
JoGC manuscript No.
(will be inserted by the editor)

Enhancing Federated Cloud Management
with an Integrated Service Monitoring Approach

A. Kertesz · G. Kecskemeti · M. Oriol · P. Kotcauer · S. Acs ·
M. Rodŕıguez · O. Mercè · A. Cs. Marosi · J. Marco · X. Franch

Received: date / Accepted: date

Abstract Cloud Computing enables the construction
and the provisioning of virtualized service-based appli-
cations in a simple and cost effective outsourcing to
dynamic service environments. Cloud Federations en-
visage a distributed, heterogeneous environment con-
sisting of various cloud infrastructures by aggregating
different IaaS provider capabilities coming from both
the commercial and the academic area. In this paper,
we introduce a federated cloud management solution
that operates the federation through utilizing cloud-
brokers for various IaaS providers. In order to enable
an enhanced provider selection and inter-cloud service
executions, an integrated monitoring approach is pro-
posed which is capable of measuring the availability
and reliability of the provisioned services in different
providers. To this end, a minimal metric monitoring ser-
vice has been designed and used together with a service
monitoring solution to measure cloud performance. The
transparent and cost effective operation on commercial
clouds and the capability to simultaneously monitor
both private and public clouds were the major design
goals of this integrated cloud monitoring approach. Fi-
nally, the evaluation of our proposed solution is pre-

A. Kertesz, P. Kotcauer, S. Acs, A. Marosi
MTA SZTAKI,
H-1518 Budapest, P.O. Box 63, Hungary
E-mail: {kertesz.attila,kecskemeti.gabor,kotcauer.peter,
acs.sandor,marosi.attila}@sztaki.mta.hu

G. Kecskemeti
Universität Innsbruck, 6020, Innsbruck, Technikerstraße 21a
on leave from MTA SZTAKI
E-mail: gabor@dps.uibk.ac.at

M. Oriol, M. Rodŕıguez, O. Mercè, J. Marco, X. Franch
Universitat Politècnica de Catalunya,
08034 Barcelona, c/Jordi Girona 1-3, Spain
E-mail: moriol@lsi.upc.edu, {nebrios2,oscar.mp10}@g-
mail.com, jmarco@lsi.upc.edu, franch@essi.upc.edu

sented on different private IaaS systems participating
in federations.

Keywords Cloud Computing · Cloud Federation ·
Service Monitoring · Cloud Brokering

1 Introduction

Cloud Computing [5,23] offers simple and cost effec-
tive outsourcing in dynamic service environments and
allows the construction of service-based applications ex-
tensible with the latest achievements of diverse research
areas, such as Grid Computing, Service-oriented com-
puting, business processes and virtualization. Cloud-
based, highly dynamic service environments [11] require
a novel infrastructure that incorporates a high-level mon-
itoring approach to support autonomous, on demand
deployment and decommission of service instances. Vir-
tual appliances (VA) encapsulate a complete software
system (e.g. operating system, software libraries and
the deployable services themselves) prepared for exe-
cution in virtual machines (VM). Infrastructure as a
Service (IaaS) cloud systems provide access to remote
computing infrastructures by allowing their users to
instantiate virtual appliances on their virtualized re-
sources as virtual machines. Nowadays, several IaaS
systems co-exist and they are independently offered by
several public service providers (like Amazon [43] or
RackSpace [49]) or by smaller scale privately managed
infrastructures. Cloud solutions are also spreading fast
in academia with the emerging open-source tools, such
as Eucalyptus [45] and OpenNebula [48,32], but these
solutions can hardly interoperate.

Related works have identified several shortcomings
in the current cloud infrastructures [34]: e.g. federated
clouds face the issue of scalability, self-management and

This is a post-peer-review, pre-copyedit version of an article published in Journal of grid computing. 
The final authenticated version is available online at: http://dx.doi.org/10.1007/s10723-013-9269-0



2 A. Kertesz et al.

lost of complete control on computing costs. The ever
growing user demands call for overextending the bound-
aries of a single cloud system. In these cases, users
need to handle the differences between various cloud
providers and have to negotiate their requirements with
multiple parties. Federated clouds aim at supporting
these users by providing a single interface on which they
can transparently handle different cloud providers, as
they would do with a single cloud system. Therefore it
is essential to construct federated cloud systems that
not only offer a single interface for their users, but also
automatically manage their virtual machines indepen-
dently from the currently applied cloud system. Recent
studies (eg. [12]) have also shown that significant per-
formance differences can be experienced on acquired
virtual resources in Clouds. Therefore an efficient cloud
selection in a federated environment requires a cloud
monitoring subsystem that determines the actual sta-
tus of available IaaS systems.

To overcome these challenges, we propose an archi-
tecture that copes with the varying load of user re-
quests, enables virtualized management of applications,
enhances provider selection, establishes interoperabil-
ity and allows users to reduce their operating costs
by simultaneously exploiting public, academic and pri-
vate cloud systems. This architecture incorporates the
concepts of meta-brokering, cloud-brokering and on-
demand service deployment, supported by a sophisti-
cated monitoring solution. Our architecture serves as
an entry point to the entire cloud federation by provid-
ing transparent service execution for users. Our meta-
brokering component allows the system to interconnect
various cloud-brokers available in the system. It is also
responsible for selecting a proper execution environ-
ment managed by a cloud-broker. This selection process
relies on a sophisticated monitoring component, which
provides up-to-date service availability and infrastruc-
ture reliability based on specific monitoring metrics.
The cloud-broker component is responsible for manag-
ing the virtual machine instances of the particular vir-
tual appliances hosted on a specific IaaS provider. Our
architecture also organizes virtual appliance distribu-
tion with its automatic service deployment component
that can decompose and deliver virtual appliances in
smaller parts.

Therefore the main contributions of this paper are:
(i) a holistic view of interoperable federated clouds with
integrated service monitoring solution managed by a
multi-level resource management architecture, (ii) the
introduction of an incorporated cloud service monitor-
ing solution together with a minimal metric monitoring
service to measure cloud performance on a cost effective
and provider independent way, and (iii) the evaluation

of the proposed integrated monitoring solution on pri-
vate IaaS systems with the help of the minimal metric
monitoring service.

This paper is organized as follows: first, we gather
related works in Section 2. In Section 3, we introduce
our proposed architecture and discuss its main compo-
nents. In Section 4, we introduce the minimal metric
monitoring service, and in Section 5, we present the
evaluation of our approach in different private clouds.
Finally, we conclude our research in Section 6.

2 Related work

In this section we describe the related works relevant
to our findings. First, we describe the different cloud
federation approaches found in the literature, then we
describe the evaluation mechanisms used for calculating
the performance of the cloud as the basis to establish
the most convenient deployment strategies.

2.1 Cloud federation approaches

Cloud federation refers to a mesh of cloud providers
that are interconnected based on open standards to
provide a universal decentralized computing environ-
ment, where everything is driven by constraints and
agreements in a ubiquitous, multi-provider infrastruc-
ture. Next, we summarize the relevant related works in
this field.

Buyya et al. [6] suggest a federation-oriented, just-
in-time, opportunistic and scalable application services
provisioning environment called InterCloud. They en-
vision utility oriented federated IaaS systems that are
able to predict application service behavior for intelli-
gent down and up-scaling infrastructures. They list the
research issues of flexible service-to-resource mapping,
user and resource centric QoS optimization, integra-
tion with in-house systems of enterprises, scalable mon-
itoring of system components. They present a market-
oriented approach to offer InterClouds including cloud
exchanges and brokers that bring together producers
and consumers. Producers are offering domain specific
enterprise Clouds that are connected and managed with-
in the federation with their Cloud Coordinator compo-
nent. Celesti et al. [9] proposed an approach for the
federation establishment considering generic cloud ar-
chitectures according to a three-phase model, represent-
ing an architectural solution for federation by means of
a Cross-Cloud Federation Manager (CCFM), a software
component in charge of executing the three main func-
tionalities required for a federation. In particular, the
component explicitly manages: i) the discovery phase in



Enhancing Federated Cloud Management with an Integrated Service Monitoring Approach 3

which information about other clouds are received and
sent, ii) the match-making phase performing the best
choice of the provider according to some utility mea-
sure and iii) the authentication phase creating a secure
channel between the federated clouds.

Bernstein et al. [1] define two scenarios that ex-
emplify the problems of multi-cloud systems: (i) VM
Mobility, where they identify the networking, the spe-
cific cloud VM management interfaces and the lack of
mobility interfaces as the three major obstacles, and
(ii) storage interoperability and federation scenario, in
which storage provider replication policies are subject
to change when a cloud provider initiates subcontract-
ing. Marshall et al. proposed an IaaS cloud solution
to elastically extend physical clusters with cloud re-
sources [26]. They created a so called elastic site man-
ager on top of Nimbus, which interfaces directly with
local cluster managers and three different policies were
examined for elastic site addition. GridBot [31] rep-
resents an approach for execution of bags-of-tasks on
multiple clusters, volunteer and service grids. It has a
Workload Manager component that is responsible for
brokering among these environments, which is simi-
lar to our approach, but we rather target multi-cloud
solutions and focus on highly dynamic service execu-
tions instead of tasks more suitable for volunteer grids.
Cuomo et al. introduced a volunteer-based approach
called Cloud@Home to form a federation in [10]. This
solution is only applicable to providers, who are will-
ing to voluntarily share their resources. Their work is
focusing on providing reliable service provisioning de-
spite the high degree of heterogeneity existing in such
systems.

Regarding recent Cloud Computing projects, the
OPTIMIS project [13] identified that commercial so-
lutions in the field of Cloud Computing have mainly fo-
cused on providing functionalities at levels close to the
infrastructure, and higher-level solutions, like Platform-
as-a-Service (PaaS) environments are limited to a sin-
gle infrastructure provider. Their goal is to build an
improved cloud service ecosystem that supports higher-
level concerns and non-functional aspects to achieve a
wider adoption of Cloud Computing. The project fol-
lowed a holistic approach for multiple coexisting cloud
architectures and they target cloud service life-cycle
optimization including cost, trust, risk and economic
goals. They also planed to enable market-oriented multi-
cloud architectures with clarified legislative background.

The Reservoir project [28] approach can be exem-
plified by the electric grid approach: for one facility to
dynamically acquire electricity from a neighboring facil-
ity to meet a spike in demand. In this vision, disparate
datacenters should be federated in order to provide a

seemingly infinite service computing utility. Regarding
their architectural view, a Reservoir Cloud consists of
different Reservoir Sites (RS) operated by different IPs.
Each RS has resources that are partitioned into isolated
Virtual Execution Environments (VEE). Service appli-
cations may use VEE hosts from different RSs simul-
taneously. Each application is deployed with a service
manifest that formally defines its SLA contract. Vir-
tual Execution Environment Managers (VEEM) inter-
act with VEEs, Service Managers and other VEEMs to
enable federations to be formed. A VEEM gathers in-
teracting VEEs into a VEE group that serves a service
application. This implies that a Reservoir service stack
has to be present on the resources/sites of IPs. Its fed-
erated IaaS cloud management model presented in [29]
argues that commercial cloud providers could also tem-
porarily lease excess capacities during high-demand pe-
riods. They investigate the problems faced by federated
cloud management solutions: (i) dynamic service elas-
ticity, (ii) admission control, (iii) policy-driven place-
ment optimization, (iv) cross-cloud virtual networks (v)
cross-cloud monitoring, and (vi) cross-cloud live migra-
tion.

The Contrail project [8] proposes an SLA-centered
federated approach to Clouds. Its goal is to minimize
the burden on the user with eliminating provider lock-
in by exploiting resources belonging to different cloud
providers regardless the kind of technology they use,
and to increase the efficiency of using Cloud platforms
by performing both a vertical and a horizontal integra-
tion. It follows an open-source approach toward tech-
nology and standards, and supports user authentication
and applications deployment by providing extended SLA
management functionalities. Its federation architecture
acts as a bridge among the users and the cloud providers,
and has three layers. The top layer (called Interface)
provides ways to interact with the federation. The mid-
dle layer (called Core) contains modules that fulfill the
functional and non-functional requirements of the fed-
eration. The federation runtime manager (FRM) op-
erates in this layer, which uses a set of heuristics that
consider different aspects to govern the federation, such
as to minimize economical cost and to maximize perfor-
mance levels. Finally, the bottom layer (called Adapters)
contains the modules that retrieve information and op-
erate on different cloud providers.

The mOSAIC project [27] offers the specification
of service requirements in terms of a cloud ontology
via an innovative API. The implementation of this ap-
proach will offer a higher degree of portability and ven-
dor independence. It also provides application program-
ming interfaces for building applications using services
from multiple cloud providers and plans to realize a



4 A. Kertesz et al.

self-adaptive distributed scheduling platform composed
of multiple agents implemented as intelligent feedback
control loops to support policy-based scheduling and
expose self-healing capabilities. They plan to foster com-
petition between cloud providers by enabling the selec-
tion of best-fitting cloud services to actual user needs
and efficiently outsource computations.

Our proposed approach also tackles the interoper-
ability problems of cloud federations, but it also goes
beyond this state-of-the-art by providing a generic so-
lution for monitoring service provisioning in different
IaaS systems.

2.2 Evaluation of cloud performance

Cloud federation approaches follow different deployment
strategies based on the evaluation of the performance
of the available clouds. We distinguish these strategies
either if they are based on offline or online performance
data.

Offline performance data. M. Schmidt et al. [30]
investigate different strategies for distributing virtual
machine images within a data center: unicast, multi-
cast, binary tree distribution and peer-to-peer distri-
bution based on BitTorrent. They found the multicast
method the most efficient, but in order to be able to dis-
tribute images over network boundaries (for a so called
cross-cloud solution), they have chosen BitTorrent. The
authors only investigated distribution methods within
the boundaries of a single data center, going beyond
that remained future work.

Online performance data. With respect to online
performance data, several monitoring solutions gather
the QoS of the different cloud systems. We distinguish
between those that monitor at the infrastructure level,
and those that monitor at the service or application
level.

Monitoring the infrastructure. Regarding commer-
cial cloud monitoring solutions, Amazon Web Services
launched Amazon CloudWatch [42] in 2009, which is a
supplementary service for Amazon EC2 instances that
provides monitoring services for running virtual ma-
chine instances. It allows gathering information about
the different characteristics (traffic shape, load, disk uti-
lization, etc.) of resources, and based on that, users
and services are able to dynamically start or release
instances to match demand as utilization goes over or
below predefined thresholds. The main shortcoming of
this solution is its strong bounds to a specific IaaS, be-
cause it introduces a monetary overhead by charging
every monitored instance by an hourly rate.

Nagios XI [47] is an infrastructure monitoring solu-
tion that also addresses clouds (the Amazon EC2 in-

terface is supported). It is a robust, comprehensive,
business-oriented solution that is capable of monitoring
a wide area of system components including services,
operating systems and network components. Even though
it has an open source core, it can be very costly to use
it in cloud federation. Our solution is focusing more on
monitoring of service component metrics.

The Cerebrata Azure Diagnostics Manager [44] is a
monitoring component of the Azure Platform designed
for monitoring the performance of Azure applications.
It can be regarded as a data and event logging system
usable in the Azure system only. Therefore, it is not
suitable for utilization in arbitrary providers of a fed-
eration.

An academic approach for cloud performance mon-
itoring is introduced by Yigitbasi et. al. [36], called C-
Meter. Using this framework, workloads can be submit-
ted to target clouds to analyze their performances. On
the contrary, our monitoring solution examines the real,
running applications instead of workloads, and does not
necessarily require additional deployments.

Another solution is presented by Baur et al. in [4]. In
their approach, they present an integrated monitoring
solution for heterogeneous Grid infrastructures, which
aggregates and provides the monitoring data from dif-
ferent Grids. To do so, they apply transformation rules
to the monitored data of each Grid in order to get an
homogeneous data model. However, contrary to our so-
lution, they require each Grid to have its own Grid mon-
itoring service to collect the data.

Monitoring the service level. Regarding monitoring
of the provisioned services, the existing technical ap-
proaches found in the literature to gather the required
data can be classified into two big categories. On the
one hand, some proposals rely on the use of monitoring
directives embedded into the services themselves using
Aspect Oriented Programming (AOP), and weaving the
monitoring code into the execution process, which is
commonly defined in BPEL [3,37]. The advantages of
this solution are a result of those of AOP, which iso-
lates the monitoring code from the business logic as
an aspect, providing low coupling and the ability to
add/modify the monitoring rules without affecting the
core code of the service. However, in the context of de-
ploying the service over cloud infrastructures, changes
over the monitoring rules would require dynamic weav-
ing processes on runtime, which might be somehow dif-
ficult if the cloud does not provide the required artifacts
for inserting these directives on the execution chain of
the service engine. For instance, Zhou et al. [38] make
usage of Model-Driven techniques to automatically gen-
erate monitoring code for Axis. As advantage, this so-
lution seems to be more efficient than the previous one



Enhancing Federated Cloud Management with an Integrated Service Monitoring Approach 5

since there is no weaving process. However, this ap-
proach depends on the technology used for service de-
ployment, in this case the engine, where the service is
installed.

On the other hand, other proposals use a proxy that
intercepts the messages to add monitoring capabilities
to the system without the need to be so intrusive into
the service or its engine and hence, being independent
of the technologies chosen in the implementation of the
services [2,35]. In this case, the same monitoring tool
can be used for all kind of services deployed in a cloud.
Its main drawback is that if the architecture is not prop-
erly built, the proxy can generate a bottleneck affecting
negatively the response time of the monitored services.

Monitoring multiple levels. A more sophisticated so-
lution is GMonE [21], a cloud monitoring platform aimed
at monitoring the different service levels (from SaaS to
IaaS) to support the lifecycle of services deployed in
the cloud. However, their solution requires the imple-
mentation of plug-ins that are highly coupled to the
infrastructure of each cloud provider, which makes it
unsuitable for cloud federations.

3 Federated cloud management with integrated
service monitoring

Figure 1 shows the Federated Cloud Management (FCM)
[20] architecture extended with an integrated service
monitoring approach. The figure reveals the interfaces
of our components and their relations with the currently
available IaaS systems. Our solution offers interopera-
ble access to a federated cloud environment through
the interface of the meta-brokering component. This
component is capable to decide between various cloud-
brokers based on metrics gathered from a service mon-
itoring subsystem. Cloud-brokers extend the current
IaaS functionality by analyzing and dispatching service
requests. Based on service demand patterns, they also
use the service deployment component to deploy or de-
commission the requested services as virtual machines
in specific IaaS systems. The generic integrated solution
highlighted in this figure can be used to monitor any ex-
isting component in the infrastructure of the providers
participating in the cloud federation, and provide this
information to the upper decision making layers of the
architecture.

In its present state, the FCM architecture is mostly
focused on the handling of stateless web services. As a
result, we have investigated monitoring solutions that
can also handle these kind of services [18,16,7]. Because
of its unique QoS attribute monitoring capabilities, we
have selected SALMon (Service Level Agreement Moni-
tor [25]) to act as the Service Monitoring layer of FCM.

SALMon’s advanced capabilities (relevant to the FCM
architecture) are discussed in detail in Section 3.3.

In this architecture users are able to execute services
deployed on cloud infrastructures transparently, in an
automated way. The Generic Service Registry (GSR –
see Figure 1) contains information of these services (in-
cluding WSDLs [50] and their virtual machine images
or virtual appliances). When a service is deployed on a
new host, the service deployment component registers
its new endpoint to the service registry. Upon decom-
missioning, these endpoint registrations are removed.
During operation, the SALMon monitoring subsystem
allows the components in FCM to order regular QoS
evaluation on the deployed services according to pre-
defined metrics coupled with the service’s description
in GSR.

In our system, users send service calls as request
submissions to the Meta-Brokering layer realized by
Generic Meta-Broker Service (GMBS). Federated call
submissions specify the requested service, the opera-
tion to be called, and its possible input parameters. The
GMBS checks if the service is registered to the GSR,
and if so, it selects a suitable Cloud-Broker for further
submission, otherwise rejects the request. Based on ser-
vice usage patterns (e.g. average service response time,
call frequency) the GMBS requests the monitoring of
service instances via SALMon. The monitoring results
are used by its matchmaking algorithm that combines
the just received dynamic data with information gath-
ered from the registry and with status information on
cloud-brokers and SALMon (gathered with the query
cloud metrics function in Figure 1). GMBS forms a
cloud federation by enabling the autonomous manage-
ment of the interconnected cloud infrastructures through
cloud-brokers.

Cloud-brokers are dedicated to specific IaaS systems
and offer a queue for incoming service calls. Incoming
service calls are scheduled to virtual machines available
in VM queues (Call ⇔ VM Association). The auto-
mated management of these virtual machine queues is
the main goal of our cloud-brokers. Members of the VM
queues represent those VMs that are ready to serve a
particular service call. For every virtual appliance (i.e.
kind of service) a VM queue is maintained. To meet
the respective service demand, the cloud-broker decides
the amount of required VMs meeting the actual request
load. If necessary, the cloud-broker requests VM instan-
tiation or decommission from the service deployment
component – see Figure 1. The default virtual machine
scheduling is based on the currently available requests
in the incoming service call queue, their historical ex-
ecution times, and the number of running VMs. The



6 A. Kertesz et al.

Single Private/Public 
IaaS cloud (B)

VM Init
VM Destruct
VA Delivery

VM Queue Mgmnt
Call <-> VM association

Cloud selection
Federated Call submission

Query Cloud Metrics

Meta 
Brokering

Cloud 
Brokering

Service 
Deployment

Service M
onitoring

VMVMVM

Single Private/Public 
IaaS cloud (A)

VMVMVM
Service 

Deployment

Cloud 
Brokering

Single Private/Public 
IaaS cloud (C)

VMVMVM
Service 

Deployment

Cloud 
Brokering

Generic 
Service 
Registry

getService
Metadata

Legend:
VMVMVM

Federatively
managed VMs

Compo
nent

External cloud 
extensions

for each IaaS

Fig. 1 The FCM architecture with enhanced monitoring

secondary task of a Cloud-Broker involves the dynamic
creation and destruction of the various queues.

The following subsections provide a detailed overview
on the main components of the architecture.

3.1 Meta-brokering approach for federating clouds

As we already mentioned in the beginning of this sec-
tion, brokering takes place at two levels in this ar-
chitecture: the service request is first submitted to a
meta-brokering component implemented by the Generic
Meta-Broker Service (which is a revised and extended
version of the Grid Meta-Broker Service described in
[17]), where a high-level decision is made to which cloud
infrastructure the call should be forwarded. Then the
service call is queued at the selected Cloud-Broker, where
lower level brokering selects the VM that will perform
the actual service execution.

Next we shortly summarize the role of GMBS within
FCM. This meta-brokering service has five major com-
ponents. The Meta-Broker Core is responsible for man-
aging the interaction with the other components and
handling user interactions. The MatchMaker compo-
nent performs the scheduling of the calls by selecting
a suitable cloud-broker. This decision making is based
on aggregated static and dynamic data stored by the
Information Collector component in a local database.
The Information System (IS) Agent is implemented as
a listener service of the meta-broker, and it is responsi-

ble for regularly updating static information gathered
from the Generic Service Registry on service availabil-
ity, dynamic information on service and cloud reliability
provided by SALMon (further discussed in Section 3.3),
and aggregated dynamic information collected from the
cloud-brokers including average virtual appliance de-
ployment and service execution time. The Invoker com-
ponent forwards the service call to the selected Cloud-
Broker and receives the service response.

Each Cloud-Broker is described by an XML-based
Broker Property Description Language (BPDL) doc-
ument containing basic broker properties (e.g. name,
managed cloud infrastructure), and the gathered dy-
namic properties. The scheduling-related attributes are
also stored in the description language document. More
information on this document format can be read in
[17]. Namely, the following data are stored in the BPDLs
of each Cloud-Broker:

– Static virtual appliance availability information for
each native repository according to the GSR reg-
istry;

– average VM deployment time and average service
execution time for each virtual appliance provided
by the cloud-brokers;

– and dynamic reliability information expressed by
metrics collected by SALMon.

The scheduling process first filters the brokers by
checking virtual appliance availability in the native cloud
repository, then a rank is calculated for each broker



Enhancing Federated Cloud Management with an Integrated Service Monitoring Approach 7

based on the collected dynamic data. Finally, the cloud-
broker with the highest rank is selected for managing
the actual service request.

3.2 Cloud-brokering and automated service
deployment in FCM

The Cloud-Broker, which is an extended version of the
system described in [19], handles and dispatches service
calls (i.e. requests) to resources and performs resource
management within a single IaaS system. It dynam-
ically creates and destroys virtual machines and VM
queues of different virtual appliances. Virtual machine
creation is supported in the registry by storing addi-
tional static requirements (e.g. its minimum disk, CPU
or memory requirements) about each appliance’s future
instances.

A VM queue lists resources capable of handling spe-
cific service calls, thus instances of a specific virtual ap-
pliance. New resource requests are inserted to the queue
of the appropriate appliance, while the need for resource
destruction is indicated by shortening the queue. Re-
source entries are managed by the VM Handler that is
designed to interact with the public interface of a spe-
cific IaaS system. It translates queue changes, as VM
creation and destruction requests, towards the IaaS sys-
tem. The VM creation process is further detailed in the
last paragraph of this subsection.

The service call queue stores incoming service re-
quests and a reference in the GSR registry to an appli-
ance for each call. There is a single service call queue in
each Cloud-Broker, while there are many VM queues.
Dynamic requirements for a virtual appliance may be
specified with the service call: additional resources (CPU,
memory and disk), and a unique id to identify service
calls originating from the same requester. If a unique
dynamic requirement is specified, then the Cloud-Broker
creates a new VM queue for them and starts the newly
requested VM. Most IaaS systems offer predefined classes
of VMs (CPU, memory and disk capacity) not adjustable
by the user, therefore the Cloud-Broker selects the VM
class that offers the requested extra resources. This may
lead to allocating excess resources in some cases (e.g.
the VM class that meets the extra CPU requirement
offers twice the requested memory). The Cloud-Broker
also schedules service call requests to VM’s and man-
ages the VM life-cycle. If a service call cannot be as-
sociated to any VM, the Cloud-Broker may decide to
start a new one for the request. The VM creation and
destruction decisions are based on the following:

– The number of running VMs available to handle the
service call;

– the number of waiting service requests for the ap-
pliance in the service call queue;

– execution time metrics of service calls provided by
the monitoring service;

– deployment time metrics of virtual appliances pro-
vided by the monitoring service;

– SLA constraints (e.g. total budget, deadline);
– and the billing period of the IaaS system.

If a destruction is needed, shutting down is per-
formed shortly before the end of the billing period of
an IaaS cloud with regard to its average decommission
time. The billing period is generally published by com-
mercial clouds in their SLA terms, and it is used to
determine the minimal time interval in which the users
have to pay for using the required resources. In aca-
demic clouds, resource usage quotas can be taken into
account for the same purpose.

IaaS systems require virtual appliances (VA) to be
stored in their native repositories, because only appli-
ances available in native repositories are usable to in-
stantiate virtual machines. FCM organizes the distri-
bution of user created appliances with the help of the
Automatic Service Deployment (ASD) [14] component.
To meet the demands of highly dynamic service envi-
ronments, appliance distribution is optimized by auto-
matically decomposing and replicating appliances. To
support the rebuilding of decomposed VAs, the ASD
requires appliances to embed minimal manageable vir-
tual appliances (MMVA - [15]). These special appli-
ances meet the following properties:

– Provide content management interfaces to add, con-
figure and remove new appliance parts;

– Offer monitoring interfaces to analyze the state of
their instances (e.g. provide access to their CPU
load, free disk space and network usage);

– And, they are optimally sized: only those files that
are required to offer the previously mentioned two
properties are present in the MMVAs.

As a result, the ASD always replicates the MM-
VAs to native repositories. When a native repository
does not hold the necessary appliance for the current
VM creation request, the VM Handler uses these min-
imal manageable appliances to reconstruct appliances
locally. Consequently, the VM Handler applies the fol-
lowing strategy if it faces a non available appliance.
First, it instantiates an MMVA within a VM suitable
for the non available appliance. Then, using the new
VM’s content management interfaces, the VM handler
requests the download of the complementary appliance
parts to the new VM. These parts are not present in the
native repository, so the download operation will use
the GSR registry. Therefore, the appliance is rebuilt in



8 A. Kertesz et al.

Monitoring ‐ SALMon

QoS data
Repository

Monitoring Engine

Get monitoring data

Store 
monitoring data

Monitoring
events

Enterprise Service Bus (ESB)

Service

SOAP 
messages

Monitor 
DDBB puller

Setup

SALMon
configurer

Tester
Measure

Instrument

«service»
Monitor

SOAP 
messages

Manage
MIs

Manage
Tester

Configure 
Monitor

QoS data

QoS data

Fig. 2 SALMon framework

a virtual machine originally based on the MMVA. Fi-
nally, the VM is ready to serve the scheduled requests
from the service call queue.

3.3 Cloud service monitoring with SALMon

SALMon [25] is a service monitoring framework that
has been integrated into our proposed FCM architec-
ture in order to gather reliability information on the
managed IaaS clouds. It is focused on monitoring the
QoS of software services, and is able to evaluate them
according to pre-defined conditions, and to notify the
results to the interested parties, which is the IS Agent
of the GMBS in our case.

The main features of SALMon that justify its use
to monitor the cloud infrastructure are (see [25] for de-
tails):

Technology independent. Some monitoring solutions are
attached to a particular service technology when mon-
itoring the service layer (e.g. BPEL monitoring [3,37],
SOAP-based [38], etc.), whereas others are attached to
a particular cloud when monitoring the infrastructure
layer (e.g. Amazon CloudWatch [42]). SALMon, in con-
trast, may operate on any available technology with
minor changes. The architecture of SALMon decouples
the different aspects of monitoring and their technolog-
ical dependencies are isolated, which allows an easy ex-

tension to different infrastructures (see implementation
details at [25]). In order to interoperate with FCM, we
have extended SALMon to be able to monitor services
deployed in the cloud.

Easily interoperable with other frameworks. Not all mon-
itoring solutions are easily interoperable. To this aim,
SALMon has been developed as a Service-Based Ap-
plication itself. On one hand, providing the monitoring
solution as a service facilitates the user to monitor the
cloud system easily by just deploying it and using the
service without worrying about technical details about
the instrumentation of the underlying technologies. On
the other hand, standard web service protocols ensures
the integration capabilities with any framework able to
deal with web service technologies. This approach is
similar to the solution proposed by Truong et al. [33] in
monitoring Grids. However, in their solution, they re-
quired each Grid provider to implement and provide the
monitoring service of their own Grid system to monitor
metrics at the infrastructure layer. In contrast, we over-
come this obstacle by complementing SALMon with
the M3S service (see section 4). SALMon can be eas-
ily deployed on the cloud as any other service by the
service deployment component, and communicate with
the other FCM services through standard SOAP-based
protocols.



Enhancing Federated Cloud Management with an Integrated Service Monitoring Approach 9

Easily extensible with new metrics. The monitor is com-
posed of several measure instruments. Each one is re-
sponsible for calculating a specific quality metric. Hence,
new metrics can be computed by implementing the cor-
responding measure instrument and adding it to the
monitor. By doing so, the monitor is able to compute
new metrics as they are required by the FCM in a fed-
erated cloud. A similar feature is also present in other
cloud monitoring solutions that uses plug-ins to con-
duct each monitoring task [21]. However, in contrast to
SALMon, they have not been implemented as a Service-
Based Application.

Combines passive monitoring and on-line testing. SAL-
Mon combines both passive monitoring and on-line test-
ing approaches, being able to configure each method ac-
cording to the preferences of the user. In FCM, SALMon
is used for testing purposes in order to gather the QoS of
the constituent services deployed in the cloud. This ap-
proach consists of periodically invoking a set of methods
of the target service and calculating the QoS over the
obtained results. The advantage of the testing approach
is that it is not intrusive with the real invocations of the
service.

When measuring a cloud system’s behavior, the SAL-
Mon service evaluates the services deployed in the par-
ticular cloud infrastructure. However, some measure-
ments (e.g. network related metrics) are heavily depen-
dent on SALMon’s connections to the particular cloud.
Thus, to allow informed decision making in GMBS, this
work proposes to eliminate the difficulties of SALMon’s
connectivity (cloud resources are usually behind fire-
walls) by deploying SALMon into the measured cloud
infrastructures. As a result, we have prepared SALMon
to be executed in a virtual machine to be deployed to
each cloud managed by FCM. To this aim, the new
components SALMon configurer and a Database query
tool named Monitor DDBB (Dynamic DataBase Bind-
ing) poller have been implemented. The SALMon con-
figurer enables SALMon to be configured dynamically
on the cloud, whereas the Monitor DDBB poller is used
to retrieve the measured QoS in a separated repository
outside the cloud.

The different components of SALMon involved in
this framework are depicted in Figure 2:

SALMon configurer. It is the component that config-
ures and starts the Monitor Service component of SAL-
Mon. The SALMon configurer includes a configuration
file named Monitoring Management Document (MMD
[24]), which is an XML file that specifies all the required
information to configure the monitor dynamically (i.e.,
services, operations, metrics and the testing or passive

monitoring approach). When a new SALMon virtual
machine starts up, the GMBS ensures the automatic
creation and use of an MMD document that points to
newly deployed services.

Monitor Service. It is responsible for managing all the
monitoring processes. During a testing approach, it pe-
riodically activates the tester component which will per-
form the tests. It also creates and manages the Measure
Instruments, which are responsible to obtain the spec-
ified QoS Data, when the services are invoked.

ESB. The invocations of the services are performed
with the Enterprise Service Bus (ESB) (i.e., instead of
invoking the services directly, all requests and responses
of the service are sent through the ESB). When an in-
vocation is intercepted by the ESB, it notifies it to the
Measure Instruments to compute the QoS. In such a
manner, when an invocation is performed, the ESB no-
tifies it to the Measure Instruments in order to compute
the QoS transparently and seamlessly to the target ser-
vice, and not attached to a particular technology.

Measure Instrument. This is the component that im-
plements the logic required to obtain the value of a con-
crete basic quality metric. The derived metrics are cal-
culated from the set of basic quality metrics by comput-
ing the required formula (e.g. average and maximums).
The Measure Instruments are activated by the Moni-
tor Service component based on the quality metrics to
measure. Since measure instruments are the core com-
ponents that actually retrieve the values of the basic
metrics, these components are technologically depen-
dent on the kind of service they are monitoring. The list
of Measure Instruments that are currently implemented
in SALMon includes: availability, response time, execu-
tion time and round trip time. Moreover, by combining
the Measure Instruments implemented with the M3S,
SALMon is able to compute also infrastructure-related
metrics such as CPU and network performance.

Publisher Service. It implements the observer pattern
for services in a Service-Based Application. This com-
ponent is used when new measures are obtained for no-
tifying the meta-brokering service. Using the observer
pattern, SALMon can be decommissioned as soon as the
values are retrieved, which reduces any possible over-
head due to the consumption of resources. This pattern
requires that the subscribed service (the observer, ie.
the GMBS in this case) implements the required inter-
face to receive such a notification. This is achieved by
defining a common interface with the notify method.



10 A. Kertesz et al.

QoS Data It is the repository where the gathered QoS
is stored. It is located outside the cloud to provide the
access to the data after the VM is destroyed.

Monitor DDBB Poller This is the controller to access
the data stored in the QoS Data repository. The Mon-
itor DDBB Poller is used by the GMBS to obtain the
required QoS.

4 The Minimal Metric Monitoring Service

The effects of multi-tenancy are observable even with
the strongly isolated virtualized environments of an IaaS
system. E.g., one could observe degrading connectivity
in a virtual machine if network-heavy virtual machines
are introduced to the underlying virtual machine mon-
itor (the next section provides further examples and
evidence for these effects). Thus multi-tenancy could
have significant effects on the reliability information
of a service instance deployed in cloud infrastructures.
These effects are imposed as seemingly added noise to
the measurements of SALMon. To cancel the effects of
this noise, we propose to detect the effects of multi-
tenancy with a basic service that we refer to as the
Minimal Metric Monitoring Service (M3S).

M3S allows SALMon to determine the basic char-
acteristics of the VM in which the M3S was deployed.
GMBS uses these measurements both to evaluate the
performance and to detect the effects of the internal
provisioning policies in a cloud. For performance, indi-
vidual measurements on the M3S service allows direct
comparison of providers that offer the same kind of vir-
tual machine types (e.g., similar VMs to the EC2 type
named “M1.small”). As a result, the system is capa-
ble to evaluate and to choose among both public and
private clouds based on the same kind of metrics. Fortu-
nately, these individual measurements are also subject
to the effects of multi-tenancy. Thus, to detect the in-
ternal provisioning policies, the Information Collector
component of GMBS statistically analyses and aggre-
gates measurements (e.g. it calculates their standard
deviation). Taking into account such dynamic informa-
tion at the meta- and cloud-brokering layers can result
in better inter- and intra-cloud management. E.g., for
services other than the M3S, the GMBS uses these ag-
gregated values to cancel the effects of multi-tenancy in
the measurements.

As with any monitoring system, M3S cannot avoid
the introduction of some overhead to the system in
overall (e.g. it increases the chances of having under-
provisioned virtual machines in the system). To reduce
its impact, we have designed M3S to function in its
own virtual machine and to be lightweight. Being in a

separate virtual machine is crucial, as it minimizes the
effects of M3S on other virtual machines hosted in the
same cloud system. The service is also lightweight in
terms of its appliance size and in resource usage. M3S’s
appliance is also minimized, so whenever it needs to
be deployed to take new measurements it is promptly
available and does not cause significant delays in the de-
cision making processes of the various layers in FCM.
The size is minimized by providing only the minimal
functionality required to determine basic VM charac-
teristics.

The M3S service offers 4 methods to evaluate the
basic capabilities of its hosting VM. SALMon uses the
response times of these four methods to express the
reliability of the particular cloud that runs the M3S
VM:

1. The method Ping() is a generalized ping test to
check the availability of the service. This method
returns a simple empty object to notify that the
service is up and running.

2. The method StressCpu() performs several mathe-
matical calculations in a large loop over a predefined
set of variables, consisting on integer and floating
point numbers in order to determine the computa-
tional capability of a given VM. The calculations in-
clude sums, multiplications, divisions, modulos, etc.
We use the response time of this method to esti-
mate the computational speed of the VM in which
M3S is deployed in. This estimate gives a general
overview on the performance of those VMs that have
the same type as the M3S VM. Using the histori-
cal values of this performance estimate GMBS could
even determine if there are multi-tenancy or under-
provisioning issues at the particular provider.

3. The method StressInputBandwidth(input) is used
to compute the download transfer speed of the sys-
tem – thus determines its inbound data transfer ca-
pability – , which receives from the invocations of
SALMon a considerably sized input to read. This in-
put consists of a pregenerated dataset of 6 MBytes.
Based on our experiments, 6 MBytes are enough for
rough bandwidth estimates, nevertheless this mea-
surement cannot significantly influence the monthly
data transfer bill of GMBS users concerning com-
mercial clouds.

4. The method StressOutputBandwidth() is used to
compute the upload transfer speed of the system –
that we later refer as the outbound data transfer ca-
pability – . This method responds with a 6-MBytes-
long string to SALMon.

Figure 3 exemplifies the operation of our proposed
integrated FCM solution. This figure reveals that the
GMBS continuously collects the monitored reliability



Enhancing Federated Cloud Management with an Integrated Service Monitoring Approach 11

Cloud Brokering

Service Deployment

Meta-Brokering

SALMon
DDBB

Q
ue

ry
 C

lo
ud

M
et

ric
s

(R
el

ia
bi

lit
y

In
fo

)

Se
nd

R
es

ul
ts

Single Private/Public IaaS cloud (C)

Ping

Stress
CPU

Stress
InputBW Stress

OutputBW

VM2

M3S
VA

VM1

SALMon
 VA

SALMon
 VA

M3S
 VA

Single Private/Public IaaS cloud (C)

Ping

Stress
CPU

Stress
InputBW Stress

OutputBW

VM2

M3S
VA

VM1

SALMon
 VA

SALMon
 VA

M3S
 VA

Single Private/Public IaaS cloud (C)

Ping

Stress
CPU

Stress
InputBW Stress

OutputBW

VM2

M3S
VA

VM1

SALMon
 VA

SALMon
 VA

M3S
 VA

Single Private/Public IaaS cloud (C)

Ping

Stress
CPU

Stress
InputBW Stress

OutputBW

VM2

M3S
VA

VM1

SALMon
 VA

SALMon
 VA

M3S
 VA

Single Private/Public IaaS cloud
(OpenNebula)

SALMon 
VA

M3S
VA

VM1

SALMon 
VA

VM2

M3S
VA

Ping Stress
CPU

Stress
InputBW

Stress
OutputBW

Te
st

M
et

ric
s

VMVMVM

Test/Regular
Load

Fig. 3 Integrated monitoring in FCM with M3S and SALMon

information from the SALMon DDBB. If the collected
information is due to expire, the GMBS initiates its
metric revival phase. As a result, it instantiates a new
SALMon and M3S VM in the cloud infrastructure rep-
resented with the almost expired data. To do so, GMBS
contacts the VM Handler part of the appropriate Cloud-
Broker to initiate a new deployment of the monitoring
VMs. During this deployment, the new SALMon VM is
configured to monitor the methods of the deployed M3S
test appliance. After deployment, the GMBS calls the
SALMon Configurer method of the new SALMon VM
to start monitoring (as shown in Figure 3 with arrows
on the right). Consequently, SALMon performs periodic
monitoring of the M3S methods using its monitoring
test cases obtained from a predefined MMD with the
required details, then it reports the metric values and
their aggregates (e.g. average or minimum/maximum)
to the DDBB. The IS Agent of GMBS (at the meta-
brokering layer of FCM) regularly queries the moni-
tored values and updates them in the appropriate de-
scription document fields of the responsible Cloud-Bro-
ker. Since keeping the monitoring VMs in the cloud
can be expensive, we have extended the IS Agent to
also initiate the decommission of these VMs after the
new metric values become available in the DDBB.

5 Evaluation of our proposed integrated
solution

In this section, we present the evaluation of our pro-
posed solution in three phases. First, we show that data
collected from an M3S service in a private cloud cor-
relates with the latent load of physical machine that
hosts the M3S virtual machine. Second, we present the
federative use of SalMon and M3S by collecting and an-
alyzing their metrics from three cloud providers in two
cloud federations. Finally, we offer an outlook on how
the FCM’s monitoring extension could improve user ex-
perience with heterogeneous cloud federations.

5.1 Detecting latent load with M3S metrics

The LPDS laboratory of MTA SZTAKI runs an Open-
Nebula 3.6 [48] based cloud infrastructure [46], which
is partitioned in two parts: a production service and an
experimental one. Both services use KVM-based virtu-
alization, and support the following interfaces: OCCI,
EC2 and the SunStone WEB frontend. Both services
are built on hardware with equivalent performance (e.g.,
the experimental service consists of 4 hosts including 64
CPU cores, having together 152 GBs RAM and 4.3 TBs
storage). The only difference between the two is the
guarantees they provide. The experimental service is
deployed for LPDS cloud developers and enables imme-



12 A. Kertesz et al.

diate reconfiguration of the entire infrastructure setup
and therefore it does not guarantee properly perform-
ing VMs at all times. This reconfiguration capability
enables us to perform detailed measurements for test-
ing all M3S functionalities. In this section we present
measurements that were taken while the experimental
service was under our exclusive control.

5.1.1 Deployment of the monitoring components

To automate the evaluation, we focused our attention
on the behavior of the IS Agent component of the GMBS.
This component was separated from GMBS for the ex-
periments to reduce the interferences that could possi-
bly be caused by other GMBS/FCM components and
the various cloud systems that GMBS connects with.
An independent metric collector script was developed
to manage the instances of SALMon and M3S virtual
appliances with the help of the Cloud-Broker. Upon re-
quest, this script first instantiates M3S, then SALMon
in the target cloud. During the initialization of the
SALMon VM, the script instructs SALMon to moni-
tor the VM of the M3S service and forward the results
to DDBB. The script then continuously monitors the
contents of DDBB and waits until at least one new mea-
surement is available for each of the monitored metrics
of the M3S service. After each metric is updated for the
target cloud the script ensures the termination of both
the M3S and the SALMon VMs. This final step allows
minimizing the cost of monitoring, but still maintains
recent data in the DDBB to be used during the deci-
sions regarding the target cloud by the GMBS.

In order to determine the usability of the reported
metrics, we have checked how these metrics behave un-
der various background load on the experimental pri-
vate cloud service of LPDS. To imitate the latent load
in cloud infrastructures, we have generated the follow-
ing kinds of artificial load during our measurements: (i)
with normal load on the hosts of the private cloud , (ii)
with an increased network load present on the infras-
tructure and (iii) with an increased CPU load present
on the hosts of the cloud. Under normal load conditions
some other developers run several virtual machines for
their experiments, but the CPU load never reached over
50% (this load was actually present in all three cases as
it represents more closely the production use of a cloud
infrastructure). Under network load situation, we have
introduced continuous transfers on between two phys-
ical nodes (a disk image sized 8GBs was transferred
over and over again) of our experimental cloud. During
the increased CPU load scenario, we have deliberately
created an under-provisioning situation on one of the
physical machines (i.e. we allocated more virtual CPUs

on the machine than it had in reality and we also en-
sured that they run compute-intensive operations).

In both cases with increased load, the preparation
of the testing environment is crucial, because too heavy
load would render our experiments useless (i.e., it is not
expected from any provider to sacrifice its user’s oper-
ations with such a high level of under-provisioning),
in contrast too little load could result no significant
changes in our measurements (thus GMBS cannot dif-
ferentiate between clouds). During network transfer over-
load, too heavy load may prevent transferring the VA
images to the hosts. It is evident that no measure-
ments could be done in these cases, therefore we avoided
such transfer loads. Regarding CPU load manipula-
tions, OpenNebula differentiates two parameters we can
vary: the ’CPU’ – that is reserved by OpenNebula on
a physical host for a VM, and the ’vCPU’ – that is the
number of CPUs a VM can actually utilize. Unfortu-
nately, in VM requests, when one specifies the ’CPU’
parameter only, the new VM will end up with an indefi-
nite number of processors. To avoid this unexpected be-
havior, we have ensured that the Cloud-Broker issues
VM requests that specify both parameters (for M3S
and SALMon we used the setup of CPU = 0.01 – to fit
in even heavily under-provisioned environments – and
vCPU = 1).

Although the scenarios could strongly influence M3S
and SALMon behavior, their actual deployment might
result in measurement errors. E.g., when the network
load is applied it should not occur in an isolated part
of the cloud, the network components used by M3S and
SALMon should be also influenced. Also, we should
avoid deploying SALMon and M3S on the same host
as networking between such virtual machines is not
comparable to regular networking capabilities. Simi-
larly to the increased network load situation, the in-
creased CPU load should also happen on the host where
M3S is deployed (thus influencing its performance met-
rics). Therefore, our independent metric collector script
enforced the Cloud-Broker to instantiate the M3S ser-
vices on one of the nodes that actually experienced the
artificial load. While the VM of SALMon has been de-
ployed on another machine, which actually also served
as the virtual machine image repository of the private
cloud, therefore this host has been used to transfer the
M3S VM to the utilised host during deployment. This
SALMon VM was instructed to measure the response
times (in milliseconds) of the previously defined meth-
ods on the M3S VM. With these preparations, our ex-
perimental cloud was ready for measurements.



Enhancing Federated Cloud Management with an Integrated Service Monitoring Approach 13

Table 1 Average and median values of the evaluations.

StressInBW StressCPU StressOutBW Ping
Avg (ms) Med (ms) Avg (ms) Med (ms) Avg (ms) Med (ms) Avg (ms) Med (ms)

Normal 5,97 5 1672,30 1657,5 87,94 68,67 2,91 2,75
Net load 6,39 6,5 1704,42 1659,5 86,47 74 2,89 3
CPU load 17,69 8,5 2319,27 2289,25 121,93 76 2,71 2,5

Fig. 4 Evaluation results for CPU intensive tests in the LPDS cloud

5.1.2 Measurements in the LPDS cloud

While running our artificial load setups we have repeat-
edly run the IS Agent of GMBS until the statistical
evaluation of the measurement results became more
stable (i.e. we could eliminate the discrepancies be-
cause of the continuously present normal load). Besides
this paper, the evaluation process is also exemplified
through a video available in [52]. In Table 1, we sum-
marize the results with basic statistical measures. The
table’s columns show the average and median response
times of all M3S functions depending on the artificial

load applied. The table presents the increased network
load situation with its ”Net load” row, while the row ti-
tled ”CPU load” reveals the data collected during CPU
under-provisioning in the infrastructure. The rest of the
section gives a detailed discussion on the behavior and
properties of the metrics collected on the clouds via
M3S.

In Figure 4 we can see that for the StressCpu()
method of M3S in the first and second phases (ie. nor-
mal and increased network load) of an evaluation run
we measured around the same CPU response times (that
are shown in milliseconds). The figure shows that for



14 A. Kertesz et al.

Fig. 5 Evaluation results for service availability tests in the LPDS cloud

a few cases the background load of our experimental
cloud was increased for short periods (e.g. Measure-
ment No. 14 under normal load), but otherwise under
both load situations the measurements remained sta-
ble (their standard deviation is really small – 55ms). In
contrast, in the increased CPU load scenario, the M3S
service not only responded around 1.5 slower, but the
standard deviation of its response times have increased
significantly (to 235ms).

Figure 5 shows the response times for the Ping()
method of M3S during all three artificial loads situa-
tions. Due to the applied granularity of measurements
the standard deviation of each measurement run is much
higher (i.e. even under normal load it is 327ns – 12% of
the average measured ping response time). However,
even with such diversity in measurement results the
standard deviation gives us a hint for under-provisioning

situations (e.g. it raises to 397ns and 417ns for network
and CPU load situations respectively).

Finally, the way the independent metric collector
is created allowed us to also measure and publish the
deployment times of the M3S and SALMon services in
the particular cloud infrastructure. As stated in Section
3.2, the average deployment time of virtual appliances
are reported by the VM Handler of the cloud-brokers to
the GSR registry, to help decision making for brokering
operations. We have gathered these deployment times
measured during the evaluation runs, and summarized
them in Table 2. In addition to the previous evaluation
runs we executed an additional phase, in which we fur-
ther increased the network load on the M3S host (there
were 10 times as many parallel transfers as before in our
regular increased network load situation). This phase is
denoted in the last row of this table.



Enhancing Federated Cloud Management with an Integrated Service Monitoring Approach 15

Table 2 Average deployment times of the monitoring appli-
ances.

Evaluation phases Deployment time (ms)

Normal 200,92
CPU load 228,2

Network load 245,45
Higher network load 379,69

Analysis. As we have expected, the results show that
the combined raise in deployment time of the M3S and
in response time for the median ping and bandwidth
stressing functions could be a good indicator for net-
work under-provisioning. Also, the increase in median
CPU load alone could be used to indicate CPU under-
provisioning. Unfortunately, our used bandwidth stress-
ing functionalities also dependent on the CPU on some
level. This dependency is revealed in the increased re-
sponds times of the bandwidth stressing functions dur-
ing heavy CPU load situations. Therefore, the current
set of measurements cannot detect concurrently occur-
ring CPU and network under-provisioning. As new ver-
sions of the M3S will be produced this constraint is
planned to be removed allowing the GMBS to take more
sophisticated decisions. Measuring these metrics in all
participant cloud infrastructures of a cloud federation
can contribute to a better performing execution envi-
ronment selection at the upper layers of the FCM archi-
tecture, resulting in a higher level of user satisfaction.

What we learned from the first round of measure-
ments performed on the LPDS local cloud is that other
running VMs in the cloud infrastructure can cause some
performance degradation to a user’s application, which
is proved by our measurements depicted in Figures 4
and 5. Since cloud providers usually do not give access
to information on the total number of running VMs
(and their dynamic load) in their datacenters, there is
a definite need for a monitoring solution capable of pro-
viding such information.

5.2 M3S metrics in the scope of cloud federations

After we finished examining the behavior of M3S in
a controlled environment, we have set up larger scale
experiments that would support the M3S’s integration
into the FCM architecture. We aimed at collecting M3S
measurements for various cloud systems to enable the
FCM architecture to make more informed decisions,
while federating them into a single cloud formation. To
identify the cloud infrastructures that we could exper-
iment on, we have checked out the various federative
partners of the private LPDS cloud. The LPDS cloud
is participating in two larger scale cloud federations:
one that is formed by the EGI Cloud Federation task

force [39], and the other one is formed by the SZTAKI
Cloud project [41].

5.2.1 The used infrastructures

First, we have contacted the EGI Cloud Federation to
determine which of their participants we can use for
our experiments. To reveal how M3S handles hetero-
geneous environments, we have aimed at an EGI site
with a different cloud setup as our local experimental
cloud. We received positive answer from the CESNET
cloud [40]. During our measurements, this cloud had 10
nodes, 2 of which were reserved for EGI FedCloud. The
hardware parameters of this cloud were: 24 cores, 96
GB RAM, 1 TB local storage (with RAID 0), and In-
finiBand Mellanox MT26428 QDR. Its software stack
uses OpenNebula v. 3.6 with nodes having Debian 6
Squeeze, XEN 4.1.2 hypervisor (with tap2 drivers), and
GPFS or NFS shared storage (44 TB, mounted IPoIB).
Though this cloud is also based on the OpenNebula
middleware, it uses a different virtual machine moni-
tor (namely XEN), which required the transformation
of the originally KVM based virtual appliances of the
M3S and SALMon services. These transformed appli-
ances were registered to the Generic Service Registry of
FCM (see Figure 1) to allow seamless deployment in-
dependently from the applied virtual machine monitor
in the actually monitored cloud infrastructure.

Second, the LPDS Cloud also participates in a larger
private federation of SZTAKI formed by the internal
project called “SZTAKI Cloud”. This federation offers
a central infrastructure service for SZTAKI that fed-
erates with the individually maintained infrastructures
of the various research laboratories in SZTAKI. The
central service runs a different version of OpenNebula
(version 3.8) allowing us to experiment M3S behavior
in an even more heterogeneous environment, when the
cloud toolset is not equivalent. Therefore we used the
SZTAKI Cloud central infrastructure to perform the
third series of measurements. This infrastructure con-
sists of 448 CPU cores, 1.75 TBs RAM and 66 TBs
storage.

In addition to the examined academic Clouds, we
have also performed preliminary evaluations on the Win-
dows Azure platform [51]. However, the performance
characteristics of the Azure cloud renders the results
practically incomparable, because even deploying a sin-
gle instance of the M3S service took around 10 minutes.
Thus, in the next section we only focused our measure-
ments to FCM-based academic cloud federation.



16 A. Kertesz et al.

5.2.2 Measurements

On the previously detailed infrastructures we have also
performed the same measurements that we introduced
for the LPDS Cloud in the previous subsection. As the
artificial CPU and network load could not fit in to our
usage quotas, we have only executed measurements un-
der the regular load of the particular cloud. The com-
parison of the appropriate test cases can be seen in
Figure 6. The figure represents the local LPDS cloud
with the label “LPDS”, the Czech cloud as “CESNET”
and the SZTAKI Cloud federation as “SZTAKI”.

Analysis. In order to summarize the evaluation results
we can state that they are heavily dependent on the
hardware characteristics, overall load and utilization,
and the policies (SLAs) of the actual cloud provider.
For example, the minimum values for the StressCPU()
measurements reveal the clear performance difference
between the individual cores of the clouds (LPDS uses
Intel(R) Xeon(R) CPU E5420 @ 2.50GHz CPUs, CES-
NET uses Intel Xeon E5649@2.53GHz CPUs and SZ-
TAKI uses AMD Opteron(TM) Processor 6272 @2.1GHz
CPUs) and their standard deviation reveals the usage
pattern of the infrastructure and the signs for under
or over-provisioning. This situation can be clearly ob-
served through the SZTAKI Cloud that has several pro-
cessing power slowdowns (e.g. see measurements around
iteration 15). In those cases the CPUs were under-provi-
sioned, and our measurements also reflect this situation.

Based on our deployment time measurements, we
managed to show that deploying similar services at dif-
ferent providers in a federation can result in highly dif-
ferent startup times, therefore for highly dynamic and
often upgraded service appliances our proposed FCM
solution can save significant time for the users by effi-
cient provider selection and VM management with the
help of its integrated monitoring solutions.

6 Conclusion and future work

The growing number of user communities in Cloud Com-
puting calls for overextending the boundaries of sin-
gle cloud systems. Federated clouds aim at supporting
these users by providing a single interface on which they
can transparently handle the different cloud providers
as they would do with a single system. In this paper,
we have presented an architecture that offers federated
cloud management and utilizes a sophisticated service
monitoring approach to evaluate basic cloud reliabil-
ity status, and to perform seamless service provisioning
over multiple cloud providers.

The architecture uses the Generic Meta-Broker Ser-
vice as the entry point for the users of the cloud fed-
eration. This service selects the most suitable cloud
provider to perform the service requests of the user
by investigating the current state of the participating
clouds according to the information stored in a generic
service registry and the reliability metrics collected by
the integrated SALMon service monitoring framework.
We also presented the concept of the Cloud-Broker that
is capable of handling service requests and managing
virtual machines within a single IaaS cloud system.
We have created a minimal metric monitoring service,
which is capable of measuring infrastructure reliabil-
ity together with the integrated SALMon framework in
public and private clouds.

Finally, we have evaluated our integrated federated
management solution using the minimal metric mon-
itoring service and SALMon to monitor service provi-
sioning reliability in three different private cloud infras-
tructures. The presented evaluation results show that
both service reliability and responsiveness do vary over
time and load conditions, and these measures can be
used by our federated cloud management solution to
select better execution environments for achieving a
higher level of user satisfaction.

Our future work aims at applying the proposed ap-
proach in other cloud federations including commercial
solutions. Since our SZTAKI Cloud project has recently
launched its federated Cloud service, now we are able to
manage local clouds of different laboratories by taking
into account the monitored service performance data.
Regarding cloud-brokering, we would like to rely more
tightly on the information provided by the monitor-
ing service, e.g., VM deployment and service execution
times. Using these and historic information collected
about the services, we would like to forecast load and
required VM count incorporating e.g., delays caused by
VM deployment times and maximum time limit con-
straints for services calls waiting in the service queue.
In these additional evaluations we will further exam-
ine the performance of centralized components in FCM
(such as the GMBS and GSR), and propose replicated
or decentralized versions for better scalability.

7 Acknowledgment

The research leading to these results has received fund-
ing from the European Community’s Seventh Frame-
work Programme FP7/2007-2013 under grant agree-
ment 215483 (S-Cube), and from the SZTAKI Cloud
project financed by the Computer and Automation Re-
search Institute, Hungarian Academy of Sciences (MTA
SZTAKI).



Enhancing Federated Cloud Management with an Integrated Service Monitoring Approach 17

Fig. 6 Comparison figures of measurements in 3 Clouds

References

1. D. Bernstein, E. Ludvigson, K. Sankar, S. Diamond and
M. Morrow. Blueprint for the Intercloud – Protocols
and Formats for Cloud Computing Interoperability. In
Proceedings of The Fourth International Conference on
Internet and Web Applications and Services, pp. 328–
336, 2008.

2. E. Badidi, L. Esmahi, M. A. Serhani and M. Elkoutbi.
WS-QoSM: A Broker-based Architecture for Web Ser-
vices QoS Management. Innovations in Information
Technology, pp. 1–5, 2006.

3. L. Baresi, S. Guinea. Self-supervising BPEL Processes.
In IEEE Transactions on Software Engineering, IEEE
computer Society Digital Library, 2010.

4. T. Baur, R. Breu, T. Kalman, T. Lindinger, A. Milbert,
G. Poghosyan, H.Reiser, M. Romberg. An Interoperable

Grid Information System for Integrated Resource Mon-
itoring Based on Virtual Organizations. Journal of Grid
Computing, Volume 7, Issue 3, pp. 319–333, September
2009.

5. R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I.
Brandic. Cloud computing and emerging it platforms:
Vision, hype, and reality for delivering computing as the
5th utility. Future Generation Computer Systems, vol.
25, no. 6, pp. 599–616, June 2009.

6. R. Buyya, R. Ranjan, and R. N. Calheiros. InterCloud:
Utility-Oriented Federation of Cloud Computing Envi-
ronments for Scaling of Application Services. Lecture
Notes in Computer Science: Algorithms and Architec-
tures for Parallel Processing. Volume 6081, 2010.

7. O. Cabrera and X. Franch. A Quality Model for
Analysing Web Service Monitoring Tools. In proc. of
the Sixth IEEE International Conference on Research



18 A. Kertesz et al.

Challenges in Information Science, RCIS 2012, Valen-
cia, Spain, 16-18 May 2012.

8. E. Carlini, M. Coppola, P. Dazzi, L. Ricci, and G.
Righetti. Cloud Federations in Contrail. Euro-Par 2011
Workshops, LNCS 7155, pp. 159168, 2012.

9. Celesti, A., Tusa, F., Villari, M., and Puliafito, A.
(2010). How to Enhance Cloud Architectures to Enable
Cross-Federation. In IEEE 3rd Conference on Cloud
Computing (CLOUD). 2010.

10. A. Cuomo, G. Di Modica, S. Distefano, A. Puliafito,
M. Rak, O. Tomarchio, S. Venticinque, U. Villano. An
SLA-based Broker for Cloud Infrastructures. Journal of
Grid Computing, Volume 11, Issue 1, pp. 1–25, March
2013.

11. E. Di Nitto, C. Ghezzi, A. Metzger, M. Papazoglou, and
K. Pohl. A journey to highly dynamic, self-adaptive
servicebased applications. Automated Software Engg.,
vol. 15, pp. 313–341, December 2008.

12. R. R. Exposito, G. L. Taboada, S. Ramos, J. Gonzalez-
Dominguez, J. Tourino, R. Doallo. Analysis of I/O
Performance on an Amazon EC2 Cluster Compute and
High I/O Platform. Journal of Grid Computing, Online
First, March 2013. DOI: 10.1007/s10723-013-9250-y.

13. A. J. Ferrer et. al. OPTIMIS: a Holistic Approach to
Cloud Service Provisioning. Future Generation Com-
puter Systems, vol. 28, pp. 66–77, 2012.

14. G. Kecskemeti, G. Terstyanszky, P. Kacsuk, and Zs.
Nemeth. An Approach for Virtual Appliance Distribu-
tion for Service Deployment. Future Generation Com-
puter Systems, vol. 27, issue 3, pp 280–289, 2011.

15. G. Kecskemeti, G. Terstyanszky, P. Kacsuk and Zs.
Nemeth. Towards Efficient Virtual Appliance Delivery
with Minimal Manageable Virtual Appliances. to ap-
pear in IEEE Transactions on Services Computing, DOI:
10.1109/TSC.2013.12.

16. A. Keller and H. Ludwig. The WSLA framework: Spec-
ifying and monitoring service level agreements for web
services. Journal of Network and Systems Management,
11(1), pp. 57–81, 2003.

17. A. Kertesz and P. Kacsuk. GMBS: A new middleware
service for making grids interoperable. Future Gener.
Comput. Syst., vol. 26, pp. 542–553, April 2010.

18. Z. Li, Y. Jin and J. Han. A runtime monitoring and val-
idation framework for web service interactions. In proc.
of Australian Software Engineering Conference, 2006.

19. A. Cs. Marosi and P. Kacsuk. Workers in the clouds.
In PDP2011, Y. Cotronis, M. Danelutto, and G. A. Pa-
padopoulos, Eds. IEEE Computer Society, pp. 519–26,
2011.

20. A. Cs. Marosi, G. Kecskemeti, A. Kertesz, P. Kacsuk.
FCM: an Architecture for Integrating IaaS Cloud Sys-
tems. In proc. of the Second International Conference on
Cloud Computing, GRIDs, and Virtualization (Cloud
Computing 2011), IARIA, pp. 7-12, Rome, Italy, 2011.

21. J. Montes, A. Sanchez, B. Memishi, M. Perez, G. An-
toniu. GMonE: A complete approach to cloud monitor-
ing. Future Generation Computer Systems, In Press,
Corrected Proof, Available online 5 March 2013.

22. H. R. Motahari-Nezhad, R. Saint-Paul, B. Benatallah,
and F. Casati. Deriving protocol models from imper-
fect service conversation logs. IEEE Transactions on
Knowledge and Data Engineering (TKDE), 2008.

23. B. P. Rimal, A. Jukan, D. Katsaros, Y. Goeleven. Archi-
tectural Requirements for Cloud Computing Systems:
An Enterprise Cloud Approach. Journal of Grid Com-
puting, Volume 9, Issue 1, pp. 3–26, March 2011.

24. C. Muller, M. Oriol, M. Rodriguez, X. Franch, J. Marco,
M. Resinas and A. Ruiz-Cortes. SALMonADA: A plat-
form for Monitoring and Explaining Violations of WS-
Agreement-compliant Documents. In proc. of the 4th
International Workshop on Principles of Engineering
Service-Oriented Systems (PESOS’12), 2012.

25. M. Oriol, X. Franch, J. Marco, D. Ameller. Monitoring
adaptable soa-systems using salmon. In Workshop on
Service Monitoring, Adaptation and Beyond (Mona+).
pp. 19–28, 2008.

26. P. Marshall, K. Keahey and T. Freeman. Elastic Site:
Using Clouds to Elastically Extend Site Resources.
T. IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid 2010), Melbourne,
Australia. May 2010.

27. D. Petcu, C. Craciun, M. Neagul, M. Rak, I. Lazcan-
otegui. Building an Interoperability API for Sky Com-
puting. In proc. of the Second International Workshop
on Cloud Computing Interoperability and Services (In-
terCloud 2011), IEEE CS, pp. 405-412, 2011.

28. B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Na-
gin. I. Lloriente, R. Montero, Y. Wolfsthal, E. Elmroth,
J. Caceres, M. Ben-Yehuda W. Emmerich, F. Galan.
The RESERVOIR Model and Architecture for Open
Federated Cloud Computing. IBM Journal of Research
and Development, 53(4), 2009.

29. B. Rochwerger, D. Breitgand, A. Epstein, D. Hadas,
I. Loy, K. Nagin, J. Tordsson, C. Ragusa, M. Villari,
S. Clayman, E. Levy, A. Maraschini, P. Massonet, H.
Munoz and G. Toffetti. Reservoir - When One Cloud is
not enough. Computer, vol. 44, i. 3, pp. 44-51, 2011.

30. M. Schmidt, N. Fallenbeck, M. Smith, and B. Freisleben.
Efficient distribution of virtual machines for cloud com-
puting. In Proceedings of the 2010 18th Euromicro Con-
ference on Parallel, Distributed and Network-based Pro-
cessing, IEEE Computer Society, pp. 567–574, 2010.

31. M. Silberstein, A. Sharov, D. Geiger, and A. Schuster.
GridBot, execution of bags of tasks in multiple grids.
In Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis (SC ’09),
2009.

32. B. Sotomayor, R.S. Montero, I.M. Llorente, and I. Fos-
ter. Virtual infrastructure management in private and
hybrid clouds. Internet Computing, vol. 13, no. 5, pp.
14–22, IEEE, 2009.

33. H. Truong, T. Fahringer, S. Dustdar. Dynamic In-
strumentation, Performance Monitoring and Analysis of
Grid Scientific Workflows Jounal of Grid Computing
(JOGC), vol. 3, pp. 1-18, 2005.

34. Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres,
and Maik Lindner. A break in the clouds: towards a
cloud definition. SIGCOMM Comput. Commun. Rev.
39, 1, pp. 50–55, 2008.

35. X. Wang; H. Wang, Y. Wang. A Monitoring Frame-
work for Multi-Cluster Environment Using Enterprise
Service Bus. International Conference on Management
and Service Science, 2009.

36. N. Yigitbasi, A. Iosup, D. Epema, and S. Ostermann. C-
Meter: A Framework for Performance Analysis of Com-
puting Clouds. In the International Workshop on Cloud
Computing (Cloud 2009), 2009.

37. P. Zhang, B. Li, H. Muccini and M. Sun. An Approach
to Monitor Scenario-Based Temporal Properties in Web
Service Compositions. In Advanced Web and Network
Technologies, and Applications, 2008.



Enhancing Federated Cloud Management with an Integrated Service Monitoring Approach 19

38. C. Zhou, L. T. Chia and B. S. Lee. DAML-QoS ontology
for web services. In IEEE International Conference on
Web Services, pp. 472–479, 2004.

39. EGI Federated Clouds Task Force.
https://wiki.egi.eu/wiki/Fedcloud-
tf:FederatedCloudsTaskForce, 2012.

40. CESNET Czech academic network operator.
http://www.ces.net/about/, 2012.

41. SZTAKI Cloud. http://cloud.sztaki.hu/en/home, 2012.
42. Amazon CloudWatch. http://aws.amazon.com/cloud-

watch/, 2009.
43. Amazon Web Services LLC. Amazon elastic compute

cloud. http://aws.amazon.com/ec2/, 2009.
44. Cerebrata Azure Diagnostics

Manager. http://www.cere-
brata.com/Products/AzureDiagnosticsManager, 2011.

45. Eucalyptus cloud. http://www.eucalyptus.com/, 2011.
46. LPDS laboratory website. http://www.lpds.sztaki.hu,

2012.
47. Nagios XI monitoring solution.

http://www.nagios.com/products/nagiosxi/, 2012.
48. OpenNebula cloud. http://opennebula.org/, 2011.
49. Rackspace Cloud. http://www.rackspace.com/cloud/,

2011.
50. The World Wide Web Consortium.

http://www.w3.org/TR/wsdl, 2009.
51. Windows Azure Platform.

http://www.windowsazure.com, 2012.
52. Video demonstration of the moni-

toring capability integrated to FCM.
http://www.youtube.com/watch?v=uIewqw FJQc,
April 2013.


