
1 
 

Orchestrating Virtual Slices in Data Centre 
Infrastructures with Optical DCN 

Albert Pagès1, Fernando Agraz1, Rafael Montero1, Giada Landi2, Marco Capitani2, 
Domenico Gallico3, Matteo Biancani3, Reza Nejabati4, Dimitra Simeonidou4 and Salvatore 

Spadaro1 

1: Universitat Politècnica de Catalunya (UPC), Spain 
2: Nextworks S.r.l, Italy 
3: Interoute S.P.A, Italy 

4: University of Bristol, UK 
albertpages@tsc.upc.edu 

 
Abstract—The emergence of new paradigms and services is pushing the limits of nowadays 
cloud infrastructures. It is a fact that current solutions lack in the flexibility and 
configurability to adapt to heterogeneous requirements coming from the 
applications/services to be supported over them. This results most of the time in severe 
underutilization of the underlying physical substrate. In light of this, newer approaches on 
resource provisioning and infrastructure management are needed. The Infrastructure as a 
Service (IaaS) paradigm is proposed as a solution to overcome these limitations. Thanks to 
IaaS, the physical infrastructure is partitioned onto virtual slices, encompassing 
heterogeneous resources (e.g. network, computing). Such a concept is expected to be 
harnessed by future data center (DC) infrastructures in order to cope efficiently with multi-
tenancy as well as heterogeneous application requirements. However, current DC networks 
(DCNs) impose sever limitations onto traffic handling to fully exploit this vision. In light of 
this, optical technologies are seen as prime candidates for realizing the high performance 
network fabrics that future DC architectures will need. Under such an umbrella, it becomes 
primordial to develop specific provisioning solutions that account for the particularities of 
the optical medium, while providing the means to efficiently slice the DC infrastructure. With 
all of these in mind, in this article we present a solution for orchestrating and controlling 
virtual slices in a DC scenario with optical intra-DCN, with the scope of optimizing the 
underlying physical infrastructure utilization. The benefits of the presented solution are 
demonstrated against legacy architectures through exhaustive experiments and simulations. 
 
Keywords—Data centers, optical networks, slicing, Software Defined Networking, resource 
orchestration, virtualization. 
 

I. INTRODUCTION 
Future cloud and telecom infrastructures are expected to meet very heterogeneous 

requirements in regards not only of resources to be provisioned, but also on the life cycle and 
dynamics of the applications and services that will have to be supported over them. Indeed, 
as we move towards future 5G mobile infrastructures there is an increasing interest on deeply 
integrating resource provisioning solutions with upper applications needs to deliver 
optimized services towards end users [1]. Such an approach raised the concept of vertical 
business, in which actors of the economic activity are identified (e.g. automotive industry). 
Then, such actors request to cloud and telecom infrastructure owners and service providers 



2 
 

for the necessary support to develop their own activities in the form of infrastructure 
resources, communication services and software functions. This substrate then becomes the 
foundation for service delivery towards the verticals' final users. 

 
In this scenario, data center (DC) infrastructures are an essential part in the whole 

service delivery chain. Thanks to the collaborative efforts of the thousands of servers hosted 
inside their premises, rich applications can be realized (e.g. cloud storage, search engines). 
Additionally, novel paradigms like Network Function Virtualization (NFV) [2] require the 
deployment of complex software functions, usually in the form of Virtual Machines (VMs) 
or computing resources, for which DC infrastructures provide the necessary support to 
materialize them. However, current DC architectures are far from prepared to accommodate 
the plethora of customers that will need to be supported, having all of them heterogeneous 
requirements in terms of resources, Quality of Service (QoS), degree of control over the 
employed resources, and so on. Indeed, multi-tenancy and infrastructure customization are 
limited due to current service provisioning structures, with infrastructure owners focusing on 
the services offered on top of their infrastructures. To overcome such limitations, 
infrastructure slicing is seen as the next big revolutionizer [3] towards efficient infrastructure 
management. By means of virtualization techniques, the physical substrate is partitioned in 
logical instances, which are then delivered as isolated virtual infrastructures to meet the 
necessities of the tenant. 

 
On another hand, DCs are also faced with increasing limitations on the traffic 

handling aspect, jeopardizing the performance of intra-DC networks (DCNs) for server-to-
server communications and, as a consequence, the whole service delivery process. Indeed, 
global IP traffic handled by DCs has increased at a compound annual growth rate (CAGR) 
of around 25% during the last years and is expected to reach about 20.6 ZB of traffic handled 
per year by 2021, for which around 71.5%, 13.6% and 14.9% of the traffic relates to the intra-
DC, inter-DC and DC-to-user share, respectively [4]. Such traffic growths are pushing the 
limits of current electronic-based DCN solutions, which cannot withstand the expected 
bandwidth, latency and scalability requirements of future DCN architectures, thus making it 
necessary to adopt other solutions. Optical network technologies are envisioned to overcome 
these limitations due to their superior scalability, bandwidth, latency and power consumption 
[5]. However, optical technologies require the presence of specialized control and 
management solutions to fully harness their capacities. 

 
Nevertheless, aside from the challenges posed, the use of optical networking 

technologies in conjunction with infrastructure slicing is envisioned to enable flexible, cost-
effective and tailored service provisioning in future DC infrastructures. The enabling 
technology for slicing is virtualization of the physical hardware. Through virtualization 
techniques, logical abstractions of the underlying physical hardware are obtained. Then, such 
abstractions are combined onto logical infrastructures, i.e. the slices, which will be exploited 
by external entities. Indeed, the concept of slicing leverages onto the Infrastructure as a 
Service (IaaS) paradigm, in which infrastructure owners offer part of their physical 
infrastructure for leasing by external entities as support to develop their own business model. 
However, the concept of slicing is far more ambitious. The idea of slice provisioning 
envisioned in future 5G cloud and telecom infrastructures does not only contemplate that 
physical resources in several segments (mobile, DC, core) are offered as elements to compose 



3 
 

the slice instances, but also the possibility to offer functions and applications that then will 
be integrated onto the virtual infrastructure, enriching the capacities of the slice. For example, 
the NFV paradigm is seen as an enabler of such concept. Moreover, slices are expected to 
have a dynamic life cycle, with the capacity to scale-up and down in both required resources 
and functions to meet the evolving needs of the applications and services that will run on top. 
Lastly, but not least, slices are expected to have their own control and management solutions, 
completely isolated from neighboring slices. In such a way, it would be possible to operate 
the slice as if it was owned by the external renting entity, opening up the possibility of 
dynamically on-boarding custom control and management solutions tailored to their specific 
needs. 

 
Generally speaking, slices are composed of multiple types of resources, 

encompassing both computing and networking capacities. In the context of the present work, 
and without loss of generality, it is assumed that slices request for a virtual infrastructure 
composed of virtual nodes with computational capacities expressed in the form of VMs. 
Then, these VMs are connected through a virtual network graph composed of virtual links 
stating the desired bandwidth. This virtual graph must then be allocated over the physical 
infrastructure, guaranteeing the isolation across slice instances. Such allocation (or mapping) 
requires namely to compute the embedding of two types of resources: nodes and links. The 
node mapping involves finding the most suitable servers to deploy the VMs while the link 
mapping involves the route calculation and allocation of network resources interconnecting 
the servers in which VMs are deployed. Such problem is known as the Virtual Infrastructure 
Embedding (VIE) problem and should be tailored to the characteristics of the underlying 
physical substrate. For instance, in the presence of optical network technologies, the link 
mapping involves a Route and Wavelength Assignment (RWA) problem which then must be 
solved [6]. Figure 1 depicts an example of the assumed slice provisioning and mapping onto 
an optical DC infrastructure, exemplifying how multiple slices can coexists thanks to the 
isolation provided by the virtualization of the physical substrate, thus truly achieving multi-
tenancy in a cloud environment. 
 

 
Fig. 1. Example of slicing over a DC infrastructure. 



4 
 

 
Traditional resource provisioning mechanisms in DCs are usually structured in two 

phases: a first phase where the decisions on which servers to deploy the VMs are taken and 
a second phase to decide the physical network resources to establish the connectivity between 
them. In this regard, resource provisioning is usually taken considering only the computing 
resources workloads (e.g. [7]-[9]), optimizing their load distribution [10]. However, such 
approach usually pays little to none regard to the status of the network resources 
interconnecting the servers, thus potentially leading to poor performance due to network 
congestion of the paths interconnecting them. In light of this, joint resource provisioning 
mechanisms, in which the server selection for the VMs also considers the network 
connectivity between servers, are a must in modern DC architectures. By means of a joint 
resource provisioning, it is possible for an overall optimization of the DC infrastructure, 
increasing the resource utilization and enhancing the service provisioning [11], [12]. Thus, 
resource orchestration becomes primordial in the context of virtual slice provisioning, in 
order to find the most optimized layout for the resources of the slice requests. Moreover, 
automatized resource orchestration can significantly improve the deployment time of slices, 
thus shortening the service time to market. 
 

All of these challenges, coupled with more dynamic traffic patterns as well as a 
paradigm shift towards deep integration of network resource onto the cloud [13], require that 
new DC management solutions must seek for a joint orchestration of both network and 
computing resources to optimize the physical resource utilization. Moreover, special focus 
on solutions tailored to deliver the necessary means to slice DC resources is needed. With 
these requirements in mind, we present a solution which encompasses state-of-the-art optical 
technologies for the intra-DCN network fabric as well as novel orchestration and control 
software solutions that enable the dynamic, on-demand, automatic and joint provisioning of 
both networking and computing resources over the physical DC infrastructure to fulfil the 
requirements of complex cloud services. The rest of the paper is structured as follows: 
Section II further reviews work found in the literature in regards of the VIE problem and 
control and orchestration architectures for DC environments. Next, Section III presents the 
proposed DC architecture, detailing the solutions adopted for dynamic management and 
control in the overall architecture as well as the developed algorithm for computing the joint 
resource allocation of virtual slice requests. Section IV thoroughly evaluates the presented 
solution from different perspectives, highlighting the benefits to slice allocation against 
legacy solutions. Finally, Section V draws the conclusions of the work. 
 

II. RELATED WORK 
 

A. Virtual Infrastructure Embedding (VIE) Problem 
 

Slice mapping, or the generic VIE problem, has been quite studied in the literature 
[14], [15] and several solutions have been proposed to provide a joint node and link mapping 
of slices, accounting for the requirements of the slice demands and the available resources at 
the network substrate. For instance, authors in [16] propose several exact and heuristic 
mechanisms for embedding virtual infrastructures in a generic electronic-based substrate 



5 
 

network, making use of graph extension techniques to decide the joint mapping of nodes and 
links. The scope of the optimization problem is to embed any incoming slice request with the 
minimal cost while balancing the load of the physical infrastructure. Other authors in [17] 
also propose several heuristic algorithms based on graph transformations to tackle the 
embedding of slices in generic electronic-based networks, with the aim of maximize the 
number of accepted slices and the operator’s revenues over the time. However, in both works, 
the only resource that is accounted for both physical and virtual nodes is CPU, not 
contemplating memory and storage resources, which would be the case in a more realistic 
scenario and would require different approach to account for the multi-dimensionality of the 
node embedding phase. 

 
With the rise of optical technologies at the DCN, new mapping mechanisms to fully 

harness their capabilities are a required. Additionally, when providing connectivity along an 
optical-based DCN, bandwidth allocation can greatly differ among different optical 
technologies (e.g. Wavelength Division Multiplexing (WDM), Elastic Optical Networks 
(EONs)). Thus, slice provisioning solutions must also account for the particularities of the 
underlying optical technology of the DCN. In this regard, several works have studied the VIE 
problem in optical networks and proposed slice embedding mechanisms accounting for 
different aspects related to optical networks in DC infrastructures. For instance, authors in 
[18] focus on the case of slice embedding in EONs, distinguishing the scenarios in which 
transparent or opaque connectivity services are required. A collection of exact and heuristic 
mechanisms is proposed, with the aim of minimizing the total number of frequency slots 
occupied on the network as well as the maximum number of frequency slots needed per link 
to satisfy the embedding of the slice requests.  

 
Focusing in the same scenario of EONs, authors in [19] propose both exact and 

heuristic mechanisms for online and offline embedding scenarios, with the aim of minimizing 
the cost of the embedding solution. In this case, the authors account for CPU, storage and 
memory resources for the node embedding phase. A similar modelling of the slices demands 
is following in [20], where authors focus more in the planning stage of an inter-DC scenario, 
in which both the necessary IT resources (CPU cores, storage and memory) of DC sites and 
the wavelengths at the WDM-based inter-DC network need to be determined to 
accommodate an already known slice demand set. 

 
Other aspects of the VIE problem not focusing purely on the resource utilization or 

efficiency of the embedding have been also studied, such as authors in [21], which tackled 
the energy consumption aspect when provisioning virtual networks in optical DCs. Energy 
consumption is becoming a very serious challenge in nowadays’ DCs and many research 
efforts are devoted to provide solutions to reduce it. To this goal, the authors proposed an 
embedding mechanism that minimizes the number of electronic ports used when deploying 
a virtual network in a hybrid electrical/optical DC infrastructure. Having reviewed these 
several works surrounding the VIE topic, we provide a table summarizing their main traits, 
highlighting the aspects that have been studied, such as the network scenario and the scope 
of the optimization goal. 

  
 
 



6 
 

TABLE I. SUMMARY OF VIE-RELATED WORK 
Work Mechanism Joint 

embedding 
Network 
technology 

Node 
resources 

Scenario Optimization 
goal 

Multi-
technology 
embedding 
depending 
on demand 
requirements 

[16] Exact; 
heuristic 

Yes Generic 
electronic-
based 

Only CPU Online Minimal cost; 
load 
balancing 

No 

[17] Heuristic Yes Generic 
electronic-
based 

Only CPU Online Maximize 
demand 
acceptance; 
maximize 
revenues 

No 

[18] Exact; 
heuristic 

Yes EONs Only CPU Online Minimum use 
of frequency 
slots 

No 

[19] Exact; 
heuristic 

Yes EONs CPU; 
storage; 
memory 

Online; 
offline 

Minimum 
embedding 
cost 

No 

[20] Exact; 
heuristic 

Yes WDM-
based 
optical 
networks 

CPU; 
storage; 
memory 

Offline Minimum 
resources to 
be equipped 
at substrate 

No 

[21] Heuristic No; only 
virtual link 
mapping is 
considered 

Hybrid: 
WDM-
based 
optical 
networks; 
Electronic 
packet 
switching 

Not 
considered 

Online Minimum 
resource 
consumption 

Yes 

 
One important aspect that can be noted is that the majority of work related to VIE 

simplifies the aspect of the node embedding problem, that is, the multi-dimensional notion 
of resource requirements (CPU, storage, memory) is not properly tackled. Another important 
aspect is the selection of the resources in which slices are embedded in awareness of their 
needs. That is, in the presence of a data plane composed of hybrid networking technologies, 
it is of the most relevance to select the most suitable technology to satisfy the requirements 
of the slice, considering how the selection contributes to the optimization goal at hand. In 
this regard, a substantial number of studies found in the literature focus in scenarios in which 
a single network technology is present, thus, the embedding algorithm does not distinguish 
between networking resources based on their properties and the requirements of virtual links. 
With all of these in mind, in the present work, for the slice embedding calculation we propose 
an embedding algorithm that accounts for the multi-dimensionality of resource requirements 
at virtual nodes, tying the selection of the physical node according to the balanced usage of 
CPU, storage and memory resources inside servers. Moreover, for the virtual link mapping, 
our proposed heuristic allocates the most suitable network path according to their bandwidth 
requirements. In this regard, pure optical switching paths for the inter-rack route are selected 
for high bandwidth virtual links while paths with intermediate nodes in which opto-electronic 



7 
 

conversion capabilities are present are relegated to less bandwidth hungry virtual links, all in 
all, making the best use of the proposed DCN fabric. The details of the said fabric and of the 
embedding algorithm will be explained in latter sections. 

 
B. Orchestration and Control Architectures 
 
 From an architectural perspective, there are several works that have proposed 
solutions to control and manage resources in optical networks. For instance, authors in [22] 
experimentally demonstrated a control architecture based in Software Defined Networking 
(SDN) to provide slices across EONs with the scope of implementing survivable services. In 
this regard, the SDN-based control layer is able to build on-demand QoS-aware restoration 
paths for the provisioned virtual slices. Similarly, and focusing also in generic optical 
networks, authors in [23] propose an SDN control schema to provide connectivity to virtual 
tenants across a shared EON with the goal of high availability in mind. Note that these works 
focus only on the control aspect of the network, hence, no orchestration solution is explored. 
More in the line of resource orchestration, authors in [24], presented an architecture 
composed of both an orchestration layer and an SDN control layer. The main goal of the 
presented architecture is to enable the provisioning and reconfiguration of virtual network 
slices across multi-technology transport networks. Thus, resource orchestration is essential 
to tailor the slice embedding to the particularities of each technological domain. 
 

As for solutions providing control and/or orchestration architectures in optically 
interconnected DCs, both intra- and inter-DC, there exists several works that provided 
architectural designs and experimental validations. For instance, authors in [25] proposed a 
novel SDN-based Optical Packet Switching (OPS) DCN architecture that allowed for the 
automatic provisioning of connections aiming to improve the QoS of the overall system. 
Authors in [26] leverage on this work and opened the connectivity service delivery as an 
external service to be exploited by tenant applications, enabling the possibility to provide DC 
slices. More focused in the inter-DC scenarios, authors in [27] experimentally evaluated a 
control architecture to provide virtual slices across DCs connected through an inter-DCN 
based on EONs. To enable a more efficient utilization of the multi-layered IP/optical data 
plane, the authors integrate a cross-stratum embedding algorithm in the control schema to 
account for the particularities of the IP layer and the optical substrate. On the lines of this 
work, authors in [28] provide an architecture capable to orchestrate slices for the 
interconnection of DC spread over several network operators. To this end, the authors provide 
both control and orchestration solutions to efficiently deal with the multi-segment/operator 
scenario. Like in the previous sub-section, we provide a table summarizing the reviewed 
work, highlighting their main contributions in regards of control and orchestration solutions.  
 

TABLE II. SUMMARY OF CONTROL AND ORCHESTRATION 
ARCHITECTURES-RELATED WORK 

Work Control 
layer 

Orchestration 
layer 

Network 
technology 

Single-
/Multi-
segment 

Node 
resources 

Cross-
stratum and 
cross-
technology 
orchestration 



8 
 

[22] Yes No Elastic optical 
networks 

Single Not 
present 

No 

[23] Yes No Elastic optical 
networks 

Single Not 
present 

No 

[24] Yes Yes Hybrid: EONs; 
WDM-based optical 
networks; OPS 

Multi Not 
present 

Yes; cross-
technology 

[25] Yes No Hybrid: WDM-
based optical 
networks; OPS 

Single Not 
present 

No 

[26] Yes No Hybrid: WDM-
based optical 
networks; OPS 

Single Not 
present 

No 

[27] Yes Limited Hybrid: EONs; IP 
networks 

Multi Present; 
not 
specified 

Yes; cros-
stratum 

[28] Yes Yes Hybrid: EONs; IP 
networks 

Multi Present; 
not 
specified 

Yes; cross-
segment 

 
Although there are several solutions that tackle the control and orchestration of 

network and IT resources in optical-based intra-DCN scenarios, there are still several gaps 
that need to be covered. For instance, in the presence of both IT and network resources, it is 
important to provide solutions that not only orchestrate jointly the deployment of the whole 
virtual slice, but also automatize the workflow at all levels. Is not enough to configure and 
orchestrate the optical path that will support the physical connectivity of the slices, but also 
provide the means to automatically and transparently configure the electrical part of the 
network (the IP network), keeping track of the employed IP resources (e.g. network and sub-
network addressing spaces and ports). Additionally, in the presence of hybrid data planes, 
the orchestration and control layers must be able to select and configure the most appropriate 
resources to be accommodated to virtual slice according to their needs, be them bandwidth 
or latency, to name some. Having all of these in mind, we provide a solution for slice 
deployment in intra-DCN scenarios, combining the capacities of specialized software layers 
to account for the characteristics of the underlying physical infrastructure with an optical 
DCN fabric for low latency, high throughput and energy efficient communication delivery 
across the whole DC. The proposed solution is intended to aid on the creation of slice 
instances in support of 5G services, for which DC integration is essential in the holistic vision 
of network and IT infrastructures convergence to deliver advanced and highly customizable 
services [29]. Indeed, as exemplified previously, advanced paradigms expected to be 
harnessed in future 5G infrastructures, such as NFV, require the support of DCs, as network 
processing and functions move from network nodes to general processing hardware (i.e. 
servers) and virtualization becomes more and more prominent. Thus, high performance DC 
slices and architectures for they delivery are a must. With all this in mind, the next section 
introduces the solution adopted, along with the rest of its architecture. 
 

III.  ARCHITECTURE FOR SLICE PROVISIONING 
 



9 
 

Slice provisioning is a daunting operation, which requires specialized solutions to 
fully exploit the capabilities of the physical infrastructure. This, in conjunction with the rising 
trend to bring optical network technologies inside DCs, pledges for new architecture designs 
able to provide virtual slices combining both computing and network resources in an 
automated and efficient way. For this, we introduce our proposed architecture for future DCs 
and the adopted approaches to realize a joint orchestration of DC resources when deploying 
cloud services (e.g. slice instances). Note, however, that the current work focuses on the 
control and orchestration layers, which are the main novelty along with the developed 
algorithm for joint slice mapping. Thus, subsequent sections will emphasize the 
functionalities of the developed software layers and how they collaborate to deliver virtual 
slice provisioning in optical DCs. Nevertheless, a brief description of the data plane along 
with performance evaluations including all layers are also supplied to provide an overall 
picture of the developed architecture. With this, Figure 2 depicts a schematic of the 
architecture, summarizing the main layers: data (bottom), control (middle) and orchestration 
(top).   

 

 
Fig. 2. Proposed DC architecture. 

 
Starting from the bottom, a novel state-of-the-art optical data plane to realize the 

intra-DCN is employed. In order to cope with future DC traffic requirements in regards of 
improved bandwidth, scalability and latency, such DCN encompasses high-radix Top of the 
Rack (ToR) switches to enable the intra-rack communication [30] as well as large port count 
optical fiber switches for the inter-rack communication [31]. In summary, servers hosted in 
the racks are connected by means of Ethernet cables to a single ToR node, one per rack. Such 
node then processes the packets coming from the servers and aggregates them onto a single 
optical circuit connection to be transferred between a source and a destination pair of racks. 
To enable such connectivity, ToRs are connected by fiber links to neighboring ToR nodes 



10 
 

inside the cluster and to an optical fiber switch node, which enables bypassing unnecessary 
ToR switches whenever high throughput and low latency communications are needed. Then, 
fiber switches are connected in an arbitrary flat fiber network (only one level of switches is 
contemplated) that spans the whole DC, thus enabling the inter-rack/cluster communication 
between servers. Overall, such data plane provides a high performance flat optical network 
architecture, which overcomes the main challenges of nowadays electronic-based DCN 
solutions. 

 
Second, to provide a dynamic configuration of the optical data plane, an SDN control 

layer is provided, which allows for the on-demand provisioning of end-to-end connectivity 
across the DCN in support of virtual slice creation. In this regard, all configuration decisions 
and operations are performed in a central controller while the communication with the data 
plane devices is achieved through means of the OpenFlow (OF) protocol. Hence, all control 
logic is removed from the data plane, which becomes a simple data forwarding layer, and 
condensed at the SDN controller. Several platforms offer the core functionalities for SDN-
based control layer development and implementation (e.g. ONOS, FloodLight, Ryu, etc.). 
Among them, in our solution, the OpenDaylight (ODL) SDN platform is employed, based 
on its modularity and ease of extension [32]. In this regard, some core functionalities of ODL 
have been extended to cope with the presence of optical equipment while new ones have been 
developed. In essence, the extended modules are: the ODL DLUX web interface to cope with 
the optical DCN representation; the Topology Manager (TM) to maintain the topology of the 
physical DCN; the Virtual Tenant Network (VTN), responsible for the configuration of the 
Open Virtual Switch (OVS) instances at the physical servers, which act as a virtual bridge to 
interconnect the VMs to the physical DCN; and the OF plugin and protocol, along with OF-
capable agents for the optical nodes, which augment the OF version 1.0 specification [33] 
using the optical extensions document [34]. 

 
As for the newly introduced modules, they are: the Optical Resource Virtualization 

Manager (ORVM), whose mission is to support the virtualization of the optical nodes and 
creating the optical segment of the virtual network slice requests; the Optical Provisioning 
Manager (OPM), which is responsible for the creation and destruction of optical connections 
at the data plane. In this regard, such functionalities are invoked by the ORVM according to 
the desired characteristics of the connections to be configured. Then, The OPM will send the 
appropriate OF rules to the physical devices in accordance with the characteristics of the 
connection; and the Path Computation Manager (PCM), which is responsible to determine 
the route to be followed by optical connections being configured through the OPM. To do 
so, it consumes the topological information managed by the TM and applies simple routing 
algorithms to determine the end-to-end route across the optical segment of the DCN. An 
additional operative mode for the PCM has been also developed to allow for the joint 
computing and network resource provisioning according to decisions taken at the 
orchestration layer (mainly the Algorithms module). In such a case, the PCM, instead of 
calculating the routes, requests them directly to the Algorithms module at the orchestrator 
through a dedicated interface, which responds with the route details according to the decided 
slice mapping. 

 
Lastly, to guarantee an overall optimization of the DC resources, both computing and 

network, a novel orchestration layer in aims to coordinate the provisioning of resources for 



11 
 

virtual slices is provided. The main purpose of such layer is to act as a Virtual Infrastructure 
Manager (VIM), administrating the underlying control and data layer as well as enabling the 
cooperation among infrastructure controllers and resource configuration software to deliver 
complex services towards upper layers (i.e. the application/service layer). Several 
orchestrator and VIM platforms can be found, both commercially (e.g. Amazon AWS) or in 
open source/community formats (e.g. CloudStack). In the present architecture, OpenStack is 
used as the platform of choice [35]. Through a common Shared Services layer, the different 
OpenStack services can consume DC resources, easily leading to resource provisioning 
automation. Nevertheless, like in the control layer, to fully exploit the optical medium while 
providing the necessary means for dynamic and automatized slice provisioning, extensions 
to some OpenStack services have been developed, while introducing some new 
functionalities and modules.  

 
Starting from the employed core OpenStack services they mainly are: Horizon, which 

is the canonical implementation of OpenStack web-based dashboard, allowing requesting 
any kind of virtual resources (e.g. VMs, networks, etc.). In the current implementation, 
Horizon has been extended to support the graphical definition of slices (resources and 
topology). A REST interface has been developed to support Create, Read, Update and Delete 
(CRUD) operations of slice instances, interconnecting the extended dashboard with the 
newly designed Algorithms module, which will be detailed later; Nova, which is the service 
responsible for the whole VM provisioning process; Neutron, which is employed for the 
instantiation of the Layer 2 logical network associated to the slice, interconnecting the VMs 
so they can exchange IP traffic; and Heat, which is OpenStack orchestration service and 
coordinates the communication among other subordinate services (such as Nova and 
Neutron) to correctly infer the slice resource dependency and instantiate them in order. 

 
However, Heat by itself does not provide any capability to decide on the particular 

mapping of the virtual resources onto the physical ones. Additionally, Heat is completely 
unaware of the peculiarities of the underlying physical network infrastructure. For all these 
reasons, we introduced a newly designed Algorithms module, whose main purpose is to 
determine the optimal mapping of slices onto the physical infrastructure and interact with 
OpenStack and ODL for resource provisioning. At its core, the Algorithms module 
implements several algorithms that calculate the allocation of slice resources onto the DC 
infrastructure. Thanks to them, an overall optimization of the resources placement is 
achieved, completely adapted to the particularities of the underlying data plane, and hiding 
all the interactions with OpenStack and the control layer from the slice requester. A database 
is employed to give persistence to the successful slice requests as well as store details about 
the physical route selection for the virtual links, which will be later consumed by the control 
layer upon request. 

 
With such software layers, it is possible to automate the provisioning of slice 

instances across the DC infrastructure. A schematic of the provisioning workflow is detailed 
in Figure 3. Such process starts from the orchestrator, particularly at the dashboard, which 
provides a graphical interface to configure the features of the desired slice (step 1). Then, the 
dashboard contacts the Algorithms module (step 2), which uses topological information 
previously collected from the TM of the Controller and Nova to compute an optimized slice 
layout. The Algorithms module then triggers the creation of the stack (i.e. the collection of 



12 
 

virtual resources, such as the IP network and the VMs) by contacting the Heat module of 
OpenStack, passing down a template containing the details of the stack (step 3). With this, 
Nova deploys the IT infrastructure, i.e. the VMs (step 5), and Neutron sends the network 
information to the VTN at the controller to create the IP network associated to the slice (step 
4). At this point, however, the physical paths associated to the virtual links interconnecting 
the VMs have not been configured yet. Following the SDN paradigm, these paths are 
configured when traffic exchanges (e.g. IP) between VMs are required. Once the first traffic 
packet reaches the OVS instance, the packet is sent to the Controller where it is processed by 
the VTN (steps 6 and 7). The VTN contacts the ORVM, which triggers the configuration of 
the physical paths associated to the slice (step 8). The ORVM requests the path provisioning 
to the OPM, which in turn requests the path to the PCM (step 9). In our orchestrator-based 
approach, instead of computing the path, the PCM requests it to the Algorithms module (step 
10). Finally, the OPM configures the flows in the physical network devices involved in the 
path by means of the OF plugin module (step 11b) and the VTN configures the OVS instances 
at the servers (step 11a). 

 

 
Fig. 3. Workflow for slice provisioning. 

 
A. Slice Embedding Optimization Algorithm 

 
Besides the automated slicing provisioning, one of the key points of the presented 

architecture is the inclusion of a novel Algorithm module, which allows for the optimal slice 
embedding onto the physical substrate (i.e. the resource selection). In order to overcome the 
limitations posed by traditional embedding mechanisms, where resource allocation for VMs 
is done without taking into account the status of the network, the developed algorithm 
incorporates network awareness onto the embedding decisions. Moreover, to tailor the 
mapping of the slices to the presented optical network and to the characteristics of the slice 



13 
 

(mainly virtual link bandwidth), the algorithm select the most suitable optical path according 
to the current status of the network resources. With these considerations in mind, in this 
section, we detail the mechanism employed to decide the mapping of the slices. Pseudo-code 
1 summarizes the main actions taken by the algorithm. Before proceeding with the 
explanation of the pseudo-code, let us introduce the main employed notation, being 𝐺𝐺 =
(𝑁𝑁,𝐸𝐸) the graph of the DCN, with 𝑁𝑁 the set of network nodes (ToRs and fiber switches) and 
𝐸𝐸 the set of fiber links; 𝑑𝑑 the slice request, represented by the virtual graph 𝐺𝐺𝑣𝑣 = (𝑁𝑁𝑣𝑣,𝐸𝐸𝑣𝑣), 
with 𝑁𝑁𝑣𝑣 the set of VMs and 𝐸𝐸𝑣𝑣 the set of virtual links. Each VM requests for a number of 
CPU cores, memory and storage equal to 𝐶𝐶𝑛𝑛𝑣𝑣, 𝑀𝑀𝑛𝑛𝑣𝑣  and 𝐻𝐻𝑛𝑛𝑣𝑣 , respectively, while each virtual 
link requests for a bandwidth equal to 𝐵𝐵𝑒𝑒𝑣𝑣; 𝑅𝑅 as the set of racks in the DC, connected to the 
DCN through the ToRs; and 𝑆𝑆𝑟𝑟 the set of servers in a rack, with each server being equipped 
with a total number of CPU cores, memory and storage equal to 𝐶𝐶𝑠𝑠, 𝑀𝑀𝑠𝑠and 𝐻𝐻𝑠𝑠, while 𝐶𝐶𝑠𝑠𝑎𝑎, 𝑀𝑀𝑠𝑠

𝑎𝑎 
and 𝐻𝐻𝑠𝑠𝑎𝑎 account for the available resources at a given time. Lastly, we define 𝛿𝛿𝑛𝑛+ and 𝛿𝛿𝑛𝑛𝑣𝑣

+  as 
the set of outgoing links from physical node 𝑛𝑛 and virtual node 𝑛𝑛𝑣𝑣, respectively, and 𝐵𝐵𝑒𝑒𝑎𝑎 the 
available bandwidth of physical link 𝑒𝑒 at a given time. 
 

Algorithm 1: Slice allocation algorithm pseudo-code 
Input: 𝑑𝑑, 𝐺𝐺 
Output: Slice mapping 
Phase 1: Pre-processing 
1:    𝐺𝐺 ← populate with status and topological information 
2:    𝑃𝑃 ← end-to-end paths in 𝐺𝐺 among all pairs of ToRs 
Phase 2: Slice mapping 
Phase 2.a: VM mapping 
3:    Sort VMs in descending order according to most restrictive resource requested 
4:    𝑅𝑅𝑑𝑑 ← ∅    //Racks employed to map slice 
5:    For each 𝑛𝑛𝑣𝑣 in 𝑁𝑁𝑣𝑣 do 
6:        Sort racks in 𝑅𝑅 in descending order according to Φ𝑛𝑛𝑣𝑣

𝑟𝑟  
7:        mapped ← false    //Boolean to indicate if the VM has been mapped 
8:        For each 𝑟𝑟 in 𝑅𝑅 do 
9:            If not mapped and 𝑟𝑟 not in 𝑅𝑅𝑑𝑑 then 
10:              Find server 𝑠𝑠 in 𝑆𝑆𝑟𝑟  with available resources that minimizes Δ𝑛𝑛𝑣𝑣

𝑠𝑠  
11:              If found then 
12:                  mapped ← true 
13:                  add 𝑟𝑟 to 𝑅𝑅𝑑𝑑 
14:                  add 𝑛𝑛𝑣𝑣 mapping to total slice mapping 
15:                  update server status 
16:    If all VMs are mapped then 
              Phase 2.b: Virtual link mapping 
17:        For each 𝑒𝑒𝑣𝑣 in 𝐸𝐸𝑣𝑣 do 
18:            If 𝐵𝐵𝑒𝑒𝑣𝑣 greater or equal than 50% port capacity then 
19:                Find candidate path in 𝑃𝑃 including only fiber switches 
20:                If found then 
21:                    add 𝑒𝑒𝑣𝑣 mapping to total slice mapping 
22:                    update network status 
23:                Else 
24:                    Find candidate path in 𝑃𝑃 including only ToR switches 
25:                    If found then 
26:                        add 𝑒𝑒𝑣𝑣 mapping to total slice mapping 
27:                        update network status 
28:            Else 
29:                Find candidate path in 𝑃𝑃 including only ToR switches 
30:                If found then 
31:                    add 𝑒𝑒𝑣𝑣 mapping to total slice mapping 
32:                    update network status 
33:        If all virtual links are mapped then 
34:            Return slice mapping 
35:        Else 



14 
 

36:            Slice blocked 
37:    Else 
38:        Slice blocked 

 
Essentially, the algorithm is based on an adaptive greedy procedure. In more detail, 

the algorithm firstly constructs the DCN graph, including the available servers connected at 
the ToRs, gathering information from Nova at OpenStack and the TM at ODL. Once 
constructed, the algorithm calculates the set of candidate paths in the DCN employing a K-
Shortest Path (SP) routing mechanism, using the length of the paths in hops as the metric. A 
Depth First Search (DFS) procedure is employed to determine the routes. To deal efficiently 
with multi-fiber scenarios, a variation of the DFS is employed, in which the exploration is 
not done through individual links but instead through the fiber bundles between adjacent 
nodes. Then, the distinct routes are calculated as a combination of the sequence of bundles 
and the particular fiber within it. Once done, it proceeds with the slice mapping. 

 
As a first step, the VMs requested by the slice are sorted in descending order 

considering the most restrictive resource in terms of server occupation, that is, the VMs that 
have the highest resource demand when compared to the nominal capacity of the servers 
precedes in the ordering. Once ordered, the mechanism iterates through them to find an 
appropriate mapping satisfying their resource requirements. As a first step, the average 
aggregated available capacity in terms of computing resources (CPU cores, storage and 
memory) per rack is calculated. Additionally, the outgoing available network capacity from 
the rack is also computed. The two values are then combined following a weighted product, 
accounting also for the resource requirements imposed by the VM under consideration. The 
exact way in which the metric is calculated is shown below:  

 
Φ𝑛𝑛𝑣𝑣
𝑟𝑟 = 𝛼𝛼 ∙ 𝑇𝑇𝑛𝑛𝑣𝑣

𝑟𝑟 + 𝛽𝛽 ∙ 𝑊𝑊𝑛𝑛𝑣𝑣
𝑟𝑟  

with: 
 

T𝑛𝑛𝑣𝑣
𝑟𝑟 =

⎩
⎪⎪
⎨

⎪⎪
⎧ −∞ 𝑖𝑖𝑖𝑖 �𝐶𝐶𝑠𝑠𝑎𝑎

𝑠𝑠∈𝑆𝑆𝑟𝑟

< 𝐶𝐶𝑛𝑛𝑣𝑣  𝑜𝑜𝑜𝑜 � 𝑀𝑀𝑠𝑠
𝑎𝑎

𝑠𝑠∈𝑆𝑆𝑟𝑟

< 𝑀𝑀𝑛𝑛𝑣𝑣  𝑜𝑜𝑜𝑜� 𝐻𝐻𝑠𝑠𝑎𝑎
𝑠𝑠∈𝑆𝑆𝑟𝑟

< 𝐻𝐻𝑛𝑛𝑣𝑣

0 𝑖𝑖𝑖𝑖 �𝐶𝐶𝑠𝑠𝑎𝑎
𝑠𝑠∈𝑆𝑆𝑟𝑟

= 𝐶𝐶𝑛𝑛𝑣𝑣  𝑜𝑜𝑜𝑜 �𝑀𝑀𝑠𝑠
𝑎𝑎

𝑠𝑠∈𝑆𝑆𝑟𝑟

= 𝑀𝑀𝑛𝑛𝑣𝑣  𝑜𝑜𝑜𝑜 � 𝐻𝐻𝑠𝑠𝑎𝑎
𝑠𝑠∈𝑆𝑆𝑟𝑟

= 𝐻𝐻𝑛𝑛𝑣𝑣

1
3
�
∑ 𝐶𝐶𝑠𝑠𝑎𝑎𝑠𝑠∈𝑆𝑆𝑟𝑟 − 𝐶𝐶𝑛𝑛𝑣𝑣

∑ 𝐶𝐶𝑠𝑠𝑎𝑎𝑠𝑠∈𝑆𝑆𝑟𝑟
+
∑ 𝑀𝑀𝑠𝑠

𝑎𝑎
𝑠𝑠∈𝑆𝑆𝑟𝑟 − 𝑀𝑀𝑛𝑛𝑣𝑣
∑ 𝑀𝑀𝑠𝑠

𝑎𝑎
𝑠𝑠∈𝑆𝑆𝑟𝑟

+
∑ 𝐻𝐻𝑠𝑠𝑎𝑎𝑠𝑠∈𝑆𝑆𝑟𝑟 − 𝐻𝐻𝑛𝑛𝑣𝑣

∑ 𝐻𝐻𝑠𝑠𝑎𝑎𝑠𝑠∈𝑆𝑆𝑟𝑟
�  𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 

 



15 
 

W𝑛𝑛𝑣𝑣
𝑟𝑟 =

⎩
⎪
⎪
⎨

⎪
⎪
⎧ −∞ 𝑖𝑖𝑖𝑖 � 𝐵𝐵𝑒𝑒𝑎𝑎

𝑒𝑒∈𝛿𝛿𝑛𝑛+
< � 𝐵𝐵𝑒𝑒𝑣𝑣

𝑎𝑎

𝑒𝑒∈𝛿𝛿𝑛𝑛𝑣𝑣
+

0 𝑖𝑖𝑖𝑖 � 𝐵𝐵𝑒𝑒𝑎𝑎

𝑒𝑒∈𝛿𝛿𝑛𝑛+
= � 𝐵𝐵𝑒𝑒𝑣𝑣

𝑎𝑎

𝑒𝑒∈𝛿𝛿𝑛𝑛𝑣𝑣
+

∑ 𝐵𝐵𝑒𝑒𝑎𝑎𝑒𝑒∈𝛿𝛿𝑛𝑛+ − ∑ 𝐵𝐵𝑒𝑒𝑣𝑣
𝑎𝑎

𝑒𝑒∈𝛿𝛿𝑛𝑛𝑣𝑣
+

∑ 𝐵𝐵𝑒𝑒𝑎𝑎𝑒𝑒∈𝛿𝛿𝑛𝑛+
 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 

 
With such metric, the racks are then sorted in descending order. In such a way, the 

algorithm prioritizes the most free racks while also accounting for the availability of network 
resources, which, if lacking, would lock the whole embedding procedure. The parameters 𝛼𝛼 
and 𝛽𝛽 are employed to tune the sorting of the racks depending on the actual allocation policy 
in the DC. Once sorted, the algorithm iterates through them and selects the first available 
server within the rack that minimizes the following metric: 

 

Δ𝑛𝑛𝑣𝑣
𝑠𝑠 =

1
3
�
𝐶𝐶𝑠𝑠𝑎𝑎 − 𝐶𝐶𝑛𝑛𝑣𝑣

𝐶𝐶𝑠𝑠
+
𝑀𝑀𝑠𝑠
𝑎𝑎 − 𝑀𝑀𝑛𝑛𝑣𝑣
𝑀𝑀𝑠𝑠

+
𝐻𝐻𝑠𝑠𝑎𝑎 − 𝐻𝐻𝑛𝑛𝑣𝑣

𝐻𝐻𝑠𝑠
� 

 
In this regard, the algorithm minimizes the number of occupied servers while 

searching for the server that provides the tightest fit for it. In this process, the algorithm 
avoids mapping two VMs belonging to the same slice onto servers of the same rack. In more 
detail, looking at the pseudo-code, the algorithm firstly initializes a set named 𝑅𝑅𝑑𝑑, whose 
purpose is to track the different racks employed to map the slice instance, thus, avoiding their 
repetition. This is mainly done to provide some degree of resilience against rack failures, thus 
rack diversity must be encouraged. If all the VMs are successfully mapped, it proceeds with 
the mapping of the virtual links. 

 
For this, it iterates over all virtual links of the slice instance aiming to find enough 

lightpaths to satisfy their bandwidth requirements. For a particular virtual link, it seeks the 
candidate path set 𝑃𝑃 for the physical paths that connect the racks onto which the endpoints 
of the virtual links have been mapped. For the path selection, the algorithm checks the 
requested bandwidth by the virtual link. If it is superior to the 50% of the maximum outgoing 
capacity at the ToR optical ports, a path incorporating only fiber switches as intermediate 
nodes will be prioritized. Otherwise, optical paths containing only ToRs as intermediate 
nodes will be selected. Note that, for the first case, if such available path is not found, a path 
containing only ToRs will be selected as an alternative, to avoid unnecessary virtual link 
blocking. With such considerations, the mechanism iterates through all virtual links and 
potential candidate paths and selects the path complaint with the preferred technology and 
the availability of end-to-end bandwidth. Once all virtual links are mapped, a satisfactory 
mapping of the slice has been found and its details are returned. 

 
In what follows, we will provide a time complexity analysis of the proposed heuristic, 

considering the internal operations and mechanisms employed. As a first step, the algorithm 
computes all the candidate physical routes between rack pairs in the DC. This translates to 
having |𝑅𝑅|∙(|𝑅𝑅|+1)

2
 different source-destination pairs for which route calculations are needed. 



16 
 

Considering that a DFS procedure is employed for the route calculation, for which the 
average time complexity is equal to 𝒪𝒪(|𝑁𝑁| + |𝐸𝐸|), the time complexity of the route 
calculation between rack pairs can be approximated to 𝒪𝒪 �|𝑅𝑅|·(|𝑅𝑅|−1)

2
· (|𝑁𝑁| + |𝐸𝐸|)�.  

 
Then, the algorithm proceeds with computation of the slice mapping, which is divided 

in two main phases: VM mapping and virtual link mapping. For the VM mapping, the 
algorithm first sorts the VMs according to the most restrictive resource that they are 
requesting, as explained before, employing the well-known Timsort procedure. Next, it 
essentially iterates among the different VM, rack and server combinations to find a suitable 
server to deploy the VM, sorting in each iteration the racks according to the previously 
described metric. Thus, the time complexity of the VM mapping can be approximated as 
𝒪𝒪�|𝑁𝑁𝑣𝑣| ∙ log|𝑁𝑁𝑣𝑣| + |𝑁𝑁𝑣𝑣| ∙ (|𝑅𝑅| ∙ log|𝑅𝑅| + |𝑅𝑅| ∙ |𝑆𝑆𝑟𝑟|)�. 

 
As for the virtual link mapping, the algorithm iterates through all virtual links to find 

a suitable candidate physical path to fulfil their bandwidth requirements. Defining as 𝑃𝑃𝑒𝑒𝑣𝑣���� ⊆
𝑃𝑃 the average set of candidate paths per virtual link, the algorithm has to repeat this operation 
a number of times equal to |𝐸𝐸𝑣𝑣| · �𝑃𝑃𝑒𝑒𝑣𝑣�����. Then, for each of the candidate paths, the algorithm 
has to check for the available bandwidth at the path, which translates on having to check the 
available bandwidth for all physical links in the path, requiring at most ℎ𝑝𝑝��� operations, where 
ℎ𝑝𝑝��� denotes the average length in hops for a path between racks. Thus, the complexity of the 
virtual link mapping phase can be approximated to 𝒪𝒪�|𝐸𝐸𝑣𝑣| · �𝑃𝑃𝑒𝑒𝑣𝑣����� · ℎ𝑝𝑝����. 

 
Taking into account all the steps involved, the time complexity of the proposed 

heuristic can be approximated as 𝒪𝒪 �|𝑅𝑅|·(|𝑅𝑅|−1)
2

· (|𝑁𝑁| + |𝐸𝐸|) + |𝑁𝑁𝑣𝑣| ∙ log|𝑁𝑁𝑣𝑣| + |𝑁𝑁𝑣𝑣| ∙ (|𝑅𝑅| ∙

log|𝑅𝑅| + |𝑅𝑅| ∙ |𝑆𝑆𝑟𝑟|) + |𝐸𝐸𝑣𝑣| · �𝑃𝑃𝑒𝑒𝑣𝑣����� · ℎ𝑝𝑝���� ≈ 𝒪𝒪 �|𝑅𝑅|2

2
· (|𝑁𝑁| + |𝐸𝐸|) + |𝑁𝑁𝑣𝑣| · �log|𝑁𝑁𝑣𝑣| + |𝑅𝑅| ·

(log|𝑅𝑅| + |𝑆𝑆𝑟𝑟|)� + |𝐸𝐸𝑣𝑣| · �𝑃𝑃𝑒𝑒𝑣𝑣����� · ℎ𝑝𝑝����. It can be observed that the performance of the proposed 
heuristic is polynomial and is tightly related to both the size of the physical infrastructure 
(with special emphasis on the number of racks) and the average size of the slice requests. 

 

IV. EXPERIMENTAL VALIDATION AND DISCUSSION 

 
As highlighted in previous sections, the main aim of the presented architecture is the 

automated provisioning of virtual slices, with joint configuration of the requested computing 
and network resources for enhanced utilization of the physical DC infrastructure. For this, in 
this section we present several experiments and simulations to demonstrate the correct 
operation of all involved layers (data, control and orchestration) as well as the benefits 
provided by the joint orchestrated approach. The evaluation is structured in three phases: a 
first one, where the performance in regards of connectivity between servers for the optical 
data plane is evaluated, employing a real small-scale physical infrastructure. Next, a second 
one, employing the same physical testbed, which focuses on the functional validation of the 
overall slice provisioning process. Finally, to conclude the study, a third phase of tests 
focuses onto the scalability of the orchestrated resource provisioning as well as on the 



17 
 

enhanced slice acceptance due to the joint resource configuration when compared to legacy 
solutions. To perform these last tests, due to the limitations on the available physical 
hardware of the small-scale DC testbed, bigger scenarios will be tested through emulated 
environments. 

 
A. DCN Performance Evaluation 

 
Before proceeding on detailing the performed tests, we introduce the employed 

physical small-scale DC testbed. It consists on an optical DCN constituted by three ToRs 
connected to a central fiber switch in a star fashion by optical fiber links. All neighboring 
ToRs are also connected among them through fiber links. Each ToR has a 64 radix with a 
maximum throughput per outgoing optical port of 10 Gb/s, while a 24x24 port fiber switch 
is employed to interconnect them. Then, a set of two servers is connected to such DCN 
through Ethernet links, one server connected to a single ToR. Servers are equipped with an 
instance of an OpenStack computing node, allowing for the deployment of VMs on top of 
them. Lastly, a third server is employed to run an instance of the control and orchestration 
layers software. To enable the configuration and orchestration of resources, this server is 
connected to the OF-agents at the DCN devices and the rest of servers through a dedicated 
Ethernet control network running in parallel. Figure 4 depicts a schematic of the set-up while 
Figure 5 shows a view of the physical hardware and the main components of the testbed. 

 

 
Fig. 4. Schematic of the experimental set-up. 

 



18 
 

 
Fig. 5. View of the physical hardware. 

 
With such small-scale testbed, the correct functional behavior of the presented 

architecture will be demonstrated. As mentioned, as a first step, the performance of the 
optical DCN is analyzed in regards of inter-server connectivity. More specifically, latency 
(Round Trip Time (RTT)) and throughput tests between servers have been performed. To 
this end, two sets of tests focusing on pre-configured paths in the network have been 
executed. For the first one, the servers communicate through a path containing only the three 
ToR switches, while for the second one, a path containing the optical fiber switch is 
configured, skipping the intermediate ToR switch (as depicted in Figure 4). To test the RTT, 
exchanges of ICMP messages from the servers have been performed, while for throughput 
tests the Iperf tool is employed, which enables sending traffic among servers in the form of 
TCP sessions. Ten different repetitions of the tests have been executed. For them, Figure 6 
reports the maximum, average and minimum experimented RTT and throughput for both 
types of configured paths. For the sake of space, only the results in one sense of the 
communication among servers are reported, although tests in both directions have been 
performed. Nevertheless, let us note that results in both senses are similar, as to be expected 
due to the symmetry of the employed DCN topology.      

   



19 
 

  
Fig. 6. Maximum, average and minimum experimented RTT (solid) and throughput 

(dashed) for pure ToR path between servers (left) and for path between servers through 
fiber switch (right). 

 
It can be appreciated that the average for the RTT is in the order of 0.2 ms, while the 

maximum values are in the order of 0.25 ms for both types of paths while for the end-to-end 
throughput the average is in the order of 9.6 Gb/s, while the maximum values are in the order 
of 9.8 Gb/s, again for both types of configured paths. Note, however, that for the path 
involving the fiber switch the obtained values are fairly more stable among repetitions as 
well as differences between maximum, average and minimum values being smaller when 
compared to the pure ToR path. This is because the fiber switch is completely transparent to 
the traffic flowing through its ports, not requiring extra processing once the cross-connections 
have been configured. Nevertheless, for all types of switches it can be appreciated how the 
obtained latency is very small (less than 1 ms), while the throughput is close to the maximum 
theoretical possible throughput per port, highlighting the high performance of the DCN fabric 
for server-to-server communications.  

 
B. Architecture Functional Evaluation 

 
In the following round of tests, we will focus on demonstrating the automated slice 

provisioning on top of a shared physical hardware layer, enabled through the collaborative 
efforts of all the layers of the presented architecture. To this, the same testbed as before is 
employed. As a starting point, to demonstrate the correct connection of the OF-enabled 
optical devices to the control layer, their classification and the construction of the DCN 
topology, we depict the graphical view of the data plane as represented at the ODL DLUX 
web interface (Figure 7). It can be appreciated how all optical nodes (ToRs and fiber switch) 
are properly identified and classified. Additionally, all network adjacencies (i.e. the fiber 
links) are properly represented. Note that also the physical compute servers are represented 
in the network as host nodes, each one connected to the corresponding ToR. Finally, it can 
also be noted that ODL detects the OVS instances running at the compute servers, one per 
compute, since OVS nodes are also managed through the OF protocol. 

 



20 
 

 
Fig. 7. Testbed as seen at the ODL DLUX graphical interface. 

 
For the next step, a virtual slice request will be created and instantiated. As explained 

before, such process starts at the extended Horizon dashboard web interface, where it is 
possible to graphically specify the desired slice, both in terms of topology and resources. In 
particular, we have requested a slice consisting on two VMs interconnected through a virtual 
link requesting the maximum available bandwidth at the data plane, that is, 10 Gb/s. Once 
specified, the slice details are communicated to the orchestration plane, more particularly, to 
the Algorithms module, which will then compute the mapping of the slice onto the physical 
resources (servers and network paths). Since the whole provisioning process has already been 
explained before, we will focus the attention on the resulting network configuration to 
interconnect the deployed VMs of the slice, which are deployed one per server. To 
interconnect the servers, an optical path needs to be configured. The configuration of the 
paths is performed by the control layer according to the decisions taken at the Algorithms 
module. In the particular case at hand, only a single path needs to be configured, which will 
cross the fiber switch since maximum bandwidth is requested. To demonstrate the correct 
configuration of the necessary cross-connection at the fiber switch, Figure 8 depicts a capture 
of the CFlow Mod message stating the action and the ports to be connected. Once the path is 
configured, the slice is ready to be operated. 

 



21 
 

 
Fig. 8. Wireshark capture depicting a CFlow Mod message for the 

configuration of the optical fiber switch. 
 

C. Architecture Performance Evaluation 
 

To finalize the evaluation of the presented architecture and to highlight the benefits 
of an orchestrated approach for virtual slice provisioning, we compare our solution with 
legacy provisioning mechanisms where the allocation of computing and network resources 
is done in a non-joint fashion. To this end, and in order to obtain meaningful results, bigger 
DC scenarios are needed. For this, the Mininet emulation tool [36] is employed to construct 
them. Additionally, an external slice generator has been programmed in order to perform 
more agile tests. The generated slices are sent directly to the Algorithms module, bypassing 
the Horizon dashboard. Additionally, due to hardware limitations, servers at the DC will be 
also emulated. Thus, in the following set of experiments no VMs will be deployed. Note, 
however, that the mapping and allocation process still accounts for the server occupancy, 
hence, the overall slice provisioning process is essentially as explained before.   

 
Given this setup, three data plane scenarios have been configured, in which several 

clusters of racks are present. In each cluster, each rack is connected to its corresponding ToR 
switch through Ethernet cables, allowing for the intra-rack communication. Then, ToRs in 
the cluster are connected to a central fiber switch, one per cluster, which, in turn, are 
connected in a ring fashion between them. Figure 9 depicts an example of the employed DCN 
distribution. Given this, the three configured scenarios are: 1) a DC composed of four 
clusters, with each cluster consisting in 8 racks, with all pairs of optical nodes at the topology 
connected through 19 fiber link pairs; 1) a DC composed of six clusters, with each cluster 
consisting in 16 racks, with all pairs of optical nodes at the topology connected through 10 
fiber link pairs; and 3) a DC composed of nine clusters, with each cluster consisting in 16 
racks, with all pairs of optical nodes at the topology connected through 10 fiber link pairs. 
The characteristics of the ToR switches are the same as in the previous section while 192x192 
port optical fiber switches are configured for these scenarios. As for the servers, it is assumed 



22 
 

that each rack is equipped with 40 servers, with each server having 8 CPU cores, 16GB of 
memory and 1TB of disk available for VM instantiation.  
 

 
Fig. 9. Example of employed DCN distribution for simulation scenarios. 

 
The following set of results assumes that a slice demand set has to be allocated 

concurrently at the DC physical infrastructure, with an arbitrary long life time, thus no slice 
deletion will be performed (a static scenario is considered). Thus, the Algorithms module 
will calculate sequentially the mapping of the slices in the set according to the current status 
of the available resources. For the two considered allocation scenarios (joint and non-joint 
allocation), we analyzed the differences on slice acceptance for increasing sizes of the offered 
demand set. In particularly, slices are assumed to consist on between 2 and 5 VMs 
interconnected with virtual links in a full mesh fashion. The characteristics of the VMs are 
chosen among the default OpenStack flavors [37]. These VMs are interconnected with virtual 
links with a requested bandwidth chosen among the set {10, 100, 1000} Mb/s. Figure 10 
depicts the obtained results, with each data point being averaged over 100 different random 
instances of the slice set, having set 𝛼𝛼 = 𝛽𝛽 = 0.5. 

 

  



23 
 

 
Fig. 10. Slice blocking probability as a function of the demand set size for DCN 

scenarios 1 (top-left), 2 (top-right) and 3 (bottom) 
 
It can be appreciated how a joint provisioning allows for a higher number of accepted 

requests, reducing the slice BP up to around 60-80% in the worst cases when compared to 
legacy solutions. Additionally, we can appreciate how the BP is slightly higher for the larger 
configured DCN configured. This is mainly due to the larger hop count of end-to-end paths. 
In such situation, blocking due to lack of network resources increases. In fact, after having 
analyzed the reasons for the experienced slice blocking, it resulted that the totality of the 
blocking is due to the lack of network resources. More in particular, the blocking due to 
network resources happens at the optical switches when available cross-connections are 
exhausted, locking the potential combinations of input-output fiber ports. When such an 
event happens, several route options between racks are locked out, increasing the chances of 
blocking future slice demands, specially in scenarios in which demands require a high 
network connectivity. 

 
In light of these results, it becomes evident that more taxing scenarios in regards of 

network resources to be deployed impose more limitations onto the acceptance of virtual 
slices. To analyze this, we have also extracted results particularizing the characteristics in 
terms of the number of VMs at the slices requests. Particularly, two scenarios are configured: 
a) each slice requests between 2 and 3 VMs; and b) each slice requests between 4 and 5 VMs. 
For each of them, we have particularized the size of the demand set to 60 requests. The 
obtained results are depicted in Figure 11, focusing on the smallest and largest tested DCNs 
(DCN1 and DCN3). Such results confirm the superior performance of the orchestrated joint 
resource provisioning. It can be appreciated that in situations with more meshed virtual slices 
(scenario b), the non-joint approach performs very poorly, mainly because a significant 
number of end-to-end paths cannot be realized due to not having enough optical network 
resources due to the selection of the servers, which does not account for the network status. 
On the other hand, in the joint approach this effect is mitigated, thanks to the network 
awareness of the mapping approach, which selects the placement of the VMs considering the 
optical resources status. 

 



24 
 

 
Fig. 11. Slice acceptance comparison as a function of the slice configuration. 
 
To conclude our studies, we proceed on analyzing the slice provisioning times for 

both non-joint and joint approaches. To this end, we have focused on the scenarios employed 
for Figure 11, that is, considering the emulated optical data planes. Note, however, that aside 
from this fact, all orchestration and control software is still present (depending on the 
scenario), thus the provisioning times do account for the interactions across all involved 
software layers, their internal operations and the configuration of the emulated network nodes 
through the SDN controller. To better highlight the differences between both approaches, 
besides the total time, we also disclose the time components of both the control and 
orchestration layer for the joint approach. Figure 12 depicts the obtained results. The obtained 
times reflect first that the introduced overhead due to the joint resource provisioning (mainly 
due to the algorithms module) is fairly non-relevant (a maximum difference of around 1 s. is 
observed), considering the increased slice acceptance that can be achieved when compared 
to a legacy non-joint provisioning approach. 

 

 
Fig. 12. Slice configuration times for both non-joint and joint approaches. 

 

V. CONCLUSIONS 
 

Slicing is seen as a promising solution towards future cloud and telecom 
infrastructures, allowing for the creation of complex virtual infrastructures fulfilling the 
specific needs of the customer and the applications/services that will run on top. Such a 



25 
 

concept is to be harnessed by future data centers (DCs). However, current technologies 
impose limitation on both traffic handling as well as on joint resource provisioning aspects. 
Thus, new architectural solutions with a vertical integration of novel control and management 
solutions as well as data plane technologies are a must to overcome such limitations. With 
this goal in mind, in the current paper we presented a DC architecture solution which 
encompasses state-of-the-art optical technologies for the realization of the intra-DC network 
(DCN) and both control and orchestration software layers to efficiently slice the underlying 
physical infrastructure.   

 
The presented architecture has been properly tested in regards of the performance of 

the data plane technologies, highlighting the high bandwidth and low latencies that can be 
achieved thanks to optical technologies, as well as on the automated, dynamic and joint 
provisioning of computing and networking resources to satisfy the needs of virtual slices 
requests. In this regard, we showed how an orchestrated approach for resource provisioning 
allows for a higher number of virtual slices to co-exists when compared to non-joint legacy 
solutions, thanks to a better optimization of the underlying physical substrate. Indeed, we 
showed that in situations with more taxing network requirements for virtual slices, for 
example, more virtual links to be provisioned, non-joint resource provisioning severely limits 
the number of slices that can be deployed, due to the resulting poor resource efficiency. 
However, with the adopted orchestrated solution, such limitation is significantly overcame, 
without incurring in a significant time overhead in the overall provisioning time.  
 
ACKNOWLEDGMENT 
 

This work has been partially funded by the Spanish National project ALLIANCE 
(TEC2017-90034-C2-2-R) with FEDER contribution. 
 
REFERENCES 
 
[1] NGMN Alliance, “5G White Paper”, version 1, February 2015. 
[2] ETSI, “Network Function Virtualization (NFV) White Paper”, October 2012. 
[3] NGMN Alliance, “Description of Network Slicing Concept”, version 1, January 2016. 
[4] Cisco White Paper, “Cisco Global Cloud Index: Forecast and Methodology, 2016-2021”, 

2018. 
[5] J. Perelló et al., “All-optical packet/circuit switching-based data center network for 

enhanced scalability, latency, and throughput”, IEEE Network, vol. 27, num. 6, pp. 14-
22, December 2013. 

[6] A. Pagès et al., “Strategies for Virtual Optical Network Allocation”, IEEE 
Communication Letters, vol. 16, num. 2, pp. 268-271, February 2012. 

[7] D. Gmach et al., “Workload  analysis  and  demand  prediction  of  enterprise  data  center  
applications”, IEEE International  Symposium on Workload  Characterization  (ISWC), 
Boston (USA), September 2007. 

[8] N. Singh, S. Rao, “Energy optimization policies for server clusters”, IEEE International 
Conference on Automation Science and Engineering (CASE), Toronto (Canada), August 
2010. 



26 
 

[9] X. Wang et al., “A resource management framework for multi-tier service delivery in 
autonomic virtualized environments”, IEEE Network Operations and Management 
Symposium (NOMS), Bahia (Brazil), April 2008. 

[10] X. Sun at al., “Optimizing Resource Utilization of a Data Center”, IEEE 
Communications Surveys and Tutorials, vol. 18, num. 4, pp. 2822-2846, April 2016. 

[11] B. Martini et al., “Design and evaluation of SDN-based orchestration system for cloud 
data centers”, IEEE International Conference on Communications (ICC), Kuala Lumpur 
(Malaysia), July 2016. 

[12] S. Spadaro et al., “Resource orchestration in SDN-based future optical data centres”, 
International Conference on Optical Network Design and Modeling (ONDM), Cartagena 
(Spain), May 2016. 

[13] M. Sekiya, at al., “Optical Network Softwarization: Virtualization and Software-
Programmed Networking”, OSA Congress in Advanced Photonics 2016, Vancouver 
(Canada), July 2016. 

[14] M. G. Rabbani et al., “On tackling virtual data center embedding problem”, 
IFIP/IEEE International Symposium on Integrated Network Management, Ghent 
(Belgium), May 2013. 

[15] A. Wang et al., “Network virtualization: Technologies, perspectives, and frontiers,” 
IEEE Journal of Lightwave Technology, vol. 31, num. 4, pp. 523-537, February 2013. 

[16] M. Chowdhury et al., “ViNEYard: Virtual Network Embedding Algorithms with 
Coordinated Node and Link Mapping”, IEEE/ACM Transaction on Networking, vol. 20, 
num. 1, pp. 206-219, February 2012. 

[17] L. Gong et al. “Novel Location-Constrained Virtual Network Embedding (LC-VNE) 
Algorithms Towards Integrated Node and Link Mapping”, IEEE/ACM Transactions on 
Networking, vol. 24, num. 6, pp. 3648-3661, December 2016. 

[18] L. Gong et al., “Virtual Optical Network Embedding (VONE) over Elastic Optical 
Networks”, IEEE Journal of Lightwave Technology, vol. 32, num. 3, pp. 450-460, 
February 2014. 

[19] Y. Wang et al., “Cost-Efficient Virtual Network Function Graph (vNFG) 
Provisioning in Multi-Domain Elastic Optical Networks”, IEEE Journal of Lightwave 
Technology, vol. 35, num. 13, pp. 2712-2723, July 2017. 

[20] A. Pagès et al., “Planning of optical and IT resources for efficient virtual 
infrastructure embedding”, Proceedings of Photonics in Switching 2012 (PS 2012), 
Ajaccio (France), September 2012. 

[21] Y. Tarutani et al., “Virtual network reconfiguration for reducing energy consumption 
in optical data centers”, IEEE/OSA Journal of Optical Communication and Networking, 
vol. 6, num. 10, pp. 925-942, October 2014. 

[22] J. Yin et al., “Experimental Demonstration of Building and Operating QoS-aware 
Survivable vSD-EONs with Transparent Resiliency”, Optics Express, vol. 25, num. 13, 
pp. 15468-15480, 2017. 

[23] Z. Zhu et al., “Build to Tenants' Requirements: On-Demand Application-Driven vSD-
EON Slicing”, IEEE/OSA Journal of Optical Communication and Networking, vol. 10, 
num. 2, pp. A206-A215, February 2018. 

[24] A. Aguado et al., “Dynamic Virtual Network Reconfiguration Over SDN 
Orchestrated Multitechnology Optical Transport Domains”, IEEE Journal of Lightwave 
Technology, vol. 34, num. 8, pp. 1933-1938, January 2016. 



27 
 

[25] W. Miao et al., “SDN-enabled OPS with QoS guarantee for reconfigurable virtual 
data center networks”, IEEE/OSA Journal of Optical Communication and Networking, 
vol. 7, num. 7, pp. 634-643, July 2015. 

[26] P. Shuping et al., “Software-defined optical data centre networks”, China 
Communications, vol. 12, num. 8, pp. 1-9, August 2015. 

[27] H. Yang et al., “Performance evaluation of multi-stratum resources integration based 
on network function virtualization in software defined elastic data center optical 
interconnect”, Optics Express, vol. 23, no. 24, pp. 31192-31205, November 2015. 

[28] B. Kong et al., “Demonstration of Application-driven Network Slicing and 
Orchestration in Optical/Packet Domains: On-demand vDC Expansion for Hadoop 
MapReduce Optimization”, Optics Express, vol. 26, num. 11, pp. 14066-14085, 2018. 

[29] R. Ruffini, “Multidimensional Convergence in Future 5G Networks”, IEEE Journal 
of Lightwave Technology, vol. 35, num. 3, pp. 535-549, February 2017. 

[30] N. Calabretta et al., “System Performance Assessment of a Monolithically Integrated 
WDM Cross-Connect Switch for Optical Data Centre Networks”, Proceedings of 42nd 
European Conference and Exhibition on Optical Communications (ECOC 2016), 
Düsseldorf (Germany), September 2016. 

[31] N. Parsons et al., “High Radix All-Optical Switches for Software-Defined Datacentre 
Networks”, Proceedings of 42nd European Conference and Exhibition on Optical 
Communications (ECOC 2016), Düsseldorf Germany), September 2016. 

[32] OpenDaylight, https://www.opendaylight.org 
[33] ONF, “OpenFlow swicth specification”, version 1.3.4, March 2014. 
[34] ONF, “Extensions to the OpenFlow Protocol in support of Circuit Switching”, 

Addendum to OpenFlow Protocol Specification v1.0 - Circuit Switch Addendum v0.3, 
June 2010. 

[35] OpenStack, https://www.openstack.org/ 
[36] Mininet, http://mininet.org/ 
[37] OpenStack, Manage flavours, https://docs.openstack.org/horizon/latest/admin/ 

manage-flavors.html 


	I. INTRODUCTION
	II. RELATED WORK
	A. Virtual Infrastructure Embedding (VIE) Problem
	B. Orchestration and Control Architectures

	III.  ARCHITECTURE FOR SLICE PROVISIONING
	A. Slice Embedding Optimization Algorithm

	IV. EXPERIMENTAL VALIDATION AND DISCUSSION
	A. DCN Performance Evaluation
	B. Architecture Functional Evaluation
	C. Architecture Performance Evaluation

	V. CONCLUSIONS

