4 values.
● Scale: local scale stored in a vector of 4 values.

With this structure for the joints in the pose, the following structure defines the full pose:

● Local Joint Poses: an array of all the joints for the pose
● Global Pose: matrix array precalculated to transform into that joint from world

space.
● Skeleton: reference to the skeleton this pose is done for.
● Frame: the frame in the full clip

5.2.4 Animation Clips

Once the system is able to handle the data needed, the next step is to combine it and
add some control variables to it.

That is the meaning of the animation clip. An animation clip represents an animation. A
clip can be a walking cycle that loops and then starts back or a full animation containing
all the movements for a character (run, jump, attack…). Initially, that depends on what
the animator has created it.

add pose key info and justify why pose not used

Animation clips are the first element of the system that allows the user of the game
engine to personalize how the animation will play and how it will look like in the final
game. That is done through the basic properties any clip has:

● Poses: the array of all the poses that clip has.
● Speed: the reproduction speed of the clip
● Poses count: the number of poses the clip contains
● Loop: handles if the animation should loop or not.
● Root Motion: some animations have motion associated with the root bone. This

motion sometimes needs to be used on the game and others not.

Only with this basic information, the user can already modify some of the values and
personalize how the animation will behave. The behaviors that can be modified in the
clip, affect the clip for all its uses. Increasing or decreasing the Speed parameter will
make the clip reproduce faster or slower and the loop value allows us to play it multiple
times or just once.

Sometimes the animations are not prepared for games or the art team prefers to create
all the animations in a single file, which creates a clip with all the animations together.

43

Iban Mas Ortega
TroMotion: Skeletal Animation Library

For that reason, the animation clip implementation includes a tool to create sub-clips
from one. This tool will split a clip into clips with the same properties but that only
contains the selected poses from the original clip.

In order to test the functionalities, an animation clip with the frames in the following
figure (F5.9) is set-up:

F5.9 Test Animation Clip - The keyframes for the test animation and the transformations for each joint

Using the keyframes and the skeleton related to the clip all the joints data is accessible
and the clip can be divided into 2 clips with 2 keyframes each one.

5.2.5 Skinning

Once all the animation data referring to the skeleton is ready to be used, the other
important part of the animation system needs to handle how this data related to the
skeleton is going to be used in the models.

During the development of the project, the skinning technique has been mentioned
before in the integration concerns chapter. As previously explained, the skinning
technique attaches the skeleton to the model itself. That is done with the addition of
more data to the vertices of the model.

Usually, to represent a model that is not skinned in memory, the system only needs to
store the position of the vertex in the 3D space, the normal of that vertex and the
texture coordinates. Briefly explained, the position represents where in the world the
vertex is, the normal represents the direction the vertex faces and the texture
coordinates are used to check the color the vertex has inside the texture resources.

When we need to handle skeletal animation, apart from the information stated before,
there are two more properties that the vertices need to know:

● Joint indexes: These are the indexes a vertex is attached to. a vertex can be
attached to more than one joint, that way, the final movement and placement of
it will be more accurate. The number of joints a vertex can be attached to is not
a set number, but the more joints, the more expensive the calculations will be.
Usually, the numbers of joints used for a vertex is 4 and that is the amount the
library will support.

44

Iban Mas Ortega
TroMotion: Skeletal Animation Library

● Joint weights: a weight is how much a value affects an operation. In the case of
the joint weight, they represent how much the vertex is affected by each of the
joints. The sum of all the weights must always be 1.

Testing the skinning requires a model associated with the skeleton. For that, the
example engine was used as explained in 5.3.1.2 Loading de skinning data.

5.2.6 Animation Montage

After collecting all the data needed for the library to work, the animation library needs a
member that allows users to customize how they want to use the animation clips. To
fulfill this purpose, the animation montage provides them with the tools needed to
customize how an animation will play, combine them and get information about them.

The animation montage always has the position the skeleton joints have at that specific
point of time. Using these values the users are able to modify the final position of the
model vertices to represent the animation.

The montage contains the state machine (explained at 5.2.7 Animation State Machine)
that handles the different clips and transitions and allows the users to interact with
them. It also handles the reproduction state of the animation: Playing, Paused,
Stopped.

This data is present in the library using the following structure:

● CalculatedPose: represents the transformations of the joints in the skeleton for
a specific point in time.

● StateMachine: contains the state machine that controls the animation behavior.
● State: an enumeration which defines the state of the animation system
● Skeleton: the skeleton this montage is referred to.

The different functionalities of the animation montage allow changing the state machine
associated with the montage and update the state of the animation itself.

The montage is responsible for preparing the final joints transformations to be then
collected by the user and send them to de shader. This process consists of multiplying
the skeleton inverse pose of the joint by the transformation matrix in the current pose.
That converts the transformation matrix to one that transforms the vertex position to the
new one. That is because when the skeleton was created, the transformation of the
vertex was already defined and the skeleton takes into account that transformation.

Figure F5.10 shows the code used in the library to fulfill the requirements stated before.

45

Iban Mas Ortega
TroMotion: Skeletal Animation Library

F5.10 Animation Montage Code Structure - The image shows the code used in the library to fulfill the

requirements of any montage.

In order to test the animation montage, the other member that creates the montage is
needed. Assuming the state machine works correctly, the only thing remaining to test in
the montage class is the reproduction state and that the state machine joints
transformations are correctly converted by the skeleton inverse pose.

To set a test environment, a state machine with the clip used previously in the
Animation clip test is used. Then the possibility to trigger the play, stop, and pause
functions are added when pressing the keyboard keys 1, 2 and 3. With that set-up,
when pressing the different keys the montage correctly plays, stops and pauses the clip
reproduction and the transformation for the joints is correct.

5.2.7 Animation State Machine

When working with animations, one of the goals is being able to associate them with
the different states of the character they are bound to. This is used to reduce the
number of animations needed and create animations for specific situations. A common
example of that is a character that is stopped, starts to run and jumps. Without the
possibility to associate different animations, the sequence should be created together

46

Iban Mas Ortega
TroMotion: Skeletal Animation Library

but this tool allows us to create different animations such as Idle, Run, Jump, Fall and
then play and mix them according to the situation.

The member of the animation library in charge of that feature is the Animation State
Machine. This member contains all the functionality a user needs to correlate different
animations and when the transition between them should happen.

The state machine manages different elements of the library and makes the work
together creating the final result:

● Animation state: (See 5.2.8) A state handles the reproduction of an animation
clip and allows it to modify some parameters of it.

● State machine variables: (See 5.2.9) define user-defined parameters that allow
controlling how the animation behaves

● Transitions: (See 5.2.10) Defines when and how animations change from one to
another.

For each of the previous elements, the animation state machine defines different
functionalities such as add new elements, modify them or remove them.

F5.11 Animation State Machine Code - Structure of the code used to implement the animation state

machine.

47

Iban Mas Ortega
TroMotion: Skeletal Animation Library

The main goal of the animation state machine is to compute the final pose
corresponding to the time the animation is on. That is done through the update pose
function. That function takes the time since the last frame and adds that to the
Animation State corresponding to the current animation. Once the current animation is
updated, the transitions for the current state are checked to know if any of them are
fulfilled. If a transition is fulfilled, the animation state machine changes its state to the
destination clip. Another case that the animation state machine also checks is related
to blending clips (see 5.2.10.2 Animation Blender) the state machine asks the blender
to create the blended pose in the cases where it is needed. From those calculations,
the current position for the animation is created and ready to use.

To ensure that functionality works, two clips are needed. For testing purposes, the clip
used to test animation clips is divided into two, then two different states are created and
added to the state machine with a transition from one to another. This process allows
testing not only the sate machine but all the other elements involved with the state
machine.

Using the set-up described previously, the following cases are tested and checked:

● Clip reproduction: updating a single clip reproduces correctly the animation.
● Transition to another clip: the state machine transitions to the other clip in any of

the cases a transition can have.
● Blending between two clips: the clips correctly transitions from one to another

while blending during the transition.

5.2.8 Animation State

As stated in the state machine section (5.2.7) the animation state is one of the key
components of the animation library since it allows us to modify and reproduce a clip.

The animation clip allowed users to personalize the reproduction speed of a clip and
loop, but those settings will be applied for all the users of the clip. Sometimes, these
options need to be used for a specific moment or just for a specific group or actions.
The animation montage provides additional configuration for that purpose:

● Reproduction speed: a number that defines how fast the montage is played. A
value of 0 means stopped time, 1 normal speed, any variation modifies the
speed. The speed can also be negative, which will make the clip play in
reverse.

● Loop: the loop value overrides the one from the clip, that way a clip not
supposed to loop will loop or another way. The loop is applied to the whole
montage. a montage with two clips will loop at the end of the second one.

● RootMotion: this parameter defines if the clip should use the translation values
of the first joint in the skeleton.

That functionality allows modifying how the clip is played for each specific moment.

48

Iban Mas Ortega
TroMotion: Skeletal Animation Library

To reproduce a clip, the animation state handles the reproduction time for the specific
clip. Whenever the montage asks the clip to update, the time value is increased or
decreased according to the delta time and the speed value of the clip.

Then the animation clip calculates the skeleton transformation for that specific moment
in time.

5.2.8.1 Skeleton transformation calculation.

One of the most critical points in the animation library is reproducing correctly the clips.
As stated in 5.2.4 Animation Clips, a clip contains the different poses for specific points
in time, the keyframes. These keyframes are used to reproduce the animation.

Each of the keyframes contains the data for all the joints at a specific time. When
reproducing the animation, the time doesn’t need to match exactly any of these
keyframes times. Therefore, the position, rotation, and scale of the joint needs to be
calculated from the keyframes for the time requested.

To do so, a mathematic technique called interpolation is used, creating an
approximated point between the two initial ones.

In animation, there are two types of interpolations that are usually used:

● Linear interpolation (Lerp): the obtained value can be represented in a line
between the two values.

● Spherical Interpolation (Slerp): the obtained value follows an arc between the
two values. Mostly used for rotations.

To calculate an interpolation, the equation needs the initial value, the end value, and
the progress through the end value represented in the interval 0 to 1, where 0 means
initial value and 1 the end value.

That data is available at any point in time using the keyframes data and the time. Using
these values the library obtains the value for any point of time.

Usually, the math library the game engine uses have functionality for those
interpolations. To reuse that functionality, TroMotion defines in the math abstraction a
function the user can modify to perform both Lerp and Slerp using the math library. In
the library configuration, there’s a parameter that allows choosing the interpolation
method used in rotations.

When the values for the specific joint are calculated, the transform matrix is created for
the specific joint. This is also usually present in the math library so a function in the
math abstraction allows the user to use the math library one.

Finally, the transformation matrix is multiplied by the parent transformation and stored
to be used from the animation state machine and animation montage.

49

Iban Mas Ortega
TroMotion: Skeletal Animation Library

5.2.9 Animation State Machine Variables

Defining what an animation state machine does to handle the clips reproduction
requires two additional elements. One that defines how to change the behavior and one
to allow users to interact with these changes. The goal of the animation state machine
variables is the last one.

An animation state machine variable defines a property in the state machine that the
user can assign a value to. That value can be changed at any point during the
reproduction of animations which allow to control the behavior of the state machine.

Variables in computer programing can represent different types of data. From
characters to decimal numbers and true or false expressions. The most useful one is
the decimal number since animations usually are tied to the character movement
velocity. For that reason, the variable uses a floating-point data type. That functionality
can be expanded in future work or by any user of the library.

To allow users to modify and identify the variables, they have a name the user can set
to them. Using that name, the other elements of the animation state machine can check
and modify the value of the variable.

The variable has the following functionalities:

● Set the variable name: allows to change the name after setting it for the first
time.

● Modify the value: allows changing the value at any point in the reproduction.
● Check variable value against another value: allows comparing the variable to

another one to check if it is bigger, equal, or smaller. This is useful for triggering
transitions (see 5.2.10) at specific moments.

In the following figure (F5.12) the code used in the library to represent the variables is
shown.

50

Iban Mas Ortega
TroMotion: Skeletal Animation Library

F5.12 Animation State Machine Variable Code - The image shows the code used to represent a variable in

the animation library.

5.2.10 Animation Transitions

One of the topics that have appeared during the last points in the thesis is the
possibility of mixing animations to create a sequence. That sequence should be able to
adapt depending on the state of the application. To fulfill that, the animation transitions
are added to the library.

A transition changes the current animation to another one. This allows creating
sequences combining different animations. These sequences don’t need to be always
the same and can change depending on what the user decides.

Transitions allow defining how the change from one clip to another happens.
Sometimes the user prefers for the transition to happen at the end of the clip that is
currently being reproduced, when a variable value matches a condition or blending the
two clips involved.

To be able to achieve that, the animation transition contains a reference to the clip
where the transition starts, a reference to the clip it changes to and the conditions for
the change to happen.

The other important element in the transitions is the blending between the two clips
affected by the transition. A parameter that the user can modify allows enabling the
blending functionality and setting the time for the blending to start. The time is used to
know at which point before the end of the clip the blending needs to start. Another time
parameter allows setting how much of the next clip needs to be overlapped with the
previous one.

51

Iban Mas Ortega
TroMotion: Skeletal Animation Library

5.2.10.1 Animation Transition Conditions

The element in charge of controlling the changes between the two clips in the transition
is the transition condition. This element checks if the transition should change to the
next clip or not. A transition can have more than one condition.

The condition has some parameters to define what condition is defined on it. These
parameters allow setting the condition to a variable or to the end of the clip:

● Transition at the end: this configuration makes the clip change to the next one
when the clip finishes its reproduction.

● Variable condition: this configuration allows us to check if one of the variables in
the state machine matches the defined condition against a user inputted value.

With the condition set, when the transition is being checked, the conditions tell the
transition if they are fulfilled or not.

F5.13 Animation Condition Code - Code structure used to implement the animation conditions into the

library.

52

Iban Mas Ortega
TroMotion: Skeletal Animation Library

Using the set-up created to test the animation state machine the following cases are
tested:

● Clip End: the transition happens when a clip ends
● The variable is smaller: the transition happens if the variable value is smaller

than the state machine variable with the same name.
● The variable is equal: the transition takes place if the variable value is the same

as the state machine variable it is related to.
● The variable is bigger: when the variable value is bigger than the state machine

variable value the transition is triggered.

5.2.10.2 Animation Blender

One of the modes the transition has, allows the library to blend between the two clips
involved. Blending is usually used in multiple places in the animation systems allowing
to create complex animation sets depending on multiple variables. That functionality is
out of the scope of the thesis. In order to show how blending works, the most simple
approach is implemented in the blender.

The blender allows creating smoother transitions between the two clips involved. The
blending limits the capability of transitions forcing them to change at the end of the clip.

To properly blend a clip, the transition has two different time parameters that indicate to
the blender when to start the blend and the progress of it. This progress is used to
create a weight for each of the clips and calculate a transformation matrix out of them.

The blender is a structure that allows calculating the matrix. It takes the two skeleton
poses and the weight of it and then returns a pose blended. The matrices for each of
the joints are calculated using a weighted sum.

5.2.11 Animation Manager

All the systems that have been explained until now, work together into the library to
create and reproduce animations. To handle the animations and the date they use, the
animation manager is used. the manager is accessible from any point in the system
since it uses a Singleton pattern that allows that. This is not a required element and the
functionality it does can be handled by the library user’s resource manager.

The animation manager has all the functionality to create and store the different data
parts of the animation library:

● Skeletons
● Animation Clips

The manager adds them to a list of elements and ensures that at the end of their use
are correctly deleted and don’t leave any memory in use.

53

Iban Mas Ortega
TroMotion: Skeletal Animation Library

F5.14 Animation Manager - Code used to handle the animation resources created

5.3 Implementing the library into the example engine

Previously in the previous parts of this thesis, the example game engine and the library
have been explained themselves. Now that both the engine and the library have been
described, let's take a look at how they interact together.

To understand better the relationship between them, in figure F5.15, a diagram of the
structure of the application is defined. The figure shows how the different parts build
one on top of the other, starting with the Operative System as the base. On top of it, a
graphics API is responsible for rendering images to the screen. Build on top of the
graphics API, the game engine working with the library together to create the top part,
the game.

54

Iban Mas Ortega
TroMotion: Skeletal Animation Library

F5.15 Layer relation diagram - The figure shows how the different parts build-up to create the final game

5.3.1 Loading the data for the library

On point 5.2 Animation Library, different data types were defined to hold the data for
the animation library. These data need to be loaded by the engine developer.

More specifically, the data types that need to be loaded in order to use the library are
the following:

● Skeletons
● Vertex skinning data
● Animation clips

Loading these data is handled using the third party library Assimp(10) but, even though
Assimp loads the data from the file, he uses his own data structures to store the data.

To be able to use the data, the engine needs to convert it to the data types used by the
animation library. Then store them in a resource manager to be able to access them.
The example engine doesn’t have a resources manager due to its simplicity. The clips
and skeletons will be directly stored in the model data for ease of access.

5.3.1.1 Loading the skeleton data

Assimp library treats each of the elements on a file like nodes. Nodes have children
nodes that define their hierarchy with respect to the other nodes. Nodes can contain
mesh (3D models) information or just their name and position. To be able to identify the
joints ones from the mesh ones, Assimp has build-in functionality to differentiate them.

The joints' names are also not loaded directly into the node. Assimp loads them as a
child node for the one with the joint transformation. In order to load it correctly, looking

55

Iban Mas Ortega
TroMotion: Skeletal Animation Library

at the children of the node to find one with an identity transformation and store its name
for the joint.

5.3.1.2 Loading the vertex skinning data

The data related to the vertices skinning data is stored together with the mesh data in
Assimp. Additional information is loaded in the vertex data for the meshes. The data
from Assimp then needs to be loaded into the skinning data from the library.

Assimp loads the name of the joint. For the library skinning data, the index of the joint
in the skeleton is needed. To convert the name to the index, the skeleton structure has
a function that returns the index. Using that functionality, the data can be loaded from
Assimp.

The data is then loaded to the graphics card with the other mesh data to use later in the
rendering process.

5.3.1.3 Loading Animation clips

Animation clips are the most important element in the library in order to reproduce
animations since they store the data for the animation. Again, to load them the Assimp
library is used. Assimp loads the animation in separated nodes dedicated to
animations. These nodes contain the information for the joints positions at a specific
time point, the duration, and the frames per second of the animation.

Differently, Assimp loads the data by joint instead of by keyframe. Thatdifficults a bit the
loading of the data since the data needs to be taken for each joint and sort it in
keyframes.

This part has consumed a lot of time from the development of the thesis since not only
sorting the data required a specific algorithm to create the keyframes at first and then
fill them with the correct data when the joints where loaded but the number of
keyframes didn’t match the ones from the animation. After some investigation on the
issue and attempts to sort the clip data, the issue was related to the Assimp library and
not something related to the implementation of it. The library has an issue loading the
transformation values for some animation keyframes. The issue always happens with
the FBX file type and sometimes with the Collada file type. For the issue present in the
third-party library, the current version of the application is not capable of showing the
models available to test performing correctly.

In order to ensure the application issue is related to this library issue, the animation
library has been tested separatedly as explained on each of the animation library
elements. Then the following procedure has been followed to try to make the library
work together with the engine:

1. Ensure the skeleton pose works correctly: The first step to identify the problem
was related to the keyframes transformations, the skeleton has been loaded.

56

Iban Mas Ortega
TroMotion: Skeletal Animation Library

Then these skeleton positions have been used to pose the character. That
worked correctly as can be seen in figure F5.16.

F5.16 Model using skeleton - The image shows the model using the skeleton transformations.

2. Ensure the library code works properly using the skeleton as a clip. That
consisted of creating an animation clip using only the skeleton as the
keyframes. This test worked properly and the result is the same as it was in the
previous case (F5.16). That discards any issue in the library code that had been
tested previously.

3. Load the keyframes from Assimp and the model file. The last point to check was
using the transformations loaded from the third-party library used to load the
model, skeleton, and animations. Once the animation clips are loaded, they are
reproduced using the same code used in the previous test that worked
correctly. Nevertheless, the result was not the same. In this case, the skeleton
transformations didn’t work properly and the model is completely displaced from
the correct position (F5.17)

57

Iban Mas Ortega
TroMotion: Skeletal Animation Library

F5.17 Model animated incorrectly - The image shows the result of using the transformations loaded from

the third party library.

5.3.2 Using the library features - Animation component

Once the data is loaded into the engine, the next step is being able to use it. As
explained in 5.1.2, the engine uses a component system. That system allowed to add
functionalities to the objects in the engine.

Using the component system of the engine, an animation component is created to
interact with the library. This component will contain an animation montage that uses
the same skeleton that the model present in the object as seen in figure F5.18.

58

Iban Mas Ortega
TroMotion: Skeletal Animation Library

F5.18 - Animation Component - Code used for the animation component. The only element required is an

Animation Montage.

As the point 5.2.6 Animation Montage explains, the animation montage contains all the
functionality of the library linked. Then the user must ensure to update the state of the
animation using the functionality the library provides and retrieve the data through the
montage to display the character animated.

5.3.3 Displaying the character using the animation

At his point, all the elements needed to use the animation system are included in the
engine and ready to be used. To use them the user needs to send the data the
animation library calculates to a shader.

A shader is a software that is run directly into the graphics card. graphics cards have
advantages over CPUs to calculate things faster when the operations needed are not
complex. Since the example engine uses the graphics API OpenGL, the shader is
written in GLSL, the language OpenGL defines for shaders.

The data the shader needs to use the calculated joints positions are the skinning data,
which includes the joint indexes and the weight for the vertex, the calculated joints and
the number of joints (F5.19).

One thing to take into account is that OpenGL doesn't allow to allocate memory
dynamically into the graphics card. When sending the joints data to the shader, it
should have reserved enough space to handle the bones your animations are using.

59

Iban Mas Ortega
TroMotion: Skeletal Animation Library

F5.19 Sending data to shader -The image shows the code used to send the joints data to the shader

Once the data is sent to the shader, the shader code is able to use it to transform the
vertex position to the one corresponding to the animation. That is done multiplying the
joint matrices that affect the vertex by its weight and adding them. The resulting matrix
is then used to transform the vertex position for the final image to be displayed
correctly.

F5.20 Shader code - The image shows the code used inside the vertex shader to use the joints

transformations.

60

Iban Mas Ortega
TroMotion: Skeletal Animation Library

5.3.4 Engine Interface to work with the library

Previously, all the points in the implementation of the library into the engine, have
talked about what is needed to use the library. This part is not mandatory to have but it
is very useful to allow non-programmers members of a team to work with the animation
library.

To ease the use of the animation library, engines provide some kind of user interface to
create the transitions and states that define the animation behavior. These user
interface elements are completely dependent on how uses or create them.

The example engine, as explained in the 5.1 Example Engine part, uses the library
ImGui to create the user interface. This library allows creating all kind of personalized
UI elements that adapts to the user necessities.

Due to the issues found while implementing the library with the third-party library
Assimp, this part of the development couldn’t be completely finished.

The elements implemented in the example engine are two:

● Skeleton hierarchy: this user interface element shows the complete skeleton
loaded and the relation between the joints in it. (F5.21)

F5.21 Skeleton hierarchy - Shows the relation between the different joints in the skeleton

61

Iban Mas Ortega
TroMotion: Skeletal Animation Library

● Reproduction control panel: a simple panel with the functionality to play, pause,
and stop the reproduction of the animation (F5.22).

F5.22 Reproduction control panel

The possibilities to create different UI tools with this library allow us to create complex
editors that will allow displaying personalized interfaces for different components.

During the development of the library, a special useful tool that can help develop a
node graph similar to the one used on professional engines such as unity (F2.7) was
found. This tool is related to the ImGui library but developed as an extension that can
be found in its own repository(14). Even though the tool has not been used in the final
app due to the issues previously mentioned, the tool has been tried and is highly
recommended to be used in future work or for other projects. The image F5.23 shows
an example of the tool being used to replicate the Unreal Engine blueprints system.

F5.23 Node Graph tool - the image shows the tool being used to replicate the Unreal Engine blueprint

system - https://github.com/thedmd/imgui-node-editor

62

https://github.com/thedmd/imgui-node-editor

Iban Mas Ortega
TroMotion: Skeletal Animation Library

6. Conclusions

An animation library consists of a lot of different elements that allow games and other
graphics applications to reproduce animations and adapt them to the situation required.
The skeleton, together with the 3D model allow artists to easily create animations and
save them into animation clips. These clips contain the animation keyframes that are
used by other applications to reproduce the animations.

The current situation of animation systems in the market relies on companies being
able to create their own solutions or paying for a professional solution that is out of
reach for small companies or students. For that reason, TroMotion can bring a solution
to those users that look for an open-source solution that wasn’t available until now in
the market, since the few existing animation libraries don’t focus on ease of
implementation nor reutilize the developer software solutions for other systems.

During the development of the thesis, lots of inconveniences happened that made the
development of the library slower than expected. Some of them being related to issues
found during the development and some others to external work such as finishing
university projects, personal necessities, and an internship.

Despite the development issues and the full schedule that made the production of
TroMotion not as fluid as intended, most of the general objectives in the thesis have
been fulfilled. Those objectives included the library being independent of the source
code of the user as the main key point which is completely accomplished through the
mathematic library abstraction developed.

The system also aimed to allow users to use different animations and mix them as
required. Thanks to the animation state machine working together with the sates and
transition are possible to create personalized animation sequences. This objected also
included the user-defined event. The events required additional abstractions to allow
the user to personalize them enough to be useful. After reviewing the available time
and the remaining tasks for the library, this feature was the first to be taken out of the
backlog due to the time investment required for it against the final utility.

Being able to be used in real-time environments was also a concern in the
development of the library, the library works correctly in real-time thanks to the
combination between precalculating the transformation matrices before sending them
to the shader and the shader itself that optimize the time needed to calculate the final
position for the vertices.

Regarding the possibility to be able to replicate the state, this feature was not
implemented at the end due to the lack of time and other features were prioritized to
allow the user being able to reproduce animations and personalize them. This feature
should be one of the top priorities to improve the animation library potential.

One of the key points in the development was creating an abstraction for the different
systems the library relied on the existing software. That opens the to any application to
easily integrate it and use its features. On the other hand, some of the third-party tools
used to create the example engine, particularly the Assimp library, created more
problems that required extra time to try to solve and reduced the amount of time

63

Iban Mas Ortega
TroMotion: Skeletal Animation Library

available to the development of the library. Other model loading tools are available that
could maybe be more useful than the Assimp library. When the issues with the Assimp
library appeared, the time needed to redo the example engine with another library
exceeded the remaining time available for the implementation of the library.

As future work, changing the current example engine to allow to correctly prove the
library potential is essential. Once that is achieved, the first thing to add to the library is
the serialization part. That will help users to save and load faster the animations they
create and configure. Also, allow creating personalized events to improve the
possibilities when working with it.

Existing animation systems have support for lots of different functions such as layers
that allow using different animations for different parts of the body. Others also allow
creating blending between multiple animations depending on more than one variable.
And most of them also support inverse kinematics. Those features can also be added
into the library in the future to extend the base system that is now present.

Even though the library is not as complete as other professional solutions, I believe it is
a good starting point for small teams and students to understand and use the animation
system and have a solid base to improve it and develop its own features to expand it.
Being an open-source library it can be the first step to develop an open-source
animation library with other collaborations that bring a real solution for the animation
system.

64

Iban Mas Ortega
TroMotion: Skeletal Animation Library

7. Bibliography

1. Williams, Richard. 2001. The animator’s survival kit. ISBN 9780865478978
2. GNU General Public License. www.gnu.org/licenses/gpl-3.0.en.html. Checked

12 March 2019
3. History of animation,

https://www.nyfa.edu/student-resources/quick-history-animation/, checked 13
March 2019

4. Animation, https://www.britannica.com/art/animation, checked 13 March 2019
5. Animadead, http://animadead.sourceforge.net/features.shtml, checked 10

March 2019
6. Ozz-Animation, http://guillaumeblanc.github.io/ozz-animation/, checked 11

March 2019
7. Gregory, Jason. 2013. Game Engine Architecture. CRC Press. ISBN

978-1-4665-6001-7
8. Feature-driven development,

http://newline.tech/blog/feature-driven-development-methodology/, checked 14
March 2019

9. Trello, https://trello.com/, checked 15 March 2019
10. stb library, https://github.com/nothings/stb, checked 30 March 2019
11. Assimp, http://www.assimp.org/, checked 6 April 2019
12. Abstraction in C++, https://www.geeksforgeeks.org/abstraction-in-c/ checked 17

April 2019
13. Granny 3D. RadGameTools, http://www.radgametools.com/granny.html,

checked 05 June 2019
14. ImGui Node Library, https://github.com/thedmd/imgui-node-editor, checked 18

August 2019

65

http://www.gnu.org/licenses/gpl-3.0.en.html
https://www.nyfa.edu/student-resources/quick-history-animation/
https://www.britannica.com/art/animation
http://animadead.sourceforge.net/features.shtml
http://guillaumeblanc.github.io/ozz-animation/
http://newline.tech/blog/feature-driven-development-methodology/
https://trello.com/
https://github.com/nothings/stb
http://www.assimp.org/
https://www.geeksforgeeks.org/abstraction-in-c/
http://www.radgametools.com/granny.html
https://github.com/thedmd/imgui-node-editor

