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1 

Incremental Novelty detection and Fault Identification 1 

Scheme applied to a kinematic chain under non-2 

stationary operation 3 

Abstract—Classical methods for monitoring electromechanical systems lack two 4 
critical functions for effective industrial application: management of unexpected events 5 
and the incorporation of new patterns into the knowledge database. This study presents 6 
a novel, high-performance condition-monitoring method based on a four-stage 7 
incremental learning approach. First, non-stationary operation is characterised using 8 
normalised time-frequency maps. Second, operating novelties are detected using 9 
multivariate kernel density estimators. Third, the operating novelties are characterised 10 
and labelled to increase the knowledge available for subsequent diagnosis. Fourth, 11 
operating faults are diagnosed and classified using neural networks. The proposed 12 
method is validated experimentally with an industrial camshaft-based machine under 13 
a variety of operating conditions. 14 

Keywords—Condition monitoring; Data-driven modelling; Fault diagnosis; Non-15 
stationary operation; Novelty detection 16 

1. INTRODUCTION 17 

Condition Based Monitoring (CBM) has acquired strategic importance in the 18 

manufacturing sector. It is applied extensively in the field of electromechanical systems, 19 

formed by electrical machines coupled to rotatory and/or reciprocating mechanical 20 

components, which are of critical importance to multiple industrial processes [1,2]. However, 21 

as noted by H. Henao et al. [3], new areas of research and novel approaches are still needed 22 

for efficient CBM of electrical machines under operating conditions. Hybrid fault diagnosis, 23 

which combines multiple fault diagnosis methods, has emerged as a promising approach to 24 

leverage the strengths of classical methods such as model-based, signal-based, knowledge-25 

based and active fault diagnosis [4,5]. 26 

The most common hybrid fault diagnosis approach integrates a signal-based method for 27 

data processing and a data-driven method for classification [6–8]. Although this approach 28 

provides satisfactory results, its applicability is limited, since specific processing and 29 

classification procedures are used to address predefined faults and operating conditions. 30 

Indeed, most condition monitoring studies in the literature consider a set of predefined faults 31 

for characterisation, which clearly differ from most industrial scenarios. 32 
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Consequently, one of the major challenges to the widespread industrial implementation of 1 

CBM is its capacity to manage unexpected events [9–12]. Fault conditions not previously 2 

considered, or even deviations from the expected nominal behaviour, are common operating 3 

scenarios that lead to diagnostic errors and false positives [13,14]. Indeed, only the nominal 4 

operating conditions are available for most industrial applications, so the use of classical 5 

diagnostic methods is unfeasible [3,15–17]. As such, the detection of operating novelties, or 6 

‘novelty detection’, is considered an essential function for the next generation of CBM 7 

schemes. 8 

An initial approach to address the lack of operating information, based on the combined 9 

use of novelty detection (unsupervised) and diagnosis (supervised) models, was proposed by 10 

Grbovic et al. [18] and is now being studied and implemented in a range of fields, including 11 

data stream analysis [19]. Nevertheless, this approach must be properly adapted to industrial 12 

electromechanical systems: accurate signal processing is required to highlight fault 13 

conditions, and relatively low ratios of available data must be considered. 14 

There are few studies that describe the application of novelty detection models to 15 

electromechanical systems and fewer still that discuss the use of a complete novelty detection 16 

and fault identification scheme for condition based monitoring [20–25]. Notable among the 17 

published fault diagnosis methods is the proposal of Costa et al. [21], which applies a two-18 

stage novelty detection and fault classification method to an industrial plant. Although the 19 

method offers satisfactory performance, it is significantly hampered by the amount of 20 

historical data required to properly calculate the data density functions and the use of an ad 21 

hoc signal processing procedure for the plant under test. Filev et al. [26] studied the feasibility 22 

of an autonomous machinery monitoring and diagnosis system, with special attention to the 23 

generalization capabilities of the structure in terms equipment under inspection. The results 24 

were promising but the algorithms are limited to the detection of two types of fault patterns. 25 

Finally, Wang et al. [15] applied a novelty detection scheme to machinery components in 26 

order to progressively redefine the initial characterisation boundaries of a set of available 27 

fault conditions. The support vector machine-based novelty detection approach shows a 28 

significant capacity to adapt boundaries when new information is available, but no 29 

consideration is given to incorporating new classes into the available knowledge. 30 
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Most CBM approaches dealing with novelty detection are subject to the same constraints: 1 

(i) the addition of new scenarios to the initial models is not considered, (ii) the processing 2 

stage focuses on the detection of specific faults, and (iii) the models require a large amount 3 

of data for characterisation. This study attempts to overcome these constraints through the 4 

analysis and validation of a hybrid fault diagnosis methodology that combines a signal 5 

processing stage and two data-driven models for novelty detection and fault diagnosis under 6 

an incremental learning scheme. The signal processing stage is compatible with non-7 

stationary electric motor-based systems, thanks to the use of Normalised Time-Frequency 8 

Maps (NTFMs) of the stator currents. This approach allows numerical features to be 9 

estimated for stator current characterisation but also highlights deviations from the initial 10 

operating conditions. Next, a multi-modal novelty detection procedure supported by 11 

Multivariate Kernel Density Estimation (MVKDE) is proposed to detect novel scenarios and 12 

quantify their degree of novelty. The fault diagnosis stage uses classical Artificial Neural 13 

Networks (ANN) to identify the corresponding condition in the case of known operating 14 

scenarios. To enable incremental learning – that is, to increase the knowledge available to 15 

the condition-monitoring scheme – the data-driven novelty detection and diagnosis models 16 

are automatically retrained after novel data have been labelled. 17 

The originality of this study derives from the multi-modal signal analysis, the combination 18 

of novelty detection and diagnosis models in a hybrid approach, and the potential 19 

applicability of the proposed scheme to industrial scenarios thanks to its simple configuration 20 

and high effectiveness. The performance of the proposed method is validated with an 21 

industrial camshaft-based machine, for which only the nominal operating conditions are 22 

initially available. Different fault scenarios are progressively introduced in order to analyse 23 

the detection and learning capabilities. 24 

The remainder of this paper is organized as follows. Theoretical aspects of the proposed 25 

NTFMs and MVKDEs are described in Section II. The proposed methodology is described 26 

in Section III. The experimental tests used to validate the method is discussed in Section IV. 27 

Finally, concluding remarks are presented in the Section V. 28 

 29 
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2. SIGNAL PROCESSING AND MODELLING 1 
 2 

2.1. Normalised time-frequency maps 3 

Time-frequency analysis is the most suitable approach for examining non-stationary 4 

electric motor operation [3,27,28]. The Short-Time Fourier Transform (STFT) is a local fast-5 

Fourier transform that combined with a sliding window, makes possible the analysis of the 6 

frequency content evolution over time. The STFT of a signal y is expressed as Y(m,f), where 7 

m is the temporal index and f the spectral index. The magnitude squared of the STFT, 8 

|Y(m,f)|², is called the spectrogram and is expressed in dB as 20log(|Y(m,f)|). Since modelling 9 

the system is a complex task it may be difficult to perform the STFT, but in the presence of 10 

novel patterns of operation the proposed objective is to detect changes between the STFT 11 

corresponding to healthy/nominal operation and the STFT corresponding to the novel 12 

operating conditions under analysis. As such, the normalisation of the STFT is proposed as 13 

a two-dimensional extension of the statistic-based method. The aim is to obtain a statistical 14 

reference from the corresponding healthy/nominal STFT by the computation of the average 15 

spectrogram, M(m,f), and the standard deviation, S(m,f), of each time-frequency point. The 16 

resulting normalised spectrogram – the NTFM, YCR(m,f) – is computed according to Equation 17 

(1): 18 

 19 

𝑌𝑌𝐶𝐶𝐶𝐶(𝑚𝑚,𝑓𝑓) =
|𝑌𝑌(𝑚𝑚,𝑓𝑓) −𝑀𝑀(𝑚𝑚,𝑓𝑓)|

𝑆𝑆(𝑚𝑚,𝑓𝑓)
 (1) 

The normalised spectrogram, YCR(m,f), represents a standard normal distribution, No(0,1), 20 

and the normalisation procedure can be assimilated to a Student’s t-test. So, for each STFT 21 

computed from a new stator current acquisition, the resulting NTFM will exhibit values close 22 

to zero if similar to the reference STFT and values different to zero if novelties are detected. 23 

The detected values will be proportional to the difference from the reference. It is then 24 

possible to quantify differences considering the complete STFT or even specific regions of 25 

interest [29]. 26 

2.2. Multivariate kernel density estimation 27 

Multivariate kernel density estimation, also referred to as the Parzen-window or Parzen-28 

Rosenblatt window method, is a flexible approach for estimating the densities of a multi-29 
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dimensional data distribution [9]. Given a d-dimensional vector  𝐗𝐗 = (𝑋𝑋1, … ,𝑋𝑋𝑑𝑑)𝑇𝑇, where 1 

𝑋𝑋1, … ,𝑋𝑋𝑑𝑑 are one-dimensional variables, the vector 𝐗𝐗𝒊𝒊 represents the i-th observation of the 2 

d variables: 𝐗𝐗𝒊𝒊  = (𝑋𝑋𝑖𝑖1, … ,𝑋𝑋𝑖𝑖𝑖𝑖), where 𝑖𝑖 = 1, … ,𝑛𝑛, and n is the total number of observations. 3 

The variable 𝑋𝑋𝑖𝑖𝑖𝑖 is the i-th observation of the variable 𝑋𝑋𝑗𝑗, where 𝑗𝑗 = 1, … ,𝑑𝑑. The probability 4 

density function (PDF) of 𝐗𝐗 is, then, given by the joint PDF of the random 5 

variables (𝑋𝑋1, … ,𝑋𝑋𝑑𝑑)𝑇𝑇 as shown in Equation 2: 6 

𝑓𝑓(𝐗𝐗)  = 𝑓𝑓(𝑋𝑋1, … ,𝑋𝑋𝑑𝑑) (2) 

Kernel functions are applied to scale distances. For example, in a one-dimentional case 7 

where 𝑢𝑢 = (𝑥𝑥 − 𝑋𝑋𝑖𝑖)/ℎ, ℎ is the smoothing parameter called bandwidth, and 𝑥𝑥 is the 8 

observation under analysis. If we move to the multivariate form, the bandwidth for each 9 

distance (𝑥𝑥 − 𝑋𝑋𝑖𝑖), can be set individually, resulting in a d-dimensional bandwidth 𝐡𝐡 =10 

(ℎ1, … ,ℎ𝑑𝑑). There are different approaches for forming a multi-dimensional kernel, 𝐾𝐾(𝐮𝐮) =11 

𝐾𝐾(𝑢𝑢1, … ,𝑢𝑢𝑑𝑑), such as the multiplicative kernel, 𝐾𝐾(𝐮𝐮) = 𝐾𝐾(𝑢𝑢1) ∙ … ∙ 𝐾𝐾(𝑢𝑢𝑑𝑑). Using this 12 

approach, the density estimator is given as shown in Equation (3): 13 

𝑓𝑓𝐡𝐡(𝐱𝐱) =
1
𝑛𝑛
���ℎ𝑗𝑗−1

𝑑𝑑

𝑗𝑗=1

𝐾𝐾 �
𝑥𝑥𝑗𝑗 − 𝑋𝑋𝑖𝑖𝑖𝑖
ℎ𝑗𝑗

��
𝑛𝑛

𝑖𝑖=1

 (3) 

Since the PDF exhibits a high dependence on the selection of the bandwidth parameter 14 

vector [9], the least squares cross-validation represents a common approach to set the 15 

bandwidths. In this approach, each bandwidth ℎ𝑗𝑗  is selected with the objective to minimise 16 

the integrated mean square error resulting from the difference between the estimated and 17 

actual distributions, as shown in Equation (4): 18 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼�ℎ𝑗𝑗� = ��𝑓𝑓ℎ𝑗𝑗�𝑥𝑥𝑗𝑗� − 𝑓𝑓�𝑥𝑥𝑗𝑗�� 𝑑𝑑𝑑𝑑 (4) 

3. METHODOLOGY 19 
 20 
In real-world industrial applications, characteristic patterns of fault conditions are not 21 

commonly available, so the proposed condition-monitoring method has two main challenges: 22 

• Significant features must be defined to characterise eventual operating conditions of 23 

the system without previous information on possible fault scenarios. 24 
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• The novelty detection and diagnosis models must be adapted to allow for the 1 

incremental incorporation of the new scenarios identified. 2 

 3 

 4 

Fig. 1. Proposed incremental learning scheme for condition monitoring. Solid arrows 5 
represent the on-line procedure for novelty and diagnosis assessment of a new measurement. 6 
Dotted arrows represent the off-line incremental process for the incorporation of new patterns 7 
into the novelty detection and diagnosis models. 8 

3.1. Measurements and processing 9 

Malfunctions caused by misadjusted mechanical components in an electric motor-based 10 

machine are reflected in the shaft rotation effort pattern [30]. The kinematic chain and, by 11 

extension, the framework of the proposed study are representative of machinery subjected to 12 

torque variations throughout its working cycle. This is a well-established basis of operation 13 

in the industrial sector, where the rotational speed of the electric motor (i.e. the fundamental 14 

stator current frequency) is maintained to comply with a predefined manufacturing ratio but 15 

the rotational force (i.e. the required torque) follows a non-stationary pattern due, classically, 16 

to the driving of different cam profiles and their interrelation during the rotation cycle. 17 

The non-stationary operation considered here are a challenging scenario for condition 18 

monitoring, first because the pattern of normality to be characterized must consider the 19 

characterisation of the whole operating cycle, and second (and most importantly) because 20 

potential new patterns would be revealed as sporadic and isolated variations of the torque in 21 

a specific part of the rotational cycle, without interfering with the rest of the stator 22 

components. Consequently, this study proposes a signal processing approach capable of 23 

monitoring the efforts as the shaft turns while keeping track of the shaft rotation. Indeed, 24 

misadjusted mechanical components in general, and mechanical cams in particular, driven 25 

by an electric motor may cause coherent mechanical perturbations reflected in the spectral 26 

distribution of the stator currents. Thus, a time-frequency method is proposed to monitor the 27 

full shaft turn and highlight eventual novelties in the spectral distribution. As described 28 
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above, the NTFM results from the STFT applied over the acquired signal but is normalised 1 

for the reference stator current signal; that is, the STFT of the signal acquired under 2 

healthy/nominal conditions. To take into account the persistence of eventual malfunctions, a 3 

time-window length corresponding to a full shaft turn is proposed for NTFM calculation. The 4 

resulting NTFM will show increments or decrements in accordance with its differences from 5 

the reference signal. In other words, an NTFM for healthy operating conditions will exhibit 6 

values close to 0 while an NTFM for novel operating conditions will exhibit values distant 7 

from 0 throughout the time-frequency representation. 8 

To illustrate this procedure, Fig. 2a and Fig. 2b show an example of induction motor stator 9 

currents in time corresponding to healthy/nominal conditions and to fault conditions caused 10 

by the introduction of a mechanical perturbation, respectively. The corresponding STFTs are 11 

shown in Fig. 2c and Fig. 2d and the resulting NTFMs in Fig. 2e and Fig. 2f, respectively, 12 

where clear qualitative differences can be observed. It should be noted that the differences 13 

between the STFTs for the healthy/nominal and fault conditions are not obvious (Fig. 2c and 14 

Fig. 2d). Nevertheless, when the NTFMs are computed, the differences are highlighted in 15 

different parts of the spectrum. 16 

3.2. Feature calculation and reduction 17 

In order to numerically characterise the resulting NTFM, a segmentation approach that 18 

considers both time and frequency axes is proposed. It should be considered that the increase 19 

of the number of regions would improve the resolution but at the same time would increase 20 

the number of resulting features, which could lead to over-fitted models; by contrast, a small 21 

number of regions may not provide sufficient resolution to detect novelties in the operation. 22 

The number of regions should be defined according to the specific requirements of each 23 

application; however, a good trade-off between resolution and performance can be reached 24 

with a total of eight regions. For each region, two different sets of statistical time-frequency 25 

features are proposed, one to be used for novelty detection and the other for diagnosis. For 26 

novelty detection, since there is no a priori information about characteristic fault patterns, 27 

the root mean square (RMS) is estimated for each region. For diagnosis, a set of four 28 

statistical time-frequency features are proposed for each region, as shown in Table I: max. 29 

value, root mean square, crest factor and kurtosis. These features are performance 30 
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characteristics considered in multiple electric motor monitoring strategies presented in the 1 

literature. 2 

The objectives of the novelty detection and the diagnosis are different. Novelty detection 3 

aims to identify deviations from the existing knowledge, classically known as the one-class 4 

problem approach, while diagnosis focuses on recognising previously characterised scenarios 5 

in a multi-class problem approach. Thus, the novelty detection feature set aims to provide a 6 

global characterisation of the existing patterns whereas the diagnosis feature set aims to 7 

provide further characteristic dimensions for the recognition of specific patterns. 8 

Max. value 𝑥𝑥� = max (𝑥𝑥) (5) 

Root mean square 𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑛𝑛

·  � (𝑥𝑥𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1
 (6) 

Crest factor 𝐶𝐶𝐶𝐶 =
𝑥𝑥�

𝑅𝑅𝑅𝑅𝑅𝑅
 (7) 

Kurtosis 𝐾𝐾𝐾𝐾 =
𝐸𝐸[(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)4]

𝜎𝜎4
 (8) 

Table I. Statistical time-frequency features for the characterisation of NTFM regions. 9 

3.3. Novelty detection model 10 

Following the NTFM time axis segmentation, a collaborative structure of novelty detection 11 

models is proposed, comprising one model for each of the shaft turn partitions. So, in the 12 

case of a full shaft turn with four partitions, each corresponding to 90 degrees, four novelty 13 

detection models would be proposed. Each model is trained with the set of features 14 

corresponding to the regions enclosed by each 90-degree partition. Therefore, in case of Fig. 15 

2(e) or 2(f), the first novelty detection model would include the RMS values corresponding 16 

to regions 1 and 5, the second model would include the RMS values corresponding to regions 17 

2 and 6, and so on. The novelty detection models provide quantification if a new sample 18 

diverges from the characterised distributions in which these models were trained. An 19 

MVKDE- based probabilistic approach is employed for this purpose, based on the calculation 20 

of the PDFs, 𝑓𝑓𝒉𝒉(𝑿𝑿), where X is the training dataset characterised by the arrays of features.  21 
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 1 
Fig. 2. NTFM calculation. (a) Example of a time-based stator current corresponding to 2 
healthy/nominal conditions. (b) Example of a time-based stator current under fault 3 
conditions. (c) Computation of the STFT of the stator current corresponding to 4 
healthy/nominal conditions. (d) Computation of the STFT of the stator current under fault 5 
conditions. (e) NTFM of the stator current corresponding to healthy/nominal conditions, and 6 
proposed region segmentation for feature calculation. (f) NTFM of the stator current under 7 
fault conditions, and proposed region segmentation for feature calculation. 8 

 9 

The consideration of the PDFs to evaluate a new measurement, 𝒙𝒙�, results in the degree of 10 

novelty, 𝑓𝑓𝒉𝒉(𝒙𝒙�). Thus, low 𝑓𝑓𝒉𝒉(𝒙𝒙�) denotes that the measurement under assessment diverges 11 

from the training data. 12 

An evaluation procedure is used to interpret the novelty scores resulting from the set of 13 

novelty detection models. The proposed procedure assesses the presence of irregular patterns 14 

identified during the regions assessment, and determines a global degree of novelty for the 15 

acquisition under analysis. As such, a batch-type analysis is proposed during the on-line 16 

evaluation. If only one acquisition – for example, one electric motor shaft turn – is 17 

considered, the false alarm events may increase significantly because of outliers. Instead, and 18 

considering the field of application, tens of acquisitions are evaluated simultaneously by the 19 

novelty detection models. Thus, for each resulting NTFM, the degree of novelty is 20 

categorised under the label Known, Uncertain or Novel on the basis of the novelty 21 

score 𝑓𝑓𝒉𝒉(𝒙𝒙�). Possible values range from zero to a maximum determined by the bandwidth of 22 

the models, the number of samples used for training and the selected kernel, thus 𝑓𝑓𝒉𝒉(𝒙𝒙�) ∈23 

�0 …𝑚𝑚𝑚𝑚𝑚𝑚�𝑓𝑓𝒉𝒉(𝑿𝑿)��. 24 
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The proposed categorisation is determined by the novelty score as shown in Fig. 3. The 1 

label Known corresponds to measurements with an 𝑓𝑓𝒉𝒉(𝒙𝒙�) equal to or greater than two-thirds 2 

of the maximum value of 𝑓𝑓𝒉𝒉(𝑿𝑿). The label Uncertain corresponds to measurements with a 3 

 𝑓𝑓𝒉𝒉(𝒙𝒙�) between one-third and two-thirds of the maximum value of 𝑓𝑓𝒉𝒉(𝑿𝑿). Finally, the label 4 

Novel corresponds to measurements with an 𝑓𝑓𝐡𝐡(𝐱𝐱�) equal to or less than one-third of the 5 

maximum value of 𝑓𝑓𝐡𝐡(𝐗𝐗). 6 

 7 

Fig. 3. Novelty degree categorisation according to the resulting novelty score. 8 
 9 

The thresholds related to each of the labels can be adjusted to the application; however, 10 

considering that there is no information available for novel conditions, proportional 11 

thresholds represent a good trade-off between simplicity and performance. In fact, a higher 12 

value of the boundary between Known and Uncertain may generate false alarms, whereas a 13 

lower value may decrease the resolution of the novelty detection. 14 

Using the proposed collaborative structure of novelty detection models, the degree of 15 

novelty of each measurement is categorised on the basis of the highest score returned by the 16 

different novelty detection models. So, for each full shaft turn, if at least one of the novelty 17 

detection models gives a categorisation of Novel, the measurement is assigned the label 18 

Novel, even if the other models give a result of Known or Uncertain. The label with the 19 

highest degree of novelty is assigned because each novelty detection model analyses a part 20 

of the shaft rotation and localised machinery faults must be detected and addressed. 21 

Finally, once the set of measurements has been labelled, the condition of the machine is 22 

determined by majority vote rule. Thus, if 50% or more of the measurements are labelled 23 

Known, the diagnosis stage follows to identify the corresponding condition. If, however, 24 

more than 50% of the measurement are labelled Uncertain and/or Novel labels, the data are 25 
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stored and user supervision follows to assign the correct diagnostic label prior to the 1 

incremental learning procedure. 2 

A tie of 50% Known and 50% Uncertain and/or Novel can be interpreted as an anomaly 3 

arising in the middle of the batch monitoring, therefore only half of the measurements are 4 

detected as Known. It is important to note that this is an incremental monitoring approach, 5 

therefore batches are analysed incrementally and if the anomaly arises in the middle of a 6 

batch it will be fully detected in the next batch.  7 

3.4. Diagnosis 8 

The aim of the diagnosis is to recognize, from previously characterized scenarios, the 9 

current condition of the machine under monitoring. The corresponding classification 10 

algorithm is required when the novelty detection has returned a majority of Known labels. 11 

Although different classifiers can be applied to perform the diagnosis, ANN is a data-driven 12 

self-adaptive information processing method inspired by biological systems and is the most 13 

common data-driven classification technique in the literature [3].  14 

A simple NN-based classifier with a classical three-layer structure was used to obtain the 15 

diagnostic estimation of the conditions. The input layer is the set of statistical features 16 

obtained from each NTFM region. The hidden layer is proposed to have ten neurons 17 

following classical recommendations. Finally, the output layer is composed of the number of 18 

neurons corresponding to the available classes. 19 

3.5. User supervision 20 

User supervision is considered a mandatory step in labelled-based learning schemes prior 21 

to adaptation of the models to the novel patterns detected. Once the supervisor has inspected 22 

the results there are three possible scenarios: first, a new fault condition and corresponding 23 

diagnostic label are determined; second, the current scenario is correctly labelled but the 24 

patterns must be updated, and third, a false positive has been detected and the data are 25 

discarded. 26 

 27 

4. EXPERIMENTAL RESULTS 28 

The experimental platform used to analyse the effectiveness and performance of the 29 

proposed methodology replicates a typical non-stationary torque pattern widely present in 30 
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industrial applications [30]. The platform is composed of a 1.5 kW induction motor as drive 1 

linked to a 20:1 rated gearbox, which is coupled to a 120 cm camshaft fitted with two 2 

cycloidal cams. The induction machine is formed by six pairs of poles, has a rated speed of 3 

1500 rpm and a rated torque of 20 Nm at 230 VAC, and is controlled by means of a speed-4 

loop-based vector control. 5 

The measurement equipment is intended to acquire the stator current and shaft rotation 6 

position. A Tektronix A622 providing 100 mV/A output over AC/DC currents from 50 mA 7 

to 100 A-peak within a frequency range of DC to 100 kHz is used to measure a stator-phase 8 

current. The current probe is placed at the power converter stator phase output. A XCC1510P 9 

Schneider encoder, 360 points of resolution, is coupled to the camshaft to measure the shaft 10 

rotation. A DAQ NI 6143 device, 16-channels with 16 bits of resolution, is used to perform 11 

data acquisition. A 20 kHz sampling frequency is considered for stator motor current and 12 

encoder. The schematic representation of the experimental arrangement is depicted in Fig. 4. 13 

All processing procedures are implemented in Matlab on a standard i7-3.5 GHz computer. 14 

In order to validate the proposed methodology, three different experimental scenarios were 15 

considered: healthy conditions, Hc, and two fault conditions created by inducing effort 16 

disturbances. The first fault condition, F1, consists of a 25% decrease in the effort pattern of 17 

the first cam, C1, through the adjustment of the thumbscrew for load grip using a 18 

dynamometric key. The second fault condition, F2, consists of a 25% decrease in the effort 19 

patterns of both cams, C1 and C2, also through the adjustment of the thumbscrew for load 20 

grip. For each scenario – Hc, F1 and F2 – a batch of 30 measurements of full shaft turns is 21 

available for training and validation, and another batch of 100 measurements is available for 22 

testing purposes. Induced fault scenarios, emulating incipient deviation patterns due to wear 23 

and tear of mechanical fixation components under intensive and continuous operation have 24 

been considered. 25 

To illustrate the proposed procedure, Fig. 5a and Fig. 5b, respectively, show the NTFMs 26 

in the presence of a stator current perturbation due to the first and second fault conditions, F1 27 

and F2 . Although qualitative similarities are apparent between the two fault conditions, there 28 

are also significant changes in the spectral distributions in regions 4, 6 and 8. 29 
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 1 

Fig. 4. Schematic representation of the experimental arrangement including an induction 2 
machine, a gearbox, a two-cam camshaft, a stator current probe, an encoder and an 3 
acquisition card. The C1 and C2 correspond to the disturbed cams in regard to the effort 4 
pattern to be provided by the electric motor. 5 
 6 

 7 

Fig. 5. Resulting NTFM and proposed regions. (a) First fault condition, F1. (b) Second fault 8 
condition, F2. 9 
 10 

In order to highlight the effectiveness and performance of the proposed methodology, the 11 

experimental results are presented in four stages. In the first stage, the novelty detection 12 

models are initially trained and analysed with data corresponding to healthy conditions, Hc. 13 

Next, they are tested with data corresponding to a novel condition: fault condition F1. In the 14 

second stage, the novelty detection models are updated to incorporate the patterns of fault 15 

condition F1, and information from the novel fault condition, F2, is considered to test he 16 

resulting models. In the third stage, once the models have been updated again to incorporate 17 

information for F2, the diagnostic performance is analysed with data from the three scenarios, 18 

Hc, F1 and F2. Finally, to analyse the results of the proposed methodology relative to the state 19 

of the art, a classical fault diagnosis and novelty detection approach is implemented. 20 
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4.1. Novelty detection: healthy scenario 1 

The NTFM corresponding to healthy conditions is computed first. It is then segmented in 2 

eight regions: four partitions on the shaft position axis, one each 90º, and two in the stator 3 

current bandwidth. In this case, the stator current bandwidth has been limited to the third 4 

harmonic of the electric motor, 60 Hz, so each partition encompasses 30 Hz. Next, the RMS 5 

statistic is calculated for each region in order to train the four resulting novelty detection 6 

models. Four PDFs are calculated for the novelty detection models, each of which 7 

corresponds to 90º division of the rotation. Thus, pdf1 results from the estimated RMS from 8 

regions 1, dc to 30 Hz, and 5, 30 Hz to 60 Hz, both from 0º to 90º. Similarly, pdf2 is obtained 9 

with the RMS from regions 2, dc to 30 Hz, and 6, 30 Hz to 60 Hz, both from 90º to 180º, and 10 

so on. 11 

The training has been faced by means of MVKDE with multiplicative function and 12 

Gaussian function as kernel. The bandwidths of the MVKDE are established by means of 13 

least squares cross-validation. The pdf1 resulting from such procedure is shown in Fig. 6, 14 

where the solid line describes the Known data boundary, and the dotted line describes the 15 

Unknown data boundary. So, measurements lying outside the Unknown boundary are 16 

considered Novel data. 17 

As can be seen, all the information corresponding to the healthy operating conditions is 18 

concentrated near the zero value of both RMS axes. Similar behaviour is obtained for the rest 19 

of the PDFs. The contour plot in Fig. 6 represents the novelty score distribution, 𝑓𝑓𝒉𝒉(𝒙𝒙�). The 20 

MVKDE bandwidths obtained were 0.653 and 0.651, which represent a good trade-off 21 

between avoiding false alarms and increasing detection resolution. 22 

The next step is to assess the measurements for scenario F1 over the resulting PDFs trained 23 

with measurements for healthy conditions. The projection of 30 measurements corresponding 24 

to F1 over pdf1 and pdf2 is shown in Figure 7. Similar results are obtained for pdf3 and pdf4. 25 

The measurements for F1 data show a very low score for all four novelty maps: < 0.01 in all 26 

models, which implies that the fault has a generalised impact throughout the shaft rotation. 27 

As result, the 30 full shaft turns are labelled as Novel. Following the proposed procedure, 28 

user supervision is required to inspect novel behaviour and label the data; the models are then 29 

re-trained to include any new scenario detected. 30 

 31 
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 1 

Fig. 6. Resulting pdf1, considering regions 1, dc to 30 Hz, and 5, 30 Hz to 60 Hz, both from 2 
0º to 90º, where * are measurements for validation. The boundary of Known data is 3 
represented by the solid line, while the boundary of Uncertain data is represented by the 4 
dotted line; the value of the resulting PDF is represented by the contour plot. 5 

 6 

Fig. 7. Evaluation of a fault scenario on the probability densities obtained for the different 7 
regions. Boundary of Known data is represented by solid lines, while boundary of Uncertain 8 
data is represented by dotted lines. The contour plot represents the value of the resulting 9 
PDFs: (a) pdf1, (b) pdf2 . 10 
 11 

4.2. Novelty detection: healthy and F1 scenarios 12 

The adaptability of the novelty maps to the novel fault scenario F1 is depicted in Fig. 8, 13 

where the pdf1 contour map can be seen. The same response results for pdf2, pdf3 and pdf4. It 14 

should be noted that the consideration of more data distributions modifies the novelty score. 15 

For instance, pdf1, formed initially by one single lobe, is restructured to enclose known 16 

distributions, thus, leading now to two lobes. Same contour maps of pdf1 are represented in 17 

Fig 9, where the boundary planes corresponding to Known, Uncertain and Novel data are 18 

detailed. 19 



 
 

16 

 1 

Fig. 8. Contour plot of pdf1 after including F1.  Boundary of Known data is represented by 2 
solid lines, while boundary of Uncertain data is represented by dotted lines; the value of the 3 
resulting PDF is represented by the contour plot. 4 

 5 

Fig. 9. Probability density function of regions 1 and 5 considering Hc and F1 data as Known 6 
patterns. Three zones are considered to divide the feature space to categorise the novelty 7 
degree according to the novelty score. 8 
  9 

Following experimental validation of the methodology, a batch of measurements for a 10 

second fault scenario, F2, are introduced. As illustrated in Fig. 10, this scenario is most 11 

noticeably detected in the novelty detection models pdf1 (Fig. 10.a) and pdf2 (Fig. 10.b). The 12 

resulting novelty scores can be interpreted on the basis of the models that detected the novel 13 

behaviour. In this case the F2 scenario only had an impact on the first half of the rotation 14 

cycle, from 0° to 180°. Twenty-nine of the 30 measurements are labelled as Novel in the 15 

second model; therefore, user supervision is required to inspect the new behaviour and label 16 

the data in order to further detect the cause of the fault. The models are then re-trained to 17 

incorporate the new scenario.  18 
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 1 

 2 

Fig. 10. Novelty detection models after the incorporation of the measurements corresponding 3 
to Hc and F1, *, into the Known data and resulting projections of F2 measurements, ◊, as a 4 
novel scenario. Known data boundary is represented by solid lines, while Uncertain data 5 
boundaries is represented by dotted lines. The value of the resulting PDFs is represented by 6 
the contour plot: (a) pdf1, (b) pdf2, (c) pdf3, (d) pdf4. 7 
 8 

 9 

Fig. 11. Contour plot of pdf1 after including F2. Boundary of Known data is represented by 10 
solid lines, while boundary of Uncertain data is represented by dotted lines; the value of the 11 
resulting PDF is represented by the contour plot. 12 

The adaptability of the novelty maps to the novel fault scenario F2 is depicted in Fig. 11. 13 

The same response results for the rest of the PDFs. In this last case, the novelty detection 14 

models do not incorporate a new lobe in the feature space but update the nearest lobe, in this 15 

case, the one resulting from the previous fault F1 data distribution. This implies that scenario 16 
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F2 has similar effects on the RMS value to F1, which is consistent with the induced 1 

malfunction, since F2 encompasses the same cam, C1, the malfunction considered in F1 plus 2 

a malfunction in the second cam, C2. 3 

4.3. Diagnosis: healthy, F1 and F2 scenarios 4 

In order to test the diagnosis model, 100 full shaft turns were analysed in scenarios Hc, F1 5 

and F2. Of these 300 turns, 70% were for training and 30% for testing. This procedure was 6 

carried out five times with five randomly selected training-test sets. The ANN hidden layer 7 

is based on the sigmoid activation function, and the training procedure follows a classical 8 

backpropagation algorithm[25]. The results of the diagnosis stage are presented in Table II, 9 

which gives the global classification accuracy and the accuracy per class. A global 10 

classification accuracy of 98% for all scenarios is achieved. It must be noted that most of 11 

misclassifications are originated due to faults F1 and F2, which was expected considering that 12 

F2 encompasses F1. 13 

Evaluation of diagnosis stage 
 Accuracy by class Global 
 Hc F1 F2  

Training accuracy 1.00 (±0.00) 0.99 (±0.01) 0.98 (±0.02) 0.99 (±0.01) 
Test accuracy 1.00 (±0.00) 0.98 (±0.01) 0.96 (±0.01) 0.98 (±0.01) 

Table II. Diagnosis stage assessment where accuracy and its standard deviation are shown 14 
individually for each scenario and global. 15 

4.4. Comparison of CBM and a classical approach 16 

To highlight the advantages of the proposed multi-modal novelty detection method, a 17 

comparison was performed with a classical approach consisting of a single novelty detection 18 

model trained with eight-dimensional vectors resulting from the feature calculation over the 19 

eight regions considered. In this case, the classical One-Class Support Vector Machine (OC-20 

SVM) with a Gaussian kernel was implemented. The novelty output categorisation was 21 

simplified to Novel and Known. 22 

The comparison was performed for the second stage of the novelty detection previously 23 

analysed, in which the Known scenarios are Hc and F1 and a Novel scenario F2 is presented. 24 

One hundred measurements for each of the three scenarios were used, so a total of 300 25 

measurements were considered. The three scenarios were grouped in three sets: training set, 26 

Known set and Novel set. For the training set, which contained the Hc and F1 data, 140 27 
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measurements were used; for the Known set, which contained the Hc and F1 data, 60 1 

measurements were used, and for the Novel set, which contained the F2 data, 100 2 

measurements were used. This same procedure was carried out five times considering 3 

random selection of the training-test set distributions. The following metrics were considered 4 

for performance comparison: 5 

• Total accuracy: The ratio between the measurements correctly classified from the novel 6 

and known sets, and the total number of measurements in order to estimate the global 7 

performance of the novelty detection model.  8 

• Novel set accuracy: The ratio between measurements correctly classified from the novel 9 

set, and the total number of measurements in such set in order to estimate the true positive 10 

ratio (TPR). 11 

• Known set accuracy: The ratio between measurements correctly classified from the 12 

known set, and the total number of measurements in such set in order to estimate the true 13 

negative ratio (TNR). 14 

The results obtained from the novelty detection stage with the proposed method and the 15 

classical method are presented in Table III. 16 

Comparison of novelty detection results 
 Classical method Proposed method 

Total accuracy 0.84(±0.05) 0.94(±0.05) 
Novel set accuracy 0.87(±0.07) 0.93(±0.04) 

Known set accuracy 0.79(±0.04) 0.96(±0.04) 

Table III. Comparison of the proposed multi-modal novelty detection method and a 17 
classical single novelty detection model. 18 

As can be seen, the proposed method delivers better results overall than the classical 19 

method: total accuracy increases by approximately 12%, Novel set accuracy by 20 

approximately 6%, and Known set accuracy by approximately 17%. After a five-fold cross-21 

validation to adjust the parameters of the OC-SVM, the classical approach tends to overfit 22 

the bimodal distribution of the data, leading to compact boundaries; therefore, the Known set 23 

accuracy decreases considerably while a high Novel set accuracy is obtained. The accuracies 24 

for both sets are improved under the proposed method. The novelty evaluation module and 25 

the multi-modal feature calculation approach showed greater robustness when configuration 26 
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parameters were tuned for each model according the data distribution of each part of the full 1 

shaft turn rather than applying a single model to characterise the complete turn.  2 

4.5. Comparison under different conditions 3 

Several tests were performed to further assess the proposed method under different 4 

conditions. First, the rotation speed of the induction motor attached to the camshaft was 5 

increased. To allow for the greater range of frequencies resulting from the increased rotation 6 

speed, the frequency band analysis was expanded from [0 to 60 Hz] to [0 to 90 Hz]. The 7 

results are shown in Table IV. Similar results were obtained under both conditions, although 8 

the change of operating conditions required a different region selection (in this case a higher 9 

frequency band) because the cam fault patterns were reflected differently. 10 

Comparison of working conditions 

 
Novelty detection Diagnosis 

1500 rpm 0.93(±0.05) 0.98(±0.01) 

3000 rpm 0.92(±0.02) 0.96(±0.03) 

Table IV. Comparison of the proposed multi-modal method results at different rotation 11 

speeds. 12 

Another test was introduced to assess the classification model used for diagnosis. In this 13 

case another classifier was tested which had similar results to the proposed neural network. 14 

The results shown in Table V, in addition to the cross-validation, indicate that 15 

misclassification errors are caused by the similarity of the faults, as explained in the 16 

manuscript, rather than by an overfitting of the models or incorrect selection of configuration 17 

parameters. 18 

Comparison of diagnosis stage 

  Neural network Multi-class SVM 

Training accuracy 0.99 (±0.01) 0.98 (±0.02) 

Test accuracy 0.98 (±0.01) 0.96 (±0.02) 

Table V. Comparison of multi-fault classifiers over the diagnosis stage. 19 
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To tune down the fault detectability of the method, a new test is included to assess the 1 

capability to detect the effort disturbances induced by the faults. It should be noted that the 2 

faults considered in this study (F1 and F2) correspond to a 25% decrease in the effort patterns 3 

of the cams (C1 and C2) by adjusting the thumbscrew related to the load grip using a 4 

dynamometric key. A test with lower effort patterns was included (15% and 10%), from 5 

which it can be concluded that the method (with the same configuration parameters and 6 

region selection) cannot efficiently detect changes in the effort pattern of less than 15%. This 7 

limitation has two primary causes: the low degree of reflection of the effort patterns in the 8 

NTFMs, and the fact that the feature calculated from the regions is not significantly different 9 

to the known conditions, as a result of which the novelty detection models are not capable of 10 

detecting them and the fault classifier cannot distinguish between them. The results are 11 

presented in Table VI. 12 

Comparison of effort patterns in F1 and F2 

 
Novelty detection Diagnosis 

25% decrease 0.93(±0.05) 0.98(±0.01) 

15% decrease 0.83(±0.05) 0.88(±0.04) 

10% decrease 0.52(±0.12) 0.66(±0.16) 

Table VI. Comparison of different effort patterns on the cams to tune down the fault 13 
detectability of the method. 14 

5. CONCLUSIONS 15 

This paper proposes a novel framework for incremental learning of a condition-monitoring 16 

and diagnosis method applied to a camshaft-based machine by analysing the stator current 17 

signatures of the electric motor. The new method has four key features: (i) It considers the 18 

NTFMs as a non-stationary signal analysis; the NTFM-based approach allows the estimation 19 

of high-performance features in order to detect and quantify deviations from healthy 20 

operation of the camshaft machine. (ii) It uses a successful novelty detection structure based 21 

on probabilistic models to detect two novel scenarios, F1 and F2. (iii) The learning procedure 22 

enables novel scenarios to be incorporated into the models to upgrade the knowledge 23 

available. (iv) A simple neural network algorithm is used for classification, which provides 24 

highly reliable results, since only known signatures are considered for diagnosis. The 25 
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experimental validation has been supported by three different conditions which represent an 1 

important set of scenarios: healthy (Hc), a single fault (F1), and two faults combined (F2). In 2 

all cases, the diagnosis results are satisfactory. In regard with the novelty analysis, half of the 3 

novelty detection models identified the novel fault scenarios as Known. This fact revealed as 4 

a clear example of the novelty detection difficulties under a practical application framework. 5 

When facing Unknown fault scenarios, it is important to consider multiple feature 6 

approaches, as proposed with the novelty detection model scheme, since the lower the 7 

number of features considered, the higher the risk of misidentification. Also, it must be 8 

considered that human supervision is critical once a novel scenario has been detected to check 9 

and identify the root-cause. It has been prioritized during the design of the proposed 10 

methodology the visualization of the underlying physical phenomena of the machine 11 

condition, thus, the proposed analysis is constrained to two-dimensional representations. It 12 

is in this sense that a supervisor is vital in such industrial machinery monitoring schemes 13 

since novel scenarios must be properly labelled. The proposed methodology shows a 14 

diagnostic accuracy of 98% and an increase of 12% in total novelty detection accuracy 15 

compared to a classical approach, which are high performance ratios. The obtained 16 

performance suggest that the proposed methodology could be useful for other rotating 17 

mechanical component faults and operating conditions. 18 
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